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C Auxiliary Results

Lemma 1. Let X2, be a chi-squared variable with degree m and t > 0, then P(x2, > t) <
37/2 exp(—t/3).

Proof. The moment generating function of x2, is given by Elexp(¢x2,)] = (1 — 2¢)~™/2 for
¢ < 1/2. Through Markov Inequality we have

P(x2, > t) < Elexp(¢x2,)]e ¢ = (1 —2¢)~™/2e~¢ (41)

The proof is completed by picking ¢ = 1/3. O

D Proof of Proposition 1

Define ny = nx_; for £ > K — 1. Imagine that in each episode, the algorithm pulls all arms still
remaining in X (including virtual arms and known arms). Then the total number of arm pulls is
K+L

Z k=1 Nk-

If an “arm” 7 is the k-th rejected arm, then it is pulled exactly ny times. If it is not rejected, then it is
pulled ng_; times. Hence to obtain the actual total number of arm pulls, we only need to subtract
those ny’s corresponding to virtual arms and known arms from the summation. We conclude that
the total number of arm pulls is at most

K+L K+L
S ST ST S S @)

|7 = K Ko+L keJ k=K —Ko+L+1
K+1L
1 N - K,

S SN (8 ) w

k=K—Ko+L+1 (Ko, L) max(2, K + 1 — k)

1 Ko+L—-1 1

=Ko+ (N —-Kp) ———— -t _N 4
0+ ( 0) U (Ko, L) J:z; max(2, Ko — j) (44)

E Proof of Proposition 2

The “if” part is clear by the definition of Z*. We establish the “only if”” part as follows.

Consider a basis J # Z*. Suppose that A% = 0. Then, there exists a sequence of reward-
cost vectors (7(™) &(™))>_ such that both of the following hold: (i) (7™, &™) — (r,¢); (ii)
(AZ))™"b 2 0, (AF) b 2 0, (7)) (AG) b = ()" (AZY) b,

Setx(") € RE+L to be the basic feasible solution of (A(”) b) corresponding to basis 7, i.e. xf;) =

(A‘(}l))_lb and XZ(- ") = 0fori ¢ J. Note that (x(™)2_, is a uniformly bounded sequence of finite

dimensional vectors. By taking subsequences, without lost of generality, assume that x(™) — x(°°),
We have

x> 20, Ax*) = lim (AG))x™ =, (45)

meaning that x(°) is a feasible solution of (SFLP). By taking the limit of the last inequality in (ii)
we have

pTx) = 1im (357 (AG))" b > limsup(ay?)T(AL) b, (46)

n—oo n—00
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Under Assumption 1, Az~ is invertible and hence the mapping ¢ — AE} is continuous at ¢ = c.
Therefore, through (i) we conclude that limsup,_, . (iY")7(AY))=1b = L. AZ'b, ie. the
optimal value of (SFLP). Therefore, (46) means that x(%) is also an optimal solution of (SFLP),

which contradicts with the uniqueness assumption. (Let i € Z*\J, we have xz(oo) =0 # x; and
hence x(*°) #£ x*))

F Proof of © being dense in R(“+1)xK

If ' € RUTDXE\Q (je. @ is a feasible instance that violates Assumption 1), then it is nec-
essary that one of the following statements is true: (i) det(A’%) = 0 for some basis Z; or (ii)
()T (AL)™'b — (W;)T(A/;)"'b = 0 for some bases Z # J; or (iii) certain coordinate of
(A”)~'b is zero for some basis Z. In either case, we have h(6’) = 0 for some non-zero polynomial
function A : RUADXE s R Since the set of zeroes of any non-zero polynomial function cannot

contain any open ball, we conclude that R(“+1)* %\ © does not contain any open set, i.e. O is dense
in R<L+1) X K‘

