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Summary
We introduce WOFOSTGym, a novel crop simulation environment designed to train rein-

forcement learning (RL) agents to optimize agromanagement decisions for annual and peren-
nial crops in multi-farm settings. Effective crop management requires optimizing yield and
economic returns while minimizing environmental impact, which is a complex sequential
decision-making problem well-suited for RL. However, the lack of simulators for perennial
crops in multi-farm contexts has hindered RL applications in this domain. Existing crop simu-
lators also do not support multiple annual crops. WOFOSTGym addresses the shortcomings of
available crop simulators by supporting 23 annual crops and two perennial crops, enabling RL
agents to learn diverse agromanagement strategies in multi-year, multi-crop, and multi-farm
settings. Our simulator offers a suite of challenging tasks for learning under partial observ-
ability, non-Markovian dynamics, and delayed feedback. Our extensive experiments across a
wide variety of crops in single and multi-farm settings, including the constrained optimization
tasks that arise in agriculture, demonstrate the learning capabilities and challenges of RL and
imitation learning agents. The experiments highlight WOFOSTGym’s potential for advancing
core RL research and RL-driven decision support in agriculture.

Contribution(s)
1. We introduce WOFOSTGym, an RL simulator built on the WOFOST crop growth model,

designed for developing agromanagement policies across multiple annual and multi-season
perennial crops, advancing AI-driven decision support in agriculture.
Context: Existing crop simulators do not support perennial crops or multiple annual crops.
WOFOSTGym addresses this gap, enabling users without agricultural expertise to create
experiments with multiple farms and multiple crops, across a range of tasks with varying
observability to reflect real world sensing challenges.

2. We modify the WOFOST crop growth model (CGM) to simulate the growth of perennial
crops across multiple growing seasons, and update WOFOST nutrient modules to be able
to investigate the impact of agromanagement decisions on the surrounding environment.
Context: Bai et al. (2019) used the WOFOST crop growth model (CGM) to model the
growth of the perennial jujube tree across multiple seasons. Inspired by their work, we
modified the WOFOST CGM to support perennial growth within WOFOSTGym, and to
model continuous multi-year growth with the addition of a dormancy phase.

3. We apply Bayesian Optimization to calibrate the parameters of the WOFOST CGM to in-
crease model fidelity and compare our results with those of an existing work that collected
phenology data for 10 grape cultivars.
Context: High-fidelity CGMs are essential for sim-to-real transfer in open-field agricul-
ture, but parameter calibration is challenging and time-consuming. Traditional agronomic
methods rely on linear regression or Monte Carlo sampling. In contrast, our Bayesian Opti-
mization approach provides a more efficient, principled search of the CGM parameter space,
achieving comparable or superior results with fewer computations and limited field data.
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Abstract

We introduce WOFOSTGym, a novel crop simulation environment designed to train
reinforcement learning (RL) agents to optimize agromanagement decisions for annual
and perennial crops in single and multi-farm settings. Effective crop management re-
quires optimizing yield and economic returns while minimizing environmental impact,
a complex sequential decision-making problem well suited for RL. However, the lack
of simulators for perennial crops in multi-farm contexts has hindered RL applications
in this domain. Existing crop simulators also do not support multiple annual crops.
WOFOSTGym addresses these gaps by supporting 23 annual crops and two perennial
crops, enabling RL agents to learn diverse agromanagement strategies in multi-year,
multi-crop, and multi-farm settings. Our simulator offers a suite of challenging tasks for
learning under partial observability, non-Markovian dynamics, and delayed feedback.
WOFOSTGym’s standard RL interface allows researchers without agricultural exper-
tise to explore a wide range of agromanagement problems. Our experiments demon-
strate the learned behaviors across various crop varieties and soil types, highlighting
WOFOSTGym’s potential for advancing RL-driven decision support in agriculture.

1 Introduction

During a growing season, farmers face many decisions about how to optimally manage their crops
to increase yield while reducing cost and environmental impact (Javaid et al., 2023). For example,
irrigation planning must account for constraints on water use, and optimal irrigation scheduling can
improve crop yield (Elliott et al., 2014). Motivated by promising results in other areas of precision
agriculture, researchers and government agencies are increasingly interested in applying reinforce-
ment learning (RL) to crop management decision problems in open-field agriculture, particularly for
perennial crops (e.g., pears, grapes) (Astill, 2020; Gautron et al., 2022a).

Agriculture presents key challenges for RL, making it a valuable testbed for research: (1) delayed
feedback—actions like fertilization affect yield only months later, complicating credit assignment;
(2) sparse rewards—since yield is only known at the episode’s end, learning an optimal policy is
difficult (Vecerik et al., 2018); and (3) partial observability—many crop and soil states are unmea-
surable or costly to obtain. While RL has been explored as a tool for optimizing open-field crop
management decisions (Wu et al., 2022; Tao et al., 2023), its real-world adoption is limited to con-
trolled settings such as greenhouses (An et al., 2021; Wang et al., 2020) and crop monitoring (Din
et al., 2022; Zhang et al., 2020). We bridge this gap by presenting a simulator for annual and peren-
nial crops in single and multi-farm settings.

