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Summary
For the non-stationary multi-armed bandit (MAB) problem, many existing methods allow

a general mechanism for the non-stationarity, but rely on a budget for the non-stationarity
that is sub-linear to the total number of time steps T . In many real-world settings, however,
the mechanism for the non-stationarity can be modeled, but there is no budget for the non-
stationarity. We instead consider the non-stationary bandit problem where the reward means
change due to a latent, auto-regressive (AR) state. We develop Latent AR LinUCB (LARL), an
online linear contextual bandit algorithm that does not rely on the non-stationary budget, but
instead forms predictions of reward means by implicitly predicting the latent state. The key idea
is to reduce the problem to a linear dynamical system which can be solved as a linear contextual
bandit. In fact, LARL approximates a steady-state Kalman filter and efficiently learns system
parameters online. We provide an interpretable regret bound for LARL with respect to the level
of non-stationarity in the environment. LARL achieves sub-linear regret in this setting if the
noise variance of the latent state process is sufficiently small with respect to T . Empirically,
LARL outperforms various baseline methods in this non-stationary bandit problem.

Contribution(s)
1. This paper introduces Latent AR LinUCB (LARL), an online algorithm designed for non-

stationary MABs where the non-stationarity is due to a latent, auto-regressive (AR) state.
LARL forms predictions of reward means by implicitly predicting the latent state using past
rewards and actions. This strategy can be seen as an approximation of a steady-state Kalman
filter with ground-truth system parameters.
Context: The setting we consider is motivated by real-world applications where the
non-stationary mechanism can be modeled by a latent state, but there is no budget for the
non-stationarity. Existing approaches that consider similar settings rely on the latent state
being discrete (Hong et al., 2020; Nelson et al., 2022) or require knowing the ground truth
parameters or quality historical data to recover parameters (Liu et al., 2023; Chen et al.,
2024).

2. We present an interpretable regret bound for LARL against the dynamic oracle. The regret
bound allows practitioners to interpret the performance of LARL with respect to the level of
non-stationarity in the environment and the complexity of learning parameters online.
Context: Sub-linear regret with respect to the dynamic oracle is only possible in environ-
ments with a budget for non-stationarity that is sub-linear in T . For example, Besbes et al.
(2014) assume a finite constant (variation budget) of how much the mean rewards can change
over time and Garivier & Moulines (2011) assume a finite number of changes to the mean
reward. We show that in our setting, LARL achieves sub-linear regret if the noise variance
on the latent state process is sufficiently small with respect to T .

3. We demonstrate that LARL can outperform (achieve lower regret) against various stationary
and non-stationary baselines in the non-stationary bandit environment where reward means
change due to a latent AR state.
Context: We consider cumulative regret across time and pairwise comparisons of methods
in terms of total cumulative regret. To offer a fair comparison, baseline methods were
only considered if they implemented an online learning strategy. For large values of k,
the performance of LARL approaches the performance of baseline methods because the
algorithm needs to fit more parameters, and thus requires more data to learn effectively.
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Abstract

For the non-stationary multi-armed bandit (MAB) problem, many existing methods allow
a general mechanism for the non-stationarity, but rely on a budget for the non-stationarity
that is sub-linear to the total number of time steps T . In many real-world settings,
however, the mechanism for the non-stationarity can be modeled, but there is no budget
for the non-stationarity. We instead consider the non-stationary bandit problem where
the reward means change due to a latent, auto-regressive (AR) state. We develop Latent
AR LinUCB (LARL), an online linear contextual bandit algorithm that does not rely on
the non-stationary budget, but instead forms predictions of reward means by implicitly
predicting the latent state. The key idea is to reduce the problem to a linear dynamical
system which can be solved as a linear contextual bandit. In fact, LARL approximates a
steady-state Kalman filter and efficiently learns system parameters online. We provide
an interpretable regret bound for LARL with respect to the level of non-stationarity in
the environment. LARL achieves sub-linear regret in this setting if the noise variance
of the latent state process is sufficiently small with respect to T . Empirically, LARL
outperforms various baseline methods in this non-stationary bandit problem.

1 Introduction

In the classical formulation of the stochastic multi-armed bandit (MAB) problem (Lattimore &
Szepesvári, 2020), the rewards are assumed to be independently and identically drawn from a fixed
distribution. In the non-stationary formulation (Auer et al., 2002), the reward means, instead, change
over time. While many existing approaches for non-stationary bandits allow an arbitrary mechanism
for the non-stationarity, they rely on some budget to the non-stationarity that is sub-linear to the total
number of time steps T . For example, in Besbes et al. (2014) there is a variation budget for the amount
of change in the mean rewards, and in Garivier & Moulines (2011) there is a budget for the number
of changes. In contrast, for many real-world applications, the non-stationarity mechanism can be
modeled as a latent state with temporal dependencies, but with restless non-stationarity. For example,
in mobile health applications, bandit algorithms are used to optimize notifications to maximize
users’ health outcomes (rewards). User burden from using the app is an evolving latent process with
temporal dependencies and can cause the health outcome to decline over time (non-stationarity).

Motivated by these real-world settings, we study a non-stationary bandit problem with a realistic
source of non-stationarity. In this problem, changes in the mean reward of the arms over time are due
to some latent, auto-regressive (AR) state of order k. This problem is represented by the graphical
model in Figure 1. Such a latent state causes smooth changes to the mean rewards as opposed to
abrupt changes; however, the variation budget or the budget on the number of changes could scale
linearly with T .
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Our approach to solving the non-stationary bandit problem in Figure 1 leverages the graphical
structure and reduces the problem instead to the well-studied problem of linear dynamical systems
(Section 3.3); we then show that the linear dynamical system can be solved as a linear contextual
bandit (Section 3.4). By leveraging the structure of the non-stationarity, we can offer a finer theoretical
analysis and design a more specific algorithm that can outperform general non-stationary algorithms.

Contributions. We propose Latent AR LinUCB or LARL (Algorithm 1), an online linear contextual
bandit algorithm that maintains good reward predictions by using past history to predict the current
latent state and to learn parameters online. The reward model maintained by LARL can be seen as an
approximation to the steady-state Kalman filter with access to ground-truth system parameters. We
present an interpretable regret bound for LARL against the dynamic oracle (Theorem 4.2). In our
setting, LARL achieves sub-linear regret if the noise variance of the latent state process is sufficiently
small with respect to the total number of time steps T . We validate in simulation studies (Section 5)
that LARL outperforms various baseline methods in the non-stationary latent AR environment.

2 Related Works

2.1 Non-Stationary Bandits

Non-stationary bandits (Auer et al., 2002) extend the standard bandit problem to one with reward
means changing over time. Many approaches have been proposed for non-stationary bandits including
change point detection (Mellor & Shapiro, 2013), sliding window (Garivier & Moulines, 2011;
Cheung et al., 2019; Trovo et al., 2020), restarting (Besbes et al., 2014; Viappiani, 2013), and
discounting the effect of past observations (Kocsis & Szepesvári, 2006; Garivier & Moulines, 2011;
Raj & Kalyani, 2017). A majority of these methods were developed for an arbitrary mechanism for
controlling the non-stationarity, but rely on a budget for the amount of changes that is sub-linear
in T . For example, there is a total budget for the amount of change (Besbes et al., 2014) or to the
number of changes (Garivier & Moulines, 2011). In contrast, our setting has a specific mechanism
controlling the non-stationarity (i.e., a latent AR state), but the budget for the non-stationarity could
scale linearly with T . Others have also formulated non-stationarity through a latent state. These
works propose methods for maintaining a posterior belief over the latent state and acting according to
it (Hong et al., 2020; Nelson et al., 2022). Nelson et al. (2022) rely on the latent state being discrete,
as the dimension of the linear contextual bandit is the cardinality of the set of latent state values. This
approach is not applicable in our setting where the latent state is continuous. Hong et al. (2020) use
particle filtering to sample from the joint posterior of the latent state and model parameters. However,
their approach would be computationally challenging in our setting, as the number of particles needed
increases with the number of latent state values. Also similar to our work is Gornet et al. (2022)
which implements a similar reduction to a linear contextual bandit; however, their algorithm heavily
relies on exogenous context to predict the latent state, which is not present in our setting.

