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Summary
This paper studies the safe reinforcement learning problem formulated as an episodic finite-

horizon tabular constrained Markov decision process with an unknown transition kernel and
stochastic reward and cost functions. We propose a model-based algorithm based on novel
cost and reward function estimators that provide tighter cost pessimism and reward optimism.
While guaranteeing no constraint violation in every episode, our algorithm achieves a regret
upper bound of Õ((C̄ − C̄b)

−1H2.5S
√
AK) where C̄ is the cost budget for an episode, C̄b

is the expected cost under a safe baseline policy over an episode, H is the horizon, and S, A
and K are the number of states, actions, and episodes, respectively. This improves upon the
best-known regret upper bound, and when C̄ − C̄b = Ω(H), the gap from the regret lower
bound of Ω(H1.5

√
SAK) is Õ(

√
S). We deduce our cost and reward function estimators via a

Bellman-type law of total variance to obtain tight bounds on the expected sum of the variances
of value function estimates. This leads to a tighter dependence on the horizon in the function
estimators. We also present numerical results to demonstrate the computational effectiveness
of our proposed framework.

Contribution(s)
1. This paper presents an algorithm for episodic finite-horizon tabular constrained Markov

decision processes with an improved regret upper bound of Õ((C̄ − C̄b)
−1H2.5S

√
AK),

ensuring zero constraint violation over all episodes.
Context: The best-known regret upper bound is Õ((C̄ − C̄b)

−1H3S
√
AK) due to Bura

et al. (2022), and our result improves it by a factor of Õ(
√
H). The zero constraint violation

setting means that there is no episode in which the constraint is violated. Additionally, a
safe baseline policy is assumed to be known as in Liu et al. (2021); Bura et al. (2022).

2. When C̄ − C̄b = Ω(H), our algorithm is the first algorithm that nearly matches the lower
bound of Ω(H1.5

√
SAK) in terms of H in the zero constraint violation setting.

Context: The lower bound is originally derived for the unconstrained case (Jin et al., 2020;
Domingues et al., 2021), and it also works for the constrained case as we can take trivial
cost functions.

3. The key is to control the error of estimating the unknown transition kernel over each episode.
In particular, we provide a tighter bound on the estimation error for each episode, based on
a Bellman-type law of total variance.
Context: Our Bellman-type law of total variance technique refines the analysis of Bura
et al. (2022), resulting in a tighter bound expressed as a function of the estimated transition
kernel. The technique is inspired by Chen & Luo (2021), while they gave only a cumulative
error bound across all episodes, and at the same time, the bound is expressed as a function
of the true transition kernel which is unknown to the algorithm.
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Abstract

This paper studies the safe reinforcement learning problem formulated as an episodic
finite-horizon tabular constrained Markov decision process with an unknown transition
kernel and stochastic reward and cost functions. We propose a model-based algorithm
based on novel cost and reward function estimators that provide tighter cost pessimism
and reward optimism. While guaranteeing no constraint violation in every episode, our
algorithm achieves a regret upper bound of Õ((C̄ − C̄b)

−1H2.5S
√
AK) where C̄ is

the cost budget for an episode, C̄b is the expected cost under a safe baseline policy over
an episode, H is the horizon, and S, A and K are the number of states, actions, and
episodes, respectively. This improves upon the best-known regret upper bound, and
when C̄ − C̄b = Ω(H), the gap from the regret lower bound of Ω(H1.5

√
SAK) is

Õ(
√
S). The reduction in the regret upper bound is a consequence of our novel reward

and cost function estimators. The key is to control the error of estimating the unknown
transition kernel over each episode. In particular, we provide a tighter bound on the
estimation error for each episode, based on a Bellman-type law of total variance to ana-
lyze the expected sum of the variances of value function estimates. The bound is given
by a function of the estimated transition kernel, whose choice can be optimized by the
algorithm. This leads to a tighter dependence on the horizon in the function estimators.
We also present numerical results to demonstrate the computational effectiveness of our
proposed framework.

1 Introduction

Safe reinforcement learning (RL) aims to learn a policy that maximizes the cumulative reward and, at
the same time, ensures that some safety requirements are satisfied during the learning process. Safe
RL provides modeling frameworks for many practical scenarios where violating a safety constraint
results in a critical situation. For example, it is crucial to enforce collision avoidance for autonomous
driving (Isele et al., 2018; Krasowski et al., 2020) and robotics (Fisac et al., 2018; García & Shafie,
2020). For financial planning, there exist legal and business regulations (Abe et al., 2010). For
healthcare systems, service providers consider restrictions due to patients’ conditions (Coronato
et al., 2020).

The standard approach is to formulate a safe RL problem as a constrained Markov decision process
(CMDP), where the objective is to maximize the expected reward over a time horizon while there
is a constraint that the expected cost should be under budget (Altman, 1999). The presence of con-
straints, however, brings about challenges in developing solution methods for CMDPs. The Bellman
optimality principle does not hold for CMDPs, and as a consequence, backward induction and the
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greedy operator cannot be directly applied to CMDPs (Altman, 1999). This makes online learning
of CMDPs difficult, and we need significantly different frameworks and algorithms compared to the
unconstrained setting (García et al., 2015; Efroni et al., 2020; Gu et al., 2024).

The first direction for online reinforcement learning of CMDPs is to consider cumulative (or soft)
constraint violation, which sums up the constraint violations across episodes (Efroni et al., 2020).
Here, the constraint violation in an episode is defined as the expected cost minus the budget. Then a
policy can have a negative constraint violation, which means that a positive violation in one episode
can be canceled out by a negative violation in another episode in the sum. This cancellation effect
allows oscillating between such two cases, while still achieving zero cumulative constraint violation.
This phenomenon can indeed be observed in practice (Stooke et al., 2020; Moskovitz et al., 2023).

The second direction attempts to remedy the issue of error cancellation with the notion of hard
constraint violation (Efroni et al., 2020). It ignores episodes with a negative violation and takes
the sum of only the positive constraint violations. Efroni et al. (2020) developed OptCMDP and its
efficient variant, OptCMDP-bonus, that attain a regret upper bound and a hard constraint violation
of Õ(H2

√
S2AK). Recently, Ghosh et al. (2024) proposed a model-free algorithm with the same

asymptotic guarantees. However, as in the first setting, the algorithms cannot avoid episodes in
which the constraint is violated. Thus, they are still not suitable for the aforementioned applications,
where even a single incidence of violation can cause substantial problems.

The third approach seeks zero (hard) constraint violation, requiring that the constraint is satisfied
in every episode (Simão et al., 2021). Satisfying constraints in the early stage is difficult when
the model parameters, especially the transition kernel, are unknown. Simão et al. (2021) con-
sidered some abstraction of the transition model under which they showed an algorithm with no
constraint violation, but no regret upper bound was presented. Then Liu et al. (2021) came up
with the first algorithm, OptPess-LP, that achieves a sublinear regret with no constraint violation,
assuming the knowledge of a safe baseline policy. Here, a safe baseline policy is a policy under
which the expected cost is lower than the budget. OptPess-LP guarantees a regret upper bound of
Õ((C̄ − C̄b)

−1H3
√
S3AK) where C̄ is the budget, C̄b is the expected cost under the safe baseline

policy, H is the length of the horizon, and S, A and K are the number of states, actions, and episodes,
respectively. Bura et al. (2022) developed Doubly Optimistic Pessimistic Exploration (DOPE) with
an improved regret upper bound of Õ((C̄ − C̄b)

−1H3
√
S2AK). DOPE is based on designing tight

optimistic reward function estimators (reward optimism) and conservative cost function estimators
(cost pessimism).

While DOPE establishes a tight regret upper bound with no constraint violation, there is still room
for improvement. The regret lower bound of Ω(H1.5

√
SAK) for the unconstrained case (Jin et al.,

2018; Domingues et al., 2021) also works as a lower bound for the constrained setting because we
may take trivial cost functions. However, even when C̄ − C̄b = Ω(H), the regret upper bound
of DOPE is as low as Õ(H2

√
S2AK) which has a gap of Õ(

√
HS) from the lower bound. This

naturally motivates the following question.

Is there an algorithm for learning CMDPs that guarantees no constraint violation during learning
and achieves an improved regret upper bound?

Our Contributions We answer this question affirmatively with an algorithm that improves upon
DOPE via tighter reward optimism and cost pessimism. Our results are summarized in Table 1 and
as follows.

• Our algorithm, DOPE+, achieves a regret upper bound of Õ((C̄ − C̄b)
−1H2.5

√
S2AK) and en-

sures no constraint violation in every episode, with the knowledge of a safe baseline policy. This
improves upon the best-known regret upper bound Õ((C̄−C̄b)

−1H3
√
S2AK) attained by DOPE.

• When the gap C̄ − C̄b between the budget and the expected cost under the safe baseline policy
satisfies C̄ − C̄b = Ω(H), the regret upper bound becomes Õ(H1.5

√
S2AK). Then the gap from
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the regret lower bound of Ω(H1.5
√
SAK) is Õ(

√
S), which shows that the regret upper bound

achieves the optimal dependence on the horizon H .

• The improvement comes from our novel reward and cost function estimators with tighter reward
optimism and cost pessimism. We deduce the function estimators by providing a tighter upper
bound on the estimation error for each episode, based on a Bellman-type law of total variance to
analyze the expected sum of the variances of value function estimates. The bound is given by a
function of the estimated transition kernel, whose choice can be optimized by the algorithm. This
leads to a tighter dependence on the horizon in the function estimators.

Table 1: Comparison of Safe RL algorithms for the Hard Constraint Violation Setting: OptCMDP,
OptCMDP-bonus (Efroni et al., 2020), AlwaysSafe (Simão et al., 2021), OptPess-LP (Liu et al.,
2021), DOPE (Bura et al., 2022), and DOPE+ (Algorithm 1).

Algorithms Regret Hard Constraint Violation

OptCMDP, OptCMDP-bonus Õ(H2
√
S2AK) Õ(H2

√
S2AK)

AlwaysSafe Unknown 0
OptPess-LP Õ((C̄ − C̄b)

−1H3
√
S3AK) 0

DOPE Õ((C̄ − C̄b)
−1H3

√
S2AK) 0

DOPE+ Õ((C̄ − C̄b)
−1H2.5

√
S2AK) 0

A more comprehensive literature review on online reinforcement learning of CMDPs is given in the
supplementary material.

2 Preliminary

In this section, we introduce the problem setting and necessary definitions. In Section 2.1, we
describe the episodic finite-horizon tabular CMDPs and its performance metrics. In Section 2.2, we
define the confidence set for the transition kernel, and the confidence interval for the reward and cost
functions, which are necessary for deriving our theoretical results.

2.1 Problem Setting

A finite-horizon tabular MDP is defined by a tuple (S,A, H, {Ph}H−1
h=1 , p) where S is the finite

state space with |S| = S, A is the finite action space with |A| = A, H is the finite-horizon,
Ph : S × A × S → [0, 1] is the transition kernel at step h ∈ [H − 1], and p is the known initial
distribution of the states. Here, Ph(s

′ | s, a) is the probability of transitioning to state s′ from state
s when the chosen action is a at step h ∈ [H − 1]. Equivalently, we may define a single non-
stationary transition kernel P : S × A × S × [H]→ [0, 1] with P (s′ | s, a, h) = Ph(s

′ | s, a) and
P (s′ | s, a,H) = p(s′) for (s, a, s′, h) ∈ S ×A×S × [H − 1]. We assume that {Ph}H−1

h=1 and thus
P are unknown.

Before an episode begins, the agent prepares a stochastic policy π : S × [H] × A → [0, 1] where
π(a | s, h) is the probability of taking action a ∈ A in state s ∈ S at step h. Here, π can be viewed
as a non-stationary policy as it may change over the horizon, and this is due to the non-stationarity
of P over steps h ∈ [H]. Given a policy πk for episode k ∈ [K], the MDP proceeds with trajectory
{sP,πk

h , aP,πk

h }h∈[H] generated by P .

The reward and cost functions are given by f, g : S × A × [H] → [0, 1], i.e., choosing action
a ∈ A at state s ∈ S and step h ∈ [H] generates a reward f(s, a, h) and cost g(s, a, h). Here,
functions f and g are non-stationary over h ∈ [H]. However, the agent observes the noisy reward
and cost. We denote the observed noisy reward and cost for episode k ∈ [K] by fk(s, a, h) and
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gk(s, a, h), respectively. As in Liu et al. (2021), we assume that fk(s, a, h) and gk(s, a, h) are
determined by independent1 noisy random variables ζfk (s, a, h) and ζgk(s, a, h) following a zero-
mean 1/2-sub-Gaussian distribution, i.e., fk(s, a, h) = f(s, a, h) + ζfk (s, a, h) and gk(s, a, h) =
g(s, a, h)+ζgk(s, a, h). We note that 1/2−sub-Gaussian random variables ζ with zero mean satisfies
E[ζ] = 0 and E[exp(λζ)] ≤ exp(λ2/4). Then Hoeffding’s inequality implies the following.
Lemma 1. For any δ > 0, with probability at least 1−4δ, it holds that for any (s, a, h) ∈ S×A×[H]
and k ∈ [K],

|fk(s, a, h)| , |gk(s, a, h)| ≤ 1 +
√
ln(HSAK/δ).

We define the value function V π
h (s; ℓ, P ) at state s ∈ S and step h ∈ [H] for a given policy π,

function ℓ, and transition kernel P as V π
h (s; ℓ, P ) = E

[∑H
j=h ℓ(s

P,π
j , aP,π

j , j) | ℓ, π, P, sP,π
h = s

]
.

Moreover, let V π
1 (ℓ, P ) = Es∼p [V

π
1 (s; ℓ, P ) | ℓ, π, P ] where p is the known distribution of the

initial state.

The goal of the constrained Markov decision process is to learn an optimal policy π∗ defined as

π∗ ∈ argmax
π∈Π

V π
1 (f, P ) s.t. V π

1 (g, P ) ≤ C̄

where C̄ is the budget on the expected cost over the horizon, and Π is the set of all policies. As
the model parameters f, g, P are unknown, we develop a learning algorithm that computes policies
over multiple episodes. For K episodes, we deduce policies π1, . . . , πK with the safety requirement
that V πk

1 (g, P ) ≤ C̄ ∀k ∈ [K] holds with high probability. The safety requirement is equiv-
alent to enforcing zero hard constraint violation where the hard constraint violation is defined as
Violation(π⃗) :=

∑K
k=1 max

{
0, V πk

1 (g, P )− C̄
}

and π⃗ = (π1, . . . , πK) is a shorthand notation
for the K policies. As a performance metric for a learning algorithm, we use the following notion
of regret. Regret (π⃗) :=

∑K
k=1

(
V π∗

1 (f, P )− V πk
1 (f, P )

)
. To satisfy the safety constraint, we

assume that a strictly safe baseline policy πb is given to the agent.
Assumption 1. The agent knows a policy πb and its expected cost C̄b = V πb

1 (g, P ). We further
assume that πb is strictly feasible, i.e., C̄b < C̄.

This assumption is necessary because the learning agent has no information about the underlying
MDP at the beginning. Without a safe baseline policy, it is difficult to satisfy the constraint in the
initial phase of learning. It is a commonly assumed condition for learning CMDPs (Simão et al.,
2021; Liu et al., 2021; Bura et al., 2022). We also remark that strict feasibility of πb is related to
Slater’s condition in constrained optimization.

Lastly, we assume that the budget C̄ satisfies C̄ ∈ (0, H). If C̄ ≥ H , then as V π
1 (g, P ) ≤ H for

any policy π, the safety requirement is trivially satisfied. Moreover, we have C̄ is strictly positive
because Assumption 1 imposes that C̄ > C̄b and C̄b = V πb

1 (g, P ) ≥ 0.

2.2 Confidence Sets and Intervals

We follow the standard Bernstein inequality-based confidence set construction for estimating the
true transition kernel and use confidence intervals based on Hoeffding’s inequality for estimating
reward and cost functions (Jin et al., 2020; Cohen et al., 2020).

As in Efroni et al. (2020); Bura et al. (2022), we maintain counters to keep track of the number of
visits to each tuple (s, a, h) and tuple (s, a, s′, h). For each k ∈ [K], we define Nk(s, a, h) and
Mk(s, a, s

′, h) as the number of visits to tuple (s, a, h) and the number of visits to tuple (s, a, s′, h)
up to the first k − 1 episodes, respectively, for (s, a, s′, h) ∈ S × A × S × [H]. Given Nk(s, a, h)
and Mk(s, a, s

′, h), we define the empirical transition kernel P̄k for episode k as

P̄k(s
′ | s, a, h) = Mk(s, a, s

′, h)

max{1, Nk(s, a, h)}
.

1We may impose conditional independence.
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Next, for some confidence parameter δ ∈ (0, 1), we define the confidence radius ϵk(s′ | s, a, h) for
(s, a, s′, h) ∈ S ×A× S × [H] and k ∈ [K] as

ϵk(s
′ | s, a, h) = 2

√
P̄k(s′ | s, a, h)(1− P̄k(s′ | s, a, h))Lδ

max{1, Nk(s, a, h)− 1}
+

14 ln(HSAK/δ)

3max{1, Nk(s, a, h)− 1}
(1)

where Lδ = ln(HSAK/δ). Based on the empirical transition kernel and the radius, we define the
confidence set Pk for episode k as

Pk =
{
P̂ :

∣∣∣P̂ (s′ | s, a, h)− P̄k(s
′ | s, a, h)

∣∣∣ ≤ ϵk(s
′ | s, a, h) ∀(s, a, s′, h)

}
. (2)

By the empirical Bernstein inequality due to Maurer & Pontil (2009), we can show the following.

Lemma 2. For any δ > 0, with probability at least 1− 4δ, the true transition kernel P is contained
in the confidence set Pk for every episode k ∈ [K].

Next, for reward and cost functions, we define the confidence radius Rk(s, a, h) for (s, a, h) ∈
S ×A× [H], k ∈ [K] and δ ∈ (0, 1) as

Rk(s, a, h) =

√
ln(HSAK/δ)

max{1, Nk(s, a, h)}
.

We define empirical estimators f̄k and ḡk as

f̄k(s, a, h) =

∑k−1
j=1 fj(s, a, h)nj(s, a, h)

max{1, Nk(s, a, h)}
, ḡk(s, a, h) =

∑k−1
j=1 gj(s, a, h)nj(s, a, h)

max{1, Nk(s, a, h)}

where fj(s, a, h), gj(s, a, h) are the instantaneous reward and cost for episode j ∈ [k − 1] and
nj(s, a, h) is the indicator variable that returns 1 if the agent visited (s, a, h) in episode j and 0
otherwise. Then we may deduce the following from Hoeffding’s inequality.

Lemma 3. For any δ > 0, with probability at least 1−4δ, it holds that for any (s, a, h) ∈ S×A×[H]
and k ∈ [K],∣∣f̄k(s, a, h)− f(s, a, h)

∣∣ ≤ Rk(s, a, h), |ḡk(s, a, h)− g(s, a, h)| ≤ Rk(s, a, h).

