
Reinforcement Learning Journal 2025

Supplementary Materials
The following content was not necessarily subject to peer review.

Throughout the appendix, for a matrix A, we shall define ωmax (A) and ωmin (A) as the maximum
and minimum eigenvalue of A respectively. Further, the norm of a matrix A is defined as →A→

2
2 =

ωmax

(
A

→
A
)
.

Without loss of generality, we also assume that ε,K, d,R, S, and T are greater than 1 throughout
the appendix.

7 Batched Multinomial Contextual Bandit Algorithm: B-MNL-CB

7.1 Notations

We first list a few matrices, vectors, and scalars that are commonly used throughout this section:

1. Vω = ωId↑d +
∑

t↓Tω

xtx
→
t

2. Ṽω = IK↑K ↑ Vω

3. A(x,ω) = diag(z(x,ω))↓ z(x,ω)z(x,ω)→

4. M(x,ω1,ω2) =
1∫

0
A(x, vω1 + (1↓ v)ω2) dv

5. H
ε
ω := ωIKd↑Kd +

∑
t↓Tω

A(xt,ω
ε)↑ xtx

→
t

6. ϑ(ω) = 12S
↔
log T +Kd+ 8Sω↔1/2(log T +Kd) + 2S3/2

ω
1/2

7. Bω(x) = exp
(↔

6min
{
ε
1/2

ϑ(ϖ) ||x||
V

→1
ω

, 2S
})

8. Hω = ωIKd↑Kd +
∑

t↓Tω

A(xt,ω̂ω)
Bω(xt)

↑ xtx
→
t

9. X̃ω = A(x,ω̂ω)
1/2

↔
Bω(x)

↑ x

10. x̃
(i)
ω = A(x,ω̂ω)

1/2

↔
Bω(x)

ei ↑ x

11. ms = ( {ys = 1}, . . . , {ys = K})→

We now present the regret upper bound for B-MNL-CB by restating Theorem 3.1:

Theorem 7.1. (Regret of B-MNL-CB) With high probability, at the end of T rounds, the regret
incurred by Algorithm 1 is bounded above by RT where

RT ↗ Õ

(
RS

5/4
K

5/2
d

↔

T +RS
5/2

K
2
d
2
ε
1/2

T
1/4 max{e3SK3/2

S
↔1

,ε
1/2

d}

)

Proof. From Lemma 7.10, we have an upper bound for the regret incurred for any round t ↘ Tω+1.
Thus, the regret incurred in batch ϱ + 1 is given by:

Rω+1 ↗ 16RK
2
ϑ(ω)

√
d log(Kd)

(
ςω+1
↔
ςω

)
+32RKε

1/2
dϑ

2(ω)
{
e
3S
K

3/2
S
↔1

√
log(Kd) log d+ 12ε1/2

d

}(
ςω+1

ςω

)
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Choosing the batch lengths as ςω = T
1↔2→ω

results in the following observation (Hanna et al., 2023;
Gao et al., 2019):

ςω+1
↔
ςω

↗ 2
↔

T
ςω+1

ςω
↗ T

1
4

Thus, the regret incurred in batch ϱ + 1 is bounded by:

Rω+1 ↗ 32RK
2
ϑ(ω)

√
d log(Kd)

↔

T+32RKε
1/2

dϑ
2(ω)

{
e
3S
K

3/2
S
↔1

√
log(Kd) log d+ 12ε1/2

d

}
T

1/4

We now trivially upper bound the regret for T1 as Rς1 = R
↔
T . Thus, adding the regret incurred in

each batch over all batches ϱ ↘ [1, log log T + 1] results in:

RT ↗

(
32RK

2
ϑ(ω)

√
d log(Kd) +R

)↔

T log log T

+ 32RKε
1/2

dϑ
2(ω)

{
e
3S
K

3/2
S
↔1

√
log(Kd) log d+ 12ε1/2

d

}
T

1/4 log log T

From Lemma 7.1, setting ω = S
↔1/2

Kd log T along with the fact that Kd + log T ↗ Kd log T
results in ϑ(ω) ↗ 22S5/4

↔
Kd log T . Substituting the value of ϑ(ω) gives us:

RT ↗

(
704S5/4

RK
5/2

d

√
log T log(Kd) +R

)↔

T log log T

+ 14784RS
5/2

K
2
d
2
ε
1/2

{
e
3S
K

3/2
S
↔1

√
log(Kd) log d+ 12ε1/2

d

}
T

1/4 log2 T log log T

This concludes the proof.

7.2 Supporting Lemmas for Theorem 7.1

Lemma 7.1. For batch ϱ, denoted by Tω , let {x1, . . . ,xϑω} be a set of i.i.d arms and {r1, . . . , rϑω}

be the corresponding rewards associated with these arms, where ςω = |Tω |. Define ω̂ω to be the
MLE estimate for this batch, i.e

ω̂ω = argmin
ω

∑

s↓Tω

K∑

i=1

{ys = i} log zi(xs,ω) +
ω

2
→ω→

2
2

Let the optimal Hessian matrix for batch ϱ, Hε
ω , be defined as in Section 7.1. Then, with probability

greater than 1↓ 1
T 2 , we have:

∣∣∣
∣∣∣ωε

↓ ω̂ω

∣∣∣
∣∣∣
H

ε
ω

↗ 12S
√
log T +Kd+ 8Sω↔1/2(log T +Kd) + 2S3/2

ω
1/2

Proof. For a batch ϱ, we define the following quantity:

Gω(ω1,ω2) =
∑

t↓Tω

M(x,ω1,ω2)↑ xtx
→
t + ωIKd↑Kd

Then,
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∣∣∣
∣∣∣ωε

↓ ω̂ω

∣∣∣
∣∣∣
H

ε
ω

(i)
↗

↔
1 + 2S

∣∣∣
∣∣∣ωε

↓ ω̂ω

∣∣∣
∣∣∣
Gω(ωε,ω̂ω)

↗
↔
1 + 2S

∣∣∣
∣∣∣Gω(ω

ε
, ω̂ω)

(
ω
ε
↓ ω̂ω

)∣∣∣
∣∣∣
G

→1
ω (ωε,ω̂ω)

↗
↔
1 + 2S

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

t↓Tω

[
M(x,ωε

, ω̂ω)↑ xtx
→
t + IKd↑Kd

] (
ω
ε
↓ ω̂ω

)
∣∣∣∣∣∣

∣∣∣∣∣∣
G

→1
ω (ωε,ω̂ω)

(ii)
↗

↔
1 + 2S

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

t↓Tω

[
M(x,ωε

, ω̂ω)↑ x
→
t

] (
ω
ε
↓ ω̂ω

)
↑ xt + ω

(
ω
ε
↓ ω̂ω

)
∣∣∣∣∣∣

∣∣∣∣∣∣
G

→1
ω (ωε,ω̂ω)

(iii)
↗

↔
1 + 2S

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

t↓Tω

[
z(xt,ω

ε)↓ z(xt, ω̂ω)
]
↑ xt ↓ ωω̂ω

∣∣∣∣∣∣

∣∣∣∣∣∣
G

→1
ω (ωε,ω̂ω)