2.2 AR Bandits

Autoregressive (AR) processes (Brockwell & Davis, 2009) are studied extensively across many fields
to model temporal dependencies in many real-world processes. Some bandit formulations involve
rewards evolving auto-regressively, rather than a latent state, with fixed reward means and known
AR order k (Bacchiocchi et al., 2022). Due to the fixed reward means, these settings are stationary
bandits, which allows for the direct application of standard linear bandit theory. While some have
proposed similar settings where the non-stationarity is dictated by an AR process (Liu et al., 2023;
Chen et al., 2024), these papers assume either access to ground-truth parameters or quality offline data
to learn these parameters. Instead, we are interested in learning AR and reward parameters online.
Furthermore, the predictive sampling method in Liu et al. (2023) is developed for the Bayesian
framework and their main goal is to compare to traditional Thompson sampling. At first glance, one
may notice that the AR(1) setting presented in Chen et al. (2024) is very similar. However, their
method relies on a stronger assumption that the agent observes the true mean reward for the same
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Figure 1: Graphical Model for Non-Stationary Latent Auto-regressive Bandits.

action taken at the previous time step. In our setting, the agent never observes the exact mean reward
for any action.

3 Problem Setting

3.1 Notation

We introduce the following notation used throughout the paper. For some vector v ∈ Rd, we use
∥v∥ =

√
⟨v, v⟩ to denote the L2-norm of v and v⊤ to denote the transpose of v. 1 denotes a vector

of all 1s and ej denotes the standard basis vector with 1 in the jth component and 0s elsewhere. For
a square matrix M ∈ Rd×d, M−1 denotes the inverse of M . λmax(M) is the largest eigenvalue
of M . ∥M∥op = σmax(M) is the operator norm or largest singular value of M . If M is positive
semi-definite (PSD), then M1/2 denotes the square root of M such that M1/2M1/2 = M , and
∥v∥2M = v⊤Mv denotes the square of the weighted L2-norm of v. We use [i, j] to denote the set of
positive integers from i to j, inclusive. I[·] denotes the indicator function. Ht−1 is the entire history
of information observed up to, but not including, time t.

3.2 Non-Stationary Latent Auto-regressive Bandits

We consider a non-stationary multi-armed bandit environment (Definition 3.1) where the true under-
lying reward depends on some latent state zt ∈ R that evolves according to an auto-regressive (AR)
process of order at most k. See Figure 1 for the graphical structure.

Definition 3.1. (Non-Stationary Latent Auto-regressive Bandit) Let A ⊂ N be the action space and
initial latent states [z0, ..., zk−1] ∼ Nk(µ0,Σ0). The interaction between the environment and the
agent is as follows. For every time step t ∈ [k, T ]:

1. The environment generates latent state zt of the form:

zt = γ0 +

k∑
j=1

γjzt−j + ξt, ξt
i.i.d.∼ N (0, σ2

z), (1)

where γ0, γ1, ..., γk ∈ R.

2. The agent selects action at ∈ A without observing zt.

3. The environment then generates reward rt given latent state zt and action at, rt(at), where:

rt(a) = µa + βazt + ϵt(a), ϵt(a)
i.i.d.∼ N (0, β2

aσ
2
r) (2)
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where µa, βa, ϵt(a) ∈ R depends on the action a and ϵt(a) is independent across actions and time
steps.

4. The agent observes rt.

Notice that in our setting, zt is not impacted by the action selected in the previous time step. Also,
notice that in Equation 2 the noise variance of the reward has an exact structure. This structure is
needed to simplify the reduction in Lemma 3.2. But in practice, the algorithm (Algorithm 1) we
present later does not require this noise structure. To solve this non-stationary bandit problem, a
natural approach is to form good predictions of zt and therefore good predictions of the reward means
for each action. However, with no exogenous context available, the only observations one is given is
the current history Ht−1 consisting of past actions and rewards. We will see in later sections that the
method we develop can still perform well in such an environment, despite having limited information.

3.3 Connecting Latent AR Bandits With Linear Dynamical Systems

To assist with the reduction to a linear contextual bandit in Section 3.4, we first show that the latent
AR bandit environment in Definition 3.1 is a specific case of a linear dynamic system (LDS) with
Gaussian noise. See Appendix C for a review of linear dynamical systems.

Lemma 3.2. (Linear Dynamical System) The latent state process (Equation 1) and the reward
function (Equation 2) in Definition 3.1 form a special case of a linear dynamical system with
Gaussian noise. The system has state vector z⃗t ∈ Rk which incorporates the most recent k latent
state realizations and measurement yt =

rt−µat

βat
∈ R.

z⃗t = Γz⃗t−1 + wt, wt ∼ Nk(γ0e1,W ) (3)

yt = Cz⃗t + vt, vt ∼ N (0, σ2
r) (4)

rt(a) = c⊤a z⃗t + µa + ϵt(a), ϵt(a) ∼ N (0, β2
aσ

2
r) (5)

where

z⃗t :=
[
zt zt−1 · · · zt−k+1

]⊤ ∈ Rk

See Appendix A.1 for exact forms for Γ,W,C, ca.

Proof. See Appendix A.1.

Lemma 3.2 shows that we can rewrite the process as a linear dynamical system with Gaussian noise
with a specific form for the measurement model. Since this LDS is in companion form (Bellman &
Åström, 1970), the LDS satisfies structural identifiability (Bellman & Åström, 1970), and therefore is
observable (Assumption C.1).

A natural approach to predicting the mean reward for each action is first to predict z⃗t. Since
Assumption C.1 holds, one may be motivated to use the steady-state Kalman filter (Appendix C.2)
to infer z⃗t. Given the ground-truth system parameters Γ, C, γ0,W, σ2

r , the Kalman filter prediction
z̃t is the optimal (least mean square) estimate for latent state z⃗t (Kailath et al., 2000). However,
we do not assume agents have access to ground-truth parameters or quality batch data for learning
them offline (Ljung, 1999). While one can learn system parameters online (Annaswamy & Fradkov,
2021; Subbarao et al., 2016), we show in the following sections that it is not required to explicitly
learn system parameters for forming good mean reward predictions. Instead, the reduction to a
linear contextual bandit allows us to implicitly learn system parameters by learning a single reward
parameter (Lemma 3.3) and to leverage the well-established theory on linear bandits for analyzing
regret.
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3.4 Reduction to a Linear Contextual Bandit

To re-frame the problem as a linear contextual bandit, we use the converted LDS (Lemma 3.2) to show
that the reward (Equation 2) can be re-written in a linear form of past history and the steady-state
Kalman filter prediction of state. This is a modified version of the decomposition in Gornet et al.
(2022).

Lemma 3.3. (Linear Contextual Bandit Reduction) Let Ht−1 := σ(a1, r1, ..., at−1, rt−1) be the
smallest σ-algebra generated by the current history observed up to time t, z̃t := zt|t−1 = E[z⃗t|Ht−1]

be the steady-state Kalman filter for z⃗t and let r̃t(a) = E[rt(a)|Ht−1] = c⊤a z̃t + µa. For a choice
of s > 0 that controls the number of past time steps to include in the context, there exists some
θa ∈ R2s·|A|+1 where the reward (Equation 2) for action a is:

rt(a) = Φt(s)
⊤θa + bt(a, s) + εa;t (6)

where

Φt(s) := Φ(Rt, At) =
[
Rt At 1

]⊤ ∈ R2s·|A|+1 (7)

bt(a, s) := ⟨ca, (Γ− ΓKC)sz̃t−s⟩ (8)

εa;t := rt(a)− r̃t(a) = ⟨ca, z⃗t − z̃t⟩+ ϵt(a) ∼ N (0, c⊤a Pca + β2
aσ

2
r) (9)

Rt :=
[
rt−se

⊤
at−s

· · · rt−1e
⊤
at−1

]⊤ ∈ Rs·|A|

At :=
[
e⊤at−s

· · · e⊤at−1

]⊤ ∈ Rs·|A|

Proof. See Appendix A.2.

