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Summary

As Large Language Models (LLMs) become increasingly powerful and accessible to hu-
man users, ensuring fairness across diverse demographic groups, i.e., group fairness, is a crit-
ical ethical concern. However, current fairness and bias research in LLMs is limited in two
aspects. First, compared to traditional group fairness in machine learning classification, it
requires that the non-sensitive attributes, in this case, the question in the user prompts, be
the same across different groups. In many practical scenarios, different groups, however,
may prefer different questions and this requirement becomes impractical. Second, it evalu-
ates group fairness only for the LLM’s final output without identifying the source of possible
bias. Namely, the bias in LLM’s output can result from both the pretraining and the finetun-
ing. For finetuning, the bias can result from both the RLHF procedure and the learned reward
model. Arguably, evaluating the group fairness of each component in the LLM pipeline could
help develop better methods to mitigate the possible bias. Recognizing those two limitations,
this work benchmarks the group fairness of learned reward models. By using expert-written
text from arXiv, we are able to benchmark the group fairness of reward models without requir-
ing the same question in the user prompts across different demographic groups. Surprisingly,
our results demonstrate that all the evaluated reward models (e.g., Nemotron-4-340B-Reward,
ArmoRM-Llama3-8B-v0.1, and GRM-1llama3-8B-sftreg) exhibit statistically significant group
unfairness. We also observed that top-performing reward models (w.r.t. canonical performance
metrics) tend to demonstrate better group fairness.

Contribution(s)

1. We introduce a new problem of group fairness in reward models for LLMs, bridging a gap
between algorithmic fairness methods and fairness research in LLMs.
Context: Prior works (Lu et al., 2020; Garimella et al., 2022; Venkit et al., 2023; Bi
et al., 2023) on LLM fairness predominantly addresses biased or harmful language in model
outputs rather than unfairness within reward models.

2. We propose an evaluation methodology for group fairness that leverages a newly curated
dataset derived from arXiv metadata.
Context: None

3. We benchmark eight top-performing reward models from RewardBench (Lambert et al.,
2024) and show that all exhibit statistically significant group unfairness.
Context: None

4. We demonstrate that reward models with higher canonical performance metrics also tend to
exhibit better group fairness, suggesting a possible link between overall model quality and
fairness.

Context: None
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Abstract

As Large Language Models (LLMs) become increasingly powerful and accessible to
human users, ensuring fairness across diverse demographic groups, i.e., group fairness,
is a critical ethical concern. However, current fairness and bias research in LLMs is
limited in two aspects. First, compared to traditional group fairness in machine learn-
ing classification, it requires that the non-sensitive attributes, in this case, the question
in the user prompts, be the same across different groups. In many practical scenarios,
different groups, however, may prefer different questions and this requirement becomes
impractical. Second, it evaluates group fairness only for the LLM’s final output without
identifying the source of possible bias. Namely, the bias in LLM’s output can result
from both the pretraining and the finetuning. For finetuning, the bias can result from
both the RLHF procedure and the learned reward model. Arguably, evaluating the group
fairness of each component in the LLM pipeline could help develop better methods to
mitigate the possible bias. Recognizing those two limitations, this work benchmarks
the group fairness of learned reward models. By using expert-written text from arXiv,
we are able to benchmark the group fairness of reward models without requiring the
same question in the user prompts across different demographic groups. Surprisingly,
our results demonstrate that all the evaluated reward models (e.g., Nemotron-4-340B-
Reward, ArmoRM-Llama3-8B-v0.1, and GRM-1llama3-8B-sftreg) exhibit statistically
significant group unfairness. We also observed that top-performing reward models
(w.r.t. canonical performance metrics) tend to demonstrate better group fairness.

1 Introduction

Large Language Models (LLMs) have demonstrated impressive capabilities and are assisting a grow-
ing user base (Hu, 2023). Yet, ensuring these benefits are equitably distributed across diverse de-
mographic groups remains a critical challenge (Goellner et al., 2024; OpenAl, 2024). This concern
can be formalized as the group fairness problem in LLMs. While existing research on bias in LLMs
has reduced stereotypical language toward certain groups (Nangia et al., 2020; Webster et al., 2021;
Wang & Cho, 2019), it assumes that users from different groups pose identical prompts or include
explicit group attributes (e.g., “he,” “she”). In practice, demographic information is often unstated,
and users may ask distinct questions that originate from their everyday interests and experiences
shaped by their demographic groups (Weber & Castillo, 2010). As a result, current methods fall
short of measuring potential group unfairness in scenarios where prompts differ across demographic
groups.