3 Tighter Function Estimators

In this section, we introduce the tighter function estimators, which are crucial for achieving our
theoretical results: (i) zero constraint violation and (ii) an improved regret upper bound. First, we
show how to design the tighter pessimistic cost estimator ĝk, focusing on zero constraint violation.
Accordingly, we present the reward estimator f̂k with an extra optimism to compensate for the
pessimism of ĝk, which directly affects the regret upper bound.

Remark 1. The reason why we begin with designing ĝk is that a tighter ĝk can be translated to
a tighter regret upper bound. To provide an intuition, let us consider the following optimization
problem based on the estimated MDP: maxπ′,P ′∈Pk

V π′

1 (f̂k, P
′) s.t. V π′

1 (ĝk, P
′) ≤ C̄. Once we

take a tighter ĝk, the set of feasible solutions becomes larger. Then it leads to increase the optimal
value V πk

1 (f̂k, Pk), where (πk, Pk) is an optimal solution. Taking advantage of this, it allows us to
have a tighter optimism for f̂k, which directly affects the regret upper bound.

Lemmas 2 and 3 motivate the following attempt to deduce feasible policies. For episode k ∈ [K], we
take a transition kernel Pk from the confidence set Pk and ḡk+Rk as a pessimistic (or conservative)
estimator of the cost function g. Then we may compute a policy πk that satisfies V πk

1 (ḡk+Rk, Pk) ≤
C̄, which is an approximation of the constraint. However, even if ḡk +Rk provides an upper bound
on g, the issue is that V πk

1 (g, P ) ̸≤ V πk
1 (ḡk + Rk, Pk). This is because the difference between the
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true transition kernel P and Pk can make V πk
1 (g, P ) greater than V πk

1 (ḡk +Rk, Pk). That said, πk

does not necessarily satisfy the constraint, although it satisfies the approximate constraint.

Inspired by the challenge, the next question is as to whether we can design an approximate con-
straint, satisfying which guarantees that the true constraint is also satisfied. Liu et al. (2021); Bura
et al. (2022) considered this, and their idea was to add an extra pessimism to cost function estimators.
Basically, we take functions of the form

ĝk(s, a, h) = ḡk(s, a, h) +Rk(s, a, h) + Uk(s, a, h) (3)

for (s, a, h) ∈ S × A × [H] and k ∈ [K] where Uk captures the error in estimating the true
transition kernel P . In the above-discussed context, Uk considers the difference between P and
Pk. Here, one needs to set Uk sufficiently large so that V πk

1 (g, P ) ≤ V πk
1 (ĝk, Pk), in which case

satisfying the corresponding approximate constraint V πk
1 (ĝk, Pk) ≤ C̄ guarantees satisfaction of

the true constraint.

On the other hand, choosing the right magnitude of Uk is important to control the regret function.
When Uk is too large, ĝk is too conservative, and it prevents from getting a high reward. Indeed,
Bura et al. (2022) improved upon Liu et al. (2021) by making Uk tighter. Our main contribution is
to develop an even tighter Uk function than Bura et al. (2022).

Before we present our design of Uk, let us briefly discuss how to deduce the extra pessimism term Uk

in general. As explained before, we want to guarantee V πk
1 (g, P ) ≤ V πk

1 (ĝk, Pk) for any Pk ∈ Pk.
Then note that

V πk
1 (g, P ) ≤ V πk

1 (g, Pk) + |V πk
1 (g, P )− V πk

1 (g, Pk)|.
If the statement of Lemma 3 holds, then V πk

1 (g, Pk) is bounded above by V πk
1 (ḡk+Rk, Pk). There-

fore, once we come up with some Uk such that |V πk
1 (g, P )− V πk

1 (g, Pk)| ≤ V πk
1 (Uk, Pk), we get

V πk
1 (g, P ) ≤ V πk

1 (ḡk +Rk + Uk, Pk).

In this case, ĝk = ḡk +Rk + Uk gives rise to a valid function estimator.

We devise our pessimism function Uk as follows.
Theorem 1. Let πk be any policy for episode k. Take

Uk(s, a, h) = 8
√
Hεk(s, a, h) + 4S

√
HA/K +

2 ln(HSAK/δ)
√
HK/A+ η

max{1, Nk(s, a, h)− 1}
(4)

for (s, a, h) ∈ S ×A× [H] and k ∈ [K] where

εk(s, a, h) = 2

√
S ln(HSAK/δ)

max{1, Nk(s, a, h)− 1}
+

14S ln(HSAK/δ)

3max{1, Nk(s, a, h)− 1}
(5)

and η = (19HS + 2H1.5S + 104H2S2) ln(HSAK/δ)2. Then for any δ > 0, it holds with proba-
bility at least 1− 14δ that

|V πk
1 (g, P )− V πk

1 (g, Pk)| ≤ V πk
1 (Uk, Pk)

for any Pk ∈ Pk and g : S ×A× [H]→ [0, 1].

In the following remark, we demonstrate that our Uk indeed improves upon Bura et al. (2022).
Remark 2. Bura et al. (2022) set Uk(s, a, h) as 2Hεk(s, a, h), which has coefficient 2H in front of
εk

2. In contrast, our construction in Theorem 1 has an improved coefficient of 8
√
H . Although we

have additional terms for Uk, the reduction of O(
√
H) in the coefficient translates to the improve-

ment of Õ(
√
H) factor in the regret upper bound.

2In fact, the original choice of Bura et al. (2022) was Uk(s, a, h) = 2H
∑

s′∈S ϵk(s
′ | s, a, h) where ϵk(s

′ | s, a, h)
is given in (1), but there is an issue with this choice. We need the property that Uk is nonincreasing in k to show Lemma 6
and (Proposition 4, Bura et al., 2022), but their Uk can increase as P̄k(s

′ | s, a, h)/Nk(s, a, h) can increase. As a fix, we
may take Uk(s, a, h) = 2Hεk(s, a, h) where εk is given in (5). Note that εk is nonincreasing in k. At the same time,
by the Cauchy-Schwarz inequality, εk(s, a, h) is an upper bound on

∑
s′∈S ϵk(s

′ | s, a, h). As a result, our construction
resolves the issue of Bura et al. (2022).
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Let us briefly elaborate on how Theorem 1 leads to the improvement in the regret bound. As dis-
cussed in Remark 2, Theorem 1 demonstrates that reduced pessimism is sufficient to guarantee zero
constraint violation. Furthermore, as noted in Remark 1, this provides the agent with a wider fea-
sible region in the optimization problem defined over the estimated MDP. Consequently, with this
choice of pessimism, the agent can pursue more optimistic planning without violating the constraint,
which in turn leads to an improved regret bound.

Next, we present our optimistic reward function estimator f̂k. We define the optimistic reward
function estimator f̂k as

f̂k(s, a, h) = min

{
B, f̄k(s, a, h) +

3H

C̄ − C̄b
Rk(s, a, h) +

H

C̄ − C̄b
Uk(s, a, h)

}
(6)

where B = 1 +
√

ln(HSAK/δ). On top of f̄k + Rk, we take an additional optimistic term Uk

for the reward function to compensate for Uk in ĝk, which reduces the search space of policies and
hinders exploration. Furthermore, in f̂k, we multiply Rk and Uk by O(H/(C̄ − C̄b)) to guarantee
the extra optimism in f̂k truly promotes exploration. Nevertheless, taking the extra optimism can
cause a substantial overestimation of the reward function. To avoid this, we take a truncation to B
as in (6).

3.1 Proof Outline of Theorem 1

The value difference lemma (Dann et al., 2017) implies

V πk
1 (g, P )− V πk

1 (g, Pk) = E

[
H∑

h=1

ℓ(sPk,πk

h , aPk,πk

h , h) | πk, Pk

]

where ℓ(s, a, h) is given by∑
s′∈S

(P − Pk)(s
′ | s, a, h)V πk

h+1(s
′; g, P ) (7)

with V πk

H+1 = 0 and (P − Pk)(s
′ | s, a, h) = P (s′ | s, a, h) − Pk(s

′ | s, a, h). Here, Bura et al.
(2022) used that V πk

h+1 ≤ H and |P − Pk| ≤ |P − P̄k| + |P̄k − Pk| ≤ 2ϵk by Lemma 2. Then it
follows that

|V πk
1 (g, P )− V πk

1 (g, Pk)| ≤ E

[
H∑

h=1

2H
∑
s′∈S

ϵk(s
′ | sPk,πk

h , aPk,πk

h , h) | ϵk, πk, Pk

]

whose right-hand side equals V πk
1 (Uk, Pk) where Uk is given by 2Hεk. This explains how Bura

et al. (2022) deduced their pessimistic cost estimators.

To prove Theorem 1 that establishes the validity of our choice of tighter Uk in (4), we need a more
refined analysis of the difference term |V πk

1 (g, P )−V πk
1 (g, Pk)|. Note that ℓ(s, a, h) in (7) satisfies

|ℓ(s, a, h)| ≤

∣∣∣∣∣∑
s′∈S

(P − Pk)(s
′ | s, a, h)Wπk

h+1(s
′; g)

∣∣∣∣∣︸ ︷︷ ︸
I1

+

∣∣∣∣∣∑
s′∈S

(P − Pk)(s
′ | s, a, h)V πk

h+1(s
′; g, Pk)

∣∣∣∣∣︸ ︷︷ ︸
I2

where Wπk

h+1(s
′; g) = V πk

h+1(s
′; g, P ) − V πk

h+1(s
′; g, Pk). We prove the following lemma to provide

an upper bound on term I1.

Lemma 4. Let πk be any policy for episode k ∈ [K], and let g : S × A × [H] → [0, 1] be an
arbitrary cost function. Then for any P, Pk ∈ Pk, we have

E

[∣∣∣∣∣∑
s′∈S

(P − Pk)(s
′ | s, a, h)(V πk

h+1(s
′; g, P )− V πk

h+1(s
′; g, Pk))

∣∣∣∣∣ | πk, Pk

]
≤ V πk

1 (Uk,1, Pk)
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where

Uk,1(s, a, h) =
104H2S2 ln(HSAK/δ)2

max{1, Nk(s, a, h)}
.

The proof of this lemma is based on the value difference lemma to evaluate V πk

h+1(s
′; g, P ) −

V πk

h+1(s
′; g, Pk). Here, the key part is to provide an upper bound that is represented as a value

function of πk and Pk. Hence, we have

E[I1 | πk, Pk] ≤ V πk
1 (Uk,1, Pk).

Next, we consider term I2, which turns out to be the dominant one. Since P and Pk both define
transition functions, I2 equals∣∣∣∣∣∑

s′∈S
(P − Pk)(s

′ | s, a, h)(V πk

h+1(s
′; g, Pk)− µ̂k(s, a, h))

∣∣∣∣∣
where µ̂k(s, a, h) = Es′∼Pk(·|s,a,h)[V

πk

h+1(s
′; g, Pk)]. Next, we observe that

|(P − Pk)(s
′ | s, a, h)| ≤ 2ϵk(s

′ | s, a, h) due to Lemma 2. Recall that ϵk(s
′ | s, a, h)

contains the term
√
P̄k(s′ | s, a, h). As Pk ∈ Pk we deduce that

√
P̄k(s′ | s, a, h) ≤√

Pk(s′ | s, a, h) + ϵk(s′ | s, a, h). As a result, by the Cauchy-Schwarz inequality, the anal-
ysis boils down to providing an upper bound on the term∑

s′∈S
Pk(s

′ | s, a, h)(V πk

h+1(s
′; g, Pk)− µ̂k(s, a, h))

2,

which equals
V̂k(s, a, h) := Var

s′∼Pk(·|s,a,h)
[V πk

h+1(s
′; g, Pk)].

Furthermore, our proof reveals that V πk
1 (V̂k, Pk) is the important quantity to control. Applying a

naïve upper bound on value functions gives V̂k ≤ H2 and thus V πk
1 (V̂k, Pk) ≤ H3. However, this

bound is not tight enough. Instead, we prove the following lemma based on a Bellman-type law of
total variance (Azar et al., 2017; Chen & Luo, 2021).

Lemma 5. Let πk be a policy for episode k. Then

V πk
1 (V̂k, Pk) ≤ 2H2

for any Pk ∈ Pk and g : S ×A× [H]→ [0, 1].

This improvement in the variance term leads to

E[I2 | πk, Pk] ≤ V πk
1 (Uk,2, Pk)

where

Uk,2(s, a, h) = 8
√
Hεk(s, a, h) + 4S

√
HA/K +

2L
√
HK/A+ (19HS + 2H1.5S)L2

δ

max{1, Nk(s, a, h)− 1}

where Lδ = ln(HSAK/δ). Putting the pieces together, we complete the proof of Theorem 1, as we
have Uk(s, a, h) = Uk,1(s, a, h) + Uk,2(s, a, h). A complete proof is given in the supplementary
material.

3.2 Comparison with Previous Works

Our main technical contribution is to provide a tighter upper bound on the term

|V πk
1 (g, P )− V πk

1 (g, Pk)| (8)
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over each episode k ∈ [K]. This improves upon the analysis of Bura et al. (2022), thereby providing
tighter cost and reward function estimators. Recall that our upper bound given in Theorem 1 is in the
form of V πk

1 (Uk, Pk) and the main technique is a Bellman-type law of total variance. While Chen
& Luo (2021) applied a similar technique to control the error of estimating the unknown transition
kernel, their result does not immediately translate to a proper function estimator for our setting. We
elaborate on this below.

Chen & Luo (2021) gave an upper bound on the cumulative error given by

K∑
k=1

|V πk
1 (g, P )− V πk

1 (g, Pk)| ≤ C1

K∑
k=1

V πk
1 (Uk, P ) + C2 (9)

where C1 = 16λS2A, C2 = C1Õ(H3
√
K) + 16 ln2(HSAK/δ)/λ + Õ(H3S2A) for any λ > 0,

and Uk = Hg. However, the bound on the cumulative error does not lead to an upper bound on the
error term (8) for each episode. Recall that to define f̂k, ĝk for each k, we need an upper bound on
(8). Furthermore, the bound in (9) is written as a function of the true transition kernel P , which is
not known to the agent. However, our algorithm as well as DOPE due to Bura et al. (2022) chooses
an optimistic transition kernel, we require an upper bound on (8) that depends on the optimistic
transition kernel to estimate the error caused by the choice.

Theorem 1 addresses these issues by providing an upper bound for (8) in the form of V πk
1 (Uk, Pk),

thereby leading to our novel reward and cost function estimators f̂k, ĝk.

4 Algorithm

DOPE+, given by Algorithm 1, is a variant of DOPE by Bura et al. (2022) with our novel reward
and cost function estimators from Section 3. Recall that our pessimistic cost estimator ĝk is given
by (3) with the extra pessimism term Uk given in (4) and our optimistic reward estimator f̂k is given
in (6).

Algorithm 1 Doubly Optimistic Pessimistic Exploration with Tighter Function Estimators (DOPE+)

Input: Safe baseline policy πb and its expected cost for a single episode C̄b, and the number K0

of episodes for the initial phase
Initialize: N(s, a, h) = M(s, a, s′, h)← 0 for (s, a, s′, h) ∈ S ×A× S × [H].
for k = 1, . . . ,K do

Set counters Nk ← N and Mk ←M .
Compute P̄k, ϵk, and Pk (Section 2.2).
if k ≤ K0 then

Set πk = πb.
else

Compute estimators f̂k and ĝk (Section 3).
Deduce πk, Pk from (10).

end if
Sample state s1 from distribution p.
for h = 1, . . . ,H do

Sample ah from πk(· | sh, h).
Observe fk(sh, ah, h), gk(sh, ah, h), and sh+1 determined by P (· | sh, ah, h).
Update the counters N,M .

end for
end for
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As in Efroni et al. (2020); Bura et al. (2022) , we compute our policy πk for episode k ∈ [K] by
solving the following optimization problem.

(πk, Pk) ∈ argmax
(π,Q)∈Π×Pk

{
V π
1 (f̂k, Q) : V π

1 (ĝk, Q) ≤ C̄
}

(10)

where Pk is the confidence set given by (2) and Π is the set of valid policies.
Remark 3. Recent works (Efroni et al., 2020; Liu et al., 2021; Bura et al., 2022) on the zero
constraint violation setting is based on a common algorithmic template for solving an optimization
problem defined over the estimated MDP for each episode, and that is the backbone for Algorithm 1
as well. Here, the main distinction among these approaches, including ours, lies in the design of
function estimators.

To solve (10) efficiently, we take the standard approach of using occupancy measures (Altman,
1999). An occupancy measure is essentially a joint probability for the event that we observe the
state-action pair (s, a) at step h and state s′ at step h + 1. Introducing occupancy measure, we can
reformulate (10) as an linear program in terms of an occupancy measure, which is referred to as the
extended linear program (Altman, 1999; Efroni et al., 2020; Bura et al., 2022). By solving it, we
obtain an optimal occupancy measure inducing an optimal solution to (10). We defer the formal
description of the extended linear progam to the supplementary material.

One issue, however, is that (10) can be infeasible at the beginning of the algorithm as ĝk can be
too large to guarantee feasibility of (10). Hence, the algorithm executes the safe baseline policy πb

for the first few episodes until sufficient information is gathered so that (10) becomes feasible. The
following lemma characterizes a sufficient number of episodes running the safe baseline policy to
guarantee feasibility of (10).
Lemma 6. With probability at least 1− 14δ, (πb, P ) is a feasible solution of (10) for any k > K0

where

K0 = Õ
(

H3S2A

(C̄ − C̄b)2

)
(11)

where Õ(·) hides factors polynomial in ln(HSAK/δ).

5 Regret Analysis of DOPE+

Let us state our theoretical guarantees for DOPE+.
Theorem 2. Let π⃗ = (π1, . . . , πK) denote policies computed by DOPE+ with K0 given in (11).
Then

Violation(π⃗) = 0

with probability at least 1− 14δ.

Hence, DOPE+ achieves no constraint violation. The next theorem shows a regret upper bound for
DOPE+.
Theorem 3. Let π⃗ = (π1, . . . , πK) denote policies computed by DOPE+ with K0 given in (11).
Then, with probability at least 1− 16δ, we have

Regret (π⃗) = Õ
(

H

C̄ − C̄b

(
H1.5S

√
AK +

H4S3A

C̄ − C̄b

))
where Õ(·) hides factors polynomial in ln(HSAK/δ).

Remark 4. Note that there is a gap of Õ((C̄− C̄b)
−1H
√
S) factor between our regret upper bound

and the lower bound Ω(H3/2
√
SAK) due to Jin et al. (2020); Domingues et al. (2021). In fact, the

instance from Domingues et al. (2021) is an unconstrained MDP. We observe that the O(H/(C̄ −
C̄b)) factor in our regret upper bound is due to the constraint, which becomes a constant if C̄− C̄b =
Ω(H). Hence, our regret upper bound nearly matches the regret lower bound in terms of H when
C̄ − C̄b = Ω(H).
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5.1 Constraint Violation Analysis

We prove Theorem 2 as follows. For episode k with k ≤ K0, DOPE+ takes the safe baseline policy
πb, so no constraint violation is guaranteed. Then let us consider episode k with k > K0. As
explained in Section 3, we argue that

V πk
1 (g, P ) ≤ V πk

1 (g, Pk) + |V πk
1 (g, P )− V πk

1 (g, Pk)|
≤ V πk

1 (ḡk +Rk, Pk) + V πk
1 (Uk, Pk)

= V πk
1 (ĝk, Pk)

where the second inequality is due to Lemma 3 and Theorem 1. Since (πk, Pk) is a solution to (10),
it holds that V πk

1 (ĝk, Pk) ≤ C̄. Therefore, it follows that V πk
1 (g, P ) ≤ C̄ and thus the constraint is

satisfied.