Equation (6) shows a standard linear contextual bandit problem with an additional bias term bt(a, s).
Φt(s) is the current context obtained from a feature mapping of the s most recent previous actions
and rewards; θa incorporates the underlying LDS parameters and is the parameter to learn. Notice
that εa;t is independent of history and therefore has mean 0 conditioned on history Ht−1.

Lemma 3.3 justifies the rationale of solving the non-stationary bandit problem through a contextual
bandit algorithm, say LinUCB. By selecting s, one is selecting the number of recent time steps
used to predict the current mean reward. If one had access to ground-truth θa and dynamically sets
s = t, then such an agent’s performance is the same as an agent that predicts the mean reward
using a steady-state Kalman filter (Appendix C.2) with ground-truth parameters. Recall that with the
true underlying parameters, the Kalman filter estimate z̃t is the optimal estimate for latent state zt.
However, because we do not assume access to ground-truth parameters and must learn parameters
online, one must set s to balance bias and variance, which allows for a good approximation of the
Kalman filter estimate. This bias-variance trade-off, controlled by s, also appears in the regret bound
(Theorem 4.2) presented later. This linear bandit reduction is also desirable because an agent only
needs to specify a value for s and does not need to know the ground-truth AR order k, the initial state
z⃗0, nor the noise variances in practice for forming an estimator for θa.
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3.5 Assumptions

We make the following regularity assumptions on the environment.
Assumption 3.4. (Stability and Boundedness of the AR Process) For the parameters γ0, γ1, ..., γk of
the latent AR process, |

∑k
j=1 γj | < 1 and |γ0| ≤ c for some c < +∞

Assumption 3.5. (Bounded Reward Parameter) For every action a ∈ A, ∥θa∥ ≤ Sa for Sa ∈ R+

Assumption 3.4 is standard for AR processes. Assumption 3.5 is standard for theoretical results
for linear bandits (Abbasi-Yadkori et al., 2011). More importantly, Assumption 3.4 implies the
stability of state transition matrix Γ, a common assumption for LDS (Bertsekas, 2012). Namely, the
parameters γ1, ..., γk of the latent AR process form Γ such that |λmax(Γ)| < 1. The stability of Γ
is needed for the bias term bt(a, s) in Equation 6 to decrease with large s as |λmax(Γ)| < 1 =⇒
|λmax(Γ− ΓKC)| < 1 (Anderson & Moore, 2005).

3.6 Regret

We define regret with respect to the dynamic oracle (Besbes et al., 2014), the standard choice in
the non-stationary bandit settings. The dynamic oracle observes all information in the environment
(including zt) and then acts optimally with that information. The oracle therefore knows the true
reward means E[rt(a)|z⃗t] at every time step t for each action a and selects the optimal action for
every t: a∗t = argmaxa∈A E[rt(a)|z⃗t]. The regret with respect to the dynamic oracle is:

Regret(T ;π) =
T∑

t=1

E[rt(a∗t )− rt(at)|z⃗t] (10)

where at is the action selected by the algorithm at time step t following policy π.

Achieving sub-linear regret against the dynamic oracle is not guaranteed without assuming vanishing
non-stationarity in the environment. Since our latent AR setting does not make this assumption, our
goal is to provide an interpretable regret bound with respect to the non-stationarity in the environment.
For a full discussion of the regret definition and the difficulty in achieving sub-linear regret, see
Appendix D.

4 LinUCB Algorithm for Latent AR Bandits

We present our algorithm coined Latent AR Bandit LinUCB (LARL), shown in Algorithm 1. LARL
is based on the LinUCB algorithm (Li et al., 2010; Abbasi-Yadkori et al., 2011) for linear contextual
bandits, modified to handle our non-stationary environment. For a fixed choice of s > 0, LARL uses
rewards and actions from the s most recent time steps to form current context Φt(s) (Equation 7). By
carefully constructing the context Φt(s) this way, we can implicitly predict the latent state zt and
efficiently learn the parameters θa online.

As a review, LinUCB maintains regularized least squares (RLS) estimators for each action a at time
step t:

θ̂a,t = V −1
a,t ba,t (11)

where Va,t = λI +
∑t

j=1 I[aj = a]Φj(s)Φj(s)
⊤, and ba,t =

∑t
j=1 I[aj = a]rjΦj(s)

For action-selection, LinUCB forms some confidence set Ca,t−1 using the most recent RLS estimator
θ̂a,t−1 for every action a and selects the action with the highest confidence bound on its reward:

at = argmax
a∈A

max
θa∈Ca,t−1

Φt(s)
T θa (12)
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Algorithm 1 Latent AR LinUCB

1: Inputs: Va,0 = λI, ba,0 = 0⃗, θa,0 = 0⃗ for all a ∈ A, s ∈ N
2: for t = 1, 2, ..., T do
3: Use rewards and actions from the most recent s time steps rt−s, ..., rt−1, at−s, ..., at−1 to

form current context Φt(s) defined in Equation 7.
4: For each action a, use most recent RLS estimator θ̂a,t−1 to form confidence set Ca,t−1.
5: Select action at:

at = argmax
a∈A

max
θa∈Ca,t−1

Φt(s)
T θa

6: Execute action at and observe rt.
7: Update history Ht = {(Φ(s)t′ , at′ , rt′)}tt′=1

8: Update RLS estimator for action at as in Equation 11:
9: θ̂at,t = V −1

at,tbat,t,
10: Va,t = Va,0 +

∑t
j=1 I[aj = a]Φj(s)Φj(s)

⊤,
ba,t = ba,0 +

∑t
j=1 I[aj = a]rjΦj(s)

11: end for

Notably, our algorithm requires no knowledge of the ground-truth AR order k, initial state z⃗0, nor
noise variances of the state and reward processes. Notice also that for s = 0, Algorithm 1 reduces to
the standard UCB method for stationary MABs.

To show theoretical results for LARL, we first show that for each action a, θa lies in the confidence
set Ca,t for all t (Lemma 4.1). The radius of the confidence set formed by LARL is an enlarged
version of the one presented in Abbasi-Yadkori et al. (2011) to account for the bias term. Finally, we
use Lemma 4.1 to prove the regret bound in Theorem 4.2.

4.1 Confidence Set

Lemma 4.1. [Confidence Set for Latent AR Bandits] Suppose Assumptions 3.4 and 3.5 holds. For
given action a, with probability at least 1− δ where δ ∈ (0, 1), the true parameter θa (Definition 6)
is in the confidence ellipsoid Ca,t centered at θ̂a,t (Equation 11), for all t ∈ [T ]:

Ca,t := {θa ∈ Rd | ∥θ̂a,t − θa∥Va,t ≤ βa,t(δ)} (13)

where

βa,t(δ) = R

√
(2s|A|+ 1) log

(
1 + na,tL(s, δ/2)/λ

δ/2

)

+
√
λSa + τ(a, s)t

√√√√ t∑
j=1

I[aj = a]bj(a, s)2 (14)

where na,t =
∑t

j=1 I[aj = a] and

τ(a, s)t =

√√√√ t∑
j=1

I[aj = a]∥Φj(s)∥2V −1
a,t

(15)

Proof. See Appendix A.3

4.2 Regret Bound

We now derive a regret bound for LARL (Algorithm 1). The main proof idea is to introduce an
intermediate agent that knows the ground-truth parameters and uses the steady-state Kalman filter
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prediction to select actions. We are able to add and subtract the mean reward obtained by such an
agent to the instantaneous regret. The instantaneous regret therefore decomposes into the regret of the
dynamic oracle against the intermediate agent and the regret of the intermediate agent against LARL.

Theorem 4.2. Suppose all the assumptions mentioned in Lemma 4.1 hold. With probability at least
1− δ where δ ∈ (0, 1), the regret of Algorithm 1 in the non-stationary latent AR bandit environment
(Definition 3.1) is bounded as follows:

Regret(T ;πLARL) ≤ 8max
a

∥ca∥

√
σ2
z

1− σmax(Γ)2

√
2(k + log(3/δ)) · T

+2βT (2δ/3)

√√√√ T∑
t=1

∥Φt(s)∥2V −1
at,t−1

√
T + 2

T∑
t=1

max
a

|bt(a, s)|

for βT (δ
′) = maxa βa,T−1(δ

′) (Equation 14)

Proof. See Appendix A.4

The first term of the regret represents the gap between the optimal decision-making based on the
Kalman filter prediction z̃t and the dynamic oracle. This term also captures the non-stationarity of
the environment as controlled by σ2

z , the noise variance of the latent AR process. The second term
represents the complexity of learning to behave like the optimal policy based on Kalman filtering.
The third term captures the bias in the reward function.