Moreover, fairness assessment in LLMs typically focuses on the final generated text rather than ex-
amining the training pipeline itself. Bias can arise from multiple stages of LLM training—including
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reward modeling and Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al.,
2022)—making it crucial to pinpoint where biases originate.

Recognizing the above limitations, in this work, we aim to benchmark demographic parity, a com-
mon group fairness metric in reward models, and our contribution is the following:

We recommend focusing on identifying

If I am a male data engineer, what would -
you recommend | focus on? the applicable data sources
Explicit Gender Substitution LLM Answers Invariant?
If | am a female data engineer, what As a female data engineer, it's important to
would you recommend | focus on? focus on developing strong technical skills

Bias in LLM Evaluation

Effective classroom management
V\t/r:t aire ng';n:‘ c(Ijasns‘rosm mamr1a?;ment - strategies for student engagement include Helpfulness
strategies udent engagements establishing clear rules and expectations

High School Teachers LLM Answers Reward Model Scores  Equal?
(On Average)
What are some techniques to naturally To naturally improve soil fertility, incorporate Helpfulness J
improve soil fertility? compost to add organic matter and nutrients
Farmers Group Fairness in LLM Evaluation

Figure 1: Conceptual Comparison of Counterfactual Bias Evaluation and Group Fairness in LLM
Evaluation.

First, we introduce a novel group fairness problem in reward models from RLHF. We recognize that
successful evaluation and mitigation of this problem in reward models could lead to LLLMs that are
fairer with respect to the demographic parity definition. Conversely, a reward model susceptible
to irrelevant factors, such as a preference for a particular domain’s writing style, would provide
misleading feedback on response quality during LLM training.

Second, we propose using arXiv metadata to evaluate group fairness in reward models. Curating
datasets for this purpose faces several challenges: (1) there are no publicly available user prompt
datasets with demographic data from sources like OpenAl or Anthropic; (2) constructing consistent,
expert-written responses is costly, and LLM-generated responses cannot be used due to potential
existing group biases; (3) assessing response quality requires alignment with the preferences of
specific demographic groups, necessitating additional human annotators.

The arXiv dataset overcomes these challenges by providing expert-written and reviewed texts from
eight categories (e.g., physics, economics, computer science) that correspond to occupational de-
mographic groups. We curated 2000 query-response pairs per category to serve as a benchmark for
evaluating eight top-performing reward models from the RewardBench leaderboard (Lambert et al.,
2024).

Last, we analyze the results of this benchmark to make the following novel observations: (1) group
unfairness truly exists in all of the evaluated reward models, as the differences in group means are
statistically significant from the ANOVA test; (2) good reward models are also fairer ones, as the
top 2 reward models from the RewardBench also have the lowest Normalized Maximum Group
Difference. (3) In each reward model, the unfairness is pervasive across the demographic groups, as
a minimum of 23 out of 28 pairs of groups are shown to be different by the Tukey HSD Test; (4)
most reward models share the same pattern of unfairness, as the average rewards from 5 out of 7
models has a Pearson correlation larger than 0.8 with that of the Nemotron-340B model.
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2 Related Works

Reducing Harmful Language in LLM Outputs. Most research on fairness in LLMs has focused
on reducing harm and risk in LLM generation through bias mitigation techniques. Techniques such
as counterfactual data augmentation (Lu et al., 2020), data filtering and selection (Garimella et al.,
2022), designing specific prompting triggers (Venkit et al., 2023) and incorporating the notion group
fairness in constructing a bias evaluation dataset (Bi et al., 2023), have proven effective to reduce
stereotypical or harmful language targeted at various demographic groups. Debiasing, however, is
not sufficient for fairness, as these approaches primarily measure fairness in terms of harmfulness
reduction. A perfectly harmless LLM may still provide unfair answers to the different prompts
provided by various demographic groups.

