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C Auxiliary Results489

Lemma 1. Let �
2
m be a chi-squared variable with degree m and t > 0, then P(�2

m � t) 490
3m/2 exp(�t/3).491

Proof. The moment generating function of �
2
m is given by E[exp(⇣�2

m)] = (1 � 2⇣)�m/2 for492
⇣ < 1/2. Through Markov Inequality we have493

P(�2
m � t)  E[exp(⇣�2

m)]e�⇣t = (1� 2⇣)�m/2
e
�⇣t (41)

The proof is completed by picking ⇣ = 1/3.494

D Proof of Proposition 1495

Define nk = nK�1 for k > K � 1. Imagine that in each episode, the algorithm pulls all arms still496
remaining in X (including virtual arms and known arms). Then the total number of arm pulls is497 PK+L

k=1 nk.498

If an “arm” i is the k-th rejected arm, then it is pulled exactly nk times. If it is not rejected, then it is499
pulled nK�1 times. Hence to obtain the actual total number of arm pulls, we only need to subtract500
those nk’s corresponding to virtual arms and known arms from the summation. We conclude that501
the total number of arm pulls is at most502
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E Proof of Proposition 2503

The “if” part is clear by the definition of I⇤. We establish the “only if” part as follows.504

Consider a basis J 6= I
⇤. Suppose that �2

J = 0. Then, there exists a sequence of reward-505
cost vectors (r̃(n), c̃(n))1n=1 such that both of the following hold: (i) (r̃(n), c̃(n)) ! (r, c); (ii)506
(Ã(n)

I⇤ )�1b � 0, (Ã(n)
J )�1b � 0, (µ̃(n)

J )T (Ã(n)
J )�1b � (µ̃(n)

I⇤ )T (Ã
(n)
I⇤ )�1b.507

Set x(n)
2 RK+L to be the basic feasible solution of (Ã(n)

,b) corresponding to basis J , i.e. x(n)
J =508

(Ã(n)
J )�1b and x(n)

i = 0 for i 62 J . Note that (x(n))1n=1 is a uniformly bounded sequence of finite509
dimensional vectors. By taking subsequences, without lost of generality, assume that x(n)

! x(1).510
We have511

x(1)
� 0, Ax(1) = lim

n!1
(Ã(n)

J )x(n)
J = b, (45)

meaning that x(1) is a feasible solution of (SFLP). By taking the limit of the last inequality in (ii)512
we have513

µ
Tx(1) = lim

n!1
(µ̃(n)

J )T (Ã(n)
J )�1b � lim sup

n!1
(µ̃(n)

I⇤ )T (Ã
(n)
I⇤ )�1b. (46)
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Under Assumption 1, AI⇤ is invertible and hence the mapping c̃ ! Ã�1
I⇤ is continuous at c̃ = c.514

Therefore, through (i) we conclude that lim supn!1(µ̃(n)
I⇤ )T (Ã

(n)
I⇤ )�1b = µ

T
I⇤A�1

I⇤ b, i.e. the515
optimal value of (SFLP). Therefore, (46) means that x(1) is also an optimal solution of (SFLP),516
which contradicts with the uniqueness assumption. (Let i 2 I

⇤
\J , we have x(1)

i = 0 6= x⇤
i and517

hence x(1)
6= x⇤.)518

F Proof of ⇥ being dense in R(L+1)⇥K519

If ✓
0
2 R(L+1)⇥K

\⇥ (i.e. ✓
0 is a feasible instance that violates Assumption 1), then it is nec-520

essary that one of the following statements is true: (i) det(A0
I) = 0 for some basis I; or (ii)521

(µ0
I)

T (A0
I)

�1b � (µ0
J )T (A0

J )�1b = 0 for some bases I 6= J ; or (iii) certain coordinate of522
(A0

I)
�1b is zero for some basis I. In either case, we have h(✓0) = 0 for some non-zero polynomial523

function h : R(L+1)⇥K
7! R. Since the set of zeroes of any non-zero polynomial function cannot524

contain any open ball, we conclude that R(L+1)⇥K
\⇥ does not contain any open set, i.e. ⇥ is dense525

in R(L+1)⇥K .526

G Comparing SFSR and SFSR-L Algorithms527

Figure 3: Top: Three hard 16-arm instances. Arms in the optimal support are labeled with green
triangles. Bottom: Empirical results for three algorithms under varying budgets. 95% confidence
intervals are indicated and tight.

While both flavors of SFSR can achieve good performance on an average instance, in Figure 3, we528
see that in certain carefully constructed hard instances (H1-H3) while one of the two flavors, SFSR529
or SFSR-L performs well, the other does not (the guarantee in any case is probabilistic). In fact,530
the H3 instance in Figure 3 shows that it is hard enough that SFSR-L struggles to perform much531
better than the USLP algorithm. Below, we provide a detailed explanation on why SFSR-L fails on532
instance H2.533

Consider a CBMAI instance with K arms and one type of cost. The mean reward and cost are534
shown as in the left of Figure 4: Arm 1 has low reward and low cost, arm 2 has high reward and535
near feasible cost, and arm 3 to K all have the same mean reward and cost: The cost is feasible but536
close to cost bound c̄, and the reward is chosen such that the best mixed arm is formed by a mixture537
of arm 1 and 2. The (negative) Lagrangian reward f

L
a (r̂, ĉ) of an arm a 2 [K] can be visualized in538

Figure 4 as the vertical distance between arm a to the “frontier” (i.e. the extended line formed by539
cost-reward vectors of two arms in the empirical optimal support).540
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Figure 4: Illustration of SFSR-L in a 1-constraint instance. Left: True mean reward and cost. Right:
Empirical means after the first episode. Despite that the empirical means do not deviate from the
the true mean by too much, arm 1 (a member of the optimal support) ends up having the lowest
empirical Lagrangian reward, and is eliminated as a result.