5.2 Regret Decomposition

We provide an overview of the proof of Theorem 3. Since we execute the safe baseline policy πb for
the first K0 episodes, we decompose the regret function as follows.

Regret (π⃗) =

K0∑
k=1

(
V π∗

1 (f, P )− V πb
1 (f, P )

)
︸ ︷︷ ︸

(I)

+

K∑
k=K0+1

(
V π∗

1 (f, P )− V πk
1 (f̂k, Pk)

)
︸ ︷︷ ︸

(II)

+

K∑
k=K0+1

(
V πk
1 (f̂k, Pk)− V πk

1 (f̂k, P )
)

︸ ︷︷ ︸
(III)

+

K∑
k=K0+1

(
V πk
1 (f̂k, P )− V πk

1 (f, P )
)

︸ ︷︷ ︸
(IV)

.

Term (I) is due to executing πb for K0 episodes for feasibility. By Lemma 6, term (I) can be bounded
by Õ((C̄ − C̄b)

−2(H4S2A)) as V π
1 ≤ H for any policy π.

For term (II), we provide the following upper bound.

Lemma 7. With probability at least 1− 14δ,

K∑
k=K0+1

(
V π∗

1 (f, P )− V πk
1 (f̂k, Pk)

)
= Õ

(
H

C̄ − C̄b

(
H1.5S

√
AK +H3S3A

))

where Õ(·) hides factor polynomial in ln(HSAK/δ).

To prove the lemma, we define a new policy παk

k for k ∈ [K], which is induced by a con-
vex combination of the occupancy measures associated with (π∗, P ) and (πb, P ) with coeffi-
cients αk, 1 − αk ∈ (0, 1). We choose the value of αk so that (παk

k , P ) is feasible to (10).

Then the optimality of (πk, Pk) implies V
π
αk
k

1 (f̂k, P ) ≤ V πk
1 (f̂k, Pk), which lets us to analyze

V π∗

1 (f, P )− V
π
αk
k

1 (f̂k, P ) with the same transition kernel P .

Term (III) comes from learning the unknown transition kernel. We apply a Bellman-type law of total
variance to provide an upper bound on term (III).

Lemma 8. With probability at least 1− 16δ,

K∑
k=K0+1

(
V πk
1 (f̂k, Pk)− V πk

1 (f̂k, P )
)
= Õ

(
H1.5S

√
AK +H3S3A

)
where Õ(·) hides factor polynomial in ln(HSAK/δ).
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Term (IV) is due to the difference between f and our estimator f̂k.

Lemma 9. With probability at least 1− 14δ,

K∑
k=K0+1

(
V πk
1 (f̂k, P )− V πk

1 (f, P )
)
= Õ

(
H

C̄ − C̄b

(
H1.5S

√
AK +H3S3A

))

where Õ(·) hides factor polynomial in ln(HSAK/δ).

6 Numerical Experiment

We evaluate DOPE+ on the three-state CMDP instance of Zheng & Ratliff (2020); Simão et al.
(2021); Bura et al. (2022) with a few modifications. In Figure 1, we compare regret and constraint
violation under DOPE+ and DOPE for 200, 000 episodes when H = 30. We consider DOPE as
a benchmark algorithm because it provides the best regret bound among the existing algorithms
while ensuring zero constraint violation. More details of the experiment setup can be found in the
supplementary material including the MDP instance and algorithm parameters.

In Figure 1a, DOPE+ outperforms DOPE in terms of regret. This result demonstrates that DOPE+
improves upon DOPE computationally, in addition to our theoretical improvement. Figure 1b show
that both algorithms achieve zero constraint violation.

(a) Regret (b) Hard Constraint Violation

Figure 1: Comparison of DOPE+ and DOPE

7 Conclusion

In this paper, we investigate safe RL formulated as an episodic finite-horizon tabular CMDP. We
propose novel reward and cost function estimators with tighter reward optimism and cost pessimism.
Based on them, we develop DOPE+, which is a variant of DOPE due to (Bura et al., 2022). We prove
that DOPE+ achieves regret upper bound Õ((C̄ − C̄b)

−1H2.5S
√
AK) and zero hard constraint

violation. The regret upper bound improves upon the best-known bound by a multiplicative factor of
Õ(
√
H) factor. When C̄−C̄b = Ω(H), the gap from the regret lower bound of Ω(H1.5

√
SAK) (Jin

et al., 2020; Domingues et al., 2021) is Õ(
√
S), and we would like to leave closing this gap as an

open question in the zero hard constraint violation setting. We also present numerical results that
demonstrate the computational effectiveness of DOPE+ compared to DOPE.

While our framework establishes improved performance both in theory and simulation, it remains an
interesting research direction to extend our work to general safe RL for practical AI systems. With
regard to this, the immediate challenge is that a safe baseline policy needs to be available in advance,
and we need to generalize our framework to be compatible with the function approximation scheme.
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8 Related Work

In this section, we provide a more detailed discussion of related work to online learning of con-
strained Markov decision processes (CMDPs). As explained in the introduction, we review previous
works for the three frameworks, cumulative constraint violation, hard constraint violation, and zero
constraint violation.

Cumulative Constraint Violation Starting with the work of Efroni et al. (2020), online learn-
ing of CMDPs has been an active area of research in reinforcement learning, especially with the
framework of cumulative (or soft) constraint violation (Brantley et al., 2020; Qiu et al., 2020; Zheng
& Ratliff, 2020; Kalagarla et al., 2021; Ding et al., 2021; Chen et al., 2021; Yu et al., 2021; Liu
et al., 2021; Wei et al., 2022a;b; Singh et al., 2023; Miryoosefi & Jin, 2022; Ghosh et al., 2022; Wei
et al., 2023; Kalagarla et al., 2023). Among these works, Brantley et al. (2020) studied a knapsack
constrained formulation, and Qiu et al. (2020) studied the setting where the reward functions are
adversarially given and the cost functions are sampled from a fixed but unknown distribution. More-
over, Zheng & Ratliff (2020) considered the case where the transition kernel is known to the agent,
and Kalagarla et al. (2021) studied a PAC bound for learning CMDPs. Ding et al. (2021); Chen et al.
(2021) developed model-free algorithms for CMDPs, although these approaches require access to
simulators, while Yu et al. (2021) studied vector-valued Markov games for a variant of constrained
MDPs. Liu et al. (2021) introduced the first algorithm that achieves zero cumulative constraint vio-
lation. Wei et al. (2022a) and Singh et al. (2023) considered the infinite-horizon average-reward set-
ting. Moreover, Wei et al. (2022b) came up with a model-free algorithm for finite-horizon episodic
tabular CMDPs. Miryoosefi & Jin (2022) studied the reward-free setting, and Ghosh et al. (2022)
proposed an algorithm for the linear MDP setting, which leads to a model-free algorithm for tabular
CMDPs. Lastly, Wei et al. (2023) considered non-stationary CMDPs, while Kalagarla et al. (2023)
developed a posterior sampling-based algorithm that guarantees a Bayesian regret upper bound.

Wei et al. (2022b) introduced model-free and simulator-free algorithms to solve tabular CMDPs.
These algorithms were analyzed under soft constraint violations, thus they do not guarantee safety
in all episodes. In contrast, Müller et al. (2024); Ghosh et al. (2024) presented PD-based algorithms
with hard constraint violations, though these suffer from high regret and constraint violations. On
the other hand, Liu et al. (2021) proposed the LP-based algorithm OptPess-LP, which achieves
zero hard constraint violations with sublinear regret by employing optimistic pessimism in the face
of uncertainty (OPFU). The pessimism in the cost function estimator ensures safety but hampers
exploration. To address this, Bura et al. (2022) recently proposed DOPE, incorporating optimism
for the transition kernel to improve the regret bound.

Hard Constraint Violation The notion of hard constraint violation was introduced by Efroni et al.
(2020). Efroni et al. (2020) developed an LP-based algorithm for controlling hard constraint vio-
lation and raised an open question of whether there exists a primal-dual algorithm for the setting.
Recently, Ghosh et al. (2024) established an algorithm that guarantees a sublinear regret upper bound
and a sublinear upper bound on hard constraint violation. Their algorithm is for the linear MDP set-
ting, and it provides a model-free algorithm for the tabular setting. In fact, their analysis shows that
for the tabular case, one may get a tighter performance guarantees. Müller et al. (2024) developed a
simpler primal-dual algorithm that guarantees a sublinear regret upper bound and a sublinear upper
bound on hard constraint violation, answering the question of Efroni et al. (2020).

Zero Constraint Violation Simão et al. (2021) considered the importance of achieving no con-
straint violation, which is equivalent to zero hard constraint violation. They showed an algorithm
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that guarantees no constraint violation, but their result relies on the assumption of some abstrac-
tion of the transition model, and moreover, there is no regret upper bound given for the algorithm.
Liu et al. (2021) established the first algorithm that achieves a sublinear regret while guaranteeing
zero hard constraint violation. After Liu et al. (2021), (Bura et al., 2022) proposed their algorithm,
DOPE, which improves upon Liu et al. (2021) to show a smaller regret upper bound.

9 Auxiliary Measures and Notations

In this section, we first summarize notations in Table 2. Next, we define some auxiliary measures
and notations that are useful for the analysis of DOPE+.

Table 2: Summary of Notations

Notation Definition
K The number of episodes
H The finite horizon
[H] The set {1, 2, . . . ,H}
S, S The finite state space S and the number of states S = |S|
A, A The finite action space A and the number of actions A = |A|
P The true transition kernel P (s, a, s′, h) : S ×A× S × [H]→ [0, 1]
p The initial distribution of the states
Pk The confidence set of the transition kernel for episode k ∈ [K]
Pk The transition kernel obtained from DOPE+ for episode k ∈ [K], Pk ∈ Pk

f, g The reward and cost function
fk, gk The instantaneous reward and cost for episode k ∈ [K]
f̄k, ḡk The empirical estimators of f, g for episode k ∈ [K]

f̂k, ĝk The optimistic/pessimistic estimators of f, g for episode k ∈ [K]
Lδ ln(HSAK/δ) for some confidence parameter δ ∈ (0, 1)
V π
h (s; f, P ) The value function at state s and step h under f and P

Qπ
h(s, a; f, P ) The action-value function at state s and step h for action a under f and P

Nk(s, a, h) The number of visits (s, a, h) up to the first k − 1 episodes
Mk(s, a, s

′, h) The number of visits (s, a, s′, h) up to the first k − 1 episodes
nk(s, a, h) The indicator variable for visits (s, a, h) for episode k ∈ [K]
π∗ The benchmark policy
πk The policy obtained from DOPE+ for episode k ∈ [K]
πb The safe baseline policy
C̄b The expected cost of πb for a single episode
C̄ The budget on the expected cost
qP,π The occupancy measure with respect to policy π and transition kernel P
q∗ The occupancy measure qP,π∗

qb The occupancy measure qP,πb

qk The occupancy measure qP,πk

q̂k The occupancy measure qPk,πk

∆(P ) The set of occupancy measures inducing P
∆(P, k) The set of occupancy measures inducing Pk ∈ Pk

We define the state-action value function for (s, a) ∈ S × A at step h with a function ℓ : S × A ×
[H]→ [0, 1] and transition kernel P as follows.

Qπ
h(s, a; ℓ, P ) = E

 H∑
j=h

ℓ
(
sP,π
j , aP,π

j , j
)
| ℓ, π, P, sP,π

h = s, aP,π
h = a

 .
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Let QP,π,ℓ denote the (S × A × H)-dimensional vector whose coordinates are for (s, a, h) ∈
S ×A× [H],

(QP,π,ℓ)(s,a,h) = Qπ
h(s, a; ℓ, P ).

Given a policy π and transition kernel P , we define qP,π (s, a, h | s′,m) as for (s, a, s′) ∈ S×A×S
and 1 ≤ m ≤ h ≤ H ,

qP,π (s, a, h | s′,m) = P
[
sP,π
h = s, aP,π

h = a | π, P, sP,π
m = s′

]
.

Given two vectors u,v ∈ RS×A×H , let u ⊙ v, u ∧ v be defined as the vector obtained from
coordinate-wise products and coordinate-wise minimization of u and v, respectively, i.e., for
(s, a, h) ∈ S ×A× [H],

(u⊙ v)(s,a,h) = u(s,a,h) × v(s,a,h), (u ∧ v)(s,a,h) = min{u(s,a,h),v(s,a,h)}.

Let h⃗ and B⃗ be (S × A × H)-dimensional vectors all of whose coordinates are h and 1 +
√
Lδ ,

respectively, i.e., for (s, a, j) ∈ S ×A× [H],

h⃗(s,a,j) = j, B⃗(s,a,j) = 1 +
√
Lδ.

10 Extended Linear Program

In this section, we provide a formal definition of occupancy measures for a finite-horizon MDP.
Then we provide a reformulation of (10) using occupancy measures, which is called the extended
linear program (Efroni et al., 2020; Bura et al., 2022).

Given a policy π and a transition kernel P , let q̄P,π : S × A × S × [H] → [0, 1] be defined
as q̄P,π(s, a, s′, h) = P[(sP,π

h , aP,π
h , sP,π

h+1) = (s, a, s′) | π, P ] for (s, a, s′, h) ∈ S × A ×
S × [H]. Note that any q̄ defined as the above equation has the following properties. (C1)∑

(s,a,s′)∈S×A×S q̄(s, a, s′, h) = 1, (C2)
∑

(s′,a)∈S×A q̄(s, a, s′, h) =
∑

(s′,a)∈S×A q̄(s′, a, s, h −
1), s ∈ S, h = 2, . . . ,H . The occupancy measure qP,π : S × A × [H] → [0, 1] associated with
policy π and transition kernel P is defined as (C3) qP,π(s, a, h) =

∑
s′∈S q̄P,π(s, a, s′, h). Then it

follows that qP,π(s, a, h) = P[(sP,π
h , aP,π

h ) = (s, a) | π, P ]. Hence, if a policy π is chosen, then the
occupancy measure for a finite-horizon MDP with transition kernel P is determined. Conversely,
any q ∈ S × A × [H] → [0, 1] with q̄ : S × A × S × [H] → [0, 1] satisfying (C1), (C2), and (C3)
induces a transition kernel P q and a policy πq given as follows.

P q(s′ | s, a, h) = q̄(s, a, s′, h)∑
s′′∈S q̄(s, a, s′′, h)

,

πq(a | s, h) = q(s, a, h)∑
b∈A q(s, b, h)

.

(12)

Next, we provide a lemma that characterizes valid occupancy measures for a finite-horizon MDP.

Lemma 10. Let q : S × A × [H] → [0, 1]. Then q is a valid occupancy measure that induces
transition kernel P if and only if there exists q̄ : S ×A×S × [H]→ [0, 1] that satisfies (C1), (C2),
(C3), and P q = P .

Proof. Given the finite-horizon MDP associated with transition kernel P , we may define a
loop-free MDP as follows. We define its state space as S ′ := S × [H + 1], which can
be viewed as H + 1 layers S × {h} for h ∈ [H + 1]. Its transition kernel P ′ is given
by P ′((s′, h + 1) | (s, h), a) = P (s′ | s, a, h) for (s, a, s′, h) ∈ S × A × S × [H].
Next, given q̄, we may define an occupancy measure q′ for the loop-free MDP as
q′((s, h), a, (s′, h + 1)) = q̄(s, a, s′, h) for (s, a, s′, h) ∈ S × A × S × [H]. Then
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it follows from (Rosenberg & Mansour, 2019, Lemma 3.1) that q′ is a valid occu-
pancy measure for the loop-free MDP with transition kernel P ′ if and only if q′ satisfies∑

(s,a,s′)∈S×A×S

q′((s, h), a, (s′, h+ 1)) = 1 for h = 1, . . . ,H, (C1’)

∑
(s′,a)∈S×A

q′((s, h), a, (s′, h+ 1)) =
∑

(s′,a)∈S×A

q′((s′, h− 1), a, (s, h))
∀s ∈ S,
h ∈ {2, . . . ,H} (C2’)

and P q′ = P ′ where P q′ is given by

P q′((s′, h+ 1) | (s, h), a) = q′((s, h), a, (s′, h+ 1))∑
s′′∈S q′((s, h), a, (s′′, h+ 1))

=
q̄(s, a, s′, h)∑

s′′∈S q̄(s, a, s′′, h)
.

Here, the conditions are equivalent to (C1), (C2), and P q̄ = P . Moreover, q′ is a valid occupancy
measure with P ′ if and only if q is a valid occupancy measure with P , as required.

Therefore, there is a one-to-one correspondence between the set of policies and the set of occupancy
measures that give rise to transition kernel P . We define ∆(P ) as the set of occupancy measures
inducing the true transition kernel P .

∆(P ) = {q : ∃q̄ satisfying (C1),(C2),(C3), P q = P} .

Moreover, the value function for reward function f , policy πk, and transition kernel P can be writ-
ten in terms of occupancy measure qP,πk as V πk

1 (f, P ) =
∑

(s,a,h) q
P,πk (s, a, h) f (s, a, h). Let

qP,π,f denote (S × A × H)-dimensional vector representations for qP,π, f , respectively. Then
it follows that V πk

1 (f, P ) = ⟨f , qP,πk⟩ where ⟨·, ·⟩ is the inner product. Consequently, (10) is
equivalent to

max
q∈∆(P,k)

{
⟨f̂k, q⟩ : ⟨ĝk, q⟩ ≤ C̄

}
(13)

where f̂k, ĝk are the vector representations of f̂k, ĝk, respectively, and

∆(P, k) = {q : ∃q̄ satisfying (C1),(C2),(C3), P q ∈ Pk} .

Next, we reformulate (10) as an extended linear program. Due to the definition of ∆(P, k), (13) is
equivalent to the following linear program. Given f̂k(s, a, h), ĝk(s, a, h), P̄k(s

′ | s, a, h), ϵk(s′ |
s, a, h), p(s) for (s, a, s′, h) ∈ S ×A× S × [H],

max
∑

(s,a,s′,h)∈S×A×S×[H]

f̂k(s, a, h)q̄(s, a, s
′, h)

s.t.
∑

(s,a,s′,h)∈S×A×S×[H]

ĝk(s, a, h)q̄(s, a, s
′, h) ≤ C̄,

∑
(a,s′)∈A×S

q̄(s, a, s′, h) =
∑

(a,s′)∈A×S

q̄(s′, a, s, h− 1) ∀s ∈ S, h = 2, . . . ,H,

∑
(a,s′)∈A×S

q̄(s, a, s′, 1) = p(s) ∀s ∈ S,

q̄(s, a, s′, h) ≤
(
P̄k(s

′ | s, a, h) + ϵk(s
′ | s, a, h)

) ∑
s′∈S

q̄(s, a, s′, h) ∀(s, a, s′, h),

q̄(s, a, s′, h) ≥
(
P̄k(s

′ | s, a, h)− ϵk(s
′ | s, a, h)

) ∑
s′∈S

q̄(s, a, s′, h) ∀(s, a, s′, h),

0 ≤ q̄(s, a, s′, h) ∀(s, a, s′, h).