+ ω
↔
1 + 2S ||ω

ε
||
G

→1
ω (ωε,ω̂ω)

(iv)
↗ (1 + 2S)

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

t↓Tω

[
z(xt,ω

ε)↓ z(xt, ω̂ω)
]
↑ xt ↓ ωω̂ω

∣∣∣∣∣∣

∣∣∣∣∣∣
H

ε →1
ω

+
√

ω(1 + 2S) ||ωε
||2

(v)
↗ 3S

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

t↓Tω

[z(xt,ω
ε)↓ms]↑ xt

∣∣∣∣∣∣

∣∣∣∣∣∣
H

ε →1
ω

+
↔
3ω1/2

S
3/2

where (i) follows from Lemma 9.2 , (ii) follows from Mixed Product Property, (iii) follows from
the Mean value Theorem and the triangle inequality, (iv) follows from the fact that Gω ↭ ωI and
Lemma 9.2, and (v) follows from Lemma 9.3 and the fact that ||ωε

||2 ↗ S.

Now, consider the following term:
∣∣∣∣∣∣

∣∣∣∣∣∣

∑

t↓Tω

[z(xt,ω
ε)↓ms]↑ xt

∣∣∣∣∣∣

∣∣∣∣∣∣
H

ε →1
ω

=

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

t↓Tω

H
ε ↔1/2
ω ([z(xt,ω

ε)↓ms]↑ xt)

∣∣∣∣∣∣

∣∣∣∣∣∣
2

= max
y↓B2(Kd)


y,

∑

t↓Tω

H
ε ↔1/2
ω ([z(xt,ω

ε)↓ms]↑ xt)



where B2(Kd) represents the Kd↓dimensional unit ball with respect to the φ2 norm. We construct
an ↼↓net for this unit ball, denoted as Cϖ. For any y ↘ B2(Kd), we define yϖ = argmin

x↓Cϑ

||y ↓ x||2,

then,

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

t↓Tω

[z(xt,ω
ε)↓ms]↑ xt

∣∣∣∣∣∣

∣∣∣∣∣∣
H

ε →1
ω

= max
y↓B2(Kd)


y,

∑

t↓Tω

H
ε ↔1/2
ω ([z(xt,ω

ε)↓ms]↑ xt)



= max
y↓B2(Kd)


(y ↓ yϖ) + yϖ,

∑

t↓Tω

H
ε ↔1/2
ω ([z(xt,ω

ε)↓ms]↑ xt)



Thus, an application of the Cauchy-Schwarz inequality along with the fact that ||y ↓ yϖ||2 ↗ ↼ gives
us

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

t↓Tω

[z(xt,ω
ε)↓ms]↑ xt

∣∣∣∣∣∣

∣∣∣∣∣∣
H

ε →1
ω

↗
1

1↓ ↼


yϖ,

∑

t↓Tω

H
ε ↔ 1

2
ω ([z(xt,ω

ε)↓ms]↑ xt)


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The above term can be bounded using the Bernstein Inequality (Lemma 9.4), which has been done
in Lemma 7.2. We note that |Cϖ| ↗

(
2
ϖ

)Kd. We now set ↼ = 0.5 and ϖ = (T 2
|Cϖ|)↔1 and then

perform a union bound over Cϖ. We get that with probability greater than 1↓ 1
T 2 , we have:

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

t↓Tω

[z(xt,ω
ε)↓ms]↑ xt

∣∣∣∣∣∣

∣∣∣∣∣∣
H

ε →1
ω

↗ 2

(
2 log (T 24Kd) +

4

3
ω
↔1/2 log(T 24Kd)

)

↗ 4
√

log T +Kd+
8

3
ω
↔1/2(log T +Kd)

Substituting this into the original bound finishes the proof.

Lemma 7.2. Let y be a fixed vector with ||y||2 ↗ 1, then, with probability at least 1↓ ϖ

∑

t↓Tω

[
y
→
H

ε ↔ 1
2

ω [z(xt,ω
ε)↓ms]↑ xt

]
↗


2 log

1

ϖ
+

4

3
↔
ω
log

1

ϖ

Proof. Denote ↽t = y
→
H

ε ↔ 1
2

ω ([z(xt,ω
ε)↓ms]↑ xt). From Lemma 9.5, we have that E [↽t] =

0.

Also,

V [↽t] = E

↽
2
t


↓ E [↽t]

2 (i)
= E


↽t↽

→
t



= E
[
y
→
H

ε ↔ 1
2

ω ([z(xt,ω
ε)↓ms]↑ xt) ([z(xt,ω

ε)↓ms]↑ xt)
→
H

ε ↔ 1
2

ω y

]

(ii)
= y

→
H

ε ↔ 1
2

ω E
[
[z(xt,ω

ε)↓ms] [z(xt,ω
ε)↓ms]

→
↑ xtx

→
t

]
H

ε ↔ 1
2

ω y

= y
→
H

ε ↔ 1
2

ω

(
E
[
[z(xt,ω

ε)↓ms] [z(xt,ω
ε)↓ms]

→
]
↑ xtx

→
t

)
H

ε ↔ 1
2

ω y

(iii)
= y

→
H

ε ↔ 1
2

ω

(
A(xt,ω

ε)↑ xtx
→
t

)
H

ε ↔ 1
2

ω y
(iv)
= y

→
H

ε ↔ 1
2

ω

(
H

ε
ω ↓ ωI

)
H

ε ↔ 1
2

ω y

↗ y
→
y ↗ 1

where (i) follows from the fact that ↽t is a scalar and E[↽t] = 0, (ii) follows from the fact that
(A↑B)→ = A

→
↑ B

→ and the mixed-product property of the Kronecker Product, (iii) follows
from Lemma 9.5, and (iv) follows from the definition of Hε

ω .

Finally, we note that

|↽t ↓ E [↽t]| = |↽t| =
∣∣∣y→

H
ε ↔ 1

2
ω ([z(xt,ω

ε)↓ms]↑ xt)
∣∣∣
(i)
↗ ||y||2

∣∣∣
∣∣∣Hε ↔ 1

2
ω ([z(xt,ω

ε)↓ms]↑ xt)
∣∣∣
∣∣∣
2

(ii)
↗

∣∣∣
∣∣∣Hε ↔ 1

2
ω

∣∣∣
∣∣∣ ||(z(xt,ω

ε)↓ms)↑ xt||2

(iii)
↗

1
↔
ω
||z(xt,ω

ε)↓ms||2 ||xt||2

(iv)
↗

1
↔
ω
(||z(xt,ω

ε)||2 + ||ms||2)
(v)
↗

2
↔
ω

where (i) follows from Cauchy-Schwarz, (ii) follows from the fact that ||y||2 ↗ 1 and ||Ax||2 ↗

||A|| ||x||2, (iii) follows from H
ε
ω ↭ ωI and the fact that ||a↑ b||2 = ||a||2 ||b||2, (iv) follows

from ||x||2 ↗ 1 and uses the triangle inequality, and (v) follows from the fact →z(x,ω)→2 ↗

→z(x,ω)→1 ↗ 1.