The first term captures how the regret rate is ultimately dependent on σ2
z . For a fixed T in environments

where σmax(Γ) ≤ 1− ϵ for ϵ > 0 and σ2
z = T c−2 for some constant c < 2, our algorithm achieves

sub-linear regret. For example, if σ2
z = 1

T , then the regret is on the order of
√
T . This is congruent

with a variety of other non-stationary bandit formulations where the non-stationarity budget is sub-
linear in T . See Appendix D.1 for more details. However, if c ≥ 2, then σ2

z is too large and the regret
is not sub-linear. This is because for large σ2

z , even with ground-truth parameters, the most optimal
prediction z̃t used for predicting r̃t(a), can be far away from the realization of zt and therefore rt.

The second and third terms describe the bias-variance trade-off the algorithm designer makes with
the choice of s. For large s the bias decreases, as s → ∞ =⇒ bt(a, s) → 0 for any a, however, the
dimensionality of Φt(s) increases (Lemma A.1) which increases the variance. See Appendix E.1 for
simulations that verify this trade-off empirically.

5 Experiments

Through simulations, we highlight how our proposed algorithm LARL (Algorithm 1) can outperform
various stationary and non-stationary baselines. We assess performance based on cumulative regret
with respect to the dynamic oracle (Section 3.6). Additional experiments and results can be found in
Appendix E.

For all experiments, we set T = 200. We consider 2 actions A = {0, 1}, reward parameters
µ0, µ1 = [0, 0], β0, β1 = [−1, 1], γ0 = 0, σz = 1, and σr = 1. γ1, ..., γk are drawn randomly from a
uniform distribution and post-processed to ensure Assumption 3.4 holds. We consider environments
that vary by the AR order k. For each environment variant, we simulate 100 Monte-Carlo trials and
in each trial, the k values in the initial state z⃗0 are drawn randomly in every trial.

We test the performance of LARL against various stationary and non-stationary baselines. The
competing baselines are: (a) “Stationary”, standard UCB which treats the environment as a stationary
multi-armed bandit, (b) “AR UCB" (Bacchiocchi et al., 2022), the UCB algorithm developed for
stationary AR environments, (c) “SW UCB” (Garivier & Moulines, 2011), the Sliding Window UCB
algorithm, (d) “Rexp3” (Besbes et al., 2014), which runs the Exp3 algorithm with restarts.
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Figure 2: Our algorithm LARL (blue), with s chosen using BIC after a period of pure exploration,
consistently achieves lower cumulative regret (Equation 10) over time against various baseline
methods. Line is the average and shaded region is ± standard deviation across 100 Monte Carlo
simulated trials.

To prove theoretical results, we left s arbitrary. To select s in simulations, we implement an
“exploration" period that selects actions randomly up to time step t′. Then using the data collected
during the exploration period, we choose s based on the Bayesian Information Criterion (BIC) and
commit to that s for the rest of the time-steps. For experiments, we let t′ = ⌊T/5⌋. All baseline
algorithms that use a UCB-based strategy (including LARL), use regularization parameter λ = 1 in
each environment.

5.1 Results

Figure 2 shows cumulative regret over time. Figure 3 shows pairwise comparisons between algorithms
in terms of total cumulative regret. Our method LARL consistently outperforms baseline algorithms
developed for stationary and non-stationary environments. Stationary and AR UCB were developed
for stationary environments with fixed reward means and cannot adapt to the non-stationarity of the
reward means. Although developed for a non-stationary environments, SW UCB and Rexp3 perform
similarly to the stationary baselines because SW UCB assumes the mean rewards remain constant
over epochs and Rexp3 assumes the non-stationarity has bounded total variation. In the latent AR
environment (Definition 3.1), these assumptions are not guaranteed as the non-stationary budget can
be linear in T . As k increases, the performance of LARL approaches the performance of baseline
methods because the algorithm needs to fit more parameters, and thus requires more data to learn
effectively.

6 Conclusion and Future Work

In this paper, we study the non-stationary bandit problem where the mean rewards of actions change
over time due to a latent, AR process of order k. We propose a new online algorithm, LARL, that
leverages the structure of the non-stationary mechanism in this setting. LARL employs the key idea
that this non-stationary bandit can be reduced to a linear dynamical system and solved using a linear
contextual bandit with a thoughtful design of the context space. This reduction motivates LARL’s
linear contextual bandit strategy to implicitly predict the current latent state zt and efficiently learn
parameters online. Furthermore, with a choice of hyperparameter s that trades off bias and variance,
one can view the reward model of LARL as a reasonable approximation of a steady-state Kalman
filter with ground-truth parameters.

6.1 Future Work

A natural extension is to generalize the present work to contextual bandits with the inclusion of
exogenous, observed context features. Although we have proposed an initial approach for selecting
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Figure 3: Pairwise comparisons between algorithms in the three variants of the simulation environment
where k = 1, 5, 10, respectively. Each cell shows the proportion of 100 Monte-Carlo repetitions
where the algorithm listed in the row achieved lower cumulative regret than the algorithm listed in
the column. Our algorithm LARL (top row) consistently outperforms baseline methods in pairwise
comparison.

hyperparameter s, one can explore other approaches such as running an ensemble of agents with
different s or finding an optimal s as a function of environment parameters k, T , σr, and σz . Lastly, to
make our ideas clear, we formulated the latent state as a scalar, but one can consider a generalization
of our setting where the latent state is multi-dimensional.
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A Proofs

A.1 Proof of Lemma 3.2

We first present exact forms for W,Γ, C, ca.

W := diag(σ2
z , 0, · · · , 0) ∈ Rk×k

Γ =


γ1 γ2 · · · γk
1 0 · · · 0
...

...
...

...
0 · · · 1 0

 ∈ Rk×k

C =
[
1 0 · · · 0

]
∈ R1×k

ca :=
[
βa 0 · · · 0

]⊤ ∈ Rk
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Proof. For the latent state evolution, it is fairly straightforward to compute that Equation 3 is
equivalent to Equation 1 with the definitions of z⃗t,Γ, and wt. Notice that the second entry in z⃗t
corresponds to the latent state value zt. Similarly, for the reward function, we can directly compute
that Equation 5 is equivalent to Equation 2 with the definition of c⊤a .

All that is left is to show the equivalence of the measurement model yt. Then by construction:

yt =
rt − µat

βat

= zt +
ϵt(at)

βat

∼ N (zt, σ
2
r)

A.2 Proof of Lemma 3.3

Proof. Recall that due to Assumption C.1, the Kalman gain matrix Kt converges and the steady-
state Kalman filter update and prediction can be combined into a single step (Gornet et al., 2022).
Equation 19 in our setting becomes:

z̃t = Γz̃t−1 + ΓK(yt−1 − Cz̃t−1) = (Γ− ΓKC)z̃t−1 + ΓKyt−1 (16)

Since rt(a) = r̃t(a) + (rt(a)− r̃t(a)) = r̃t(a) + εa;t, it suffices to show that r̃t(a) = Φt(s)
⊤θa +

bt(a, s). We first show that r̃t(a) = G⊤
a Yt + µa + ⟨ca, (Γ− ΓKC)sz̃t−s⟩ where

Ga :=
[
c⊤a (Γ− ΓKC)s−1ΓK · · · c⊤a ΓK

]⊤ ∈ Rs, Yt :=
[
yt−s · · · yt−1

]⊤ ∈ Rs

Recall by definition:

r̃t(a) = E[rt(a)|Ht−1] = µa + c⊤a z̃t

Using Equation 16, we can continuously unravel z̃t until the sth time step before:

r̃t(a) = c⊤a (Γ− ΓKC)z̃t−1 + c⊤a ΓKyt−1 + µa

= c⊤a (Γ− ΓKC)2z̃t−2 + c⊤a (Γ− ΓKC)ΓKyt−2 + c⊤a ΓKyt−1 + µa

= · · ·

= c⊤a (Γ− ΓKC)sz̃t−s + c⊤a (Γ− ΓKC)s−1ΓKyt−s + · · ·+ c⊤a (Γ− ΓKC)ΓKyt−2 + c⊤a ΓKyt−1 + µa