Training RL agents in the real world to optimize agromanagement decisions is infeasible because
growing seasons are too long, and unconstrained exploration can cause costly errors like crop death
and soil degradation (Tevenart & Brunette, 2021). Similar challenges in robotics and autonomous
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Figure 1: The structure and visualization of the WOFOSTGym simulator. WOFOSTGym provides
an API around the WOFOST Crop Growth Model with a variety of environments to train RL agents
and generate data. Well documented configuration files control crop and soil dynamics.

driving have been addressed with high-fidelity simulators, enabling RL applications (Kober et al.,
2013; Kiran et al., 2022; Dauner et al., 2024; Todorov et al., 2012). While high-fidelity crop growth
models (CGMs) (Boote et al., 1996) offer an approach to testing crop management policies, they are
not designed to interact with RL algorithms and require substantial domain expertise to use.

Existing agriculture simulators (see Table 1) only simulate the growth of a single annual crop. They
lack the functionality needed for perennial crop management as they do not capture crop growth
across multiple years, including the dormant season (Forcella, 1998). Moreover, these simulators
cannot be customized to study other crops or sites without domain knowledge of the underlying
CGM and cannot learn joint agromanagement policies for multiple farms. Open-field agriculture
problems are often modeled as a partially observable environment, but the current crop simulators
do not allow the user to change the observable features and do not support the creation of a wide
range of agromanagement tasks across crop and soil types, which limit the scenarios that can be
modeled (Tao et al., 2023).

We present WOFOSTGym (see Figure 1), a crop simulator for learning annual and perennial
crop management strategies across single and multiple farms. WOFOSTGym is built on the
WOFOST CGM (van Diepen et al., 1989) to model the growth of perennial crops, and includes
high fidelity parameter sets for 23 annual crops and two perennial crops, calibrated with real-
world data. Each crop contains between one and ten varieties. As a step towards high-fidelity
modeling of perennial crop growth, we employ a Bayesian Optimization based method to cali-
brate CGM parameters to increase the fidelity of the phenological model for 32 grape cultivars.
To make WOFOSTGym accessible to RL researchers, we prioritize usability through extensive
customization, seamless integration with standard RL algorithms, and a thorough documentation:
https://tinyurl.com/WOFOSTGym-Docs.

Our experiments highlight scenarios in WOFOSTGym where standard RL algorithms and imitation
learning (IL) agents achieve optimal performance, alongside more complex cases that remain dif-
ficult, underscoring opportunities for advancing learning approaches in agromanagement for both
annual and perennial crops. We also design agromanagement decision-making tasks in WOFOS-
TGym that illustrate both the potential and challenges of applying RL to agriculture, positioning
WOFOSTGym as a rigorous testbed for developing and evaluating new algorithms.

2 Background and Related Work

Partially Observable Markov Decision Process We formulate our agromanagement problems
using the framework of partially observable Markov decision process (POMDP) (Kaelbling et al.,

https://tinyurl.com/WOFOSTGym-Docs
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Name
Perennial Crop

Support
Multiple Crops

and Farms
Easily

Customizable
Models Crop
Sub-processes

CyclesGym ✗ ✗ ✓ ✓

CropGym ✗ ✗ ✗ ✓

gym-DSSAT ✗ ✗ ✗ ✓

SWATGym ✗ ✗ ✗ ✓

Chen et al. (2021) ✗ ✗ ✗ ✓

FarmGym ✗ ✗ ✓ ✗

WOFOSTGym (Ours) ✓ ✓ ✓ ✓

Table 1: Comparison of available crop simulators based on four important desiderata for use with
RL. A simulator is easily customizable if it does not require agriculture domain expertise to run
different experiments. Modeling crop sub-processes (phenology, roots, stems, leaves, etc.) as it
generally leads to a higher fidelity model.

1998). POMDPs are well-suited for open-field agriculture problems, since many crop and soil-
related features that are essential for defining the system’s full state cannot be directly observed (Tao
et al., 2023). Formally, a POMDP is a tuple M = ⟨S,A,P,R,Ω,O⟩ where S is a set of states, A is
a set of actions, P : S × A× S → [0, 1] is the transition kernel, and R : S × A → R is the reward
function. Ω is the set of possible observations and O : S × A × Ω → [0, 1] is the probability of
obtaining observation o when taking action a in state s. A reward discount factor γ determines the
importance of immediate versus future rewards. The RL agent computes a policy π : Ω×A → [0, 1]

that maximizes the expected sum of discounted rewards, Eρπ

[∑T
t=0 γ

tR(st, at)
]
, where ρπ is the

distribution of states and actions induced by the policy π and T is the time horizon.

RL for Crop Management Building on RL’s success in robotics, autonomous driving, and health-
care, there is growing interest in applying RL to optimize crop yield (Binas et al., 2019). While RL
has proven effective in controlled greenhouse environments (An et al., 2021), its application in open-
field agriculture remains limited due to reduced sensing capabilities and long growing seasons. Tao
et al. (2023) proposed an imitation learning approach to learn expert actions under partial observ-
ability, but it has not been tested in the real-world. To bridge this gap, several crop simulators
have been developed. CropGym simulates winter wheat in a nitrogen-limited soil via a Gym wrap-
per around a CGM (Overweg et al., 2021). Chen et al. (2021) proposed a similar environment to
CropGym, with a finer-grained time step based on the SIMPLE crop model. Gym-DSSAT focuses
on maize growth optimization through fertilization and irrigation decisions (Gautron et al., 2022b).
CyclesGym, built around the Cycles CGM (Kemanian et al., 2022), focuses on learning crop rota-
tion strategies for annual crops but is limited to soybeans and maize, lacking support for perennial
crop modeling (Turchetta et al., 2022). SWATGym uses a simplified EPIC crop model and focuses
primarily on soil-level properties (Madondo et al., 2023). Table 1 summarizes the capabilities of
different crop simulators.