Substituting v = 1 and b = 2↗
ϱ

in Lemma 9.4 finishes the proof.
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Lemma 7.3. Let Ṽω and H
ε
ω be the design and optimal Hessian matrices defined as in Section 7.1.

Then, we have that
Ṽω ↫ εH

ε
ω

Proof. From the definition of ε, we know that A(x,ω) ↭ 1
ςI .

Hence, using the fact that ε > 1, we can say that

Ṽω = IK↑K ↑ Vω = IK↑K ↑



ωId↑d +
∑

t↓Tω

xtx
→
t



 = ωIKd↑Kd + IK↑K ↑

∑

t↓Tω

xtx
→
t

↫ ωIKd↑Kd + ε

∑

t↓Tω

A(xt,ω
ε)↑ xtx

→
t ↫ εH

ε
ω

Lemma 7.4. Let Hε
ω and Hω be the optimal and proxy Hessian matrices in batch ϱ as defined in

Section 7.1. Then, we have that
Hω ↫ H

ε
ω

Proof. From Lemma 9.1, we have that

A(x, ω̂ω) ↫ A(x,ωε) exp
(↔

6
∣∣∣
∣∣∣(I ↑ x

→)(ωε
↓ ω̂ω)

∣∣∣
∣∣∣
2

)

We can bound
∣∣∣
∣∣∣(I ↑ x

→)(ωε
↓ ω̂ω)

∣∣∣
∣∣∣
2

as follows:

∣∣∣
∣∣∣(I ↑ x

→)(ωε
↓ ω̂ω)

∣∣∣
∣∣∣
2

(i)
↗ 2S

∣∣∣∣I ↑ x
→∣∣∣∣

2

(ii)
= 2S


ωmax ((I ↑ x)(I ↑ x→))

(iii)
= 2S


ωmax (I ↑ xx→)

(iv)
↗ 2S

where (i) uses the sub-multiplicativity of the norm, a triangle inequality, and the fact that
||ω

ε
||2 ↗ S, (ii) uses the definition of the norm, i.e., ||A||2 =

√
ωmax (A→A), (iii) fol-

lows from the Mixed-Product property of Kronecker Products, and (iv) follows from the fact that
ω (A↑B) = ω(A)ω(B) and since xx

→ is a rank-one matrix, the only eigenvalues are →x→
2
2 and

0, and 0 ↗ ||x||2 ↗ 1.

We can also bound
∣∣∣
∣∣∣(I ↑ x

→)(ωε
↓ ω̂ω)

∣∣∣
∣∣∣
2

as follows:

∣∣∣
∣∣∣(I ↑ x

→)(ωε
↓ ω̂ω)

∣∣∣
∣∣∣
2
=

∣∣∣
∣∣∣(I ↑ x

→)Hε ↔1/2
ω H

ε 1/2
ω (ωε

↓ ω̂ω)
∣∣∣
∣∣∣
2

(i)
↗

∣∣∣
∣∣∣(I ↑ x

→)Hε ↔1/2
ω

∣∣∣
∣∣∣
2

∣∣∣
∣∣∣ωε

↓ ω̂ω

∣∣∣
∣∣∣
H

ε
ω

(ii)
↗ ε

1/2
ϑ(ω)

∣∣∣
∣∣∣(I ↑ x

→)ε1/2
Ṽ

↔1/2
ω

∣∣∣
∣∣∣
2

(iii)
= ε

1/2
ϑ(ω)


ωmax

(
Ṽ

↔1/2
ω (I ↑ x)(I ↑ x→)Ṽ ↔1/2

ω

)

(iv)
= ε

1/2
ϑ(ω)


ωmax

(
(I ↑ V

↔1/2
ω )(I ↑ x)(I ↑ x→)(I ↑ V

↔1/2
ω )

)

(v)
= ε

1/2
ϑ(ω)


ωmax

(
I ↑ V

↔1/2
ω xx→V

↔1/2
ω

)
(vi)
= ε

1/2
ϑ(ω) ||x||

V
→1
ω
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where (i) follows from the sub-multiplicativity of the norm, (ii) follows from Lemma 7.1 and
Lemma 7.3, (iii) follows from the definition of the norm, (iv) follows from the definition of Ṽω and
the fact that (A↑B)n = A

n
↑B

n, (v) follows from the Mixed-Product property, and (vi) follows
from ω(A↑B) = ω(A)ω(B).

Thus, we can say that
∣∣∣
∣∣∣(I ↑ x

→)(ωε
↓ ω̂ω)

∣∣∣
∣∣∣
2
↗ min

{
ϑ(ω)ε1/2

||x||
V

→1
ω

, 2S
}

.

Define Bω(x) = exp
(↔

6min
{
ϑ(ω)ε1/2

||x||
V

→1
ω

, 2S
})

. Then, A(x, ω̂ω) ↫ A(x,ωε)Bω(x).
Hence, we can say,

Hω = ωIKd↑Kd +
∑

t↓ω

A(xt, ω̂ω)

Bω(xt)
↑ xtx

→
t ↫ ωIKd↑Kd +

∑

t↓ω

A(xt,ω
ε)↑ xtx

→
t = H

ε
ω

Lemma 7.5. (Proposition 1 , Zhang & Sugiyama (2023)) For any arm x, we have that,
∣∣ε→

z(x,ωε)↓ ε
→
z(x,ωj)

∣∣ ↗ ↼1(j,x,ω) + ↼2(j,x,ω)

where

↼1(j,x,ω) = ϑ(ω)
∣∣∣
∣∣∣H↔1/2

j (I ↑ x)A(x,ωj)ε
∣∣∣
∣∣∣
2

and ↼2(j,x,ω) = 3Rϑ(ω)2
∣∣∣
∣∣∣(I ↑ x

→)H↔1/2
j

∣∣∣
∣∣∣
2

2

Proof. We provide the proof for the sake of completeness:

∣∣ε→
z(x,ωε)↓ ε

→
z(x,ωj)

∣∣ =

∣∣∣∣∣

K∑

i=1

⇀i [zi(x,ω
ε)↓ zi(x,ωj)]

∣∣∣∣∣

=

∣∣∣∣∣

K∑

i=1

⇀i→zi(x,ωj)
→ 

(IK↑K ↑ x
→)(ωε

↓ ωj)

+

K∑

i=1

⇀i

∣∣∣∣(IK↑K ↑ x
→)(ωε

↓ ωj)
∣∣∣∣
Zi

∣∣∣∣∣

↗
∣∣ε→

A(x,ωj)(IK↑K ↑ x
→)(ωε

↓ ωj)
∣∣+

∣∣∣∣∣

K∑

i=1

⇀i

∣∣∣∣(IK↑K ↑ x
→)(ωε

↓ ωj)
∣∣∣∣2
Zi

∣∣∣∣∣

where

Zi =

1

0

(1↓ v)≃2
zi(x, vω

ε + (1↓ v)ωj) dv

Beginning with the first term :