(14)

In fact, the constraint
∑

(s,a,s′) q̄(s, a, s
′, h) = 1 for h ∈ [H] corresponding to (C1) is not necessary,

because we can derive it from other constraints. To be more specific, the third constraint implies
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that
∑

(s,a,s′) q̄(s, a, s
′, 1) = 1 as

∑
s p(s) = 1. Then we can deduce from the second constraint

that
∑

(s,a,s′) q̄(s, a, s
′, h) = 1 for h ∈ [H]. Additionally, we call the above linear program as an

extended linear program due to the fifth and sixth constraints.

One natural question to the extended LP defined in (14) is how hard it is to solve. Indeed, we can
easily observe that the dimension of the decision variable q̄ is S2AH , and the number of constraints
is O

(
S2AH

)
. Hence, the computational complexity for solving (14) is equivalent to solving an LP

with a S2AH-dimensional decision variable and O
(
S2AH

)
constraints.

11 Good Event

In this section, we first prove Lemma 1 which ensures that all instantaneous reward and cost values
are bounded. Then we prove Lemma 2 that describes important properties of the confidence sets
estimating the true transition kernel. Next, we show Lemma 3 which delineates the accuracy of our
estimators of the reward function f and the cost function g.

Furthermore, we prove Lemma 11 that is useful to bound value functions with respect to estimated
reward and cost functions. Then we define the notion of the good event E that the statements of
Lemmas 1 to 3 and 11 hold. Taking the union bound, we deduce that the good event E holds with
probability at least 1− 14δ (Lemma 12).

Lastly, we prove Lemma 13 which considers the difference between the true transition kernel and
any P̂ contained in the confidence set Pk.

Proof of Lemma 1. It follows from Hoeffding’s inequality (Lemma 21) and the union bound that
for any (s, a, h) ∈ S ×A× [H] and k ∈ [K],

P
(
|fk(s, a, h)− f(s, a, h)| ≥

√
Lδ

)
≤ 2 · exp (−Lδ) =

2δ

HSAK
.

Likewise, for any (s, a, h) ∈ S ×A× [H] and k ∈ [K],

P
(
|gk(s, a, h)− g(s, a, h)| ≥

√
Lδ

)
≤ 2 · exp (−Lδ) =

2δ

HSAK
.

Taking the union bound, it follows that with probability at least 1− 4δ,

|fk(s, a, h)− f(s, a, h)| , |gk(s, a, h)− g(s, a, h)| ≤
√
Lδ

holds for all (s, a, h) ∈ S × A × [H] and k ∈ [K]. Since f(s, a, h), g(s, a, h) ∈ [0, 1] for any
(s, a, h) ∈ S ×A× [H], it holds with probability at least 1− 4δ that

|fk(s, a, h)| , |gk(s, a, h)| ≤ 1 +
√
Lδ,

as required.

The following lemma is a modification of (Jin et al., 2020, Lemma 8) to our finite-horizon MDP
setting.

Proof of Lemma 2. We will show that with probability at least 1− 4δ,∣∣P (s′ | s, a, h)− P̄k(s
′ | s, a, h)

∣∣ ≤ ϵk(s
′ | s, a, h) (15)

where

ϵk(s
′ | s, a, h) = 2

√
P̄k(s′ | s, a, h)(1− P̄k(s′ | s, a, h))Lδ

max{1, Nk(s, a, h)− 1}
+

14Lδ

3max{1, Nk(s, a, h)− 1}
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holds for every (s, a, s′, h) ∈ S ×A× S × [H] and every episode k ∈ [K].

Let us first consider the case Nk(s, a, h) ≤ 1. As we may assume that HSAK ≥ 2, it follows that

ϵk(s
′ | s, a, h) = 14Lδ

3max{1, Nk(s, a, h)− 1}
≥ 14

3
ln 2 > 1.

Then (15) holds because 0 ≤ P (s′ | s, a, h), P̄k(s
′ | s, a, h) ≤ 1.

Assume that n = Nk(s, a, h) ≥ 2. Then we define Z1, . . . , Zn as follows.

Zj =

{
1, if the transition after the jth visit to (s, a, h) is s′,
0, otherwise.

Then Z1, . . . , Zn are i.i.d. with mean P (s′ | s, a, h), and we have

n∑
j=1

Zj = Mk(s, a, s
′, h).

Moreover, the sample variance Vn of Z1, . . . , Zn is given by

Vn =
1

Nk(s, a, h)(Nk(s, a, h)− 1)
Mk(s, a, s

′, h) (Nk(s, a, h)−Mk(s, a, s
′, h))

=
Nk(s, a, h)

(Nk(s, a, h)− 1)
P̄k(s

′ | s, a, h)
(
1− P̄k(s

′ | s, a, h)
)
.

(16)

Then it follows from Lemma 22 that with probability at least 1− 2δ/(HS2AK),

P (s′ | s, a, h)− P̄k(s
′ | s, a, h)

≤

√
2P̄k(s′ | s, a, h)

(
1− P̄k(s′ | s, a, h)

)
ln (HS2AK/δ)

Nk(s, a, h)− 1
+

7 ln
(
HS2AK/δ

)
3(Nk(s, a, h)− 1)

.
(17)

Here, as we assumed that Nk(s, a, h) ≥ 2, we have Nk(s, a, h) − 1 = max{1, Nk(s, a, h) − 1}.
In addition, we know that ln

(
HS2AK/δ

)
≤ 2Lδ . Then (17) implies that with probability at least

1− 2δ/(HS2AK),

P (s′ | s, a, h)− P̄k(s
′ | s, a, h) ≤ ϵk(s

′ | s, a, h). (18)

Next, we apply Lemma 22 to variables 1−Z1, . . . , 1−Zn that are i.i.d. and have mean 1− P̄k(s
′ |

s, a, h). Moreover, the sample variance of 1−Z1, . . . , 1−Zn is also equal to Vn defined as in (16).
Therefore, based on the same argument, we deduce that with probability at least 1−2δ/(HS2AK),

−P (s′ | s, a, h) + P̄k(s
′ | s, a, h) ≤ ϵk(s

′ | s, a, h). (19)

By applying union bound to (18) and (19), with probability at least 1 − 4δ/(HS2AK), (15) holds
for (s, a, s′, h). Furthermore, by applying union bound over all (s, a, s′, h) ∈ S × A × S × [H], it
follows that with probability at least 1 − 4δ, (15) holds for every (s, a, s′, h) ∈ S × A × S × [H],
as required.

Next, we state the proof of Lemma 3 based on Hoeffding’s inequality.

Proof of Lemma 3. If Nk(s, a, h) =
∑k−1

j=1 nj(s, a, h) = 0, then f̄k(s, a, h) = ḡk(s, a, h) =
0 while Rk(s, a, h) ≥ 1 when we may assume that HSAK ≥ 4. In this case, the statements
trivially hold. Now we consider when

∑k−1
j=1 nj(s, a, h) ≥ 1. Note that fk(s, a, h) = f(s, a, h) +

ζfk (s, a, h) and gk(s, a, h) = g(s, a, h)+ ζgk(s, a, h) where ζfk (s, a, h) and ζgk(s, a, h) are i.i.d. 1/2-
sub-Gaussian random variables with zero mean for each (s, a, h) ∈ S × A × [H] and k ∈ [K].
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Then it follows from the Hoeffding’s inequality provided in Lemma 21 that for a given (s, a, h) ∈
S ×A× [H] and k ∈ [K], ∣∣f̄k(s, a, h)− f(s, a, h)

∣∣ ≤ Rk(s, a, h) (20)

with probability at least 1 − 2δ/(HSAK). By applying union bound, (20) holds with probability
at least 1 − 2δ for all (s, a, h) ∈ S × A × [H] and k ∈ [K]. Likewise, we deduce for g that with
probability at least 1− 2δ,

|ḡk(s, a, h)− g(s, a, h)| ≤ Rk(s, a, h)

for (s, a, h) ∈ S ×A× [H] and k ∈ [K] as desired.

Next, using Lemma 23 that states the Bernstein-type concentration inequality for a martingale dif-
ference sequence, we prove the following lemma that is useful for our analysis. Lemma 11 is a mod-
ification of (Jin et al., 2020, Lemma 10) and (Chen & Luo, 2021, Lemma 8) to our finite-horizon
MDP setting.

Lemma 11. With probability at least 1− 2δ, we have

K∑
k=1

∑
(s,a,h)

qk(s, a, h)

max {1, Nk(s, a, h)}
≤ 2HSA lnK + 2HSA+ 4H ln(H/δ) (21)

K∑
k=1

∑
(s,a,h)

qk(s, a, h)√
max {1, Nk(s, a, h)}

≤ 2H
√
SAK + 2HSA lnK + 3HSA+ 5H ln(H/δ) (22)

Proof. We define ξ1 as ξ1 = ∅ and for k ≥ 2, we define ξk as{
s
P,πk−1

h , a
P,πk−1

h , fk−1(s
P,πk−1

h , a
P,πk−1

h , h), gk−1(s
P,πk−1

h , a
P,πk−1

h , h)
}H

h=1

where πk−1 denotes the policy for episode k − 1 and(
s
P,πk−1

1 , a
P,πk−1

1 , . . . , s
P,πk−1

h , a
P,πk−1

h

)
is the trajectory generated under policy πk−1 and transition kernel P . Then for k ∈ [K], let Fk be
defined as the σ-algebra generated by the random variables in ξ1 ∪ · · · ∪ ξk. Then it follows that
F1, . . . ,Fk give rise to a filtration.

Note that

K∑
k=1

∑
(s,a)∈S×A

qk(s, a, h)

max {1, Nk(s, a, h)}
=

K∑
k=1

∑
(s,a)∈S×A

nk(s, a, h)

max {1, Nk(s, a, h)}
+

K∑
k=1

Yk (23)

where

Yk =
∑

(s,a)∈S×A

−nk(s, a, h) + qk(s, a, h)

max {1, Nk(s, a, h)}
.

As E [nk(s, a, h) | πk, P ] = qk(s, a, h) holds for every (s, a, h) ∈ S × A × [H], we know that
Y1, . . . , YK is a martingale difference sequence. We know that Yk ≤ 1 for each k ∈ [K]. Let Ek [·]
denote E [· | Fk, P ]. Since πk is Fk-measurable, we have Ek [nk(s, a, h)] = qk(s, a, h). Then we
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deduce

Ek

[
Y 2
k

]
=

∑
(s,a),(s′,a′)∈S×A

Ek [(nk(s, a, h)− qk(s, a, h))(nk(s
′, a′, h)− qk(s

′, a′, h))]

max {1, Nk(s, a, h)} ·max {1, Nk(s′, a′, h)}

=
∑

(s,a),(s′,a′)∈S×A

Ek [nk(s, a, h)nk(s
′, a′, h)− qk(s, a, h)qk(s

′, a′, h)]

max {1, Nk(s, a, h)} ·max {1, Nk(s′, a′, h)}

≤
∑

(s,a),(s′,a′)∈S×A

Ek [nk(s, a, h)nk(s
′, a′, h)]

max {1, Nk(s, a, h)} ·max {1, Nk(s′, a′, h)}

≤
∑

(s,a)∈S×A

Ek [nk(s, a, h)]

max {1, Nk(s, a, h)}

=
∑

(s,a)∈S×A

qk(s, a, h)

max {1, Nk(s, a, h)}

where the second equality holds because it follows from Ek [nk(s, a, h)] = qk(s, a, h) for (s, a, h) ∈
S ×A× [H] that

Ek [qk(s, a, h)nk(s
′, a′, h)] = Ek [qk(s

′, a′, h)nk(s, a, h)] = qk(s, a, h)qk(s
′, a′, h),

the second inequality holds because nk(s, a, h)nk(s
′, a′, h) = 0 if (s, a) ̸= (s′, a′), and the last

equality holds true because Ek [nk(s, a, h)] = qk(s, a, h) for any (s, a, h) ∈ S ×A× [H]. Then we
may apply Lemma 23 with λ = 1/2, and we deduce that with probability at least 1− δ/H ,

K∑
k=1

Yk ≤
1

2

K∑
k=1

∑
(s,a)∈S×A

qk(s, a, h)

max {1, Nk(s, a, h)}
+ 2 ln(H/δ).

Plugging this inequality to (23), it follows that

K∑
k=1

∑
(s,a)∈S×A

qk(s, a, h)

max {1, Nk(s, a, h)}
= 2

K∑
k=1

∑
(s,a)∈S×A

nk(s, a, h)

max {1, Nk(s, a, h)}
+ 4 ln(H/δ).

Here, the first term on the right-hand side can be bounded as follows. We have

K∑
k=1

nk(s, a, h)

max {1, Nk(s, a, h)}

=

K∑
k=1

nk(s, a, h)

max {1, Nk+1(s, a, h)}
+

K∑
k=1

(
nk(s, a, h)

max {1, Nk(s, a, h)}
− nk(s, a, h)

max {1, Nk+1(s, a, h)}

)

≤
K∑

k=1

nk(s, a, h)

max {1, Nk+1(s, a, h)}
+

K∑
k=1

(
1

max {1, Nk(s, a, h)}
− 1

max {1, Nk+1(s, a, h)}

)

≤
K∑

k=1

nk(s, a, h)

max {1, Nk+1(s, a, h)}
+ 1

≤ lnK + 1.

where the first inequality is due to nk(s, a, h) ≤ 1 and the last inequality holds because

nk(s, a, h) = Nk+1(s, a, h)−Nk(s, a, h) and NK(s, a, h) + nK(s, a, h) ≤ K.

Therefore, it follows that

K∑
k=1

∑
(s,a)∈S×A

nk(s, a, h)

max {1, Nk(s, a, h)}
=

∑
(s,a)∈S×A

K∑
k=1

nk(s, a, h)

max {1, Nk(s, a, h)}
= SA lnK + SA.
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As a result, for any fixed h ∈ [H],

K∑
k=1

∑
(s,a)∈S×A

qk(s, a, h)

max {1, Nk(s, a, h)}
≤ 2SA lnK + 2SA+ 4 ln (H/δ)

holds with probability at least 1− δ/H . By union bound, (21) holds with probability at least 1− δ.

Next, we will show that (22) holds.

K∑
k=1

∑
(s,a)∈S×A

qk(s, a, h)√
max {1, Nk(s, a, h)}

=

K∑
k=1

∑
(s,a)∈S×A

nk(s, a, h)√
max {1, Nk(s, a, h)}

+

K∑
k=1

Zk (24)

where

Zk =
∑

(s,a)∈S×A

−nk(s, a, h) + qk(s, a, h)√
max {1, Nk(s, a, h)}

.

As Ek [nk(s, a, h)] = qk(s, a, h) holds for every (s, a, h) ∈ S×A× [H], we know that Z1, . . . , ZK

is a martingale difference sequence. We know that Zk ≤ 1 for each k ∈ [K]. Then we deduce

Ek

[
Z2
k

]
≤

∑
(s,a),(s′,a′)∈S×A

Ek [nk(s, a, h)nk(s
′, a′, h)]√

max {1, Nk(s, a, h)} ·
√
max {1, Nk(s′, a′, h)}

=
∑

(s,a)∈S×A

Ek [nk(s, a, h)]

max {1, Nk(s, a, h)}

=
∑

(s,a)∈S×A

qk(s, a, h)

max {1, Nk(s, a, h)}

where the first inequality is derived by the same argument when bounding Ek[Y
2
k ], the first equality

holds because nk(s, a, h)nk(s
′, a′, h) = 0 if (s, a) ̸= (s′, a′), and the last equality holds true be-

cause Ek [nk(s, a, h)] = qk(s, a, h) for any (s, a, h) ∈ S×A× [H]. Then we may apply Lemma 23
with λ = 1, and we deduce that with probability at least 1− δ/H ,

K∑
k=1

Zk ≤
K∑

k=1

∑
(s,a)∈S×A

qk(s, a, h)

max {1, Nk(s, a, h)}
+ ln(H/δ).

Then with probability at least 1− δ, (21) holds and

∑
h∈[H]

K∑
k=1

Zk ≤
K∑

k=1

∑
(s,a,h)∈S×A×[H]

qk(s, a, h)

max {1, Nk(s, a, h)}
+H ln(H/δ)

= 2HSA lnK + 2HSA+ 5H ln(H/δ).

(25)

holds. Moreover, we have
K∑

k=1

nk(s, a, h)√
max {1, Nk(s, a, h)}

=

K∑
k=1

nk(s, a, h)√
max {1, Nk+1(s, a, h)}

+

K∑
k=1

(
nk(s, a, h)√

max {1, Nk(s, a, h)}
− nk(s, a, h)√

max {1, Nk+1(s, a, h)}

)

≤
K∑

k=1

nk(s, a, h)√
max {1, Nk+1(s, a, h)}

+

K∑
k=1

(
1√

max {1, Nk(s, a, h)}
− 1√

max {1, Nk+1(s, a, h)}

)

≤
K∑

k=1

nk(s, a, h)√
max {1, Nk+1(s, a, h)}

+ 1

≤ 2
√
NK+1(s, a, h) + 1.
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where the last equality holds because nk(s, a, h) = Nk+1(s, a, h)−Nk(s, a, h). Then

K∑
k=1

∑
(s,a,h)∈S×A×[H]

nk(s, a, h)√
max {1, Nk(s, a, h)}

≤
∑

(s,a,h)∈S×A×[H]

2
√
NK+1(s, a, h) +HSA

≤ 2

√
HSA

∑
(s,a,h)

NK+1(s, a, h) +HSA

≤ 2H
√
SAK +HSA

where the second equality is due to the Cauchy-Schwarz inequality. Then it follows from (24)
and (25) that (22) holds.

Recall that the good event E is the event that the statements of Lemmas 1 to 3 and 11 hold.

Lemma 12. The good event E holds with probability at least 1− 14δ, i.e., P [E ] ≥ 1− 14δ.

Proof. The proof follows from the union bound.

Lemma 2 bounds the difference between the true transition kernel P and the empirical transition
kernel P̄k. Based on Lemma 2, the next lemma bounds the difference between the true transition
kernel and any P̂ contained in the confidence set Pk. Lemma 13 is a modification of (Jin et al.,
2020, Lemma 8) to our finite-horizon MDP setting.

Lemma 13. Under the good event E , we have∣∣∣P̂ (s′ | s, a, h)− P (s′ | s, a, h)
∣∣∣ ≤ ϵ⋆k(s

′ | s, a, h) (26)

where

ϵ⋆k(s
′ | s, a, h) = 6

√
P (s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
+ 94

Lδ

max{1, Nk(s, a, h)}

for every P̂ ∈ Pk and every (s, a, s′, h) ∈ S ×A× S × [H].