Aligning LLMs with Diverse Human Preferences. Recent work in fair RLHF, such as MaxMin
RLHF (Chakraborty et al., 2024) and preference matching RLHF methods (Xiao et al., 2024), fine-
tune the LLM to align with a diversity of human preferences. However, the fairness notion of these
methods comes from social choice theory, which is different from the algorithm fairness, more
specifically, group fairness that we aim to address here. In addition, these methods assume that
all social groups ask the same questions, thereby overlooking the diversity of informational needs
across groups.

Group Fairness in LLM Decisions. Recent studies have explored the issue of group fairness when
prompting LLMs to perform high-stakes ML classification decisions (Li et al., 2024; Atwood et al.,
2024). While these works focus on the specific task of prompting LLMs to play the role of a
classifier, we instead focus on the general domain text generation user scenario of LLMs.

3 Group Fairness in LLM

We start to consider a particular definition of group fairness, demographic parity (alternatively
known as statistical parity) in the context of LLMs. First, we define group fairness for reward
models. Second, we highlight the unique challenges in addressing group fairness compared to coun-
terfactual bias mitigation. In addition, we outline the RLHF training pipeline and emphasize the
importance of addressing group fairness in the reward model.

3.1 Group Fairness in Reward Models

To define group fairness in reward models, we first present the definitions for social groups and
protected groups.

Definition 1 (Social Group). Let G denote the family of all social groups under consideration. A
social group G € G is the population that shares an identity trait, which may be fixed, contextual, or
socially constructed. Examples include demographic attributes collected through the census, such
as age, gender, and occupation.

Definition 2 (Protected Attribute) A protected attribute is the shared identity trait that determines
the group identity of a social group.

Definition 3 (Group Fairness of Reward Models) Consider a model M that evaluates the quality
of generated outputs from an LLM. Assume we have access to a set of prompts X, where the
quality of each prompt z ~ X is equal. Let E,.x,[M(z;60)] be the outcome measured by the
reward model given a distribution of prompts X specific to group G € G, where G represents a
set of social groups, and each group G has a different distribution of prompts X . Group fairness
requires (approximate) parity in the average reward scores across all groups G € G, up to ¢, as
measured by the reward model M:

|Eonxo[M(2:0)] — Egnx,, [M(2:0)]] < e (1)
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3.2 Challenges in Addressing Group Fairness with Bias Mitigation Techniques

The evaluation and mitigation of counterfactual bias, often operationalized by switching group at-
tributes (e.g., gender) at the prompt level, is a prevalent approach in assessing the fairness of large
language models (LLMs). Fairness under these methods exists when the LLM’s output for either
prompt with switched attributes is the same. However, counterfactual bias evaluation in LLMs, as
illustrated in Figure 1, inherently relies on assumptions that do not hold in real-world use scenarios.

Uniformity of User Prompts Across Social Groups. Current methods assume that users from
different social groups will ask identical questions. When the prompts are inherently different ques-
tions, we can no longer substitute the protected attributes to measure fairness by verifying the outputs
from LLM are the same.

Explicit Inclusion of Group Attributes in Prompts. This approach assumes that users will explic-
itly include their social group attributes (such as gender) in their prompts. In practice, users rarely
identify their social group characteristics when writing prompts to interact with LLMs.

These assumptions limit the method’s capacity to address rigorous concepts of algorithmic fair-
ness. For instance, counterfactual bias evaluation does not fully adhere to the counterfactual fairness
definition (Kusner et al., 2018), as it omits the crucial concept of latent background variables, the
unobserved factors that causally influence both the protected attribute and the model’s outcome.
Without explicitly modeling these hidden causes, current LLM bias research does not benefit from
the equivalence between counterfactual fairness and group fairness as showed in traditional clas-
sification settings (Rosenblatt & Witter, 2023). Moreover, models that ignore protected attributes
can achieve zero counterfactual bias by generating the same output, tending towards a definition of
fairness through unawareness, which is a weaker definition than group fairness.