= G⊤
a Yt + µa + ⟨ca, (Γ− ΓKC)sz̃t−s⟩

= G⊤
a Yt + µa + bt(a, s)

Now let gja := c⊤a (Γ− ΓKC)jΓK ∈ R. Then:

G⊤
a Yt = yt−sg

s−1
a + · · ·+ yt−1g

0
a

Using the definition of yt,

G⊤
a Yt = rt−s

gs−1
a

βat−s

+ · · ·+ rt−1
g0a

βat−1

−
µat−s

gs−1
a

βat−s

− · · · −
µat−1

g0a
βat−1
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= R⊤
t β̃a −A⊤

t µ̃a

where

Rt :=
[
rt−se

⊤
at−s

· · · rt−1e
⊤
at−1

]⊤ ∈ Rs·|A|

β̃a =
[
gs−1
a

β1
· · · gs−1

a

β|A|
· · · g0

a

β1
· · · g0

a

β|A|

]⊤
∈ Rs·|A|

At :=
[
e⊤at−s

· · · e⊤at−1

]⊤ ∈ Rs·|A|,

µ̃a =
[
µ1g

s−1
a

β1
· · · µ|A|g

s−1
a

β|A|
· · · µ1g

0
a

β1
· · · µ|A|g

0
a

β|A|

]⊤
∈ Rs·|A|

One can verify that by these definitions, for θa =
[
β̃a µ̃a µa

]⊤
Φt(s)

⊤θa = Φ(Rt, At)
⊤θa = R⊤

t β̃a −A⊤
t µ̃a + µa

Therefore we have shown:

rt(a) = Φt(s)
⊤θa + bt(a, s) + εa;t

The proof for the confidence set lemma (Lemma 4.1) requires lemmas A.1 and A.3.

Lemma A.1. [Bound on Context] Suppose Assumption 3.4 holds, then there exists some constant
L(s, δr) such that ∥Φt(s)∥2 ≤ L(s, δr) for all t with probability at least 1− δr, where δr ∈ (0, 1).

Proof. Notice that by construction, ∥Rt∥2 = R⊤
t Rt =

∑s
j=1 r

2
t−j and ∥At∥2 = A⊤

t At = s. So:

∥Φt(s)∥2 =

s∑
j=1

r2t−j + s+ 1

Since every rt−j is Gaussian with variance β2
at−j

σ2
r , every rt−j is also sub-Gaussian with parameter

βat−j
σr. Therefore by Lemma B.5,

rt−j < µat−j
+ βat−j

E[zt−j ] +
√
2β2

at−j
σ2
r log(1/δr)) = Rmax(δr)

with probability at least 1 − δr. Since Assumption 3.4 holds, we know that the mean of the AR
process E[zt−j ] is always bounded.

Therefore,

∥Φt(s)∥2 < s(Rmax(δr)
2 + 1) + 1 = L(s, δr)

For proofs of Lemma A.3 and Theorem 4.2 we need the following lemma.

Lemma A.2. Let all the information observed up to and including time t − 1 be encoded in the
filtration Ht−1 := σ(a1, r1, ..., at−1, rt−1) and z⃗t as defined in Equation 3 and z̃t = E[z⃗t|Ht−1] be
the steady-state Kalman filter for z⃗t. Then z⃗t − z̃t|Ht−1 ∼ N (⃗0, P ) and z⃗t − z̃t ∼ N (⃗0, P )
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Proof. First notice that by construction of the steady-state Kalman filter, z⃗t|Ht−1 ∼ N (z̃t, P ) and
z̃t|Ht−1 is a constant (i.e., not random). Therefore,

z⃗t − z̃t|Ht−1 = z⃗t|Ht−1 − z̃t|Ht−1 ∼ N (⃗0, P )

Since N (⃗0, P ) is a fixed distribution and P does not depend on Ht−1, this implies that z⃗t − z̃t ∼
N (⃗0, P ) as well.

Lemma A.3. [Noise Process Property] Let all the information observed up to and including time
t − 1 be encoded in the filtration Ht−1 := σ(a1, r1, ..., at−1, rt−1). For any given a, the noise
process {εa;t}t from Equation 6 is a martingale difference sequence given filtration Ht−1 and is
conditionally R-subgaussian for some constant R ≥ 0,

∀t ≥ 1,E[εa;t|Ht−1] = 0

∀α ∈ R,E[eαεa;t |Ht−1] ≤ exp(α2R2/2)

Proof. Fix some a ∈ A. We first show that E[εa;t|Ht−1] = 0.

E[εa;t|Ht−1] = E[⟨ca, z⃗t − z̃t⟩+ ϵt(a)|Ht−1]

= c⊤a (E[z⃗t − z̃t|Ht−1]) + E[ϵt(a)|Ht−1]

= c⊤a E[z⃗t − z̃t|Ht−1] (ϵt(a) is independent of Ht−1 and E[ϵt(a)] = 0)

= c⊤a 0⃗ = 0 (Lemma A.2)

To prove that εa;t is conditionally R-subgaussian for some R, we first show that εa;t|Ht−1 ∼
N (0, c⊤a Pca+σ2

r). Notice that c⊤a (z⃗t−z̃t)|Ht−1 ∼ N (0, c⊤a Pca) by Lemma A.2 and ϵt(a)|Ht−1 ∼
N (0, σ2

r) since ϵt(a) is independent of Ht−1. Therefore:

εa;t|Ht−1 = c⊤a (z⃗t − z̃t)|Ht−1 + ϵt(a)|Ht−1 ∼ N (0, c⊤a Pca + β2
aσ

2
r)

The moment generating function (MGF) for the normal random variable εa;t is:

Mεa;t
(α) = E[eαεa;t ] = exp(α2(c⊤a Pca + β2

aσ
2
r)/2) ∀α ∈ R

Then:

E[eαεa;t |Ht−1] = E[eαεa;t ] (as shown above, εa;t is independent of Ht−1)

= exp(α2(c⊤a Pca + β2
aσ

2
r)/2)

≤ exp(α2R2/2) ∀α ∈ R

for some R2 ≥ c⊤a Pca + β2
aσ

2
r
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A.3 Proof of Lemma 4.1

Proof. First notice that for all actions a,

θ̂a,t − θa = V −1
a,t

t∑
j=1

I[aj = a]Φj(s)rj − θa

= V −1
a,t

t∑
j=1

I[aj = a]Φj(s)(Φj(s)
⊤θa + bj(a, s) + εa;t)− θa

= V −1
a,t

t∑
j=1

I[aj = a]Φj(s)(Φj(s)
⊤θa + bj(a, s) + εa;t)− V −1

a,t (λI +

t∑
j=1

I[aj = a]Φj(s)Φj(s)
⊤)θa

= V −1
a,t

t∑
j=1

I[aj = a]Φj(s)bj(a, s) + V −1
a,t

t∑
j=1

I[aj = a]Φj(s)εa;j − λV −1
a,t θa

For the first term,∥∥∥∥V −1
a,t

t∑
j=1

I[aj = a]Φj(s)bj(a, s)

∥∥∥∥
Va,t

=

∥∥∥∥ t∑
j=1

I[aj = a]Φj(s)bj(a, s)

∥∥∥∥
V −1
a,t

≤
t∑

j=1

I[aj = a]∥Φj(s)bj(a, s)∥V −1
a,t

(generalized triangle-inequality)

=

t∑
j=1

I[aj = a]
√
bj(a, s)2Φj(s)⊤V

−1
a,t Φj(s)

≤

√√√√ t∑
j=1

I[aj = a]bj(a, s)2

√√√√ t∑
j=1

I[aj = a]Φj(s)⊤V
−1
a,t Φj(s) (Cauchy-Schwartz)

= τ(a, s)t

√√√√ t∑
j=1

I[aj = a]bj(a, s)2

where τ(a, s)t =
√∑t

j=1 I[aj = a]∥Φj(s)∥2V −1
a,t

For the second term,∥∥∥∥V −1
a,t

t∑
j=1

I[aj = a]Φj(s)εa;j

∥∥∥∥
Va,t

=

∥∥∥∥ t∑
j=1

I[aj = a]Φj(s)εa;j

∥∥∥∥
V −1
a,t

By Lemma A.3, since the noise process εa;j satisfies the assumptions of Theorem B.1,∥∥∥∥ t∑
j=1

I[aj = a]Φj(s)εa;j

∥∥∥∥
V −1
a,t

≤

√
2R2 log

(
det(Va,t)1/2det(λI)−1/2

δβ

)
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with probability at-least 1− δβ . Using Lemma B.2 (determinant-trace inequality),

det(Va,t) ≤
(
λ+

na,tL(s, δr)

2s|A|+ 1

)2s|A|+1

where na,t :=
∑t

j=1 I[aj = a] and ∥Φj(s)∥2 ≤ L(s, δr) for all j ∈ [t] because of Lemma A.1.