Proof. We follow the proof of (Cohen et al., 2020, Lemma B.13). Note that

max{1, Nk(s, a, h)− 1} ≥ 1

2
·max{1, Nk(s, a, h)}

holds for any value of Nk(s, a, h). We know that 1− P̄k(s
′ | s, a) ≤ 1. Furthermore, as we assumed

that P ∈ Pk, we have that

P̄k(s
′ | s, a, h) ≤ P (s′ | s, a, h) +

√
8P̄k(s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
+

28Lδ

3max{1, Nk(s, a, h)}
.

We may view this as a quadratic inequality in terms of x =
√
P̄k(s′ | s, a, h). Note that x2 ≤

ax+ b+ c for any a, b, c ≥ 0 implies that x ≤ a+
√
b+
√
c. Therefore, we deduce that

√
P̄k(s′ | s, a, h) ≤

√
P (s′ | s, a, h) +

(
2
√
2 +

√
28

3

)√
Lδ

max{1, Nk(s, a, h)}

≤
√
P (s′ | s, a, h) + 13

√
Lδ

max{1, Nk(s, a, h)}
.
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Using this bound on
√
P̄k(s′ | s, a, h), we obtain the following.

ϵk(s
′ | s, a, h) ≤

√
8P̄k(s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
+

28Lδ

3max{1, Nk(s, a, h)}

≤

√
8P (s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
+

(
13
√
8 +

28

3

)
Lδ

max{1, Nk(s, a, h)}

≤ 3

√
P (s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
+ 47

Lδ

max{1, Nk(s, a, h)}

=
1

2
· ϵ⋆k(s′ | s, a, h)

(27)

Since we assumed that P ∈ Pk,

∣∣P (s′ | s, a, h)− P̄k(s
′ | s, a, h)

∣∣ ≤ 1

2
· ϵ⋆k(s′ | s, a, h).

Moreover, for any P̂ ∈ Pk, we have∣∣∣P̂ (s′ | s, a, h)− P̄k(s
′ | s, a, h)

∣∣∣ ≤ ϵk(s
′ | s, a, h) ≤ 1

2
· ϵ⋆k(s′ | s, a, h).

By the triangle inequality, it follows that∣∣∣P̂ (s′ | s, a, h)− P (s′ | s, a, h)
∣∣∣ ≤ ϵ⋆k(s

′ | s, a, h),

as required.

We note that the above lemma holds when we replace P (s′ | s, a, h) of ϵ⋆k(s
′ | s, a, h) into P̂ (s′ |

s, a, h) for any P̂ ∈ Pk. Specifically, under the good event E , we have for (s, a, s′, h) ∈ S × A ×
S × [H],

∣∣∣P̂ (s′ | s, a, h)− P (s′ | s, a, h)
∣∣∣ ≤ 6

√
P̂ (s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
+ 94

Lδ

max{1, Nk(s, a, h)}
. (28)

It can be obtained by applying

P̄k(s
′ | s, a, h) ≤ P̂ (s′ | s, a, h) +

√
8P̄k(s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
+

28Lδ

3max{1, Nk(s, a, h)}

with the same argument for the remaining part of the proof.

12 Missing Proofs for Section 3: Tighter Function Estimators

Proof of Lemma 4. The proof is based on Lemma 10 of Chen & Luo (2021) with further so-
phisticated evaluations. We consider an arbitrary cost function g : S × A × [H] → [−B,B]

for some boundedness constant B > 0. Let qPk,πk

(s′,h+1)
, qP,πk

(s′,h+1)
, g be the vector representa-

tions of qPk,πk(· | s′, h + 1), qP,πk(· | s′, h + 1) : S × A × {h + 1, . . . ,H} → [0, 1], and
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g(h+1) : S ×A× {h+ 1, . . . ,H} → [−B,B] respectively. Note that

∣∣∣∣∣∣
∑

(s,a,s′,h)

qk(s, a, h) ((P − Pk) (s
′ | s, a, h))

(
V πk

h+1(s
′; g, Pk)− V πk

h+1(s
′; g, P )

)∣∣∣∣∣∣
≤

∑
(s,a,s′,h)

qk(s, a, h)ϵ
⋆
k(s

′ | s, a, h)
∣∣(V πk

h+1(s
′; g, Pk)− V πk

h+1(s
′; g, P )

)∣∣
=

∑
(s,a,s′,h)

qk(s, a, h)ϵ
⋆
k(s

′ | s, a, h)
∣∣∣⟨qPk,πk

(s′,h+1)
− qP,πk

(s′,h+1)
, g(h+1)⟩

∣∣∣
≤ BH

∑
(s,a,s′,h)

qk(s, a, h)ϵ
⋆
k(s

′ | s, a, h)
∑

(s′′,a′′,s′′′),
m≥h+1

qk(s
′′, a′′,m | s′, h+ 1)ϵ⋆k(s

′′′ | s′′, a′′,m)

where the first inequality is from Lemma 13, the first equality holds because V πk

h+1(s
′; g, Pk) =

⟨qPk,πk

(s′,h+1)
, g(h+1)⟩ and V πk

h+1(s
′; g, P ) = ⟨qP,πk

(s′,h+1)
, g(h+1)⟩, the second inequality is due to

Lemma 18. Remember that the definition of ϵ⋆k is given by

ϵ⋆k(s
′ | s, a, h) = 6

√
P (s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
+ 94

Lδ

max{1, Nk(s, a, h)}
.

Then it follows that

L−2
δ

∑
(s,a,s′,h)

qk(s, a, h)ϵ
⋆
k(s

′ | s, a, h)
∑

(s′′,a′′,s′′′),m≥h+1

qk(s
′′, a′′,m | s′, h+ 1)ϵ⋆k(s

′′′ | s′′, a′′,m)

≤ 36
∑

(s,a,s′,h),
(s′′,a′′,s′′′),

m≥h+1

√
qk(s, a, h)2P (s′ | s, a, h)
max{1, Nk(s, a, h)}

√
qk(s′′, a′′,m | s′, h+ 1)2P (s′′′ | s′′, a′′,m)

max{1, Nk(s′′, a′′,m)}

︸ ︷︷ ︸
Term 1

+ 564
∑

(s,a,s′,h),
(s′′,a′′,s′′′),

m≥h+1

√
qk(s, a, h)2P (s′ | s, a, h)
max{1, Nk(s, a, h)}

qk(s
′′, a′′,m | s′, h+ 1)

max{1, Nk(s′′, a′′,m)}

︸ ︷︷ ︸
Term 2

+ 564
∑

(s,a,s′,h),
(s′′,a′′,s′′′),

m≥h+1

qk(s, a, h)

max{1, Nk(s, a, h)}

√
qk(s′′, a′′,m | s′, h+ 1)2P (s′′′ | s′′, a′′,m)

max{1, Nk(s′′, a′′,m)}

︸ ︷︷ ︸
Term 3

+ 8836
∑

(s,a,s′,h),
(s′′,a′′,s′′′),

m≥h+1

qk(s, a, h)

max{1, Nk(s, a, h)}
qk(s

′′, a′′,m | s′, h+ 1)

max{1, Nk(s′′, a′′,m)}

︸ ︷︷ ︸
Term 4

.
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Term 1 can be bounded as follows.

Term 1 ≤
√√√√√√

∑
(s,a,s′,h),

(s′′,a′′,s′′′),
m≥h+1

qk(s, a, h)P (s′′′ | s′′, a′′,m)qk(s′′, a′′,m | s′, h+ 1)

max{1, Nk(s, a, h)}

×
√√√√√√

∑
(s,a,s′,h),

(s′′,a′′,s′′′),
m≥h+1

qk(s′′, a′′,m | s′, h+ 1)P (s′ | s, a, h)qk(s, a, h)
max{1, Nk(s′′, a′′,m)}

≤

√√√√HS
∑

(s,a,h)

qk(s, a, h)

max{1, Nk(s, a, h)}

√√√√HS
∑

(s′′,a′′,m)

qk(s′′, a′′,m)

max{1, Nk(s′′, a′′,m)}

= HS
∑

(s,a,h)

qk(s, a, h)

max{1, Nk(s, a, h)}

where the first inequality is from the Cauchy-Schwarz inequality. We can bound Term 2 as the
following argument.

Term 2 ≤
√√√√√√

∑
(s,a,s′,h),

(s′′,a′′,s′′′),
m≥h+1

qk(s, a, h)qk(s′′, a′′,m | s′, h+ 1)

max{1, Nk(s, a, h)}max{1, Nk(s′′, a′′,m)}

×
√√√√√√

∑
(s,a,s′,h),

(s′′,a′′,s′′′),
m≥h+1

qk(s′′, a′′,m | s′, h+ 1)P (s′ | s, a, h)qk(s, a, h)
max{1, Nk(s′′, a′′,m)}

≤

√√√√HS2
∑

(s,a,h)

qk(s, a, h)

max{1, Nk(s, a, h)}

√√√√HS
∑

(s′′,a′′,m)

qk(s′′, a′′,m)

max{1, Nk(s′′, a′′,m)}

= HS1.5
∑

(s,a,h)

qk(s, a, h)

max{1, Nk(s, a, h)}
.

Similar to Term 2, we have an upper bound on Term 3 as follows.

Term 3 = HS1.5
∑

(s,a,h)

qk(s, a, h)

max{1, Nk(s, a, h)}
.

Since 1/max{1, Nk(s, a, h)} ≤ 1, we bound Term 4 in the following way.

Term 4 ≤HS2
∑

(s,a,h)

qk(s, a, h)

max{1, Nk(s, a, h)}
.

Finally, we deduce that∣∣∣∣∣∣
∑

(s,a,s′,h)

qk(s, a, h) (P − Pk) (s
′ | s, a, h)

(
V πk

h+1(s
′; g, Pk)− V πk

h+1(s
′; g, P )

)∣∣∣∣∣∣
≤ 104BH2S2L2

δ

∑
(s,a,h)

qk(s, a, h)

max{1, Nk(s, a, h)}

as desired.
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Proof of Lemma 5. Let πk be a policy for episode k. Moreover, let Pk ∈ Pk, and let g : S × A ×
[H]→ [0, 1] be an arbitrary cost function. Then we may define the occupancy measure q̂k = qPk,πk

associated with policy πk and transitional kernel Pk. Then we know that V πk
1 (V̂k, Pk) = ⟨q̂k, V̂k⟩.

Moreover, it follows from Lemma 19 that

⟨q̂k, V̂k⟩ ≤ Var [⟨n̂k, g⟩ | g, πk, Pk]

where n̂k is a vector representation of n̂k = nPk,πk . Furthermore, by Lemma 15 with B = 1, we
have

Var [⟨n̂k, g⟩ | g, πk, Pk] ≤ E[⟨n̂k, g⟩2 | g, πk, Pk]

≤ 2⟨q̂k, h⃗⊙ g⟩
≤ 2H2

as desired.

Having proved Lemmas lemma 4 and 5, we are ready to prove Theorem 1 which is the crucial part
of deducing our tighter function estimators.

Proof of Theorem 1. We assume that the good event E holds, which holds with probability at least
1 − 14δ according to Lemma 12. We observe that |V πk

1 (g, P )− V πk
1 (g, Pk)| can be rewritten by

|⟨g, qk − q̂k⟩| using occupancy measures. By Lemma 17, it follows that

|⟨g, qk − q̂k⟩|

=

∣∣∣∣∣∣
∑

(s,a,s′,h)∈S×A×S×[H]

q̂k(s, a, h) (P − Pk) (s
′ | s, a, h)V πk

h+1(s
′; g, P )

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

(s,a,s′,h)∈S×A×S×[H]

q̂k(s, a, h)(P − Pk)(s
′ | s, a, h)V πk

h+1(s
′; g, Pk)

∣∣∣∣∣∣︸ ︷︷ ︸
Term 1

+

∣∣∣∣∣∣
∑

(s,a,s′,h)∈S×A×S×[H]

q̂k(s, a, h)(P − Pk)(s
′ | s, a, h)

(
V πk

h+1(s
′; g, P )− V πk

h+1(s
′; g, Pk)

)∣∣∣∣∣∣︸ ︷︷ ︸
Term 2

where (P − Pk)(s
′ | s, a, h) = P (s′ | s, a, h)− Pk(s

′ | s, a, h).

To bound Term 2, we use bound

P (s′ | s, a, h)− Pk(s
′ | s, a, h) ≤ 6

√
Pk(s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
+ 94

Lδ

max{1, Nk(s, a, h)}

as explained in (28). This is because q̂k = qPk,πk is an occupancy measure with respect to Pk ∈ Pk,
not P . Then we can apply Lemma 4 and obtain

Term 2 ≤ 104H2S2L2
δ

∑
(s,a,h)

q̂k(s, a, h)

max{1, Nk(s, a, h)}
.
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Next, we bound Term 1. Note that
∑

s′ (P (s′ | s, a, h)− Pk(s
′ | s, a, h)) = 0. Then it follows that

Term 1 =

∣∣∣∣∣∣
∑

(s,a,s′,h)

q̂k(s, a, h)(P − Pk)(s
′ | s, a, h)(V πk

h+1(g, Pk)− µ̂k(s, a, h))

∣∣∣∣∣∣
≤ 2

∑
(s,a,s′,h)

q̂k(s, a, h)ϵk(s
′ | s, a, h)

∣∣V πk

h+1(g, Pk)− µ̂k(s, a, h)
∣∣

= 4
∑

(s,a,s′,h)

q̂k(s, a, h)

√
P̄k(s′ | s, a, h)Lδ

max{1, Nk(s, a, h)− 1}
∣∣V πk

h+1(s
′; g, Pk)− µ̂k(s, a, h)

∣∣
︸ ︷︷ ︸

Term 3

+
28

3

∑
(s,a,s′,h)

q̂k(s, a, h)
Lδ

max{1, Nk(s, a, h)− 1}
∣∣V πk

h+1(s
′; g, P )− µ̂k(s, a, h)

∣∣
︸ ︷︷ ︸

Term 4

where µ̂k(s, a, h) = Es′∼Pk(·|s,a,h)[V
πk

h+1(s
′; g, Pk)]. The first inequality is from |(P − Pk)(s

′ |
s, a, h)| ≤ |(P−P̄k)(s

′ | s, a, h)|+|(P̄k−Pk)(s
′ | s, a, h)| ≤ 2ϵk(s

′ | s, a, h) for any (s, a, s′, h) ∈
S ×A× S × [H] under the good event E . We note that P̄k(s

′ | s, a, h) ≤ Pk(s
′ | s, a, h) + ϵk(s

′ |
s, a, h) and define

V̂k(s, a, h) =
∑
s′

Pk(s
′ | s, a, h)

∣∣V πk

h+1(s
′; g, Pk)− µ̂k(s, a, h)

∣∣2 .
Then we can bound Term 3 as the following.

Term 3

≤
√
Lδ

∑
(s,a,s′,h)

q̂k(s, a, h)

√
(Pk + ϵk)(s′ | s, a, h)

max{1, Nk(s, a, h)− 1}
∣∣V πk

h+1(s
′; g, Pk)− µ̂k(s, a, h)

∣∣
≤
√
Lδ

√ ∑
(s,a,s′,h)

q̂k(s, a, h)(Pk + ϵk)(s′ | s, a, h)
∣∣V πk

h+1(s
′; g, Pk)− µ̂k(s, a, h)

∣∣2
×

√√√√ ∑
(s,a,s′,h)

q̂k(s, a, h)

max{1, Nk(s, a, h)− 1}

≤
√
Lδ

√ ∑
(s,a,h)

q̂k(s, a, h)V̂k(s, a, h) + 4H2
∑

(s,a,s′,h)

q̂k(s, a, h)ϵk(s′ | s, a, h)

×

√√√√ ∑
(s,a,s′,h)

q̂k(s, a, h)

max{1, Nk(s, a, h)− 1}

where the second inequality follows from the Cauchy-Schwarz inequality and the last inequality is
due to

∣∣V πk

h+1(s
′; g, Pk)− µ̂k(s, a, h)

∣∣ ≤ 2H .

By Lemma 5, we deduce that

∑
(s,a,h)

q̂k(s, a, h)V̂k(s, a, h) ≤ 2H2.
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Due to the AM-GM inequality, we have

√
2H2 + 4H2

∑
(s,a,s′,h)

q̂k(s, a, h)ϵk(s′ | s, a, h)

√√√√ ∑
(s,a,s′,h)

q̂k(s, a, h)

max{1, Nk(s, a, h)− 1}

≤

√2H2 +

√
4H2

∑
(s,a,s′,h)

q̂k(s, a, h)ϵk(s′ | s, a, h)

√√√√ ∑
(s,a,s′,h)

q̂k(s, a, h)

max{1, Nk(s, a, h)− 1}

≤ H2

α1
+

2H2

α2

∑
(s,a,s′,h)

q̂k(s, a, h)ϵk(s
′ | s, a, h) + α1 + α2

2

∑
(s,a,h)

S · q̂k(s, a, h)
max{1, Nk(s, a, h)− 1}

for any α1, α2 > 0. By taking α1 =
√
HKLδ/(S

√
A), α2 =

√
H3Lδ , we obtain

Term 3

≤
∑

(s,a,h)

q̂k(s, a, h)
(

S
√
HA√
K

+ 2
√
H
∑

s′ ϵk(s
′ | s, a, h) +

√
HK+

√
H3S2A

2
√
A

Lδ

max{1,Nk(s,a,h)−1}

)
≤
∑

(s,a,h)

q̂k(s, a, h)
(

S
√
HA√
K

+ 2
√
Hεk(s, a, h) +

√
HK+

√
H3S2A

2
√
A

Lδ

max{1,Nk(s,a,h)−1}

)
.

Note that the last inequality follows from

∑
s′

ϵk(s
′ | s, a, h) =

∑
s′

(√
4P̄k(s′ | s, a, h)Lδ

max{1, Nk(s, a, h)− 1}
+

14Lδ

3max{1, Nk(s, a, h)− 1}

)

≤
√
S

√
4
∑

s′ P̄k(s′ | s, a, h)Lδ

max{1, Nk(s, a, h)− 1}
+

14SLδ

3max{1, Nk(s, a, h)− 1}

=

√
4SLδ

max{1, Nk(s, a, h)− 1}
+

14SLδ

3max{1, Nk(s, a, h)− 1}

= εk(s, a, h)

where the inequality is due to the Cauchy-Schwarz inequality and the second equality is due to∑
s′ P̄k(s

′ | s, a, h) ≤ 1.

Since
∣∣V πk

h+1(s
′; g, P )− µ̂k(s, a, h)

∣∣ ≤ 2H , Term 4 can be bounded as follows.

Term 4 ≤ 2HSLδ

∑
(s,a,h)

q̂k(s, a, h)

max{1, Nk(s, a, h)− 1}
.