Existing crop simulators support RL training for fertilization and irrigation but lack support for
perennial crops (Gautron et al., 2022a). Additionally, customization is infeasible without expert
knowledge of the underlying CGMs, since most CGMs are run through separate executables. In
contrast, WOFOSTGym offers easy domain customization for RL researchers while providing high-
fidelity parameters for 23 annual and two perennial crops, high-fidelity model parameters for grape
phenology for 32 cultivars, and access to diverse soil types and weather patterns.

Crop Growth Models Crop Growth Models (CGMs) simulate the growth of crops in varying en-
vironments subject to different agromanagement decisions (Jones et al., 2017). Examples of widely-
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used CGMs include WOFOST (de Wit et al., 2019), DSSAT (Jones et al., 2003), APSIM (McCown
et al., 1996), EPIC (Cabelguenne et al., 1990), CropSyst (Stockle et al., 1994), Cycles (Kemanian
et al., 2022) and AquaCrop (Andarzian et al., 2011). None of the available CGMs support perennial
crops. The relevant features of these CGMs are highlighted in the Supplementary Materials.

Our simulator is built on WOFOST, a CGM that models annual crop growth subject to nutrient
(nitrogen, phosphorus, and potassium) and water-limited conditions (van Diepen et al., 1989). We
choose WOFOST because studies show that it can be modified to model the growth of perennial
crops with high fidelity (Bai et al., 2020; Shi et al., 2022). It also accounts for varying CO2 con-
centrations, making it valuable for climate-impacted agricultural research (Gilardelli et al., 2018).
Additionally, its modular design facilitates modifications to crop process models (de Wit, 2024), and
its Python implementation enables seamless integration with OpenAI Gym (Brockman et al., 2016).

3 WOFOSTGym

WOFOSTGym is built on the WOFOST CGM (van Diepen et al., 1989) and interfaces with the
OpenAI Gym API to create a high-fidelity and easy-to-use crop simulator for RL. Agromanagement
decisions supported in WOFOSTGym are: fertilizing, irrigating, planting, and harvesting. In the
interest of clarity, we focus on fertilization and irrigation decisions in the rest of the paper, since
these tasks are supported by all existing crop simulators. In these tasks, the agent must optimize
fertilization and irrigation strategies that maximize the cumulative yield of a crop subject to a set of
penalties or constraints over one or more growing seasons and across one or more farms.

The rest of this section is organized as follows. We begin with an overview of the environment
design. We then propose a model calibration method to fine-tune the model parameters of the
WOFOST CGM to increase the fidelity as a step towards sim-to-real transfer (Peng et al., 2018).

3.1 Environment Design

A WOFOSTGym instance is defined by its Gym environment ID, the reward wrapper, and an agro-
management configuration file. WOFOSTGym contains 54 Gym environments that relate to annual
and perennial crop simulation, single and multi-farm simulations, and six combinations of nutrient-
limited environments. Our documentation includes three examples on how to modify the reward
function, if needed, via the Gym reward wrappers. The agromanagement YAML file defines crop
and soil dynamics and specifies the weather data which is provided by the NASAPower database.
Gym environments, reward wrappers, and agromanagement files are configurable, allowing cus-
tomization to simulate agromanagement decision problems across various crops, farms, and tasks.

States and Observations The model state in WOFOSTGym is the concatenation of two feature
vectors, c = (c1 . . . c203) and w = (w1, . . . , w7), where c contains the crop and soil state and w
contains the weather state for a given day. However, most of these state features are not directly
observable in the real-world. Thus, the state features available to the RL agent are a subset of the
model state as observation o = (o1, ..., on), with n ≪ 210. An observation could be: o = (Weight
of Storage Organs, Development Stage, Leaf Area Index, Soil Moisture Content, Rainfall, Solar
Irradiation, Daily Temperature). WOFOSTGym supports any combination of state features as an
observation. In the multi-farm environments, the agent receives an observation for each farm and
the daily weather observation is shared across farms.

Action Space WOFOSTGym’s action space consists of fertilization (F): nitrogen (n), phosphorus
(p), and potassium (k), and irrigation (I) actions. At each time step, an action can be chosen from
A = {Fn, Fp, Fk, I} which corresponds to applying fertilizer (Fi) or water (I) in the following
amounts, where f , n, i, and m can all be modified:

Fi =
{
f · k kg

ha

∣∣∣k ∈ {0 . . . n}
}
, I =

{
i · k cm

ha

∣∣∣k ∈ {0 . . .m}
}
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meaning that |A| = 3n+m. By default, a time step represents a single day, but can be modified to
denote multiple weeks to model the varying length between agromanagement decisions.