G Comparing SFSR and SFSR-L Algorithms

Instance H1 Instance H2 Instance H3
1.00 A 12
1.0 $ 104
0.99
0.8 x4 084
< < “
0.98
o el 4 T
g g 0.6 § 0.6 4
3 0.97 2 04l o4
0.96 - 0.2 0.2
0.95 {®X7 x8 @ 0.0 0.0{ex14
0.950 0.975 1.000 1.025 1.050 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
cost ¢ cost ¢ cost ¢
1.0 1.0 1.0
—¥- usLp - —%~ usLpP —%~ usLP
08, --@- SFSR 0.8 Sk @ SFSR 0.8 4 --@- SFSR
~ -k- SFSR-L -k- SFSR-L
13 13 13
5061 £ 061 EO.G-O ------- ®-..... ... o
5 5 s | tree °
&5 0.44 g 0497, 5 044
0.2 0.2 q 0.24
0.0 T T T T 0.0 T T T T 0.0 = T T T T
2 3 4 5 2 3 4 5 15 20 25 30 35
Budget N led Budget N led Budget N led

Figure 3: Top: Three hard 16-arm instances. Arms in the optimal support are labeled with green
triangles. Bottom: Empirical results for three algorithms under varying budgets. 95% confidence
intervals are indicated and tight.

While both flavors of SFSR can achieve good performance on an average instance, in Figure 3, we
see that in certain carefully constructed hard instances (H 1- H 3) while one of the two flavors, SFSR
or SFSR-L performs well, the other does not (the guarantee in any case is probabilistic). In fact,
the H3 instance in Figure 3 shows that it is hard enough that SFSR-L struggles to perform much
better than the USLP algorithm. Below, we provide a detailed explanation on why SFSR-L fails on
instance H2.

Consider a CBMALI instance with K arms and one type of cost. The mean reward and cost are
shown as in the left of Figure 4: Arm 1 has low reward and low cost, arm 2 has high reward and
near feasible cost, and arm 3 to K all have the same mean reward and cost: The cost is feasible but
close to cost bound ¢, and the reward is chosen such that the best mixed arm is formed by a mixture
of arm 1 and 2. The (negative) Lagrangian reward fL(#, &) of an arm a € [K] can be visualized in
Figure 4 as the vertical distance between arm a to the “frontier” (i.e. the extended line formed by
cost-reward vectors of two arms in the empirical optimal support).
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Figure 4: Illustration of SFSR—-L in a 1-constraint instance. Left: True mean reward and cost. Right:
Empirical means after the first episode. Despite that the empirical means do not deviate from the
the true mean by too much, arm 1 (a member of the optimal support) ends up having the lowest
empirical Lagrangian reward, and is eliminated as a result.

Now, consider the end of episode 1 of SFSR-L, and the empirical means of rewards and costs are
shown as on the right of Figure 4. Now, arm 2 and some arm 3 < j < K forms the empirical frontier.
The empirical dual optimal solution (symbolized by the slope of the frontier) is very different from
the true dual optimizer. More importantly, the empirical Lagrangian reward of arm 1 is now the
lowest among all arms, and arm 1 is rejected by the SEFSR-L algorithm in round 1 as a result. Note
the identification error happens despite the fact that the arm 1 did not underperform (i.e. 71 <
r1,C1 > c1) its mean.

While in elimination style algorithms there’s always the possibility of erroneously rejecting optimal
arms, we note that the type of event as shown on the right of Figure 4 is not unlikely: We only
require one of the K — 2 arms to slightly outperform its true mean for arm 1 to be eliminated. In
comparison, in unconstrained BAI problems, for the optimal arm (arm 1) to be rejected in episode 1
in an elimination-style algorithm (Audibert & Bubeck, 2010; Karnin et al., 2013), it requires all of
the other arms (including the worst arm) to empirically outperform arm 1.

H Additional Empirical Results

In addition to the experiments in Section 6, we also applied the three algorithms (SFSR, SFSR-L,
and USLP) to 6 instances with L = 2 constraints. We set K = Ky = 24,0, = 1,0, = 0.5 and
¢1 = ¢ = 1.0. In all of the three instances, we set the costs of the 24 arms to be the 24 combinations
of e, € {0.4,0.6,0.8,1.0,1.2,1.4} and ¢2; € {0.7,0.9,1.1,1.3}. Then, to define the rewards for
each instance, we first pick a noise vector (W;)?4, (which we will describe later) independently for
each instance. In instance D1, we set r; = 1.0 — W;. In instance D2, we set 7; = ¢; ; — W;. In
instance D3, we set r; = c¢1,; + c2; — W;. We run the randomizations for a few times until the
optimal support of each instance Dj has exactly j arms. Finally, we increment the reward of each
arm in the optimal support by 0.02 to ensure that the optimal support is unique and the instance is
not overly difficult for any CBMALI algorithm.