Finally, we proved that

|⟨g, qk − q̂k⟩|

≤ 4 · (Term 3) +
28

3
· (Term 4) + (Term 2)

≤
∑

(s,a,h)

q̂k(s, a, h)

(
4S
√
HA√
K

+ 8
√
Hεk(s, a, h) +

2
√
HKLδ√

Amax{1, Nk(s, a, h)− 1}

)

+

((
56

3
HS + 2H1.5S

)
Lδ + 104H2S2L2

δ

) ∑
(s,a,h)

q̂k(s, a, h)

max{1, Nk(s, a, h)− 1}

as required.
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13 Missing Proofs for Section 4: Safe Exploration

In this section, we prove Lemma 6 that provides an asymptotic upper bound on a sufficient number
of episodes executing πb, which is denoted by K0, for feasibility of (10).
Lemma 14. Assume that the good event E holds. Let πk be any policy for episode k, and let P be
the true transition kernel. Let qk denote the occupancy measure qP,πk associated with πk and P .
For Rk, Uk, we have

K∑
k=1

⟨Rk +Uk, qk⟩ = O
((

H1.5S
√
AK +H3S3A

)
L3
δ

)
.

Proof. Note that
∑K

k=1⟨Rk +Uk, qk⟩ can be rewritten as

K∑
k=1

⟨Rk +Uk, qk⟩

=
K∑

k=1

∑
(s,a,h)

qk(s, a, h)

√
Lδ

max{1, Nk(s, a, h)}

+

K∑
k=1

∑
(s,a,h)

qk(s, a, h)

(
4S
√
HA√
K

+ 8
√
Hεk(s, a, h) +

2(
√
HK +

√
H3S2A)Lδ√

Amax{1, Nk(s, a, h)− 1}

)

+

(
56

3
HSLδ + 104H2S2L2

δ

) K∑
k=1

∑
(s,a,h)

qk(s, a, h)

max{1, Nk(s, a, h)− 1}
.

Since
∑

(s,a,h) q̂k(s, a, h) = H , we have

K∑
k=1

∑
(s,a,h)

qk(s, a, h) ·
4S
√
HA√
K

= O(H1.5S
√
AK).

Furthermore, Lemma 11 implies that

K∑
k=1

∑
(s,a,h)

qk(s, a, h)

max{1, Nk(s, a, h)}
= O(HSA lnK +H ln(H/δ)),

K∑
k=1

∑
(s,a,h)

qk(s, a, h)√
max{1, Nk(s, a, h)}

= O(H
√
SAK +HSA lnK +H ln(H/δ)).

Then it follows that
K∑

k=1

∑
(s,a,h)

qk(s, a, h)

√
Lδ

max{1, Nk(s, a, h)}
= O

(
(H
√
SAK +HSA)L2

δ

)
.

Since max{1, Nk(s, a, h)− 1} ≥ 1
2 max{1, Nk(s, a, h)}, we have

K∑
k=1

∑
(s,a,h)

qk(s, a, h)
(
√
HK +

√
H3S2A)Lδ√

Amax{1, Nk(s, a, h)− 1}
= O

(
(H1.5S

√
AK +H2.5S2A)L2

δ

)
,

and moreover,

(
HSLδ +H2S2L2

δ

) K∑
k=1

∑
(s,a,h)

qk(s, a, h)

max{1, Nk(s, a, h)− 1}
= O

(
H3S3AL3

δ

)
.
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Next, by Lemma 11,
∑K

k=1

∑
(s,a,h) qk(s, a, h)

(√
Hεk(s, a, h)

)
can be bounded as follows.

K∑
k=1

∑
(s,a,h)

qk(s, a, h)
(√

Hεk(s, a, h)
)

=
√
H

K∑
k=1

∑
(s,a,h)

qk(s, a, h)

(√
4SLδ

max{1, Nk(s, a, h)− 1}
+

14SLδ

3max{1, Nk(s, a, h)− 1}

)

= O
((

H1.5S
√
AK +H1.5S2A

)
L2
δ

)
.

As a result, we have proved that

K∑
k=1

⟨Rk +Uk, qk⟩ = O
(
(H1.5S

√
AK +H3S3A)L3

δ

)
,

as required.

We are ready to prove Lemma 6 based on Lemma 14.

Proof of Lemma 6. We closely follow the proof of (Bura et al., 2022, Proposition 4). We assume
that the good event E holds, which holds with probability at least 1 − 14δ. Let qb = qP,πb be the
occupancy measure associated with the safe baseline policy πb and the true transition kernel P . Then
qb is a feasible solution of (13) if ⟨ĝk, qb⟩ ≤ C̄ holds. To find a sufficient condition, we deduce that

⟨ĝk, qb⟩ = ⟨ḡk +Rk +Uk, qb⟩
≤ ⟨g + 2Rk +Uk, qb⟩
= C̄b + ⟨2Rk +Uk, qb⟩

where the first equality is from the definition of ĝk, the inequality is from Lemma 3, and the last
equality follows from ⟨g, qb⟩ = C̄b. This implies that a sufficient condition for ⟨ĝk, qb⟩ ≤ C̄ is
given by

⟨2Rk +Uk, qb⟩ < C̄ − C̄b. (29)

Note that ⟨2Rk +Uk, qb⟩ decreases as k increases because

1

max{1, Nk(s, a, h)}
,

1√
max{1, Nk(s, a, h)}

can only decrease as k increases. Then suppose that K0 is the last episode where (29) does not
hold. By definition, K0 + 1 is the first episode satisfying ⟨ĝk, qb⟩ < C̄. Due to the strict inequality,
occupancy measures other than qb can be potentially feasible to (13). This implies that DOPE+ can
sufficiently explore policies other than πb after K0 episodes. Then we have

K0(C̄ − C̄b) <

K0∑
k=1

⟨2Rk +Uk, qb⟩.

Since qb induces the true transition kernel, we can apply Lemma 14. Then the right-hand side is
bounded as follows.

K0∑
k=1

⟨2Rk +Uk, qb⟩ = Õ
(
H1.5S

√
AK0

)
.

Hence, K0 satisfies

K0 = Õ
(

H3S2A

(C̄ − C̄b)2

)
.
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Then we have

⟨2Rk +Uk, qb⟩ ≤ ⟨2RK0+1 +UK0+1, qb⟩ ≤ C̄ − C̄b ∀k = K0 + 1, . . . ,K.

This implies that (10) is feasible after episode K0 when (πb, P ) becomes a feasible solution in
episode K0.

As shown in the proof of Lemma 6, the baseline policy is not required to be exploratory, e.g.,
qb(s, a) > 0 for all (s, a) ∈ S × A. This is because our algorithm utilizes the baseline policy to
ensure that (10) becomes feasible after a finite number of episodes. To be more specific, ⟨ĝk, qb⟩
converges to C̄b as we continue executing the baseline policy, and this convergence is independent
of whether the baseline policy holds an exploratory property. Eventually, it becomes less than C̄, at
which point we can guarantee that (10) is feasible.

14 Detailed Proofs for the Regret Analysis

In this section, we prove Theorem 2 that guarantees zero constraint violation for DOPE+. Next, we
provide the proofs of Lemmas 7, 8 and 9. Lastly, we show Theorem 3 that gives us the regret upper
bound.

14.1 Details of Constraint Violation Analysis

Proof of Theorem 2. We assume that the good event E holds, which is the case with probability
at least 1 − 14δ. Let πk, Pk denote the policy and the transition kernel obtained from DOPE+ for
episode k, respectively. Let qk = qP,πk , q̂k = qPk,πk . We know that the constraint is satisfied if
V πk
1 (g, P ) = ⟨g, qk⟩ ≤ C̄ for each k ∈ [K]. For k ≤ K0, there is no constraint violation because

we take πk = πb. Now we consider the case when k > K0. We have

⟨g, qk⟩ = ⟨g, q̂k⟩+ ⟨g, qk − q̂k⟩
≤ ⟨ḡk +Rk, q̂k⟩+ ⟨g, qk − q̂k⟩
≤ ⟨ḡk +Rk, q̂k⟩+ ⟨Uk, q̂k⟩
= ⟨ĝk, q̂k⟩
≤ C̄

where the first inequality follows from Lemma 3, the second inequality is from Theorem 1, and the
last inequality is due to the update rule of DOPE+. This implies that πk holds ⟨g, qk⟩ ≤ C̄ for
k > K0. Thus, we showed that Violation(π⃗) = 0 with probability at least 1− 14δ.

14.2 Details of Regret Analysis

Proof of Lemma 7. We closely follow the proof of (Bura et al., 2022, Lemma 18). We assume that
the good event E holds, which is the case with probability at least 1− 14δ. We observe that

K∑
k=K0+1

(
V π∗

1 (f, P )− V πk
1 (f̂k, Pk)

)
=

K∑
k=K0+1

⟨f , q∗⟩ −
K∑

k=K0+1

⟨f̂k, q̂k⟩.

By Lemma 10, there exist q̄b(s, a, s
′, h) and q̄∗(s, a, s′, h) such that qb(s, a, h) =∑

s′∈S q̄b(s, a, s
′, h) and q∗(s, a, h) =

∑
s′∈S q̄∗(s, a, s′, h), respectively. Then we define the

new occupancy measure qαk
(s, a, h) satisfying qαk

(s, a, h) =
∑

s′∈S q̄αk
(s, a, s′, h) where

q̄αk
(s, a, s′, h) = (1− αk)q̄b(s, a, s

′, h) + αkq̄
∗(s, a, s′, h) (30)

for (s, a, s′, h) ∈ S×A×S× [H] and αk ∈ [0, 1]. Now we verify (C1),(C2) and (C3) in Lemma 10
to say qαk

is a valid occupancy measure. Since q̄αk
is a convex combination of q̄b and q̄∗, (C1),(C2)
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hold. For (C3), we can show that qαk
induces the true transition kernel P as follows. Since we

know qb and q∗ induce P , it follows that q̄b(s, a, s′, h) = P (s′ | s, a, h)
∑

s′′∈S q̄b(s, a, s
′′, h) and

q̄∗(s, a, s′, h) = P (s′ | s, a, h)
∑

s′′∈S q̄∗(s, a, s′′, h) for (s, a, s′, h) ∈ S × A × S × [H]. Then
q̄αk

(s, a, s′, h) = P (s′ | s, a, h)
∑

s′′∈S q̄αk
(s, a, s′′, h) can be derived from (30), which implies

that qαk
induces the true transition kernel P . Hence, qαk

is a valid occupancy measure inducing the
true transition kernel P .

To use the optimality of q̂k in our analysis, we expect that qαk
is a feasible solution for (13). Under

the good event E , we know that qαk
∈ ∆(P, k) due to P ∈ Pk. Then it is sufficient to find a

condition for αk satisfying ⟨ĝk, qαk⟩ ≤ C̄. We deduce that

⟨ĝk, qαk⟩ = ⟨ḡk +Rk +Uk, qαk⟩
≤ ⟨g + 2Rk +Uk, qαk⟩
= (1− αk)⟨g + 2Rk +Uk, qb⟩+ αk⟨g + 2Rk +Uk, q

∗⟩
≤ (1− αk)(C̄b + ⟨2Rk +Uk, qb⟩) + αk(C̄ + ⟨2Rk +Uk, q

∗⟩)

where the first inequality is from Lemma 3 and the last inequality is from ⟨g, qb⟩ = C̄b and
⟨g, q∗⟩ ≤ C̄. Furthermore, the second equality is true because (30) implies that qαk

(s, a, h) =
(1− αk)qb(s, a, h) + αkq

∗(s, a, h). Hence, a sufficient condition of αk for ⟨ĝk, qαk⟩ ≤ C̄ is given
by

αk ≤
C̄ − C̄b − ⟨2Rk +Uk, qb⟩

C̄ − C̄b + ⟨2Rk +Uk, q∗⟩ − ⟨2Rk +Uk, qb⟩
.

Remember that, in the proof of Lemma 6, we defined K0 so that K0+1 is the first episode satisfying
⟨2Rk +Uk, qb⟩ ≤ C̄ − C̄b. This guarantees that there exists some αk ∈ [0, 1] satisfying the above
inequality for k > K0.

Now, for some αk, we claim that

⟨f , q∗⟩ ≤ ⟨f̄k +
3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk, qαk⟩. (31)

To show (31), we first take for β ≥ 1,

fβ = f̄k + 3βRk + βUk.

Then we find αk, β satisfying ⟨f , q∗⟩ ≤ ⟨fβ, qαk⟩. By Lemma 3, we have

⟨fβ, qαk⟩ = ⟨f̄k + 3βRk + βUk, qαk⟩
≥ ⟨f + 2βRk + βUk, qαk⟩
= (1− αk)⟨f + 2βRk + βUk, qb⟩+ αk⟨f + 2βRk + βUk, q

∗⟩.

We have ⟨f , q∗⟩ ≤ ⟨fβ, qαk⟩ if β satisfies

β ≥ (1− αk)(⟨f , q∗⟩ − ⟨f , qb⟩)
(1− αk)⟨2Rk +Uk, qb⟩+ αk⟨2Rk +Uk, q∗⟩

.

By taking

αk =
C̄ − C̄b − ⟨2Rk +Uk, qb⟩

C̄ − C̄b + ⟨2Rk +Uk, q∗⟩ − ⟨2Rk +Uk, qb⟩
, (32)

it follows that

β ≥ ⟨f , q
∗⟩ − ⟨f , qb⟩
C̄ − C̄b

.
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Since ⟨f , q∗⟩ − ⟨f , qb⟩ ≤ H , it is sufficient to take

β =
H

C̄ − C̄b
. (33)

For αk satisfying (32), we showed that qαk
is a feasible solution for (13). Then it follows

⟨f̂k, qαk⟩ ≤ ⟨f̂k, q̂k⟩ due to optimality of q̂k. Furthermore, for β satisfying (33), we have (31).
Hence, we deduce that

⟨f , q∗⟩ − ⟨f̂k, q̂k⟩

≤ ⟨f , q∗⟩ − ⟨f̂k, qαk⟩

= ⟨f , q∗⟩ − ⟨f̄k +
3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk, qαk⟩

+ ⟨f̄k +
3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk, qαk⟩ − ⟨B⃗ ∧ (f̄k +

3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk), qαk⟩

≤ ⟨f̄k +
3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk, qαk⟩ − ⟨B⃗ ∧ (f̄k +

3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk), qαk⟩

where the last inequality is from (31). Furthermore, under the good event E , we know that
fk(s, a, h) ≤ B for (s, a, h) ∈ S × A × [H] and k ∈ [K], where B = 1 +

√
Lδ . This implies that

f̄k(s, a, h) ≤ B. Thus, we have

⟨f̄k, qαk⟩ ≤ ⟨B⃗ ∧ (f̄k +
3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk), qαk⟩.

Then it follows that

⟨f̄k +
3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk, qαk⟩ − ⟨B⃗ ∧ (f̄k +

3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk), qαk⟩

≤ ⟨f̄k +
3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk, qαk⟩ − ⟨f̄k, qαk⟩

= ⟨ 3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk, qαk⟩.

Finally, we proved that

⟨f , q∗⟩ − ⟨f̂k, q̂k⟩ ≤ ⟨
3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk, qαk⟩.

By Lemma 14, we have

K∑
k=K0+1

⟨f , q∗⟩ −
K∑

k=K0+1

⟨f̂k, q̂k⟩ ≤
K∑

k=K0+1

⟨ 3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk, qαk⟩

= O
((

H2.5

C̄ − C̄b
S
√
AK +

H4

C̄ − C̄b
S3A

)
L3
δ

)
as desired.

Proof of Lemma 8. The lemma is a direct consequence of Lemma 20 with B = O(Lδ). Hence, we
have

K∑
k=K0+1

⟨f̂k, q̂k − qk⟩ = O
((

H1.5S
√
AK +H3S3A

)
L4
δ

)
with probability at least 1 − 2δ under the good event E . By taking the union bound, the statement
holds with probability at least 1− 16δ.



Reinforcement Learning Journal 2025

Proof of Lemma 9. We assume that the good event E holds, which is the case with probability at
least 1− 14δ. The left-hand side of Lemma 9 can be rewritten as

K∑
k=K0+1

⟨f̂k − f , qk⟩.

Under the good event E , we have f̄k(s, a, h) ≤ f(s, a, h) +Rk(s, a, h) for (s, a, h) ∈ S ×A× [H]
and k ∈ [K]. Furthermore, H/(C̄ − C̄b) ≥ 1 due to C̄ − C̄b ≤ H . Then it follows that

K∑
k=K0+1

⟨f̂k − f , qk⟩ =
K∑

k=K0+1

⟨B⃗ ∧ (f̄k +
3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk)− f , qk⟩

≤
K∑

k=K0+1

⟨f̄k +
3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk − f , qk⟩

≤ H

C̄ − C̄b

K∑
k=K0+1

⟨4Rk +Uk, qk⟩

= O
((

H2.5

C̄ − C̄b
S
√
AK +

H4

C̄ − C̄b
S3A

)
L3
δ

)
where the last equality is due to Lemma 14.

Proof of Theorem 3. We assume that the good event E holds, which is the case with probability at
least 1− 14δ. We decompose the regret as follows using occupancy measures.

Regret (π⃗)

=

K0∑
k=1

⟨f , q∗⟩ −
K0∑
k=1

⟨f , qk⟩︸ ︷︷ ︸
(I)

+

K∑
k=K0+1

⟨f , q∗⟩ −
K∑

k=K0+1

⟨f̂k, q̂k⟩︸ ︷︷ ︸
(II)

+

K∑
k=K0+1

⟨f̂k, q̂k − qk⟩︸ ︷︷ ︸
(III)

+

K∑
k=K0+1

⟨f̂k − f , qk⟩︸ ︷︷ ︸
(IV)

.

As explained in Section 5.2, we can upper bound term (I) as

Õ
(

H4S2A

(C̄ − C̄b)2

)
.

because K0 = Õ
(

H3S2A
(C̄−C̄b)2

)
due to Lemma 6 and ⟨f , q∗⟩ ≤ H .

By Lemma 7, we have

Term (II) = O
((

H2.5

C̄ − C̄b
S
√
AK +

H4

C̄ − C̄b
S3A

)
L3
δ

)
.

By Lemma 8, with probability at least 1− 2δ, it follows that

Term (III) = O
((

H1.5S
√
AK +H3S3A

)
L4
δ

)
.

Moreover, it follows from Lemma 9 that

Term (IV) = O
((

H2.5

C̄ − C̄b
S
√
AK +

H4

C̄ − C̄b
S3A

)
L3
δ

)
.
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Hence, by taking the union bound,

Regret (π⃗) = Õ
(

H

C̄ − C̄b

(
H1.5S

√
AK +

H4S3A

C̄ − C̄b

))

with probability at least 1− 16δ.

15 Technical Lemmas

In this section, we provide technical lemmas that are crucial for our regret and constraint violation
analysis. The following lemma is from (Chen & Luo, 2021) with a few modifications, and it is useful
to bound the variance of ⟨nk,fk⟩.

Lemma 15. (Chen & Luo, 2021, Lemma 2) Let πk be any policy for episode k, and let qk denote
the occupancy measure qP,πk . Let ℓ : S × A× [H]→ [−B,B] be an arbitrary function, and let P
be an arbitrary transition kernel. Then

E
[
⟨nk, ℓ⟩2 | ℓ, πk, P

]
≤ 2B⟨qk, h⃗⊙ ℓ⟩

where qk,nk, ℓ are the vector representations of qk, nk, ℓ.