A potential alternative is outlined in Figure 1. In this work, we contend that benchmarking the
group fairness of reward models is a crucial first step toward developing LLMs that equitably serve
all demographic groups, particularly given the reward model’s pivotal role in the RLHF pipeline.

3.3 Sources of Bias in the RLHF Pipeline

The RLHF pipeline typically involves three key stages: supervised fine-tuning, reward modeling,
and reinforcement learning.

Stage 1: Supervised Finetuning (SFT). In the first stage, a pre-trained language model is fine-tuned
using supervised learning on task-specific datasets, such as dialogue, summarization, or instruction
following, to create a reference policy denoted as 7.

Stage 2: Reward Modeling. The second stage, reward modeling, seeks to capture human prefer-
ences of LLMs responses. Let x be a prompt given to an LLM and y be the model’s output response
for the prompt. For each given input x, LLM will generate a pair of responses and human annota-
tors are asked to express their preference between two output responses, with yg and y; denote the
chosen and rejected responses respectively. These human preference data are used to train a reward
model r¢(x, y), which learns to predict which response is better according to human judgment. For-
mally, the reward model’s loss derived from the Bradley-Terry (BT) preference model (Bradley &
Terry, 1952) can be expressed as:

IOSS(TQ) = 7E(w,yg,y1)~D [log (U (7’9(%, yO) - T9(I7 yl)))] 3 )

where o is the logistic function, and D is the dataset of human-annotated preferences.

Stage 3: Reinforcement Learning. Finally, in the third stage, the learned reward model is used in
reinforcement learning to further optimize the model denoted as 7y, where ¢ is the weights of the
LLM. The policy is trained to maximize the reward from the human feedback model while control-
ling for divergence from the initial supervised policy. The objective function of the reinforcement
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learning stage is usually given by:
max By, ()7 (2, ¥) — BDKL (76 (y]2) | mrer(y]2), 3)

where (3 serves as a regularization coefficient, controlling the strength of the penalty against diverg-
ing from the initial reference policy .

While all three stages can potentially introduce group unfairness into the final output of LLMs,
this work focuses on the unfairness in the reward modeling stage. The reward models learned in
this stage likely exhibit unfairness since neither the human preference dataset nor the Bradley-Terry
model explicitly accounts for group fairness. Arguably, such unfairness in the reward model could
be introduced to the final finetuned LLM after using it to train the LLM policy in the third stage.

4 Benchmarking Reward Models

4.1 Constructing the Evaluation Dataset from The arXiv Metadata

The arXiv Metadata, which is under the Creative Commons CCO 1.0 Universal (Public Domain
Dedication) license, offers significant advantages to our fairness study. The dataset primarily con-
sists of titles and abstracts from expert-written papers. We collected 2,000 title—abstract pairs per
arXiv subject category, keeping only papers with a single primary category and discarding all cross-
listed entries to keep the groups disjoint. The expert authorship ensures that the abstracts are high
in quality, therefore, receiving full scores on attributes such as correctness and coherence should be
a minimum requirement. The reward model that satisfies group fairness should consistently deliver
equal average reward scores for prompts and responses across all social groups.

Selecting Social Groups. ArXiv papers are authored by experts across diverse fields. Identifying
social groups by occupation, such as physicists, economists, and computer scientists, we define eight
demographic groups based on their disciplines: physics, mathematics, computer science, economics,
electrical engineering, system science, quantitative biology, and quantitative finance.

Evaluation Prompts and Responses. We use expert-written texts from arXiv Metadata to bench-
mark group fairness in reward models. Each paper’s title and abstract form an evaluation pair: the
prompt is generated as “Write an abstract for a paper with title <Title>”, and the expert abstract
serves as the ground-truth response. A fair reward model should yield equal average scores across
all eight categories.