∣∣ε→
A(x,ωj)(IK↑K ↑ x

→)(ωε
↓ ωj)

∣∣ =
∣∣∣ε→

A(x,ωj)(IK↑K ↑ x
→)Hε ↔1/2

j H
ε 1/2
j (ωε

↓ ωj)
∣∣∣

(i)
↗ ||ω

ε
↓ ωj ||Hε

j

∣∣∣
∣∣∣ε→

A(x,ωj)(IK↑K ↑ x
→)Hε ↔1/2

j

∣∣∣
∣∣∣
2

↗ ϑ(ω)
∣∣∣
∣∣∣Hε ↔1/2

j (IK↑K ↑ x)A(x,ωj)ε
∣∣∣
∣∣∣
2

(ii)
↗ ϑ(ω)

∣∣∣
∣∣∣H↔1/2

j (IK↑K ↑ x)A(x,ωj)ε
∣∣∣
∣∣∣
2

where (i) follows from the sub-multiplicativity of the norm and (ii) is due to Lemma 7.4.
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For the second term, for some k ↘ [1,K], we make the following observation:

Zk =

1

0

(1↓ v)≃2
zk(x, vω

ε + (1↓ v)ωj) dv ↫ 3I

1

0

(1↓ v) dv ↫ 3I

Thus, we have:
∣∣∣∣∣

K∑

i=1

⇀i

∣∣∣∣(IK↑K ↑ x
→)(ωε

↓ ωj)
∣∣∣∣2
Zi

∣∣∣∣∣ ↗

∣∣∣∣∣

K∑

i=1

3⇀i
∣∣∣∣(IK↑K ↑ x

→)(ωε
↓ ωj)

∣∣∣∣2
2

∣∣∣∣∣

↗ 3R
∣∣∣
∣∣∣(IK↑K ↑ x

→)Hε ↔1/2
j H

ε 1/2
j (ωε

↓ ωj)
∣∣∣
∣∣∣
2

2

↗ 3R ||ω
ε
↓ ωj ||

2
H

ε
j

∣∣∣
∣∣∣(IK↑K ↑ x

→)Hε ↔1/2
j

∣∣∣
∣∣∣
2

2

↗ 3Rϑ(ω)2
∣∣∣
∣∣∣(IK↑K ↑ x

→)Hε ↔1/2
j

∣∣∣
∣∣∣
2

2

↗ 3Rϑ(ω)2
∣∣∣
∣∣∣(IK↑K ↑ x

→)H↔1/2
j

∣∣∣
∣∣∣
2

2

Lemma 7.6. Let xε
t be the optimal arm at round t, i.e x

ε
t = argmax

x↓Xt
ε
→
z(x,ωε). Then, the

optimal arm never gets eliminated in any round.

Proof. From Lemma 7.5, we know that
∣∣ε→

z(x,ωε)↓ ε
→
z(x,ωj)

∣∣ ↗ ↼1(j,x,ω) + ↼2(j,x,ω)

Also, from Algorithm 1, we have the definitions of UCB(j,x,ω) and LCB(j,x,ω) as:

UCB(j,x,ω) = ε
→
z(x,ωj) + ↼1(j,x,ω) + ↼2(j,x,ω)

LCB(j,x,ω) = ε
→
z(x,ωj)↓ ↼1(j,x,ω)↓ ↼2(j,x,ω)

From Algorithm 1, we know that an arm x ↘ Xt gets eliminated if UCB(j,x,ω) ↗

maxy↓Xt LCB(j,y,ω). Thus, showing that UCB(j,xε
t ,ω) ⇐ maxy↓Xt LCB(j,y,ω) accounts to

showing that xε
t never gets eliminated.

We assume that argmax
y↓Xt

LCB(j,y,ω) = y. Then, for any arm x ↘ Xt, we have that

LCB(j,x,ω) ↗ max
y↓Xt

LCB(j,y,ω)

= ε
→
z(y,ωj)↓ ↼1(j,y,ω)↓ ↼2(j,y,ω)

(i)
↗


ε
→
z(y,ωε) + ↼1(j,y,ω) + ↼2(j,y,ω)


↓ ↼1(j,y,ω)↓ ↼2(j,y,ω)

= ε
→
z(y,ωε)

(ii)
↗ ε

→
z(xε

t ,ω
ε)

(iii)
↗ ε

→
z(xε

t ,ωj) + ↼1(j,x
ε
t ,ω) + ↼2(j,x

ε
t ,ω)

= UCB(j,xε
t ,ω)

where (i) follows from Lemma 7.5, (ii) follows from the fact that xε
t = argmax

y↓Xt

ε
→
z(y,ωε), and

(iii) again follows from Lemma 7.5.
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Lemma 7.7. Let Bω(x) be as defined in Section 7.1. Then, we have that

Bω(x) ↗

1

2
e
3S
ϑ(ω)ε1/2

S
↔1

→x→
V

→1
ω

+ 1

Proof.


Bω(x) = exp

(
↔
6min


S,

1

2
ϑ(ω)ε1/2

→x→
V

→1
ω

)
↗

1

2
e
3S
ϑ(ω)ε1/2

S
↔1

→x→
V

→1
ω

+ 1

where the inequality follows from Lemma 9.6 by choosing min{2S, ϑ(ω)ε1/2
→x→

V
→1
ω

} =

ϑ(ω)ε1/2
→x→

V
→1
ω

and M =
↔
6S.

Lemma 7.8. Let ↼1(ϱ,x,ω) be as defined in Lemma 7.5. Then, we have

E
X↘Dω+1


max
x↓X

↼1(ϱ,x,ω)


↗

8Rε
1/2

K
5/2

de
3S
ϑ(ω)2S↔1

↔
logKd log d

ςω
+
4RK

2
d
1/2

ϑ(ω)
√
log(Kd)

↔
ςω

Proof.

E
X↘Dω+1


max
x↓X

↼1(ϱ,x,ω)


= E

X↘Dω+1


max
x↓X

ϑ(ω)
∣∣∣
∣∣∣H↔1/2

ω (I ↑ x)A(x, ω̂ω)ε
∣∣∣
∣∣∣
2



(i)
↗ ϑ(ω) E

X↘Dω+1


max
x↓X

∣∣∣
∣∣∣H↔1/2

ω (I ↑ x)A(x, ω̂ω)
1/2

∣∣∣
∣∣∣
2
||ε||

A(x,ω̂ω)



(ii)
↗ Rϑ(ω) E

X↘Dω+1


max
x↓X

∣∣∣
∣∣∣A(x, ω̂ω)

1/2(I ↑ x
→)H↔1/2

ω

∣∣∣
∣∣∣
2



(iii)
↗ Rϑ(ω) E

X↘Dω+1


max
x↓X

∣∣∣∣

∣∣∣∣


Bω(x)X̃
→
ω H

↔1/2
ω

∣∣∣∣

∣∣∣∣
2



(iv)
↗ 4Rϑ(ω)K2


d logKd

ςω


1

2
e
3S
ϑ(ω)ε1/2

S
↔1 E

X↘Dω+1


max
x↓X

→x→
V

→1
ω


+ 1



(v)
↗ 4Rϑ(ω)K2


d logKd

ςω


2e3Sϑ(ω)ε1/2

S
↔1


Kd log d

ςω
+ 1



↗
8Rε

1/2
K

5/2
de

3S
ϑ(ω)2S↔1

↔
logKd log d

ςω
+

4RK
2
d
1/2

ϑ(ω)
√
log(Kd)

↔
ςω

where (i) follows from ||Ax||2 ↗ ||A||2 ||x||2, (ii) follows from the fact that A(x,ω) ↫ I ,
(iii) follows from the defintion of X̃ , (iv) follows from Lemma 7.7, the fact that max {ab} ↗

max {a}max {b}, and Lemma 7.18, and (v) follows from Lemma 7.17.