Proof. For ease of notation, let Ek [·] denotes E [· | ℓ, πk, P ], and let sh and ah denote sP,πk

h and
aP,πk

h , respectively for h ∈ [H]. Note that

Ek

[
⟨nk, ℓ⟩2

]
= Ek


 H∑

h=1

∑
(s,a)∈S×A

nk(s, a, h)ℓ(s, a, h)

2


= Ek

( H∑
h=1

ℓ(sh, ah, h)

)2


≤ 2Ek

[
H∑

h=1

ℓ(sh, ah, h)

(
H∑

m=h

ℓ(sm, am,m)

)]

= 2Ek

[
H∑

h=1

Ek

[
ℓ(sh, ah, h)

(
H∑

m=h

ℓ(sm, am,m)

)
| sh, ah

]]

= 2Ek

[
H∑

h=1

ℓ(sh, ah, h)Ek

[
H∑

m=h

ℓ(sm, am,m) | sh, ah

]]

= 2Ek

[
H∑

h=1

ℓ(sh, ah, h)Q
πk

h (sh, ah; ℓ, P )

]

= 2Ek

 H∑
h=1

∑
(s,a)∈S×A

nk(s, a, h)ℓ(s, a, h)Q
πk

h (s, a; ℓ, P )


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where the first inequality holds because (
∑H

h=1 xh)
2 ≤ 2

∑H
h=1 xh(

∑H
m=h xm). Moreover,

Ek

 H∑
h=1

∑
(s,a)∈S×A

nk(s, a, h)ℓ(s, a, h)Q
πk

h (s, a; ℓ, P )


=

H∑
h=1

∑
(s,a)∈S×A

ℓ(s, a, h)Qπk

h (s, a; ℓ, P )Ek [nk(s, a, h)]

=

H∑
h=1

∑
(s,a)∈S×A

ℓ(s, a, h)Qπk

h (s, a; ℓ, P )qk(s, a, h)

= ⟨qk, ℓ⊙QP,πk,ℓ⟩.

Therefore, it follows that
Ek

[
⟨nk, ℓ⟩2

]
≤ 2⟨qk, ℓ⊙QP,πk,ℓ⟩.

Next, observe that

⟨qk, ℓ⊙QP,πk,ℓ⟩

≤ B

H∑
h=1

∑
(s,a)∈S×A

Qπk

h (s, a; ℓ, P )qk(s, a, h)

= B

H∑
h=1

∑
(s,a)∈S×A

πk(a | s, h)Qπk

h (s, a; ℓ, P )

(∑
a′∈A

qk(s, a
′, h)

)

= B

H∑
h=1

∑
s∈S

V πk

h (s; ℓ, P )

(∑
a′∈A

qk(s, a
′, h)

)

= B

H∑
h=1

∑
s∈S

 H∑
m=h

∑
(s′′,a′′)∈S×A

qk(s
′′, a′′,m | s, h)ℓ(s′′, a′′,m)

(∑
a′∈A

qk(s, a
′, h)

)

= B

H∑
h=1

H∑
m=h

∑
(s′′,a′′)∈S×A

∑
s∈S

qk(s
′′, a′′,m | s, h)

(∑
a′∈A

qk(s, a
′, h)

)
ℓ(s′′, a′′,m)

= B

H∑
h=1

H∑
m=h

∑
(s′′,a′′)∈S×A

qk(s
′′, a′′,m)ℓ(s′′, a′′,m)

= B

H∑
h=1

∑
(s,a)∈S×A

h · qk(s, a, h)ℓ(s, a, h)

= B⟨qk, h⃗⊙ ℓ⟩

where the first inequality holds because ℓ(s, a, h) ≤ B for any (s, a, h), the first equality holds
because

qk(s, a, h) = πk(a | s, h)
∑
a′∈A

qk(s, a
′, h),

the fifth equality follows from

∑
s∈S

qk(s
′′, a′′,m | s, h)

(∑
a′∈A

qk(s, a
′, h)

)
= qk(s

′′, a′′,m).

Therefore, we get that ⟨qk, ℓ⊙QP,πk,ℓ⟩ ≤ B⟨qk, h⃗⊙ ℓ⟩ as required.
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The following lemma is from the first statement of (Chen & Luo, 2021, Lemma 7) with a few
modifications to adapt the proof to our setting.

Lemma 16. (Chen & Luo, 2021, Lemma 7) Let π be a policy, and let P̃ , P̂ be two different transition
kernels. We denote by q̃ the occupancy measure qP̃ ,π associated with P̃ and π, and we denote by q̂

the occupancy measure qP̂ ,π associated with P̂ and π. Then

q̂(s, a, h)− q̃(s, a, h)

=
∑

(s′,a′,s′′)

h−1∑
m=1

q̃(s′, a′,m)
(
P̂ (s′′ | s′, a′,m)− P̃ (s′′ | s′, a′,m)

)
q̂(s, a, h | s′′,m+ 1).

Proof. We prove the first statement by induction on h. When h = 1, note that

q̂(s, a, h) = q̃(s, a, h) = π(a | s, 1) · p(s).

Hence, both the left-hand side and right-hand side are equal to 0. Next, assume that the equality
holds with h− 1 ≥ 1. Then we consider h. By the definition of occupancy measure,

q̂(s, a, h)− q̃(s, a, h)

= π(a | s, h)
∑

(s′,a′)

(P̂ (s | s′, a′, h− 1)q̂(s′, a′, h− 1)− P̃ (s | s′, a′, h− 1)q̃(s′, a′, h− 1))

= π(a | s, h)
∑

(s′,a′)

P̂ (s | s′, a′, h− 1)(q̂(s′, a′, h− 1)− q̃(s′, a′, h− 1))

︸ ︷︷ ︸
Term 1

+ π(a | s, h)
∑

(s′,a′)

q̃(s′, a′, h− 1)(P̂ (s | s′, a′, h− 1)− P̃ (s | s′, a′, h− 1))

︸ ︷︷ ︸
Term 2

.

To provide an upper bound on Term 1, we use the induction hypothesis for h− 1:

q̂(s′, a′, h− 1)− q̃(s′, a′, h− 1)

=
∑

(s′′,a′′,s′′′)

h−2∑
m=1

q̃(s′′, a′′,m)
(
(P̂ − P̃ )(s′′′ | s′′, a′′,m)

)
q̂(s′, a′, h− 1 | s′′′,m+ 1)

where
(P̂ − P̃ )(s′′′ | s′′, a′′,m) = P̂ (s′′′ | s′′, a′′,m)− P̃ (s′′′ | s′′, a′′,m).

In addition, observe that

π(a | s, h)
∑

(s′,a′)

P̂ (s | s′, a′, h− 1)q̂(s′, a′, h− 1 | s′′′,m+ 1) = q̂(s, a, h | s′′′,m+ 1).

Therefore, it follows that Term 1 is equal to

∑
(s′′,a′′,s′′′)

h−2∑
m=1

q̃(s′′, a′′,m)
(
(P̂ − P̃ )(s′′′ | s′′, a′′,m)

)
q̂(s, a, h | s′′′,m+ 1)

=
∑

(s′,a′,s′′)

h−2∑
m=1

q̃(s′, a′,m)
(
P̂ (s′′ | s′, a′,m)− P̃ (s′′ | s′, a′,m)

)
q̂(s, a, h | s′′,m+ 1).

Next, we upper bound Term 2. Note that

q̂(s, a, h | s′′, h) = π(a | s′′, h) · 1 [s′′ = s] .
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Then it follows that

π(a | s, h)(P̂ (s | s′, a′, h− 1)− P̃ (s | s′, a′, h− 1))

=
∑
s′′∈S

1 [s′′ = s] · π(a | s′′, h)(P̂ (s′′ | s′, a′, h− 1)− P̃ (s′′ | s′, a′, h− 1))

=
∑
s′′∈S

q̂(s, a, h | s′′, h)(P̂ (s′′ | s′, a′, h− 1)− P̃ (s′′ | s′, a′, h− 1)),

implying in turn that Term 2 equals∑
(s′,a′,s′′)∈S×A×S

q̃(s′, a′, h− 1)(P̂ (s′′ | s′, a′, h− 1)− P̃ (s′′ | s′, a′, h− 1))q̂(s, a, h | s′′, h).

Adding the equivalent expression of Term 1 and that of Term 2 that we have obtained, we get the
right-hand side of the statement.

The following lemma is called value difference lemma (Dann et al., 2017). Based on Lemma 13
and Lemma 16, we show the following lemma, which is a modification of (Chen & Luo, 2021,
Lemma 7, the second statement).

Lemma 17. Let π be a policy, and let P̃ , P̂ be two different transition kernels. We denote by q̃ the
occupancy measure qP̃ ,π associated with P̂ and π, and we denote by q̂ the occupancy measure qP̂ ,π

associated with P̂ and π. Let ℓ : S × A × [H]→ [−B,B] be an arbitrary function. If P̃ , P̂ ∈ Pk,
then we have

|⟨ℓ, q̂ − q̃⟩| =

∣∣∣∣∣∣
∑

(s,a,s′,h)∈S×A×S×[H]

q̃(s, a, h)
(
P̂ (s′ | s, a, h)− P̃ (s′ | s, a, h)

)
V π
h+1(s

′; ℓ, P̂ )

∣∣∣∣∣∣
≤ BH

∑
(s,a,s′,h)∈S×A×S×[H]

q̃(s, a, h)ϵ⋆k(s
′ | s, a, h)

where q̂, q̃, ℓ are the vector representations of q̂, q̃, ℓ.

Proof. First, observe that

⟨ℓ, q̂ − q̃⟩ =
∑

(s,a,h)∈S×A×[H]

(q̂(s, a, h)− q̃(s, a, h)) ℓ(s, a, h).

By Lemma 16, the right-hand side can be rewritten so that we obtain the following.

⟨ℓ, q̂ − q̃⟩

=
∑

(s,a,h)

∑
(s′,a′,s′′)

h−1∑
m=1

q̃(s′, a′,m)
(
(P̂ − P̃ )(s′′ | s′, a′,m)

)
q̂(s, a, h | s′′,m+ 1)ℓ(s, a, h)

=

H∑
m=1

∑
(s′,a′,s′′)

q̃(s′, a′,m)
(
(P̂ − P̃ )(s′′ | s′, a′,m)

) ∑
(s,a,h),
h>m

q̂(s, a, h | s′′,m+ 1)ℓ(s, a, h)

=

H∑
m=1

∑
(s′,a′,s′′)

q̃(s′, a′,m)
(
(P̂ − P̃ )(s′′ | s′, a′,m)

)
V π
m+1(s

′′; ℓ, P̂ )

=

H∑
h=1

∑
(s′,a′,s′′)

q̃(s′, a′, h)
(
P̂ (s′′ | s′, a′, h)− P̃ (s′′ | s′, a′, h)

)
V π
h+1(s

′′; ℓ, P̂ ).
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Since P̃ , P̂ ∈ Pk, Lemma 13 implies that

|⟨ℓ, q̂ − q̃⟩| ≤
H∑

h=1

∑
(s′,a′,s′′)

q̃(s′, a′, h)
∣∣∣P̂ (s′′ | s′, a′, h)− P̃ (s′′ | s′, a′, h)

∣∣∣V π
h+1(s

′′; ℓ, P̂ )

≤
H∑

h=1

∑
(s′,a′,s′′)

q̃(s′, a′, h) (2ϵk(s
′′ | s′, a′, h))V π

h+1(s
′′; ℓ, P̂ )

≤
H∑

h=1

∑
(s′,a′,s′′)

q̃(s′, a′, h)ϵ⋆k(s
′′ | s′, a′, h)V π

h+1(s
′′; ℓ, P̂ )

≤ BH

H∑
h=1

∑
(s′,a′,s′′)

q̃(s′, a′, h)ϵ⋆k(s
′′ | s′, a′, h)

= BH
∑

(s,a,s′,h)∈S×A×S×[H]

q̃(s, a, h)ϵ⋆k(s
′ | s, a, h)

where the third inequality holds because V π
h+1(s

′′; ℓ, P̂ ) ≤ BH , as required.

Lemma 18. Let π be a policy, and let P̃ , P̂ be two different transition kernels. We denote by q̃ the
occupancy measure qP̃ ,π associated with P̃ and π, and we denote by q̂ the occupancy measure qP̂ ,π

associated with P̂ and π. Let (s, h) ∈ S × [H], and consider q̃(· | s, h), q̂(· | s, h) : S × A ×
{h, . . . ,H}. If P̃ , P̂ ∈ Pk, then we have∣∣⟨ℓ(h), q̂(s,h) − q̃(s,h)⟩

∣∣ ≤ BH
∑

(s′,a′,s′′,m)∈S×A×S×{h,...,H}

q̃(s′, a′,m | s, h)ϵ⋆k(s′′ | s′, a′,m)

where q̃(s,h), q̂(s,h), ℓ(h) are the vector representations of q̂(· | s, h), q̃(· | s, h) : S × A ×
{h, . . . ,H} → [0, 1] and ℓ(h) : S ×A× [H]→ [−B,B].

Proof. The proof follows the same argument used to prove Lemmas 16 and 17.

The following lemma is called a Bellman-type law of total variance lemma (Azar et al., 2017; Chen
& Luo, 2021). We follow the proof of (Chen & Luo, 2021, Lemma 4) after some changes to adapt
to our setting.

Lemma 19. (Chen & Luo, 2021, Lemma 4) Let πk be the policy for episode k, P be an arbitrary
transition kernel, and let qk denote the occupancy measure qP,πk . Let ℓ : S ×A× [H]→ [−B,B]
be an arbitrary reward function, and define Vk(s, a, h) = Vars′∼P (·|s,a,h)

[
V πk

h+1(s
′; ℓ, P )

]
. Then

⟨qk,Vk⟩ ≤ Var [⟨nk, ℓ⟩ | ℓ, πk, P ]

where qk,Vk,nk, ℓ are the vector representations of qk,Vk, nk, ℓ.

Proof. For ease of notation, let sh and ah denote sP,πk

h and aP,πk

h , respectively for h ∈ [H]. More-
over, let V (s, h) denote V π

h (s; ℓ, P ) for (s, h) ∈ S × [H]. Note that

⟨nk, ℓ⟩ =
∑

(s,a,h)S×A×[H]

ℓ(s, a, h)nk(s, a, h) =

H∑
h=1

ℓ (sh, ah, h) .

For ease of notation, let Ek [·] and Vark [·] denote E [· | ℓ, πk, P ] and Var [· | ℓ, πk, P ], respectively.
Then

Ek [⟨nk, ℓ⟩] = Ek

[
H∑

h=1

ℓ (sh, ah, h)

]
= Ek

[
E

[
H∑

h=1

ℓ (sh, ah, h) | ℓ, πk, P, s1

]]
= Ek [V (s1, 1)] .
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Moreover,

Vark [⟨nk, ℓ⟩] = Ek

( H∑
h=1

ℓ (sh, ah, h)− Ek [V (s1, 1)]

)2


= Ek

( H∑
h=1

ℓ (sh, ah, h)− V (s1, 1) + V (s1, 1)− Ek [V (s1, 1)]

)2


= Ek

( H∑
h=1

ℓ (sh, ah, h)− V (s1, 1)

)2
+ Ek

[
(V (s1, 1)− Ek [V (s1, 1)])

2
]

+ 2Ek

[(
H∑

h=1

ℓ (sh, ah, h)− V (s1, 1)

)
(V (s1, 1)− Ek [V (s1, 1)])

]

≥ Ek

( H∑
h=1

ℓ (sh, ah, h)− V (s1, 1)

)2


where the inequality is by Ek [V (s1, 1)− Ek [V (s1, 1)] | s1] = 0 and
(V (s1, 1)− Ek [V (s1, 1)])

2 ≥ 0. Therefore,

Vark [⟨nk, ℓ⟩] ≥ Ek

( H∑
h=2

ℓ (sh, ah, h)− V (s2, 2) + ℓ (s1, a1, 1) + V (s2, 2)− V (s1, 1)

)2
 .

Note that

Ek

[
H∑

h=2

ℓ (sh, ah, h)− V (s2, 2) | s1, a1, s2

]
= Ek

[
H∑

h=2

ℓ (sh, ah, h) | s2

]
− V (s2, 2) = 0. (34)

Then

Vark [⟨nk, ℓ⟩]

≥ Ek

( H∑
h=2

ℓ (sh, ah, h)− V (s2, 2)

)2
+ Ek

[
(ℓ (s1, a1, 1) + V (s2, 2)− V (s1, 1))

2
]

+ 2Ek

[
Ek

[(
H∑

h=2

ℓ (sh, ah, h)− V (s2, 2)

)
(ℓ (s1, a1, 1) + V (s2, 2)− V (s1, 1)) | s1, a1, s2

]]

= Ek

( H∑
h=2

ℓ (sh, ah, h)− V (s2, 2)

)2
+ Ek

[
(ℓ (s1, a1, 1) + V (s2, 2)− V (s1, 1))

2
]

+ 2Ek

[
(ℓ (s1, a1, 1) + V (s2, 2)− V (s1, 1))Ek

[
H∑

h=2

ℓ (sh, ah, h)− V (s2, 2) | s1, a1, s2

]]

= Ek

( H∑
h=2

ℓ (sh, ah, h)− V (s2, 2)

)2
+ Ek

[
(ℓ (s1, a1, 1) + V (s2, 2)− V (s1, 1))

2
]

where the last equality follows from (34). Here, the second term from the right-most side can be
bounded from below as follows.
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Ek

[
(ℓ (s1, a1, 1) + V (s2, 2)− V (s1, 1))

2
]

= Ek

(ℓ (s1, a1, 1) + ∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)− V (s1, 1) + V (s2, 2)−
∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)

)2


= Ek

(ℓ (s1, a1, 1) + ∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)− V (s1, 1)

)2


+ Ek

(V (s2, 2)−
∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)

)2


+ 2Ek

[(
ℓ (s1, a1, 1) +

∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)− V (s1, 1)

)(
V (s2, 2)−

∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)

)]

= Ek

(ℓ (s1, a1, 1) + ∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)− V (s1, 1)

)2


+ Ek

(V (s2, 2)−
∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)

)2


≥ Ek [Vk(s1, a1, 1)]

where third equality holds because

Ek

[(
ℓ (s1, a1, 1) +

∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)− V (s1, 1)

)(
V (s2, 2)−

∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)

)
| s1, a1

]

=

(
ℓ (s1, a1, 1) +

∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)− V (s1, 1)

)
Ek

[
V (s2, 2)−

∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2) | s1, a1

]

=

(
ℓ (s1, a1, 1) +

∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)− V (s1, 1)

)
× 0

and the last inequality holds because

Ek

(V (s2, 2)−
∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)

)2
 = Ek [Vk(s1, a1, 1)] .

Then it follows that

Vark [⟨nk, ℓ⟩] ≥ Ek

( H∑
h=1

ℓ (sh, ah, h)− V (s1, 1)

)2


≥ Ek

( H∑
h=2

ℓ (sh, ah, h)− V (s2, 2)

)2
+ Ek [Vk(s1, a1, 1)] .