Reward Real-world agriculture requires balancing yield with constraints such as fertilizer costs,
water usage limits, and surface runoff restrictions. WOFOSTGym includes reward wrappers to pe-
nalize the violation of these constraints. Profitability is the primary driver of agromanagement policy
adoption (Turchetta et al., 2022), so reward is a function of crop yield in kg/ha times a variable profit
coefficient (by default we use 10, in line with previous work Overweg et al. (2021)). However, to
enable wide-ranging task specification, WOFOSTGym’s reward wrapper design enables the reward
to be any function of the entire state space. An example reward function in WOFOSTGym is:
Rt = Yield−C · (Ft + It), where C is a constant that modifies the penalty for nutrient application.

Domain Randomization Domain randomization enables successful sim-to-real transfer (Mehta
et al., 2020), a key feature missing from existing crop simulators. WOFOSTGym supports three
types of domain randomization, which can be used individually, in combination, or not at all. They
are: 1) adding small amounts of random uniform noise to parameters in the WOFOST GGM, 2)
allowing RL agents to train on different crops and soil types simultaneously, and 3) enabling RL
agents to train on a wide breadth of historical weather data.

Available Crops and Modifications to WOFOST WOFOSTGym includes parameters for 23 an-
nual crops and 2 perennial crops which were all calibrated empirically from field data (de Wit, 2025;
Wang et al., 2022; Bai et al., 2019). For perennial crops, it is insufficient to model individual seasons
of crop growth, as important agromanagement decisions are made during the dormant season (For-
cella, 1998). It is more appropriate to model growth over multiple consecutive years, which requires
modification to the phenology, crop organ, and nutrient balance modules WOFOST. We outline the
modifications made to WOFOST and list all available crops in the Supplementary Materials.

3.2 Parameter Calibration for Crop Growth Models

Before a CGM can be used for sim-to-real transfer with RL, it must be calibrated (Bhatia, 2014).
CGM parameters are typically derived from field experiments and optimized using regression to
find the best fit (Berghuijs et al., 2024; Zapata et al., 2017). Parameter spaces for CGMs are high-
dimensional and highly non-linear (Sinclair & Seligman, 2000), so brute force and regression tech-
niques that are commonly used in agronomy research may be insufficient to find an optimal solution.
To overcome the limitations in current CGM calibration methods, we propose a Bayesian optimiza-
tion approach that requires minimal domain knowledge and outperforms regression-based methods.
When historical crop data is available, Bayesian optimization is a more principled way of exploring
the parameter space to increase the model fidelity of WOFOSTGym.

Example: Bayesian Optimization for Grape Phenology Calibration Grape phenology is di-
vided into three key phenological stages: Bud Break, Bloom, and Veraison (Lorenz et al., 1995).
Accurately predicting the onset of a phenological stage allows growers to implement effective agro-
management strategies, and the Root Mean Squared Error (RMSE) is the widely accepted measure
of performance in grape phenology modeling (Parker et al., 2013). We use an iterative optimization
process that uses Bayesian optimization in each iteration to refine parameters and minimize error
across all phenological stages. Phenology in WOFOSTGym is a crop sub-module and is described
by a set of seven parameters, θ. Each iteration aligns with minimizing RMSE for a stage k, where
θk is a subset of θ.

Using a dataset of six to 15 years of historical weather and phenology observations per cultivar
collected by Zapata et al. (2017), we define the following loss function for Bayesian Optimization:

LRMSE(θk) =

√
1
n

n∑
i=1

(
P k
i (θk)−Ok

i

)2
+ 1

n

n∑
i=1

(
P k−1
i (θk)−Ok−1

i

)2
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Cultivar Bud Break Bloom Veraison Cumulative Error
Ours BB-Tb BL-Tb Ours BB-Tb BL-Tb Ours BB-Tb BL-Tb Ours BB-Tb BL-Tb

Cabernet Franc 4.0 6.1 6.2 3.5 3.1 2.9 7.7 6.7 7.1 15.2 15.9 16.2
Cabernet Sauvignon 5.0 8.7 10.5 5.2 5.8 5.7 9.8 6.6 7.0 20.0 21.1 23.2
Malbec 3.7 5.6 6.2 2.8 3.2 2.9 8.3 5.7 6.0 14.8 14.5 15.1
Pinot Noir 3.6 4.2 3.9 2.4 2.6 2.3 8.6 6.6 7.7 14.6 13.4 13.9
Zinfandel 3.7 6.8 9.0 3.8 4.3 4.0 6.0 4.1 3.8 13.5 15.2 16.8
Chardonnay 7.2 6.3 5.9 4.1 3.7 3.2 7.8 5.6 5.9 19.1 15.6 15.0
Chenin Blanc 5.0 6.1 6.2 3.8 4.8 4.6 8.5 9.2 9.4 17.3 20.1 20.2
Sauvignon Blanc 3.4 6.4 5.7 5.9 3.7 3.5 1.6 7.7 8.5 10.9 17.8 17.7
Semillon 4.7 6.0 7.0 2.7 6.0 5.8 8.8 11.2 11.6 16.2 23.2 24.4
Riesling 3.7 4.2 5.7 3.8 4.1 3.7 8.5 8.5 9.0 16.0 16.8 18.4