4.2 Experimental Setup

Models. We only include reward models that can compute a reward score based on a single
prompt and response message. LLM-as-a-Judge (Zheng et al., 2024) and pairwise reward mod-
els are not included, as they require comparing two messages. The following 8 models from the
RewardBench (Lambert et al., 2024) are selected in the evaluation: GRM-1lama3-8B-sftreg (Yang
et al., 2024), ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024b;a), Eurus-RM-7b (Yuan et al., 2024),
FsfairX-LLaMA3-RM-v0.1 (Dong et al., 2023; Xiong et al., 2024), Mistral-RM-for-RAFT-GSHF-
v0 (Dong et al., 2023; Xiong et al., 2023), RM-Mistral-7B (Dong et al., 2023; Xiong et al., 2024),
Nemotron-4-340B-Reward (Wang et al., 2024c¢), and tulu-v2.5-13b-preference-mix-rm (Ivison et al.,
2024).

Recourses for Model Inference. For the evaluation of the models, we utilized two NVIDIA A100
GPUs with 80 GB of memory for the tulu-v2.5-13b-preference-mix-rm model. API calls were
employed for the Nemotron-4-340B-Reward model, leveraging external compute resources. For
models with fewer than 8 billion parameters, such as GRM-1lama3-8B-sftreg and ArmoRM-Llama3-
8B-v0.1, we used NVIDIA RTX 6000 GPUs. Each model’s evaluation was completed within a
maximum compute time of 3 hours.
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4.2.1 Group Fairness Metrics

Normalized Maximum Group Difference. The reward models are not trained to predict scores on
the same scale. Therefore, directly computing the difference in group means is not a fair comparison.
With this in mind, we propose a normalized maximum group difference score as a metric for group
fairness. For each reward model, we compute the maximum difference in average rewards between
any two social groups. This difference is then normalized by dividing it by the mean of the reward
scores across all social groups.

ANOVA as a Group Fairness Metric. To rigorously assess group fairness in the performance of
reward models, we employ Analysis of Variance (ANOVA) as a statistical method to determine
whether there are statistically significant differences between the means of rewards across different
demographic groups defined in our study. ANOVA is instrumental in identifying whether varia-
tions in reward scores are due to inherent differences among the groups or are a result of random
variations. This is critical in our context as it helps ensure that any observed difference in reward
outcomes are attributable to the model’s unfairness across different groups.

Table 1: ANOVA results for various reward models, assessing the significance of group differences
in rewards.

Reward Model F-Statistics p-Value RewardBench Rank
ArmoRM-Llama3-8B-v0.1 70.44 9.46 x 107101 2
GRM-llama3-8B-sftreg 134.63 1.75 x 107193 8
Eurus-RM-7b 156.11 5.15 x 107224 16
FsfairX-LLaMA3-RM-v0.1 232.98 < 1x 107300 12
RM-Mistral-7B 270.06 < 1x 107300 22
tulu-v2.5-13b-preference-mix-rm 384.86 <1x 10730 19
Nemotron-4-340B-Reward 427.88 < 1x 107300 1
Mistral-RM-for-RAFT-GSHE-v0 518.15 < 1x 107300 23

4.3 Results Analysis

Average Reward Scores by Model
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Figure 2: Average Reward Scores by Model and Subject across various domains.

The plot for the average reward score of the selected 8 top-performing reward models from Reward-
Bench is shown in Figure 2. Notice that not all reward models are on the same scale. For example,
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in the model design of ArmoRM-Llama3-8B-v0.1, a gating layer is applied to the outputs of the
regression layer, resulting average rewards for all social groups close to zero.

Through a thorough analysis of the experiment results, we have made the following conclusions:

The group unfairness in all reward models is statistically significant. Table 1 shows that ev-
ery reward model has an F-statistic above 70 and an infinitesimal p-value, confirming substantial
differences in group means. For example, ArmoRM-Llama3-8B-v0.1, the second highest ranked
model on RewardBench, has the lowest F-statistic of 70.44, which is still well above 1 (the value
indicating no group difference). Similarly, the Nemotron-4-340B-Reward model, despite its low
normalized maximum group difference, has the second highest F-statistic, suggesting low within-
group variance and significant group differences. These findings demonstrate that the disparities are
systematic rather than random.

The best performing reward models are the fairer reward models. To compare the group fair-
ness in the reward models, the normalized maximum group difference is computed. The results
are shown in percentages in Table 3. The top 2 models from RewardBench Leaderboard, namely
NemoTron-4-340B-reward and ArmoRM-Llama3-8B-v0.1 exhibit smaller Normalized Maximum
Group Differences, substantially outperforming other models evaluated in this study, suggesting
that the best reward models also exhibit the better group fairness.