Lemma 7.9. Let ↼2(ϱ,x,ω) be as defined in Lemma 7.5. Then, we have

E
X↘Dω+1

[↼2(ϱ,x,ω)] ↗
96Rεϑ(ω)2

ςω
Kd

2
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Proof. Recall from Lemma 7.5, in one of the intermediate steps, we have that

↼2(ϱ,x,ω) = 3Rϑ(ω)2
∣∣∣
∣∣∣(I ↑ x

→)Hε ↔1/2
ω

∣∣∣
∣∣∣
2

2

Thus, we have

E
X↘Dω+1

[↼2(ϱ,x,ω)] = E
X↘Dω+1


max
x↓X

3Rϑ(ω)2
∣∣∣
∣∣∣(I ↑ x

→)Hε ↔1/2
ω

∣∣∣
∣∣∣
2

2



= 3Rϑ(ω)2 E
X↘Dω+1


max
x↓X

∣∣∣
∣∣∣(I ↑ x

→)Hε ↔1/2
ω

∣∣∣
∣∣∣
2

2



(i)
↗ 3Rεϑ(ω)2 E

X↘Dω+1


max
x↓X

∣∣∣
∣∣∣(I ↑ x

→)Ṽ ↔1/2
ω

∣∣∣
∣∣∣
2

2



(ii)
↗ 3Rεϑ(ω)2 E

X↘Dω+1


max
x↓X

∣∣∣
∣∣∣(I ↑ x

→)(I ↑ V
↔1/2
ω )

∣∣∣
∣∣∣
2

2



(iii)
↗ 3Rεϑ(ω)2 E

X↘Dω+1


max
x↓X

||x||
2
V

→1
ω


(iv)
↗

48Rεϑ(ω)2

ςω
(K + 1)d2 ↗

96Rεϑ(ω)2

ςω
Kd

2

where (i) follows from Lemma 7.3, (ii) follows from the definition of Ṽω , (iii) follows from the
Mixed-Product Property and the fact that ω(A ↑B) = ω(A)ω(B), and (iv) follows from Lemma
7.16.

Lemma 7.10. Let t be a time round in batch ϱ+1, i.e t ↘ Tω . Then, the expected regret incurred at
round t, denoted as Rt can be bounded as:

Rt ↗
32RKε

1/2
dϑ(ω)2

ςω

{
e
3S
K

3/2
S
↔1

√
log(Kd) log d+ 12ε1/2

d

}
+

16RK
2
d
1/2

ϑ(ω)
√

log(Kd)
↔
ςω

Proof. Using Lemma 7.5,

ε
→
z(xε

t ,ω
ε)↓ε

→
z(xt,ω

ε) ↗ ε
→
z(xε

t ,ωω)↓ε
→
z(xt,ωω)+↼1(ϱ,x

ε
t ,ω)+↼2(ϱ,x

ε
t ,ω)+↼1(ϱ,xt,ω)+↼2(ϱ,xt,ω)

Since xt was not eliminated, we have UCB(ϱ,xt,ω) ⇐ max
y↓X

LCB(ϱ,y,ω) ⇐ LCB(ϱ,xε
t ,ω) since

x
ε
t never gets eliminated (Lemma 7.6). Thus,

ε
→
z(xt,ωω) + ↼1(ϱ,xt,ω) + ↼2(ϱ,xt,ω) ⇐ ε

→
z(xε

t ,ωω)↓ ↼1(ϱ,x
ε
t ,ω)↓ ↼2(ϱ,x

ε
t ,ω)

Thus, we get

ε
→
z(xε

t ,ω
ε)↓ ε

→
z(xt,ω

ε) ↗ 2↼1(ϱ,xt,ω) + 2↼2(ϱ,xt,ω) + 2↼1(ϱ,x
ε
t ,ω) + 2↼2(ϱ,x

ε
t ,ω)

↗ 4max
x↓X

↼1(ϱ,x,ω) + 4max
x↓X

↼2(ϱ,x,ω)

Taking an expectation on both sides, we get

E
X↘Dω+1


ε
→
z(xε

t ,ω
ε)↓ ε

→
z(xt,ω

ε)

↗ 4

(
E

X↘Dω+1


max
x↓X

↼1(ϱ,x,ω) + max
x↓X

↼2(ϱ,x,ω)

)

↗
32RKε

1/2
dϑ(ω)2

ςω

{
e
3S
K

3/2
S
↔1

√
log(Kd) log d+ 12ε1/2

d

}
+

16RK
2
d
1/2

ϑ(ω)
√

log(Kd)
↔
ςω

which follows from Lemma 7.8 and Lemma 7.9.
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7.3 Supporting Results on Optimal Designs for 7

Recall from Section 7.1,

X̃ω =
A(x, ω̂ω)

1
2

√
Bω(x)

↑ x

Also, recall that at each round t ↘ [T ], the feasible set of context vectors Xt is being sampled from
some distribution D. For a given batch ϱ, we denote Dω to be the distribution of the pruned arm-sets
post the successive elimination procedure (Section 3.1). Thus, we have that Dω+1 ⇒ Dω .

We now define K different partitions of X̃ω as follows:

x̃
(i)
ω =

A(x, ω̂ω)
1
2

√
Bω(x)

ei ↑ x

where i ↘ [K] and ei is the K↓dimensional standard basis vector. We first show a few relations
between X̃ω and x̃

(i)
ω :

Lemma 7.11. Let X̃ω and x̃
(i)
ω be defined as above. Then, we have

X̃ωX̃
→
ω =

K∑

i=1

x̃
(i)
ω x̃

(i) →
ω

Proof.

K∑

i=1

x̃
(i)
ω x̃

(i) →
ω =

K∑

i=1


A(x, ω̂ω)

1
2

√
Bω(x)

ei ↑ x


e
→
i
A(x, ω̂ω)

1
2

√
Bω(x)

↑ x
→



=
1

Bω(x)

K∑

i=1

A(x, ω̂ω)
1
2 eie

→
i A(x, ω̂ω)

1
2 ↑ xx

→

=
1

Bω(x)
A(x, ω̂ω)

1
2


K∑

i=1

eie
→
i


A(x, ω̂ω)

1
2 ↑ xx

→

=
A(x, ω̂ω)

Bω(x)
↑ xx

→ = X̃ωX̃
→
ω

where we use the fact that
K∑
i=1

eie
→
i = IK↑K .