Average 4.4 6.0 6.6 3.8 4.1 3.9 7.4 7.2 7.6 15.6 17.3 18.1

Table 2: RMSE in days when predicting the key phenological stages (Bud Break, Bloom, and Ve-
raison) in ten grape cultivars. The columns represent the RMSE between the model’s predicted
phenology for a given parameterization and the observed phenology. Ours: Using parameter set
tuned with Bayesian Optimization. BB-Tb: Parameter set tuned for Bud Break. BL-Tb: Parameter
set for Bloom. Values for BB-Tb and BL-Tb are columns 2 and 3 in Table 6 in Zapata et al. (2017).

where P k
i (θk) and Ok

i denote the predicted and observed onset day for phenological stage k for
year i with parameter set θk. We run three iterations of Bayesian optimization (Noguiera, 2014)
with a RBF kernel and the expected improvement acquisition function for 500 steps. By retaining
the best-fit parameters found by each iteration, we obtain θ = {θBud Break, θBloom, θVeraison}, which
minimizes the RMSE across all phenological stages. We compare our Bayesian Optimization results
with Zapata et al. (2017) who use linear regression. They find parameter sets for grape phenology,
BB-Tb and BL-Tb, that aim to minimize the error for Bud Break and Bloom, and report the RMSE
for all stages. Our results in Table 2 show that our model outperforms others, providing a 10%
reduction in RMSE over the next best parameter set, BB-Tb.

The 32 calibrated grape phenology parameterizations included in WOFOSTGym increase model
fidelity and represent a step towards sim-to-real transfer for crop management policies in open-field
agriculture. Grape growers can use the high-fidelity phenology models in WOFOSTGym as digital
twins to examine the effects of different agromanagement policies on their grape vines without the
risk of crop loss. As more crop data becomes widely available, our Bayesian optimization method
can be used to calibrate WOFOSTGym parameters for all crop sub-modules to more accurately
model a variety of crop processes. In the absence of publically available historical data, we rely on
previously calibrated crop parameters from de Wit (2025); Wang et al. (2022); Bai et al. (2019).

4 Experiments and Results

To illustrate the use of WOFOSTGym, we ran RL and IL experiments on diverse tasks to learn
crop management policies for annual and perennial crops under realistic constraints. We present
results using varied crops and soil types, demonstrating WOFOSTGym’s customizability. Overall,
our results showed that off-the-shelf RL algorithms struggle with hard constraints, long horizons,
and delayed feedback—challenges inherent to agriculture and captured by WOFOSTGym, making
it a valuable platform for both core RL research and agromanagement decision support.

Our crop selection was guided by common agronomic challenges: wheat for nutrient-limited growth
due to its high nitrogen and water demands, potatoes for soil nutrient runoff risks, and grapes for
their sensitivity to irrigation timing. We tested with pears and jujubes for the long-horizon decision-
making challenges in perennial crop management, and maize as it is the only crop supported by
other simulators.

Agents in our experiments could choose from 16 actions, each corresponding to one of four discrete
amounts of nitrogen, phosphorus, potassium, and water. Unless otherwise noted, the agent observed
a small subset of the 210 features: the development stage; weight of storage organs; total nitro-
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Figure 2: Unconstrained Control. The average reward, as seasonal yield, of different policies. The
BiWeekly NW policy alternates applying nitrogen and water biweekly, the Monthly W policy ap-
plies water every month, and the Grape Potential is the maximum growth obtainable. Average and
standard deviation reported over three seeds.

gen, phosphorus, potassium, and water applied; soil moisture content; nitrogen, phosphorus, and
potassium in subsoil; solar irradiation; average temperature; and rainfall. Thus, all experiments are
conducted under partial observability, reflecting the reality of decision making in agriculture. For our
RL experiments, we used PPO, Recurrent-PPO, SAC, and DQN (Schulman et al., 2017; Haarnoja
et al., 2018; Mnih et al., 2013), using implementations from Huang et al. (2021) and hyperparameters
tuned experimentally to yield best performance in the WOFOSTGym domain. For our IL experi-
ments, we used implementations from Gleave et al. (2022) of BC, GAIL, and AIRL (Bain & Sam-
mut, 2000; Ho & Ermon, 2016; Fu et al., 2018). GAIL and AIRL used a PPO policy, and BC used an
Actor Critic Policy, provided by Raffin et al. (2021). When reporting statistics of trained RL agents,
we evaluated the trained RL agent on 15 different years of weather data and compute the average.
All experiments and code can be found at: https://tinyurl.com/WOFOSTGym-Code.

Learning Efficiency Figure 2 presents learning curves for maximizing jujube growth over three
seasons and grapevine over one season in WOFOSTGym. We compared RL performance against
(1) the maximum potential yield; (2) an agromanagement policy that alternated nitrogen fertilization
and irrigation biweekly; and (3) and a policy that applied irrigation monthly. In the grapevine exper-
iment, the RL algorithms significantly outperformed the baseline of a bi-weekly nitrogen and water
application policy but fell short of reaching the potential production of an unlimited nutrient setting.
For jujube, we saw that RL agents were unable to match the performance of a monthly nitrogen
and water application policy. We omitted the jujube potential because it assumed daily intervention
while we only allowed the RL agents to perform biweekly interventions. These examples show the
potential for off-the-shelf RL algorithms to achieve non-trivial performance for some crop scenarios,
but also indicate that there is significant room for improvement in multi-year settings.