Table 2: Pairwise group comparisons (of 28) with statistically significant mean reward differences
via Tukey HSD test. Lower counts are fairer; bold values are best.

Reward Model Significant Pairs / Total Pairs
GRM-1lama3-8B-sftreg 23/28
ArmoRM-Llama3-8B-v0.1 23/28
Eurus-RM-7b 24 /28
FsfairX-LLaMA3-RM-vO0.1 26/28
Mistral-RM-for-RAFT-GSHF-v0O 26 /28
RM-Mistral-7B 25/28
Nemotron-4-340B-Reward 24 /28
tulu-v2.5-13b-preference-mix-rm 25/28

Table 3: Normalized Maximum Group Difference (%), defined as (max — min) of the group-wise
mean rewards divided by the overall mean reward. Smaller values indicate greater fairness.

Model Normalized Maximum Group Difference = RewardBench Rank
Nemotron-4-340B-Reward 12.49% 1
tulu-v2.5-13b-preference-mix-rm 262.89% 19
GRM-llama3-8B-sftreg 82.09% 8
RM-Mistral-7B 110.63% 22
FsfairX-LLaMA3-RM-v0.1 -111.52% 12
Mistral-RM-for-RAFT-GSHF-v0 87.46% 23
ArmoRM-Llama3-8B-v0.1 9.78 % 2
Eurus-RM-7b 39.53% 16

Group unfairness exists in most pairs of demographic groups in every reward model. The
Tukey HSD Test, a post-hoc Analysis of ANOVA in Table 2, shows that each reward model has
at least or more than 23 pairs of groups that shows significant differences in the group mean out
of a total of all 28 possible combinations of pairs for 8 groups. This indicates that the significant
findings from ANOVA are not a result of a significant difference between a only few groups, but
rather widespread differences in group means across the majority of group comparisons.
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Standardized Fairness Scores by Model and Subject
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Figure 3: Standardized reward disparities by model and subject. For each reward model, we convert
its mean scores across the eight domains into z-scores (subtracting the model’s overall mean and
dividing by its standard deviation). We then plot, for each subject, the set of these standardized
scores across all models to reveal relative fairness patterns.

Table 4: Pearson Correlation Coefficients of NVIDIA Nemotron Model with Other Models

Model Pearson Correlation Coefficient
tulu-v2.5-13b-preference-mix-rm 0.942
RM-Mistral-7B 0.991
Mistral-RM-for-RAFT-GSHF-v0 0.988
FsfairX-LLaMA3-RM-v0.1 0.945
GRM-1lama3-8B-sftreg 0.820
Eurus-RM-7b -0.738
ArmoRM-Llama3-8B-v0.1 -0.255

A systematic unfairness might exist in reward models. To elucidate the variations in average
rewards across different demographic groups, we present a standardized comparison of average
rewards by subject in Figure 3. This analysis reveals a consistent pattern of disparate treatment for
all demographic groups across most reward models. For a better illustration, besides ArmoRM-
Llama3-8B-v0.1 and Eurus-RM-7b, the 340B Nemotron model exhibits a Pearson correlation of
over 0.8 with all of the rest reward models (in some cases 0.99), as shown in Table 4. The congruence
in average reward score disparities across the majority of models suggests a systemic bias that may
originate from similar methodologies in their training datasets and algorithms.

5 Conclusion

In this work, we introduced a new problem of group fairness in reward models as the first step to
address the challenge of creating large language models (LLMs) that benefit all groups of users eq-
uitably. Our proposed benchmark reveals significant and pervasive unfairness across various reward
models, highlighting the need for unfairness mitigation in reward models. We conduct extensive
quantitative experiments on eight top-performing reward models, using a novel dataset derived from
arXiv metadata. The results demonstrate the effectiveness of our approach in identifying group
unfairness and suggest a correlation between model performance and fairness. This work lays the
foundation for developing more equitable Al systems and opens new directions for group fairness
research in LLMs.

tulu-v2.5-13b-preference-mix-rm
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