Lemma 7.12. Let M ↘ RKd be any positive-semidefinite matrix. Then,

ωmax

(
X̃

→
ω MX̃ω

)
↗

K∑

i=1

∣∣∣
∣∣∣x̃(i)

ω

∣∣∣
∣∣∣
2

M

Proof.

ωmax

(
X̃

→
ω MX̃ω

)
(i)
= ωmax

(
X̃ωX̃

→
ω M

)
(ii)
= ωmax


K∑

i=1

x̃
(i)
ω x̃

(i) →
ω M



(iii)
↗

K∑

i=1

ωmax

(
x̃
(i)
ω x̃

(i) →
ω M

)
(iv)
=

K∑

i=1

ωmax

(
x̃
(i) →
ω Mx̃

(i)
ω

)
=

K∑

i=1

∣∣∣
∣∣∣x̃(i)

ω

∣∣∣
∣∣∣
2

M
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where (i) follows from the cyclic property of eigenvalues, (ii) follows from Lemma 7.11, (iii)
follows from the fact that ωmax (A+B) ↗ ωmax (A) + ωmax (B), and (iv) again follows from
the cyclic property of eigenvalues.

We first redefine the Distributional Optimal Design (Definition ??) for a set X .

⇁(X ) =


⇁G(X ) w.p. 12
⇁
S
Mi

(X ) w.p.pi

2

where ⇁G is the G-optimal design and ⇁
S
Mi

represents the Softmax Policy with respect to Mi. We
refer the reader to Definition ?? for more details.

We now define a few notations regarding some of the information and design matrices used through-
out this section.

1. IϱD(⇁) = E
X↘D


E

x↘φ(X )
X̃ωX̃

→
ω



2. W(i)
D (⇁) = E

X↘D


E

x↘φ(X )
x̃
(i)
ω x̃

(i) →
ω



3. W(0)
D (⇁) = E

X↘D


E

x↘φ(X )
xx

→


Suppose Algorithm 2 is called with the inputs ϱ and Sω , where ϱ is the current batch index. Then,
the policy returned by the algorithm is denoted by ⇁ω , where

⇁ω =
1

K + 1


K∑

i=0

⇁ω,i



where ⇁ω,0 and ⇁ω,i i ↘ [K] represents the Distributional Optimal Design learned over Sω and
Fi(Sω ,ϱ), i ↘ [K] respectively. Here Fi is as defined in Equation 8.

We now state a few results that relate the design matrices H and V as well as the matrices |I and
W.
Lemma 7.13. (Lemma A.16, Sawarni et al. (2024)) Let Vω and Hω as defined in Section 7.1 and
W

(0)
D (⇁ω) and I

ϱ
D(⇁ω) be as defined in Section 7.3.

Then, with probability at least 1↓ 1
T 2 , we have that

Vω ↭ ςω

8
W(0)

D (⇁ω)

Hω ↭ ςω

8
IϱD(⇁ω)

Lemma 7.14. For all i ↘ [0,K], we have that

(K + 1)IϱD(⇁ω) ↭ IϱD(⇁ω,i)

Proof.

IϱD(⇁ω) = E
X↘D


E

x↘φω(X )
X̃ωX̃

→
ω


(i)
↭ (K + 1)↔1 E

X↘D

[
K∑

i=0

E
x↘φω,i(X )

X̃ωX̃
→
ω

]

↭ (K + 1)↔1 E
X↘D


E

x↘φω,i(X )
X̃ωX̃

→
ω


= (K + 1)↔1IϱD(⇁ω,i)
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where (i) follows from the definition of ⇁ω .

Lemma 7.15. For all i ↘ [K], we have that

IϱD(⇁) ↭ W(i)
D (⇁)

Proof.

IϱD(⇁) = E
X↘D


E

x↘φ(X )
X̃ωX̃

→
ω


(i)
= E

X↘D

[
E

x↘φ(X )

K∑

i=1

x̃
(i)
ω x̃

(i) →
ω

]
↭ E

X↘D


E

x↘φ(X )
x̃
(i)
ω x̃

(i) →
ω


= W(i)

D (⇁)

Using the lemmas stated above, we now derive a few results.

Lemma 7.16. Let Vω be as defined in Section 7.1 and ςω be the length of the ϱ batch, i.e |Tω = ςω .
Then, we have

E
X↘Dω+1


max
x↓X

||x||
2
V

→1
ω


↗

16

ςω
(K + 1)d2

Proof.

E
X↘Dω+1


max
x↓X

||x||
2
V

→1
ω


(i)
↗

8

ςω
E

X↘Dω+1


max
x↓X

||x||
2
W(0) →1

Dω
(φω)



(ii)
↗

8

ςω
(K + 1) E

X↘Dω


max
x↓X

||x||
2
W(0) →1

Dω
(φω,0)



(iii)
↗

16

ςω
(K + 1) E

X↘Dω


max
x↓X

||x||
2
W(0) →1

Dω
(φG)



(iv)
↗

16

ςω
(K + 1)d2

where (i) follows from Lemma 7.13, (ii) follows from Lemma 7.14 and the fact that Dω+1 ⇒ Dω

and hence, EDω+1 ↗ EDω , (iii) follows from the definition of ⇁ω,0 and uses the fact that ⇁ω,0 ↭ φG
2 ,

and (iv) follows from Lemma 9.8.

Lemma 7.17. Let Vω be as defined in Section 7.1 and ςω be the length of the ϱ batch, i.e |Tω | = ςω .
Then, we have

E
X↘Dω+1


max
x↓X

||x||
V

→1
ω


↗ 4


Kd log d

ςω
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Proof.

E
X↘Dω+1


max
x↓X

||x||
V

→1
ω


(i)
↗


8

ςω
E

X↘Dω


max
x↓X

||x||W(0) →1
Dω

(φω)



(ii)
↗


8

ςω
(K + 1) E

X↘Dω


max
x↓X

||x||W(0) →1
Dω

(φω,0)



(iii)
↗


8

ςω
(K + 1)d log d

↗ 4


Kd log d

ςω

where (i) follows from Lemma 7.13 and the fact that Dω+1 ⇒ Dω , (ii) follows in a similar manner
as Lemma 7.14, and (iii) follows from Lemma 9.7.

Lemma 7.18. Let X̃ω and Hω be as defined in Section 7.1. Denote ςω = |Tω |. Then, we have that

E
X↘Dω+1


max
x↓X

∣∣∣
∣∣∣X̃→

ω H
↔1/2
ω

∣∣∣
∣∣∣
2


↗ 4K2


d log(Kd)

ςω

Proof.