=⇒
∥∥∥∥ t∑

j=1

I[aj = a]Φj(s)εa;j

∥∥∥∥
V −1
a,t

≤ R

√
(2s|A|+ 1) log

(
1 + na,tL(s, δr)/λ

δβ

)

For the third term,

∥λV −1
a,t θa∥Va,t

= λ∥θa∥V −1
a,t

≤
√
λ∥θa∥ ≤

√
λSa

since ∥θa∥2V −1
a,t

≤ 1
λmin(Va,t)

∥θa∥2 ≤ 1
λ∥θa∥

2 and using Assumption 3.5.

Using generalized triangle inequality

=⇒ ∥θ̂a,t − θa∥Va,t
≤

∥∥∥∥V −1
a,t

t∑
j=1

I[aj = a]Φj(s)bj(a, s)

∥∥∥∥
Va,t

+

∥∥∥∥V −1
a,t

t∑
j=1

I[aj = a]Φj(s)εa;j

∥∥∥∥
Va,t

+

∥∥∥∥λV −1
a,t θa

∥∥∥∥
Va,t

≤ R

√
(2s|A|+ 1) log

(
1 + na,tL(s, δr)/λ

δβ

)
+
√
λSa + τ(a, s)t

√√√√ t∑
j=1

I[aj = a]bj(a, s)2

Finally, for readability, we let δβ = δr = δ/2. Therefore with probability at least 1− δ,

∥θ̂a,t − θa∥Va,t
≤

R

√
(2s|A|+ 1) log

(
1 + na,tL(s, δ/2)/λ

δ/2

)
+

√
λSa + τ(a, s)t

√√√√ t∑
j=1

I[aj = a]bj(a, s)2

A.4 Proof of Theorem 4.2

Proof. Using Assumption 3.5 with Lemma 4.1, it suffices to prove the bound on the event that
true parameter θa ∈ Ca,t (Equation 13) for ∀a ∈ A and t ∈ [T ]. Recall the regret in our setting
(Equation 10) is:

Regret(T ;π) =
T∑

t=1

E[rt(a∗t )− rt(at)|z⃗t]

where a∗t is the optimal action and at is the action selected by Algorithm 1 at time step t.

To assist with the proof, we consider an intermediate agent that knows the ground-truth pa-
rameters and therefore has the exact steady-state Kalman filter prediction z̃t and selects actions
ãt = argmax

a
r̃t(a).
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Let ∆t := E[rt(a∗t )− rt(at)|z⃗t] denote the instantaneous regret at time t. Then:

∆t = c⊤a∗
t
z⃗t + µa∗

t
− c⊤at

z⃗t − µat

= (c⊤a∗
t
z⃗t + µa∗

t
− c⊤ãt

z̃t − µãt
) + (c⊤ãt

z̃t + µãt
− c⊤at

z⃗t − µat
)

First notice that:

c⊤a∗
t
z⃗t + µa∗

t
− c⊤ãt

z̃t − µãt
= c⊤a∗

t
z⃗t − c⊤a∗

t
z̃t + c⊤a∗

t
z̃t + µa∗

t
− c⊤ãt

z̃t − µãt

= c⊤a∗
t
(z⃗t − z̃t) + r̃t(a

∗
t )− r̃t(ãt)

≤ c⊤a∗
t
(z⃗t − z̃t)

since r̃t(a
∗
t )− r̃t(ãt) ≤ 0 by the action-selection strategy of the intermediate agent.

Next notice that:

c⊤ãt
z̃t + µãt

− c⊤at
z⃗t − µat

= c⊤ãt
z̃t + µãt

+ (c⊤at
z̃t − c⊤at

z̃t)− c⊤at
z⃗t − µat

= r̃t(ãt)− r̃t(at)− c⊤at
(z⃗t − z̃t)

=⇒ ∆t ≤ (ca∗
t
− cat

)⊤(z⃗t − z̃t) + r̃t(ãt)− r̃t(at)

We first focus on r̃t(ãt)− r̃t(at). Recall by Lemma 3.3 that r̃t(a) = Φt(s)
⊤θa + bt(a, s). Then:

r̃t(ãt)− r̃t(at) = Φt(s)
⊤θãt

+ bt(ãt, s)− Φt(s)
⊤θat

− bt(at, s)

Now let θ′a,t = max{Ca,t−1} denote the max value of the confidence set Ca,t−1 constructed at time t.
Notice that:

Φt(s)
⊤θãt ≤ Φt(s)

⊤θ′ãt,t ≤ Φt(s)
⊤θ′at,t

where the first inequality is because θãt ∈ Cãt,t−1 and θ′ãt,t
= max{Cãt,t−1}, and the second

inequality is by the action-selection strategy of Algorithm 1 (i.e., at = argmax
a

Φt(s)
⊤θ′a,t). =⇒

r̃t(ãt)− r̃t(at) ≤ Φt(s)
⊤(θ′at,t − θat

) + bt(ãt, s)− bt(at, s)

≤ ∥Φt(s)∥V −1
a,t−1

∥θ′at,t − θat
∥Vat,t−1

+ bt(ãt, s)− bt(at, s)

(by Cauchy-Schwartz and ∥ · ∥V −1
at,t−1

≤ ∥ · ∥Va,t−1 )

≤ 2∥Φt(s)∥V −1
at,t−1

βat,t−1(δ
′) + bt(ãt, s)− bt(at, s)

≤ 2∥Φt(s)∥V −1
at,t−1

βat,t−1(δ
′) + 2max

a
|bt(a, s)|

We now focus on (ca∗
t
− cat

)⊤(z⃗t − z̃t).

First,

(ca∗
t
− cat

)⊤(z⃗t − z̃t) ≤ ∥ca∗
t
− cat

∥∥z⃗t − z̃t∥ (Cauchy-Schwartz)
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≤ 2max
a

∥ca∥∥z⃗t − z̃t∥

By Lemma A.2, we know that z⃗t − z̃t ∼ Nk (⃗0, P ). By Lemma B.3, z⃗t − z̃t is sub-Gaussian with
parameter σ2 = ∥P∥op. Finally by Theorem B.4, with probability at least 1− δz for δz ∈ (0, 1),

∥z⃗t − z̃t∥ ≤ 4
√
∥P∥opk + 2

√
∥P∥op log(1/δz)

≤ 4
√

∥P∥op(
√
k +

√
log(1/δz))

≤ 4
√
∥P∥op

√
2(k + log(1/δz)) (

√
a+

√
b ≤

√
2(a+ b) for a, b ∈ R≥0)

We bound ∥P∥op. Recall that for the steady-state Kalman filter, P = ΓPΓ⊤+W −ΓPC⊤(CPC⊤+
V )−1CPΓ⊤.

Using triangle inequality,

∥P∥op = ∥ΓPΓ⊤ − ΓPC⊤(CPC⊤ + V )−1CPΓ⊤∥op + ∥W∥op

We now show that ∥ΓPΓ⊤ − ΓPC⊤(CPC⊤ + V )−1CPΓ⊤∥op ≤ ∥ΓPΓ⊤∥op. To do so, we
show that the following three matrices are positive semi-definite (PSD): (1) A = ΓPΓ⊤, (2) B =
ΓPC⊤(CPC⊤ + V )−1CPΓ⊤, and (3) A−B.