Learning Under Constraints In the real world, yield maximization is always subject to multiple
constraints, such as a limit on the amount of fertilizer and water that can be applied per season. To
model this, we rewarded total yield and applied a large negative penalty if the fertilization and irri-
gation thresholds (in kg/ha and cm/ha) were exceeded. Figure 3 shows the results of RL algorithms
with this reward function: positive reward indicates no constraint violation, rewards less than zero
indicate a constraint violation, and rewards less than −105 indicate more than five constraint vio-
lations. Note that unlike the previous experiment, there is no principled way to find the maximum
reward obtainable in this setting. We compared the RL agents to a baseline that applies nitrogen
fertilizer and water until it meets the same thresholds of 80 kg/ha of fertilizer or 40 cm/ha of wa-
ter (Bushong et al., 2016). While this baseline satisfied constraints, it achieved a lower average
reward than the trained RL agents. While this simple approach may be insufficient to guarantee
that constraint satisfaction in the real world, the ability to construct such experiments demonstrates
WOFOSTGym’s potential as a testbed for constrained RL research.

https://tinyurl.com/WOFOSTGym-Code
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Figure 3: Constrained Control. (Left) The average over three seeds of the reward during training.
(Right) The likelihood of fertilization or irrigation action each week. Likelihoods were computed
over 15 seasons of weather data with darker colors signifying more likely nutrient application.

Figure 4: Constrained Control Under Partial Observability. (Left) The average reward over three
seeds of RPPO agents during training. (Right) The average days of runoff after completing training.
Evaluation on 15 seasons of weather data.

Effect of Reduced Observability on Constraint Adherence Limitations on sensing capabilities
further restrict the observation space and are a constant source of uncertainty in agromanagement
decisions. To illustrate the effects of reduced observability in WOFOSTGym (our agents already
observe a subset of the 210 state features), we omitted two state features, RAIN and TOTN, the
daily rainfall and fertilizer on the soil surface, respectively, and created four environments with
fewer observable features based on the omission of the two variables from the observation space.
We designed a reward function that rewarded crop yield subject to a −104 penalty if nutrient runoff
occurred. Nutrient runoff happens when fertilizer amasses on the soil surface and irrigation or
rainfall occur. We trained RPPO agents to grow the potato crop in each environment and show the
results in Figure 4. Access to all relevant features improved constraint adherence of an agent policy.
However, even in the fully observable case, constraint satisfaction was not guaranteed, exhibited
by the non-zero days of runoff on average. Future research could use WOFOSTGym to inform
the importance of obtaining costly field measurements, and study constraint inference in partially
observable environments.

Imitation Learning for Agromanagement Decisions Given the difficulty of learning in the real
world with RL, learning from past farmer demonstrations may be a viable option. We investigated
the ability to learn from demonstrations using BC, GAIL, and AIRL algorithms. We provided each
IL agent with 100 seasons of data generated from an expert PPO agent trained to maximize wheat
yield subject to strict limits of 20 kg/ha of fertilizer and 20 cm/ha of water per season. We only
included trajectories where the PPO agent successfully adhered to the underlying operational con-
straints. Table 3 shows that while GAIL and AIRL failed to match the expert’s yield and behavior
as shown by the differences in nitrogen and water application, BC most closely mimicked the expert
but was unable to avoid all constraint violations. This shows that WOFOSTGym can serve as a
non-trivial benchmark for IL and in particular, research on implementing constraints into IL.
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Agent
Max Yield

(kg/ha)
Constraints

Violated
Nitrogen
(kg/ha)

Phosphorus
(kg/ha)

Potassium
(kg/ha)

Water
(cm/ha)

Expert (PPO) 4376± 805 0.00± 0.00 16.53± 3.3 6.13± 2.47 14.53± 3.46 3.33± 0.83
AIRL 2975± 335 4.53± 2.33 28.93± 5.56 2.67± 2.02 4.40± 2.65 1.80± 0.93
GAIL 2647± 562 0.67± 0.94 8.93± 2.72 9.47± 4.10 19.87± 4.29 4.00± 1.13
BC 4598± 790 0.33± 0.60 16.8± 3.56 6.53± 3.38 14.67± 2.98 4.30± 1.25

Table 3: Results of three IL agents trained to maximize wheat yield subject to constraints on nutrient
application. The Constraints Violated column shows the number of days where excess nutrients were
applied after the threshold was reached. Results are averaged over 15 seasons.

Figure 5: (Left) The soil moisture content of each field under three joint RL agromanagement poli-
cies. Averages taken over 15 seasons. (Right) The average yield obtained by trained multi-field
agents. Lighter colors indicate the yield obtained by an agent trained on that specific field as a base-
line for obtainable crop yield.

Comparison of Agromanagement Decisions on Multiple Farms Comparing yield and nutrient
levels under different agromanagement policies is desirable for farmers, but unrealistic to perform
in the field due to the risk of exploratory actions decreasing crop yield. WOFOSTGym enables
agromanagement policies to be evaluated in simulation which could be a useful tool for farmers
to understand the impacts of agromanagement decisions on crop and soil health. WOFOSTGym
instances describe the dynamics of a field growing a specific crop. Each field can represent a farm.
Using WOFOSTGym, we compared joint multi-field policies with field-specific policies to analyze
their trade-offs in accumulated yield.