Now, consider the end of episode 1 of SFSR-L, and the empirical means of rewards and costs are541
shown as on the right of Figure 4. Now, arm 2 and some arm 3  j  K forms the empirical frontier.542
The empirical dual optimal solution (symbolized by the slope of the frontier) is very different from543
the true dual optimizer. More importantly, the empirical Lagrangian reward of arm 1 is now the544
lowest among all arms, and arm 1 is rejected by the SFSR-L algorithm in round 1 as a result. Note545
the identification error happens despite the fact that the arm 1 did not underperform (i.e. r̂1 <546
r1, ĉ1 > c1) its mean.547

While in elimination style algorithms there’s always the possibility of erroneously rejecting optimal548
arms, we note that the type of event as shown on the right of Figure 4 is not unlikely: We only549
require one of the K � 2 arms to slightly outperform its true mean for arm 1 to be eliminated. In550
comparison, in unconstrained BAI problems, for the optimal arm (arm 1) to be rejected in episode 1551
in an elimination-style algorithm (Audibert & Bubeck, 2010; Karnin et al., 2013), it requires all of552
the other arms (including the worst arm) to empirically outperform arm 1.553

H Additional Empirical Results554

In addition to the experiments in Section 6, we also applied the three algorithms (SFSR, SFSR-L,555
and USLP) to 6 instances with L = 2 constraints. We set K = K0 = 24,�r = 1,�c = 0.5 and556
c̄1 = c̄2 = 1.0. In all of the three instances, we set the costs of the 24 arms to be the 24 combinations557
of c1,i 2 {0.4, 0.6, 0.8, 1.0, 1.2, 1.4} and c2,i 2 {0.7, 0.9, 1.1, 1.3}. Then, to define the rewards for558
each instance, we first pick a noise vector (Wi)24i=1 (which we will describe later) independently for559
each instance. In instance D1, we set ri = 1.0 � Wi. In instance D2, we set ri = c1,i � Wi. In560
instance D3, we set ri = c1,i + c2,i � Wi. We run the randomizations for a few times until the561
optimal support of each instance Dj has exactly j arms. Finally, we increment the reward of each562
arm in the optimal support by 0.02 to ensure that the optimal support is unique and the instance is563
not overly difficult for any CBMAI algorithm.564

We consider two ways of choosing the random vector (Wi)24i=1: (i) a random permutation of565
{0.0, 0.02, · · · , 0.46}. (ii) i.i.d. uniform random choices from {0.0, 0.02, · · · , 0.28}. For the former566
choice, we will refer to the instance as DjP . For the latter, we will use DjI . The specific instances567
we used are reported in Table 1.568

For each combination of instance-algorithm-budget, we run the simulation for 5000 times indepen-569
dently and obtain the error rate as the proportion of times the algorithm output the wrong support.570
The results are provided in Figure 5. Each figure takes about 2 hours on an Apple M1 MacBook Air.571

We can see that the SFSR-L algorithm on these two constraints instances either has the same per-572
formance as the SFSR algorithm or does a bit better in terms of having a lower error rate.573
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Figure 5: Simulation results for 6 instances with L = 2 under varying budget. 95% confidence
intervals are indicated and tight.

Table 1: Description of the mean rewards and costs of instances. The rewards of arms in the optimal
support is shown in bold. Top Row (from left to right): D1P,D2P,D3P . Bottom Row (from left
to right): D1I,D2I,D3I .

c1\c2 0.7 0.9 1.1 1.3

0.4 0.88 0.80 0.82 0.66
0.6 0.72 1.02 0.70 0.54
0.8 0.92 0.74 0.94 0.84
1.0 0.76 0.60 0.56 0.86
1.2 0.98 0.64 0.68 0.78
1.4 0.62 0.96 0.90 0.58

c1\c2 0.7 0.9 1.1 1.3

0.4 0.08 0.28 �0.02 0.22
0.6 0.20 0.46 0.54 0.40
0.8 0.42 0.52 0.80 0.34
1.0 0.92 0.78 0.96 0.70
1.2 0.94 0.76 1.10 0.86
1.4 1.42 1.16 1.04 1.24

c1\c2 0.7 0.9 1.1 1.3

0.4 1.04 1.22 1.28 1.26
0.6 0.98 1.22 1.60 1.54
0.8 1.26 1.40 1.88 1.84
1.0 1.72 1.76 1.64 1.92
1.2 1.78 1.70 1.96 2.08
1.4 1.94 2.30 2.32 2.50

c1\c2 0.7 0.9 1.1 1.3

0.4 0.84 1.02 0.74 0.76
0.6 0.84 0.88 0.96 0.90
0.8 0.90 0.98 0.92 0.80
1.0 0.98 0.98 0.90 0.74
1.2 0.94 0.90 0.88 0.72
1.4 0.78 0.82 0.88 0.84

c1\c2 0.7 0.9 1.1 1.3

0.4 0.40 0.18 0.28 0.14
0.6 0.44 0.54 0.40 0.32
0.8 0.56 0.52 0.68 0.64
1.0 0.84 0.80 0.82 0.74
1.2 0.94 1.18 1.02 1.12
1.4 1.42 1.16 1.24 1.24

c1\c2 0.7 0.9 1.1 1.3

0.4 0.92 1.12 1.32 1.42
0.6 1.14 1.42 1.62 1.68
0.8 1.30 1.70 1.68 2.06
1.0 1.46 1.82 2.02 2.04
1.2 1.84 2.02 2.12 2.24
1.4 2.06 2.28 2.32 2.58
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