A is PSD because P is PSD and using Lemma B.6.

We now show B is PSD. Consider some vector v ∈ Rk. Then v⊤Bv = v⊤(ΓPC⊤(CPC⊤ +
V )−1CPΓ⊤)v = (CPΓ⊤v)⊤(CPC⊤ + V )−1CPΓ⊤v = (CPΓ⊤v)2(CPC⊤ + V )−1.

Now since C =
[
1 0 · · · 0

]
∈ R1×k, CPC⊤ = P11 ≥ 0 since P is PSD so diagonal entries

are non-negative. Also V =
σ2
r

mina β2
a

=⇒ (CPC⊤ + V )−1 = 1

P11+
σ2
r

mina β2
a

≥ 0.

We now show A − B is PSD. Since P is PSD we know that there exists a PSD matrix P 1/2 such
that P = P 1/2P 1/2. Therefore A − B = ΓPΓ⊤ − ΓPC⊤(CPC⊤ + V )−1CPΓ⊤ = ΓP 1/2(I −
P 1/2C⊤(CP 1/2P 1/2C⊤ + V )−1CP 1/2)P 1/2Γ⊤ = ΓP 1/2(I − ν(ν⊤ν + V )−1ν⊤)P 1/2Γ⊤ for
ν = P 1/2C⊤ ∈ Rk.

Notice that ν(ν⊤ν + V )−1ν⊤ = νν⊤

ν⊤ν+V
=

ν
∥ν∥

ν⊤
∥ν∥

v⊤v
∥ν∥2

+ V
∥ν∥2

= ν′ν′⊤

1+ V
∥ν∥2

where ν′ = ν/∥ν∥. Since

ν′ is a unit vector, ν′ν′⊤ has only one non-zero eigenvalue which is 1, which implies ν′ν′⊤

1+ V
∥ν∥2

has one non-zero eigenvalue which is 1
1+ V

∥ν∥2
. Furthermore this implies that I − ν′ν′⊤

1+ V
∥ν∥2

has

eigenvalues either 1 or 1 − 1
1+ V

∥ν∥2
≥ 0. Therefore, I − ν(ν⊤ν + V )−1ν⊤ is PSD and so is

ΓP 1/2(I − ν(ν⊤ν + V )−1ν⊤)P 1/2Γ⊤ by Lemma B.6.

Since we have shown A, B, and A−B are PSD, then by Lemma B.7, ∥ΓPΓ⊤ − ΓPC⊤(CPC⊤ +
V )−1CPΓ⊤∥op ≤ ∥ΓPΓ⊤∥op.

=⇒

∥P∥op ≤ ∥ΓPΓ⊤∥op + ∥W∥op

Now,

∥ΓPΓ⊤∥op ≤ ∥Γ∥op∥P∥op∥Γ⊤∥op = σmax(Γ)
2∥P∥op
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since A and A⊤ have the same singular values for any matrix A.

Also in our setting, W is a matrix of all 0s except for σ2
z in the first diagonal entry, so ∥W∥op = σ2

z .
So,

∥P∥op ≤ σmax(Γ)
2∥P∥op + σ2

z =⇒ ∥P∥op ≤ σ2
z

1− σmax(Γ)2

Therefore, at every t, the instantaneous regret is bounded as so:

∆t ≤ 8max
a

∥ca∥

√
σ2
z

1− σmax(Γ)2

√
2(k + log(1/δz))

+ 2∥Φt(s)∥V −1
at,t−1

βat,t−1(δ
′) + 2max

a
|bt(a, s)|

So,

Regret(T ;πLARL) =
T∑

t=1

∆t

≤ 8max
a

∥ca∥

√
σ2
z

1− σmax(Γ)2

√
2(k + log(1/δz)) · T

+ 2

T∑
t=1

∥Φt(s)∥V −1
at,t−1

βat,t−1(δ
′) + 2

T∑
t=1

max
a

|bt(a, s)|

Now,

2

T∑
t=1

∥Φt(s)∥V −1
at,t−1

βat,t−1(δ
′) ≤ 2βT (δ

′)

√√√√ T∑
t=1

∥Φt(s)∥2V −1
at,t−1

√
T

where βT (δ
′) = maxa βa,T−1(δ

′) and
∑T

t=1 ∥Φt(s)∥V −1
at,t−1

≤
√

T ·
∑T

t=1 ∥Φt(s)∥2V −1
at,t−1

by vari-

ant of Cauchy-Schwartz.

For readability, let δz = δb = δr = δ/3. Then w.p. at-least 1− δ,

Regret(T ;πLARL) ≤ 8max
a

∥ca∥

√
σ2
z

1− σmax(Γ)2

√
2(k + log(3/δ)) · T

+2βT (2δ/3)

√√√√ T∑
t=1

∥Φt(s)∥2V −1
at,t−1

√
T + 2

T∑
t=1

max
a

|bt(a, s)|

B Auxillary Theorems and Lemmas

Theorem B.1. (Theorem 1 in Abbasi-Yadkori et al. (2011)) Let {Ft}∞t=0 be a filtration. Let {ηt}∞t=1

be a real-valued stochastic process such that ηt is Ft-measurable and ηt is conditionally R-sub-
Gaussian for some R ≥ 0. Namely:

∀ λ ∈ R E[eληt |Ft−1] ≤ exp

(
λ2R2

2

)



Non-Stationary Latent Auto-Regressive Bandits

Let {xt}∞t=1 be an Rd-valued stochastic process such that xt is Ft−1-measurable. Assume that
V0 ∈ Rd×d is a positive definite matrix. For any t ≥ 1, define:

Vt = V0 +

t∑
j=1

xjx
⊤
j St =

t∑
j=1

ηjxj

Then for any δ > 0, with probability atleast 1− δ, for all t ≥ 1,

∥St∥2V −1
t

≤ 2R2 log

(
det(Vt)

1/2det(V0)
−1/2

δ

)
Lemma B.2. (Lemma 10 Determinant-Trace Inequality in Abbasi-Yadkori et al. (2011)) Suppose
x1, ..., xt ∈ Rd and ∥xj∥ ≤ L ∀ j ∈ [t]. Let Vt = λI +

∑t
j=1 xjx

⊤
j for some λ > 0. Then:

det(Vt) ≤
(
λ+

tL2

d

)d

Lemma B.3. (Lemma 8.2 in Rinaldo & Wu (2019)) Let X ∈ Rd be a random vector that is normally
distributed X ∼ N (0,Σ). Then X is a sub-Gaussian random vector with parameter ∥Σ∥op.

Theorem B.4. (Theorem 8.3 in Rinaldo & Wu (2019)) X ∈ Rd be a sub-Gaussian random vector
with parameter σ2, then with probability at least 1− δ for δ ∈ (0, 1):

∥X∥ ≤ 4σ
√
d+ 2σ

√
log(1/δ)

Lemma B.5. (Sub-Gaussian upper tail bound) Let X be sub-Gaussian with variance proxy σ2. Then
for any δ ∈ [0, 1] we have:

P(X − E[X] <
√
2σ2 log(1/δ)) ≤ 1− δ

Lemma B.6. If B ∈ Rm×m is positive semi-definite, then for any matrix A ∈ Rn×m, ABA⊤ is also
positive semi-definite.

Lemma B.7. If matrices A,B, and A−B are positive semi-definite, then ∥A−B∥op ≤ ∥A∥op.

C A Review of Linear Dynamical Systems with Gaussian Noise

We provide a brief review of discrete-time linear dynamical systems (LDS) with Gaussian noise
(Roweis & Ghahramani, 1999).

C.1 Setting

A discrete-time, autonomous, LDS with Gaussian noise can be described with the following two
equations:

(State Evolution) z⃗t = Γz⃗t−1 + wt, (17)

(Measurement Model) yt = Cz⃗t + vt, (18)

where z⃗t ∈ Rk is the (latent) state of the system with noise process wt
i.i.d.∼ N (µz,W ), yt ∈ R is

some measurement that is observable with noise process vt
i.i.d.∼ N (µy, V ), and Γ, C are constant

matrices.
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C.2 Steady-State Kalman Filter

With knowledge of Γ, C, µz,W, µy, V , Kalman filtering is the standard approach for predicting z⃗t
using previous measurements y1, ..., yt−1, even if z⃗t is not observed. Namely, the optimal prediction
(in the least mean square sense) for z⃗t would be zt|t−1, where zt|j := E[z⃗t|Fj ] and Fj is the sigma
algebra generated by previous measurements y1, ..., yj .