E
X↘Dω+1


max
x↓X

∣∣∣
∣∣∣X̃→

ω H
↔1/2
ω

∣∣∣
∣∣∣
2


(i)
↗ E

X↘Dω

[
max
x↓X


ωmax

(
H

↔1/2
ω X̃ωX̃

→
ω H

↔1/2
ω

)]

(ii)
= E

X↘Dω

[
max
x↓X


ωmax

(
X̃

→
ω H

↔1
ω X̃ω

)]

(iii)
↗ E

X↘Dω



max
x↓X

√√√√
K∑

i=1

∣∣∣
∣∣∣x̃(i)

ω

∣∣∣
∣∣∣
2

H
→1
ω





(iv)
↗


8

ςω
E

X↘Dω



max
x↓X

√√√√
K∑

i=1

∣∣∣
∣∣∣x̃(i)

ω

∣∣∣
∣∣∣
2

Iϖ →1
Dω

(φω)





(v)
↗


8

ςω
(K + 1) E

X↘Dω



max
x↓X

√√√√
K∑

i=1

∣∣∣
∣∣∣x̃(i)

ω

∣∣∣
∣∣∣
2

Iϖ →1
Dω

(φω,i)





(vi)
↗


8

ςω
(K + 1) E

X↘Dω



max
x↓X

√√√√
K∑

i=1

∣∣∣
∣∣∣x̃(i)

ω

∣∣∣
∣∣∣
2

W(i) →1
Dω

(φω,i)





(vii)
↗


8

ςω
(K + 1) E

X↘Dω

[
max
x↓X

K∑

i=1

∣∣∣
∣∣∣x̃(i)

ω

∣∣∣
∣∣∣
W(i) →1

Dω
(φω,i)

]

(viii)
↗


8

ςω
(K + 1)

K∑

i=1

E
X↘Dω

[
max
x↓X

∣∣∣
∣∣∣x̃(i)

ω

∣∣∣
∣∣∣
W(i) →1

Dω
(φω,i)

]

(ix)
↗ K


8

ςω
(K + 1)Kd log(Kd) ↗ 4K2


d log(Kd)

ςω



Achieving Limited Adaptivity for Multinomial Logistic Bandits

where (i) follows from the definition of the norm ||A||2 =
√
ωmax (A→A) and the fact that

Dω+1 ⇒ Dω , (ii) follows from the cyclic property of eigenvalues, (iii) follows from Lemma 7.12,
(iv) follows from Lemma 7.13, (v) follows from Lemma 7.14, (vi) follows from Lemma 7.15, (vii)

uses the fact that for {ai}
N
i=1,


N∑
i=1

a2i ↗

(
N∑
i=1

ai

)2

=
N∑
i=1

ai, (viii) uses the linearity of expec-

tations and the fact that max
x

[f(x) + g(x)] ↗ max
x

f(x) +max
x

g(x), and (ix) follows from Lemma
9.7.

8 Rarely Switching Multinomial Contextual Bandit Algorithm: RS-MNL

8.1 Notations

We first define a few matrices, vectors, and scalars that are used throughout this section (here, ei
denotes the i

th
↓standard basis vector):

1. Vt = ωId↑d +
∑
s↓[t]

xsx
→
s

2. Ṽt = IK↑K ↑ Vt

3. A(x,ω) = diag(z(x,ω))↓ z(x,ω)z(x,ω)→

4. M(x,ω1,ω2) =
1∫

0
A(x, vω1 + (1↓ v)ω2) dv

5. H
ε
t = ωIKd↑Kd +

∑
s↓[t]

A(xs,ω
ε)↑ xsx

→
t

6. ϑ(ϖ) = CS
5/4

√
Kd log(T/ϖ)

7. Bt(x) = exp
(↔

6min
{
2ε1/2

ϑ(ϖ)→x→
V

→1
t

, 2S
})

8. Ht(ω) = ωIKd↑Kd +
∑
s↓[t]

A(xs,ω)
Bs(xs)

↑ xsx
→
s

9. Ht(ω) = ωIKd↑Kd +
∑
s↓[t]

A(xs,ω)
Bs(xs)

↑ xsx
→
s

10. X̃t(ω) =
A(xt,ω)

1
2

↔
Bt(xt)

↑ xt

11. x̃
(i)
t (ω) = A(xt,ω)

1
2

↔
Bt(xt)

ei ↑ xt

12. H
i
t(ω) =

∑
s↓[t]

x̃
(i)
s (ω)x̃(i)

s (ω)→ + ωI

We now present the regret upper bound for RS-MNL by restating Theorem 4.1.
Theorem 8.1. With high probability, the regret incurred by Algorithm 3 is bounded above by RT

where:

RT ↗ CRK
3/2

S
5/4(log T log(T/ϖ))1/2d

↔

T+CRK
2
d
2
S
5/2 log T log(T/ϖ)ε1/2

e
2S(eS+Kε

1/2)

Proof. For any round t ↘ [T ], let ςt ↗ t denote the last round at which a switch was made. Then,
using the value of ϑ(ϖ) alongside Lemma 8.8, Lemma 8.12, and Lemma 8.13, we get:

R(T ) ↗
∑

t↓[T ]

|ε
→
z(xε

t ,ω
ε)↓ ε

→
z(xt,ω

ε)| ↗
∑

t↓[T ]

2↼1(t, ςt,xt) + 2↼2(t, ςt,xt)

↗ 4RKd
1/2(log T )1/2ϑ(ϖ)

↔

T + 8RKd log Tε1/2
e
3S
ϑ(ϖ)2 + 24dRK

2
e
2S
εϑ(ϖ)2 log T

↗ CRK
3/2

S
5/4(log T log(T/ϖ))1/2d

↔

T + CRK
2
d
2
S
5/2 log T log(T/ϖ)ε1/2

e
2S(eS +Kε

1/2)



Reinforcement Learning Journal 2025

8.2 Supporting Lemmas for 8

Lemma 8.1. Let {x1, . . . ,xϑ} be a set of arms and {r1, . . . , rϑ} be the set of corresponding rewards
associated with the arms. Define ω̂ϑ be the MLE estimate calculated using this set of arms and
rewards, i.e

ω̂ϑ = argmin
ω

∑

s↓[ϑ ]

K∑

i=1

{ys = i} log zi(xs,ω) +
ω

2
→ω→

2
2

Let H
ε
ϑ be as defined in Section 8.1. Then, with high probability, and the choice of ω =

KdS
↔1/2 log(T/ϖ), we have that

→ω̂ϑ ↓ ω
ε
→Hε

ϱ
↗ CS

5/4
√

Kd log(T/ϖ)

Proof. We define Gϑ (ω1,ω2) as:

Gϑ (ω1,ω2) =
∑

t↓[ϑ ]

M(xt,ω1,ω2)↑ xtx
→
t + ωI

where M(x,ω1,ω2) is as defined in Section 8.1. Thus, from Lemma 9.2, we have that

(1 + 2S)↔1
Gϑ ↭ H

ε
ϑ
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Thus, we have

∣∣∣
∣∣∣ω̂ϑ ↓ ω

ε
∣∣∣
∣∣∣
Hε

ϱ

↗
↔
1 + 2S

∣∣∣
∣∣∣ω̂ϑ ↓ ω

ε
∣∣∣
∣∣∣
Gϱ (ω̂ϱ ,ωε)