We consider two ways of choosing the random vector (Wi)?il: (i) a random permutation of
{0.0,0.02,--- ,0.46}. (ii) i.i.d. uniform random choices from {0.0,0.02, - - - , 0.28}. For the former
choice, we will refer to the instance as Dj P. For the latter, we will use DjI. The specific instances
we used are reported in Table 1.

For each combination of instance-algorithm-budget, we run the simulation for 5000 times indepen-
dently and obtain the error rate as the proportion of times the algorithm output the wrong support.
The results are provided in Figure 5. Each figure takes about 2 hours on an Apple M1 MacBook Air.

We can see that the SFSR-L algorithm on these two constraints instances either has the same per-
formance as the SF SR algorithm or does a bit better in terms of having a lower error rate.

18



Pure Exploration for Constrained Best Mixed Arm Identification

Instance D1P Instance D2P Instance D3P
1.0 1.0 1.0
—¥— usLp —¥- usLp —%— usLP
0.8 1 @ SFSR 0.8 1 @+ SFSR 0.8 1 --@- SFSR
-&- SFSR-L -k- SFSR-L -k- SFSR-L
206 206 206
© [ ©
= c =
e IS e
5 0.4 4 5 0.4 4 5
0.2 1 ‘-‘-tn,‘ 021822
e SN i S iy
0.0 - ; , o L ; . i1
1.5 20 25 30 35 3 4 5 6 7
Budget N le4 Budget N le4 Budget N le4
Instance D1l Instance D2I Instance D3I
1.0 1.0 1.0
—¥— usLP —¥ usLp —¥— usLP
0.8 @ SFSR 0.8 1 @+ SFSR 0.8 @ SFSR
-k- SFSR-L -k- SFSR-L -k- SFSR-L
0.6 0.6 -

Error rate
Error rate
Error rate

Budget N led Budget N led Budget N led

Figure 5: Simulation results for 6 instances with L = 2 under varying budget. 95% confidence
intervals are indicated and tight.

Table 1: Description of the mean rewards and costs of instances. The rewards of arms in the optimal
support is shown in bold. Top Row (from left to right): D1P, D2P, D3P. Bottom Row (from left
toright): D11, D21, D31.

ci\c2 0.7 0.9 1.1 1.3 ci\c2 0.7 0.9 1.1 1.3 ci\e2 0.7 0.9 1.1 1.3
04 088 0.80 0.82 0.66 04 008 028 -0.02 0.22 04 104 122 128 1.26
0.6 0.72 1.02 0.70 0.54 0.6 020 046 054 0.40 0.6 098 122 1.60 1.54
0.8 092 074 094 0.84 0.8 042 052 080 0.34 0.8 126 140 1.88 1.84
1.0 0.76 0.60 0.56 0.86 1.0 092 078 096 0.70 1.0 172 176 164 1.92
1.2 098 064 0.68 0.78 1.2 094 07 110 0.86 1.2 1.78 1.70 1.96 2.08
14 062 096 090 0.58 14 142 116 1.04 1.24 14 194 230 232 250

ci\c2 0.7 0.9 1.1 1.3 ci\e2 0.7 0.9 1.1 1.3 ci\e2 0.7 0.9 1.1 1.3
04 084 1.02 0.74 0.76 04 040 0.18 0.28 0.14 04 092 112 132 1.42
0.6 0.84 088 096 0.90 0.6 044 054 040 0.32 0.6 114 142 1.62 1.68
0.8 090 098 0.92 0.80 0.8 056 0.52 0.68 0.64 0.8 130 1.70 1.68 2.06
1.0 098 098 0.90 0.74 1.0 0.8 080 0.82 0.74 1.0 146 1.82 2.02 2.04
1.2 094 090 0.88 0.72 1.2 094 118 1.02 1.12 1.2 184 202 212 224
1.4 078 082 0.88 0.84 1.4 142 116 124 1.24 1.4 206 228 232 258
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