A standard assumption is that the LDS given by equations (17) and (18) is observable:

Assumption C.1. The observability matrix, O =


C
CΓ
CΓ2

...
CΓk−1

 ∈ Rk×k, is full rank.

Assumption C.1 leads to a steady-state solution (Ljung, 1999; Gornet et al., 2022) that is often
employed in practice for applications involving numerous time steps (Kailath et al., 2000). For
simplicity, let z̃t := zt|t−1. The steady-state Kalman filter is as follows, where the prediction and
measurement update steps are combined:

z̃t = Γz̃t−1 + µz + ΓK(yt−1 − Cz̃t−1 − µy) (19)

K = PC⊤(CPC⊤ + V )−1 (20)

P = ΓPΓ⊤ +W − ΓPC⊤(CPC⊤ + V )−1CPΓ⊤ (21)

The prediction of z̃t is recursively computed given the prediction from the previous time-step z̃t−1

and the most recent measurement yt−1. K is the steady-state Kalman gain matrix which acts as a
weighting factor balancing the model’s predictions with the discrepancy between the model’s most
recent prediction and measurement. The update for K is one that yields the minimum mean-square
error estimate in the limit. P is the steady-state version of Pt := cov(z⃗t − zt|t), the error covariance
for z̃t. Assumption C.1 ensures that in the limit, Pt converges to some P , which implies the Kalman
gain matrix converges to some K (Ljung, 1999; Gornet et al., 2022).

D Discussion on Regret

In standard stationary bandit settings, one often proves regret bounds with respect to a “standard
oracle" that knows the true fixed reward means µ(a) for each action and selects the optimal action
a∗ = argmaxa∈A µ(a). In non-stationary settings, where the mean rewards change over time, many
works compare to an equivalent oracle called the dynamic oracle (Besbes et al., 2014). The dynamic
oracle is one that knows the true reward means µt(a) at every time step t for each action and selects
optimal action at every time step t, a∗t = argmaxa∈A µt(a).

Equivalently, the dynamic oracle is an oracle that observes all information in the environment and
then acts optimally with that information. In the latent AR bandit setting, such an oracle knows the
ground-truth parameters θ∗ = [γ0, γ1, ..., γk, µ1, β1, ..., µ|A|, β|A|, σz, σr] and observes the latent
process (i.e., the realization of zt). With access to the ground-truth parameters and the realization of
zt, the oracle therefore knows the true reward means µt(a) at every time step t for each action. The
oracle selects the optimal action for every t: a∗t = argmaxa∈A µt(a). For a policy π, the regret is
defined as:

Regret(T ;π) =
T∑

t=1

E[rt(a∗t )− rt(at)|z⃗t]
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where at is the action selected by the algorithm at time step t following policy π. The first term is the
mean reward obtained by the oracle (i.e., reward obtained by selecting the most optimal action for
that time-step) and the second term denotes the mean reward obtained by the agent (where the agent
only has information from the history up to but not including time step t). With no other assumptions,
it is impossible to achieve sub-linear regret with respect to this oracle in the latent AR setting.

D.1 Sub-linear Dynamic Regret

Sub-linear regret with respect to the dynamic oracle is only possible in environments with vanishing
non-stationarity (i.e., there is a budget for the non-stationarity that is sub-linear in T ). For example in
Besbes et al. (2014), the non-stationarity is formulated by arbitrary changes to the mean rewards and
they assume a finite variation budget VT of how much the mean rewards can change over time. The
regret bound for their method Rexp3 is on the order of V 1/3

T T 2/3. If VT scales linearly with T , the
regret of their method would be linear in T . Similarly in Garivier & Moulines (2011), they assume a
finite number of changes to the mean reward or breakpoints ΥT . The regret bound for their methods
discounted UCB and sliding window UCB is on the order of

√
TΥT log T , where ΥT = O(T β) for

some β ∈ [0, 1). If ΥT scales linearly with T , then the regret for their approaches would also achieve
linear regret. In our setting, σ2

z , the noise variance on the latent state process, is the mechanism that
controls the non-stationarity. We have shown in our main regret bound result (Theorem 4.2) that for
fixed T , in environments where σmax(Γ) ≤ 1− ϵ for ϵ > 0 and σ2

z = T c−2 for some constant c < 2,
our algorithm achieves sub-linear regret.

E Additional Experiments

E.1 Verifying the Bias Variance Trade-off

We verify the trade-off with the choice of s as depicted in Theorem 4.2. Recall that hyperparameter
s > 0 dictates the number of recent time steps of history to incorporate into the context. We consider
three environment variants where k = 1, 5, 10. In each environment variant, we run our algorithm
with four different values of s, where s = 1, 5, 10, 15, compared to “Stationary”, standard UCB
which treats the environment as a stationary multi-armed bandit.

Figure 4 shows pairwise comparisons between Stationary and our algorithm LARL with various
choices of s. We look at the proportion of times over 100 Monte-Carlo repetitions where the
algorithm listed in the row achieved lower total cumulative regret than the algorithm listed in the
column. Figure 5 shows cumulative regret over time. Even when s is not specifically tuned, our
algorithm still outperforms Stationary; however the choice of s does dictate how much our algorithm
excels. These simulations verify the bias-variance trade off with the choice of s as shown in the
regret bound (Theorem 4.2). If s is chosen too large, the bias term is small but our algorithm’s reward
model is burdened with learning many parameters. If s is chosen too small, the bias term is large and
our algorithm does not include enough history to inform the current prediction.



Reinforcement Learning Journal 2025

Stationary LARL s=1 LARL s=5 LARL s=10 LARL s=15

St
at

io
na

ry
LA

RL
 s=

1
LA

RL
 s=

5
LA

RL
 s=

10
LA

RL
 s=

15

0 0.36 0.37 0.44 0.46

0.64 0 0.73 0.63 0.7

0.63 0.27 0 0.54 0.65

0.56 0.37 0.46 0 0.57

0.54 0.3 0.35 0.43 0

k = 1, z = 1, r = 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a)

Stationary LARL s=1 LARL s=5 LARL s=10 LARL s=15

St
at

io
na

ry
LA

RL
 s=

1
LA

RL
 s=

5
LA

RL
 s=

10
LA

RL
 s=

15

0 0.26 0.11 0.24 0.3

0.74 0 0.2 0.37 0.54

0.89 0.8 0 0.69 0.79

0.76 0.63 0.31 0 0.64

0.7 0.46 0.21 0.36 0

k = 5, z = 1, r = 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b)

Stationary LARL s=1 LARL s=5 LARL s=10 LARL s=15

St
at

io
na

ry
LA

RL
 s=

1
LA

RL
 s=

5
LA

RL
 s=

10
LA

RL
 s=

15

0 0.33 0.22 0.08 0.22

0.59 0 0.25 0.15 0.27

0.78 0.75 0 0.35 0.54

0.92 0.85 0.65 0 0.65

0.78 0.73 0.46 0.35 0

k = 10, z = 1, r = 1

0.0

0.2

0.4

0.6

0.8

(c)

Figure 4: Pairwise comparisons between algorithms in the environment variants where k = 1, 5, 10,
respectively. Each cell shows the proportion of 100 Monte-Carlo repetitions where the algorithm
listed in the row achieved lower cumulative regret than the algorithm listed in the column. Even when
s is not specifically tuned, our algorithm still outperforms Stationary.
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Figure 5: Cumulative regret (Equation 10) over time with varying choices of s for our algorithm
Latent AR LinUCB (Algorithm 1). For a poor choice of s (either too small or too large compared to
k) however, our algorithm performs similarly to the stationary. If s is too small, the reward model is
under-parameterized. If s is too large, the reward model is over-parameterized. Line is the average
and shaded region is ± standard deviation across Monte Carlo simulated trials.