As farmers often apply the same policy to multiple fields, we created a WOFOSTGym environment
that simulates the growth of five sunflower fields experiencing the same weather. The observation
space was the growth and soil variables for each field. The weather was shared between fields and
the action selected was uniformly applied to each field. We trained a PPO, DQN, and SAC agent
in this multi-field scenario and reported the soil moisture content and the average yield with each
agent policy on each field in Figure 5. We then trained the respective agents on each individual field
to understand the value of using a specialized policy compared to a joint policy. The increased soil
moisture content achieved under the DQN policy led to the lowest yield across all fields, providing
meaningful insight into soil dynamics and the value of learning field-specific irrigation policies.

Simulator Run Times Fast simulators are central to the successful application of RL given the
high sampling complexity of RL algorithms (Lechner et al., 2023). We benchmarked the run times
of three crop simulators: WOFOSTGym, CyclesGym, and gym-DSSAT (Gautron et al., 2022b;
Turchetta et al., 2022). We compared run times for a single episode of growing the maize crop (155
episode steps). Given the large potential overhead when resetting the underlying CGM, we also
measured the run times of the step and reset functions. Our results in Table 4 show that WOFOST-
Gym outperforms CyclesGym, the only crop simulator that supports multi-year simulations, by an
order of magnitude. WOFOSTGym was also faster than gym-DSSAT, due to its significantly faster
reset function while also maintaining phosphorus and potassium nutrient balances.
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Run Time (s) WOFOSTGym CyclesGym gym-DSSAT

1 Episode 0.34±0.012 2.08±.221 0.38±0.018
Step Function 0.003±0.0005 0.04±.002 0.001±0.0001
Reset Function 0.012±0.002 0.055±.002 0.191±0.012

Table 4: The average runtime and standard deviation, computed over 100 trials, of three different
crop simulators on an Nvidia 3080Ti.

5 Limitations and Future Work

WOFOSTGym takes around two seconds to run a three-year simulation of a perennial jujube crop.
Although WOFOSTGym offers an improved run time compared to other crop simulators, the run
time quickly adds up when RL algorithms require millions of episodes to learn a good policy. As
episode horizon increases for modeling perennial crop management decisions, accelerating the mod-
eling of crop dynamics will become critical.

Although WOFOSTGym provides high fidelity models for many annual and perennial crops, it
was not designed for direct sim-to-real transfer. Such a simulator would also need to consider
long-term crop rotation strategies and exogenous processes such as weed growth and pests, which
impact farming operations seasonally. Creating a simulator for direct sim-to-real transfer is a long
term goal. As research bridging RL to open-field agriculture advances and CGM fidelity improves
through approaches like those in Section 3.2, direct sim-to-real transfer may become feasible.

6 Summary

We present WOFOSTGym, the first RL simulator for annual and perennial crop management de-
cision support. The WOFOSTGym repository includes high-fidelity parameters for two perennial
crops and 23 annual crops, along with diverse pre-specified agromanagement policies for bench-
marking RL agents. Its customizable design enables researchers to conduct experiments without
requiring agricultural domain expertise. To improve CGM fidelity and facilitate sim-to-real transfer
in open-field agriculture, we propose a Bayesian optimization-based calibration method. Our results
reveal the limitations of current RL and IL algorithms in this domain, emphasizing the need for
further research to address the specific challenges presented in the agriculture domain. We outline
realistic benchmarks to assess RL algorithms before deployment for agricultural decision support.

Broader Impact Statement

Reinforcement learning for crop modeling has the potential to help growers optimize yield while
reducing costs and environmental impact. WOFOSTGym provides a high-fidelity platform for re-
searchers to develop and evaluate agromanagement policies. However, due to the gap between
simulation and real-world environments, RL policy performance in simulation may not translate
directly to field trials.
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7 WOFOSTGym Modified Perennial Crop Growth Model

Prior works has modified the WOFOST CGM to model the growth of pear and jujube crops across
multiple growing seasons de Wit (2024); Bai et al. (2019); Wang et al. (2022), establishing it as a
strong foundation for developing a perennial crop simulator. Below, we outline the key modifications
we made to WOFOST to support perennial crop modeling.

Perennial Phenology We primarily focused on modifying the phenology submodule within the
WOFOST CGM to account for the substantial differences between annual and perennial crop phe-
nology. Unlike annual crops, the phenology of perennial crops is characterized by a dormancy stage
induced by day length in autumn and released by temperature in spring (Rohde & Bhalerao, 2007).
To capture this behavior, we introduced parameters for dormancy induction based on day length,
release temperature threshold, and minimum dormancy duration. In our modified WOFOST CGM,
dormancy can also be triggered by prolonged growth stagnation, indicating insufficient ambient
temperature for crop growth (Jones et al., 1978).

Perennial Organ Growth In addition to differences in phenology, perennial crops exhibit differ-
ences in their visible growth organs (Thomas et al., 2000). The roots and stems of perennial crops
persist year-round, while the leaves and storage organs regrow each season subject to intercepted
light and nutrient uptake. Crop organ death rates are modeled as a function of the development
stage of the crop (Lindén et al., 1996). Notably, perennials exhibit a reduced seasonal growth as
they age (Munné-Bosch, 2007). While the underlying mechanisms for reduced growth remain dif-
ficult to quantify, we model this decline empirically through increased maintenance respiration and
decreased carbon conversion efficiency as a function of age (Zhu et al., 2021). See Figure 6 for a
visual overview of how key crop processes impact one another throughout the course of a perennial
crop simulation.