Repeating the same argument, we deduce that

Vark [⟨nk, ℓ⟩] ≥
H∑

h=1

Ek [Vk(sh, ah, h)] =
∑

(s,a,h)∈S×A×[H]

qk(s, a, h)Vk(s, a, h) = ⟨qk,Vk⟩,

as required.

Next, we provide Lemma 20, which is a modification of (Chen & Luo, 2021, Lemma 9) to our
finite-horizon MDP setting.



Reinforcement Learning Journal 2025

Lemma 20. Assume that the good event E holds. Let πk be any policy for episode k, let Pk be any
transition kernel from Pk for episode k, and let P be the true transition kernel. Let qk, q̂k denote the
occupancy measures qP,πk , qPk,πk , respectively. Let ℓk : S × A × [H] → [−B,B] be an arbitrary
reward function for episode k. With probability at least 1− 2δ,

K∑
k=1

|⟨ℓk, qk − q̂k⟩| = O
(
B
(
H1.5S

√
AK +H3S3A

)
L3
δ

)
.

where qk, q̂k, ℓk are the vector representations of qk, q̂k, ℓk.

Proof. We define ξ1 as ξ1 = {ℓ1, π1} and for k ≥ 2, we define ξk as

{
s
P,πk−1

1 , a
P,πk−1

1 , . . . , s
P,πk−1

h , a
P,πk−1

h , ℓk, πk

}

where πk−1 and πk denote the policies for episode k − 1 and episode k, respectively, and

(
s
P,πk−1

1 , a
P,πk−1

1 , . . . , s
P,πk−1

h , a
P,πk−1

h

)

is the trajectory generated under policy πk−1 and transition kernel P . Then for k ∈ [K], let Hk be
defined as the σ-algebra generated by the random variables in ξ1 ∪ · · · ∪ ξk. Then it follows that
H1, . . . ,Hk give rise to a filtration.

Let us define

µk(s, a, h) = Es′∼P (·|s,a,h)
[
V πk

h+1(s
′; ℓk, P )

]
.

Note that

K∑
k=1

|⟨ℓk, qk − q̂k⟩|

=

K∑
k=1

∣∣∣∣∣∣
∑

(s,a,s′,h)∈S×A×S×[H]

qk(s, a, h) (P (s′ | s, a, h)− Pk(s
′ | s, a, h))V πk

h+1(s
′; ℓk, Pk)

∣∣∣∣∣∣
≤

K∑
k=1

∣∣∣∣∣∣
∑

(s,a,s′,h)∈S×A×S×[H]

qk(s, a, h) (P (s′ | s, a, h)− Pk(s
′ | s, a, h))V πk

h+1(s
′; ℓk, P )

∣∣∣∣∣∣
+O

(
BH3S3AL3

δ

)
where the equality is due to Lemma 17 and the inequality is due to Lemmas 4 and 11.
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Moreover,

K∑
k=1

∣∣∣∣∣∣
∑

(s,a,s′,h)∈S×A×S×[H]

qk(s, a, h) (P (s′ | s, a, h)− Pk(s
′ | s, a, h))V πk

h+1(s
′; ℓk, P )

∣∣∣∣∣∣
=

K∑
k=1

∣∣∣∣∣∣
∑

(s,a,s′,h)∈S×A×S×[H]

qk(s, a, h) ((P − Pk) (s
′ | s, a, h))

(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)∣∣∣∣∣∣
≤

K∑
k=1

∑
(s,a,s′,h)∈S×A×S×[H]

qk(s, a, h)ϵ
⋆
k(s

′ | s, a, h)
∣∣V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

∣∣

≤ O

 K∑
k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

qk(s, a, h)

√
P (s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2


+O

BHS

K∑
k=1

∑
(s,a,h)∈S×A×[H]

qk(s, a, h)Lδ

max{1, Nk(s, a, h)}



≤ O

 K∑
k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

qk(s, a, h)

√
P (s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2


+O
(
BH2S2AL2

δ

)
where the first equality holds because

∑
s′∈S (P − Pk) (s

′ | s, a, h) = 0 and µk(s, a, h)
is independent of s′, the first inequality is due to Lemma 13, the second inequality is from∣∣V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

∣∣ ≤ 2BH , and the last inequality is from Lemma 11. Recall that
qk(s, a, h) = E [nk(s, a, h) | πk, P ], which implies that

K∑
k=1

E [Xk | Hk, P ]

=

K∑
k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

qk(s, a, h)

√
P (s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2

where

Xk =
∑

(s,a,s′,h)∈
S×A×S×[H]

nk(s, a, h)

√
P (s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2
.

Here, we have

0 ≤ Xk ≤ O

BHS
∑

(s,a,h)∈S×A×[H]

nk(s, a, h)
√
Lδ

 = O(BH2S
√
Lδ).
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Then it follows from Lemma 26 that with probability at least 1− δ,

K∑
k=1

E [Xk | Hk, P ]

≤ 2

K∑
k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

nk(s, a, h)

√
P (s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2
+O

(
BH2SL1.5

δ

)
.

Note that

K∑
k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

nk(s, a, h)

√
P (s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2

≤
K∑

k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

nk(s, a, h)

√
P (s′ | s, a, h)Lδ

max{1, Nk+1(s, a, h)}
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2

+BH

K∑
k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

nk(s, a, h)

(√
P (s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
−

√
P (s′ | s, a, h)Lδ

max{1, Nk+1(s, a, h)}

)

≤
K∑

k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

nk(s, a, h)

√
P (s′ | s, a, h)Lδ

max{1, Nk+1(s, a, h)}
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2

+BH
√
S

K∑
k=1

∑
(s,a,h)∈S×A×[H]

(√
Lδ

max{1, Nk(s, a, h)}
−

√
Lδ

max{1, Nk+1(s, a, h)}

)

≤
K∑

k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

nk(s, a, h)

√
P (s′ | s, a, h)Lδ

max{1, Nk+1(s, a, h)}
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2
+O

(
BH2S1.5A

√
Lδ

)
.

where the first inequality holds because
∣∣V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

∣∣ ≤ BH , the second inequal-
ity holds because nk(s, a, h) ≤ 1 and the Cauchy-Schwarz inequality implies that

∑
s′∈S

√
P (s′ | s, a, h) ≤

√
S
∑
s′∈S

P (s′ | s, a, h) =
√
S,

and the third inequality follows from

K∑
k=1

(√
1

max{1, Nk(s, a, h)}
−

√
1

max{1, Nk+1(s, a, h)}

)
≤

√
1

max{1, N1(s, a, h)}
= 1.
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Next, the Cauchy-Schwarz inequality implies the following.

K∑
k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

nk(s, a, h)

√
P (s′ | s, a, h)Lδ

max{1, Nk+1(s, a, h)}
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2

≤

√√√√√√
K∑

k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

nk(s, a, h)P (s′ | s, a, h)
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2

×

√√√√√√
K∑

k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

nk(s, a, h)
Lδ

max{1, Nk+1(s, a, h)}

Here, the second term can be bounded as follows.

K∑
k=1

∑
(s,a,s′,h)

nk(s, a, h)
Lδ

max{1, Nk+1(s, a, h)}
= SLδ

K∑
k=1

∑
(s,a,h)

nk(s, a, h)

max{1, Nk+1(s, a, h)}

= SLδ

∑
(s,a,h)

K∑
k=1

nk(s, a, h)

max{1, Nk+1(s, a, h)}

= O
(
HS2AL2

δ

)
.

For (s, a, h) ∈ S ×A× [H], we define

Vk(s, a, h) = Var
s′∼P (·|s,a,h)

[
V πk

h+1(s
′; ℓk, P )

]
.

Then

Vk(s, a, h) = Es′∼P (·|s,a,h)

[(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2]
=
∑
s′∈S

P (s′ | s, a, h)
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2
Furthermore, with probability at least 1− δ,

K∑
k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

nk(s, a, h)P (s′ | s, a, h)
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2

=

K∑
k=1

∑
(s,a,h)∈S×A×[H]

nk(s, a, h)Vk(s, a, h)

=

K∑
k=1

⟨qk,Vk⟩+
K∑

k=1

∑
(s,a,h)∈S×A×[H]

(nk(s, a, h)− qk(s, a, h))Vk(s, a, h)

≤
K∑

k=1

Var [⟨nk, ℓk⟩ | ℓk, πk, P ] +O
(
B2H3

√
K ln(1/δ)

)
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where Vk ∈ RSAH is the vector representation of Vk and the inequality follows from Lemma 19,
Vk(s, a, h) ≤ B2H2, ∑

(s,a,h)∈S×A×[H]

(nk(s, a, h)− qk(s, a, h))Vk(s, a, h)

≤
∑

(s,a,h)∈S×A×[H]

(nk(s, a, h) + qk(s, a, h))B
2H2

≤ 2B2H3,

and Lemma 24. Therefore, we finally have proved that

K∑
k=1

|⟨ℓk, qk − q̂k⟩| = O


√√√√HS2AL2

δ

(
K∑

k=1

Var [⟨nk, ℓk⟩ | ℓk, πk, P ] +B2H3

√
K ln

1

δ

)
+O

(
BH3S3AL3

δ

)
.

Moreover, we know from Lemma 15 that

Var [⟨nk, ℓk⟩ | ℓk, πk, P ] ≤ E
[
⟨nk, ℓk⟩2 | ℓk, πk, P

]
≤ 2B⟨qk, h⃗⊙ ℓk⟩,

and therefore, it follows that

K∑
k=1

|⟨ℓk, qk − q̂k⟩| = O


√√√√HS2A

(
B

K∑
k=1

⟨qk, h⃗⊙ ℓk⟩+B2H3
√
K

)
+BH3S3A

L3
δ


= O

((√
B2H3S2AK +B2H4S2A

√
K +BH3S3A

)
L3
δ

)
= O

((√
B2H3S2AK +B2H3S2AK +B2H5S2A+BH3S3A

)
L3
δ

)
= O

(
B
(
H1.5S

√
AK +H3S3A

)
L3
δ

)
where the second equality holds because ⟨qk, h⃗ ⊙ ℓk⟩ = O(BH2) and the third equality holds
because B2H4S2A

√
K = O

(
B2
(
H3S2AK +H5S2A

))
.

16 Concentration Inequalities

Lemma 21. (Hoeffding’s inequality) For i.i.d. random variables Z1, . . . , Zn following 1/2-sub-
Gaussian with zero mean,

P

 1

n

n∑
j=1

Zj ≥ ϵ

 ≤ exp
(
−nϵ2

)
,

P

 1

n

n∑
j=1

Zj ≤ −ϵ

 ≤ exp
(
−nϵ2

)
.

Lemma 22. (Maurer & Pontil, 2009, Theorem 4) Let Z1, . . . , Zn ∈ [0, 1] be i.i.d. random variables
with mean z, and let δ > 0. Then with probability at least 1− δ,

z − 1

n

n∑
j=1

Zj ≤
√

2Vn ln(2/δ)

n
+

7 ln(2/δ)

3(n− 1)

where Vn is the sample variance given by

Vn =
1

n(n− 1)

∑
1≤j<k≤n

(Zj − Zk)
2.
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Next, we need the following Bernstein-type concentration inequality for martingales due to Beygelz-
imer et al. (2011). We take the version used in (Jin et al., 2020, Lemma 9).

Lemma 23. (Beygelzimer et al., 2011, Theorem 1) Let Y1, . . . , Yn be a martingale difference se-
quence with respect to a filtration F1, . . . ,Fn. Assume that Yj ≤ R almost surely for all j ∈ [n].
Then for any δ ∈ (0, 1) and λ ∈ (0, 1/R], with probability at least 1− δ, we have

n∑
j=1

Yj ≤ λ

n∑
j=1

E
[
Y 2
j | Fj

]
+

ln(1/δ)

λ
.

Lemma 24 (Azuma’s inequality). Let Y1, . . . , Yn be a martingale difference sequence with respect
to a filtration F1, . . . ,Fn. Assume that |Yj | ≤ B for j ∈ [n]. Then with probability at least 1 − δ,
we have ∣∣∣∣∣∣

n∑
j=1

Yj

∣∣∣∣∣∣ ≤ B
√
2n ln(2/δ).

Next, we need the following concentration inequalities due to Cohen et al. (2020).

Lemma 25. (Cohen et al., 2020, Theorem D.3) Let {Xn}∞n=1 be a sequence of i.i.d. random vari-
ables with expectation µ. Suppose that 0 ≤ Xn ≤ B holds almost surely for all n. Then with
probability at least 1− δ, the following holds for all n ≥ 1 simultaneously:∣∣∣∣∣

n∑
i=1

(Xi − µ)

∣∣∣∣∣ ≤ 2

√
Bµn ln

2n

δ
+B ln

2n

δ
,

∣∣∣∣∣
n∑

i=1

(Xi − µ)

∣∣∣∣∣ ≤ 2

√√√√B

n∑
i=1

Xi ln
2n

δ
+ 7B ln

2n

δ
.

Lemma 26. (Cohen et al., 2020, Lemma D.4) Let {Xn}∞n=1 be a sequence of random variables
adapted to the filtration {Fn}∞n=1. Suppose that 0 ≤ Xn ≤ B holds almost surely for all n. Then
with probability at least 1− δ, the following holds for all n ≥ 1 simultaneously:

n∑
i=1

E [Xi | Fi] ≤ 2

n∑
i=1

Xi + 4B ln (2n/δ) .

17 Experimental Setup Details

We evaluate DOPE+ via the following numerical experiment. We first explain the details of our
CMDP setting, which is a modification of the three-state CMDP instances of Zheng & Ratliff (2020);
Simão et al. (2021); Bura et al. (2022). We define the state space {s1, s2, s3} and the action space
{a1, a2}. In Figure 2, we illustrate the transition probability. For taking a1 at s1, the agent remains
in s1 with probability 0.8, and moves to s2 with probability 0.2. For taking a2 at s1, the agent moves
to s2 with probability 0.8, and remains in s2 with probability 0.2. Furthermore, the same transition
rule is applied to s2 and s3.

Next, we present the reward function f and the cost function g. When the agent takes a1, no reward
or cost occurs. Then it can be written as f(s, a1) = g(s, a1) = 0 for s = s1, s2, s3. When
a2 is taken, the reward occurs depending on the current state. Specifically, we set f(s1, a2) =
1/3, f(s2, a2) = 2/3, and f(s3, a2) = 1. On the other hand, for any state, the same amount of
cost is incurred for a2, i.e, g(s1, a2) = g(s2, a2) = g(s3, a2) = 1. Hence, a2 is an action with a
high reward and a high cost while a1 is an action with zero reward and zero cost. Furthermore, for
taking action a at state s, the agent can observe the noisy reward f(s, a) + ζ1 and the noisy cost
g(s, a)+ζ2, where ζ1, ζ2 are independently drawn from a zero-mean 1/2-sub-Gaussian distribution.
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s1

s2s3
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0.80.8

(a) Taking a1

s1

s2s3

0.8

0.8

0.8

0.2

0.20.2

(b) Taking a2

Figure 2: Transition probability for taking a1 and a2 at each state.

In Figure 1, we compare regret and constraint violation under DOPE+ and DOPE for 200, 000
episodes when H = 30. We consider DOPE as a benchmark algorithm because it provides the best-
known regret bound among the existing algorithms while ensuring zero hard constraint violation.
For the parameters of the experiment, we use H = 30, K = 200, 000, C̄ = 18, C̄b = 15, δ = 0.01,
and the uniform initial distribution of states. To obtain safe baseline policies, we sample a random
policy whose expected cost is less than C̄b. Furthermore, we run the safe baseline policies until the
LP becomes feasible for both DOPE+ and DOPE. In Figure 1, to observe the learning process easily,
we consider the regret and constraint violations incurred after each LP becomes feasible. Our results
are averaged across 5 runs with different random seeds, and we display the 95% confidence interval
with shaded regions. The experiment was conducted on an Apple M2 Pro.

The reader may wonder why the confidence interval in Figure 1a is very narrow, despite the ran-
domness underlying the reward function. There are two main reasons for this. First, we execute the
baseline policy for the initial K0 episodes, during which some level of environmental uncertainty
is resolved. Second, this figure shows the regret in expectation, meaning that the inherent noise in
rewards and costs is not directly reflected. Due to these reason, the confidence is sufficiently high
only with 5 random seeds.

18 Discussion

Limitations Although our work provides improved results, several limitations remain and should
be addressed in future work. First, our algorithm is model-based, which becomes impractical when
the number of states is extensively large. Thus, developing model-free algorithms is essential for
handling more practical scenarios. Second, our approach is limited to tabular MDPs. Extending it to
more general settings such as linear or linear mixture MDPs is nontrivial, as LP-based methods are
not applicable to those cases. Finally, we conjecture that there is still room for improvement in the
regret, particularly by a factor of Õ(

√
S). Addressing this may require more refined analysis that

yields a tighter cost estimator.

Challenges in Improving Õ(
√
S) It is more challenging to reduce the dependence on the S factor

for the zero constraint violation setting because we need to bound the estimation error over all
policies. To be more specific, recall that the crucial step in achieving zero constraint violation is to
bound the estimation error in the transition, i.e., |V πk

h (g, P )− V πk

h (g, Pk)|. In particular, as seen in
the proof of Theorem 1, it boils down to bound the following term:∣∣(Pk − P )V πk

h+1(s, a; g, Pk)
∣∣

where PV πk

h+1(s, a; g, Pk) =
∑

s′∈S P (s′ | s, a, h)V πk

h+1(s
′; g, Pk).

To obtain a tighter bound on this, Azar et al. (2017) came up with the following decomposition:

|(Pk − P )V (s, a; g, Pk)|+ |(Pk − P )
(
V πk

h+1 − V
)
(s, a; g, Pk)|.
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Here, we are free to choose any value function for V that is independent of Pk. The choice of Azar
et al. (2017) was V = V π∗

h+1, where π∗ is an optimal policy. In this case, |(Pk − P )V π∗

h+1| can be
bounded using the Bernstein inequality, since V π∗

h+1 is independent of Pk. Notably, this leads to a
tighter bound on |(Pk − P )V π∗

h+1| compared to directly bounding
∣∣(Pk − P )V πk

h+1

∣∣, which requires
additional steps to handle the dependence of V πk

h+1 on Pk. To bound the second term, they utilized
the fact that V πk

h+1(x; g, P ) ≤ V π∗

h+1(x; g, P ) ≤ V πk

h+1(x; g, Pk) for any x, h, k, which follows from
the optimism of πk. Consequently, these techniques result in a regret improvement by a factor of
Õ(
√
S).

However, this argument cannot be applied to our setting, as we need to bound |V πk

h (g, P ) −
V πk

h (g, Pk)| for all policy πk. In comparison, the analysis of Azar et al. (2017) considered a spec-
ified πk defined by πk(s, h) = argmaxa∈A Qh(s, a; g, Pk), while Theorem 1 has to be true for all
πk ∈ Π to ensure zero constraint violation. This prevents us from exploiting additional properties of
πk as done in Azar et al. (2017). In other words, the challenges in improving a Õ(

√
S) factor stems

from the need to bound the estimation error for all policy, rather than a particular one.