Figure 6: A simplified flowchart of the perennial crop growth in WOFOSTGym. Boxes highlighted
in green denote additions or areas of substantial change to the underlying WOFOST CGM to support
perennial crop growth. The development stage of the crop is driven by the daily ambient temperature.
The development stage determines how accumulated dry matter is partitioned to crop organs subject
to available nutrients. The weight of the living organs (yield) is calculated as the accumulated
difference between the growth and death rates.

Modified Nutrient Module A multi-layer nutrient balance is important for modeling the effects
of fertilization stressors on the roots, stems, and nutrient partitioning (Albornoz, 2016). We extend
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WOFOST’s single-layer nutrient balance to a multi-layered nutrient balance within the soil mod-
ule (He et al., 2013). When nutrients are applied via fertilization, they reside on the soil surface. As
the simulation evolves, nutrients are absorbed into the subsoil and then the roots of the plant. When
surface nutrient levels are too high, the partitioning of dry matter is changed to limit allocation to
the storage organs in favor of stems and leaves (He et al., 2013).

8 Available Crops

WOFOSTGym includes parameters for two perennial crops: pear and jujube, and 23 annual crops:
barley, cassava, chickpea, cotton, cowpea, faba bean, groundnut, maize, millet, mung bean, pigeon
pea, potato, rapeseed, rice, onion, sorghum, soybean, sugar beet, sugarcane, sunflower, sweet potato,
tobacco, and wheat. Each crop contains between one and ten varieties. WOFOST CGM parameters
for each variety were calibrated empirically from field data (de Wit, 2025). By modeling each crop
variety as a task, agromanagement decisions for multiple crop varieties can be optimized with multi-
task RL (Hessel et al., 2019).

In addition to the high-fidelity models for 25 crops, WOFOSTGym also includes parameters for
modeling the phenology of 31 grape cultivars. These cultivars are: Aligote, Alvarinho, Auxer-
rois, Barbera, Cabernet Franc, Cabernet Sauvignon, Chardonnay, Chenin Blanc, Concord, Durif,
Gewurztraminer, Green Veltliner, Grenache, Lemberger, Malbec, Melon, Merlot, Muscat Blanc,
Nebbiolo, Petit Verdot, Pinot Blanc, Pinot Gris, Pinot Noir, Riesling, Sangiovese, Sauvignon Blanc,
Semillon, Syrah, Tempranillo, Viognier, and Zinfandel.

9 Crop Growth Models

CGMs are typically one of three types: mechanistic, empirical, or hybrid. Mechanistic models simu-
late canopy or nutrient level crop processes to validate scientific understanding of crop growth (Estes
et al., 2013). Empirical models rely on observed field data, offering greater scalability with lower
computational overhead (Di Paola et al., 2016). Hybrid crop models simulate crop growth using
both mechanistic and empirical modeling decisions (Yang et al., 2004).

WOFOST is a single-year and multi-crop agroecosystem model (Jones et al., 2017). It relies both on
mechanistic and empirical processes to simulate crop growth (Di Paola et al., 2016). Crop growth
in WOFOST is determined by the atmospheric CO2 concentration, irradiation, daily temperature,
subject to limited water, nitrogen, phosphorus, and potassium. While WOFOST was designed for
simulating the yield of annual crops (van Diepen et al., 1989), field studies have shown that it can
be used to accurately predict yield in perennial fruit trees with some small modifications to the base
model Wang et al. (2022); Bai et al. (2019).

Given WOFOST’s ability to simulate a wide variety of crop and soil dynamics, and its modular im-
plementation in Python, WOFOST is an ideal CGM candidate to be used to simulate perennial crop
growth to address that lack of perennial CGMs available, and the lack of perennial crop benchmarks
available for RL research (Gautron et al., 2022a). For an introduction to the WOFOST, see de Wit
(2024); de Wit et al. (2019). There are a wide variety of CGMs available for use. Table 5 outlines
the desiderata used to select WOFOST as the CGM for WOFOSTGym.
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Crop Model Model Type Nutrient Balance Water Balance Crop Type Language

WOFOST Hybrid
nitrogen,

phosphorus,
potassium

Single Layer,
Multi Layer Annual

Python,
FORTRAN

APSIM Mechanistic
nitrogen,

phosphorus,
potassium

Multi Layer Annual
FORTRAN,

C++

DSSAT Hybrid
nitrogen,

phosphorus,
potassium

Multi Layer Annual FORTRAN

CropSyst Mechanistic nitrogen Single Layer Annual C++

EPIC Hybrid
nitrogen,

phosphorus Multi Layer
Annual,

Rotations FORTRAN

STICS Empirical nitrogen Multi Layer Annual Executable

Cycles Mechanistic nitrogen Multi Layer
Annual,

Rotations Executable

AquaCrop Empirical abundant Multi Layer Annual
Python,

Executable

LINTUL3 Empirical nitrogen Abundant Annual Python

SIMPLE Empircal nitrogen Single Layer Annual FORTRAN

Table 5: Different CGMs and their strengths and weaknesses for modeling high fidelity crop growth,
interfacing with RL algorithms, and supporting perennial crop decision evaluation.