↗
↔
1 + 2S

∣∣∣
∣∣∣Gϑ (ω̂ϑ ,ω

ε)
(
ω̂ϑ ↓ ω

ε
)∣∣∣
∣∣∣
G

→1
ϱ (ω̂ϱ ,ωε)

(i)
↗

↔
1 + 2S

∣∣∣∣∣∣

∣∣∣∣∣∣




∑

t↓[ϑ ]

M(ω̂ϑ ,ω
ε)↑ xtx

→
t + ωIKd↑Kd




(
ω̂ϑ ↓ ω

ε
)
∣∣∣∣∣∣

∣∣∣∣∣∣
G

→1
ϱ (ω̂ϱ ,ωε)

(ii)
↗

↔
1 + 2S

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

t↓[ϑ ]

[
M(x,ωε

, ω̂ϑ )↑ x
→
t

] (
ω
ε
↓ ω̂ϑ

)
↑ xt + ω

(
ω̂ϑ ↓ ω

ε
)
∣∣∣∣∣∣

∣∣∣∣∣∣
G

→1
ϱ (ω1,ω2)

(iii)
↗

↔
1 + 2S

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

t↓[ϑ ]

[
z(xt, ω̂ϑ )↓ z(xt,ω

ε)
]
↑ xt + ω

(
ω̂ϑ ↓ ω

ε
)
∣∣∣∣∣∣

∣∣∣∣∣∣
G

→1
ϱ (ω1,ω2)

(iv)
↗

↔
1 + 2S

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

t↓[ϑ ]

[mt ↓ z(xt,ω
ε)]↑ xt ↓ ωω

ε

∣∣∣∣∣∣

∣∣∣∣∣∣
G

→1
ϱ (ω1,ω2)

(v)
↗

↔
1 + 2S

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

t↓[ϑ ]

[mt ↓ z(xt,ω
ε)]↑ xt

∣∣∣∣∣∣

∣∣∣∣∣∣
G

→1
ϱ (ω1,ω2)

+ ω
↔
1 + 2S ||ω

ε
||
G

→1
ϱ (ω1,ω2)

↗ (1 + 2S)

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

t↓[ϑ ]

[mt ↓ z(xt,ω
ε)]↑ xt

∣∣∣∣∣∣

∣∣∣∣∣∣
H

ε →1
ϱ

+ ω
↔
1 + 2S ||ω

ε
||
G

→1
ϱ (ω1,ω2)

(vi)
↗ (1 + 2S)

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

t↓[ϑ ]

ϑt ↑ xt

∣∣∣∣∣∣

∣∣∣∣∣∣
H

ε →1
ϱ

+ S
↔
1 + 2S

↔

ω

(vi)
↗ 3S

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

t↓[ϑ ]

ϑt ↑ xt

∣∣∣∣∣∣

∣∣∣∣∣∣
H

ε →1
ϱ

+
↔
3ω1/2

S
3/2

where (i) follows from Lemma 9.2 , (ii) follows from Mixed Product Property , (iii) follows from
the Mean value Theorem, (iv) from Lemma 9.3, (v) follows from Cauchy-Schwarz, and (vi) follows
from the fact that Gϑ ⇐ ωI and ||ω||2 ↗ S.

Note that ϑt = mt↓z(xt,ω
ε) and since E [mt] = z(xt,ω

ε), we get E

ϑtϑ

→
t


= A(xt,ω

ε). Also,
note that →↼t→1 ↗ →mt→1 + →z(xt,ω

ε)→1 ↗ 2. Thus, using Lemma 9.10, we get

∣∣∣
∣∣∣ω̂ϑ ↓ ω

ε
∣∣∣
∣∣∣
Hε

ϱ

↗ 3S

↔
ω

4
+

4
↔
ω
log


det H1/2

ϑ

ϖω
dK
2


+

4
↔
ω
Kd log 2


+ 2S3/2

ω
1/2

where Hϑ = ωI +
∑

t↓ϑ A(xt,ω
ε)↑ xtx

→
t .
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We can calculate det Hϑ as follows:

det Hϑ

(i)
↗

(
trace Hϑ

Kd

)Kd

↗


trace ωI + trace

∑
t↓ϑ A(xt,ω

ε)↑ xtx
→
t

Kd

Kd

(ii)
↗

(
ωKd+ ς→xt→

2
2

Kd

)Kd

(iii)
↗ ω

Kd
(
1 +

ς

ωKd

)Kd

where (i) follows from Lemma 9.11, (ii) follows from the fact that tr (A↑B) =
∑

ω(A)ω(B) and
the fact that A(x,ωε) ↫ I and the only non-zero eigenvalue of xtx

→
t is →xt→

2
2, and (iii) follows

since →x→ ↗ 1.

Thus, we have

∣∣∣
∣∣∣ω̂ϑ ↓ ω

ε
∣∣∣
∣∣∣
Hε

ϱ

↗ 3S




↔
ω

4
+

4
↔
ω
log




(
1 + ϑ

ϱKd

)Kd
2

ϖ



+
4
↔
ω
Kd log 2



+ 2S3/2
ω
1/2

= 3S

↔
ω

4
+

2Kd
↔
ω

log
(
1 +

ς

ωd

)
+

4
↔
ω
log

1

ϖ
+

4
↔
ω
Kd log 2


+ 2S3/2

ω
1/2

Finally, by setting ω = KdS
↔1/2 log(T/ϖ) and simplifying the constants, we get that for some

appropriately tuned constant C
∣∣∣
∣∣∣ω̂ϑ ↓ ω

ε
∣∣∣
∣∣∣
Hε

ϱ

↗ CS
5/4

√
Kd log(T/ϖ)

From here on, we shall use the notation ϑ(ϖ) = CS
5/4

√
Kd log(T/ϖ).

Lemma 8.2. Let Ṽt and H
ε
t be defined as in Section 8.1. Then, for any round t ↘ [T ], we have that

Ṽt ↫ εH
ε
t

Proof. From the definition of ε, we have A(x,ω) ↭ 1
ςI . Hence, using the fact that ε ⇐ 1, we have

Ṽt = IK↑K ↑ Vt = IK↑K ↑



ωId↑d +
∑

s↓[t]

xsx
→
s





= ωIKd↑Kd + IK↑K ↑

∑

s↓[t]

xtx
→
t

↫ εωIKd↑Kd + ε

∑

s↓[t]

A(xt,ω
ε)↑ xtx

→
t

↫ εH
ε
t
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Lemma 8.3. Let Ṽt and Ht(ω) be defined as in Section 8.1. Then, for any round t ↘ [T ], we have
that

Ṽt ↫ εHt(ω)

Proof. From the definition of ε, we have A(x,ω) ↭ 1
ςI . Hence, using the fact that ε ⇐ 1, we have

Ṽt = IK↑K ↑ Vt = IK↑K ↑



ωId↑d +
∑

s↓[t]

xsx
→
s





= ωIKd↑Kd + IK↑K ↑

∑

s↓[t]

xtx
→
t

↫ εωIKd↑Kd + ε

∑

s↓[t]

A(xt,ω)↑ xtx
→
t

↫ εωIKd↑Kd + ε

∑

s↓[t]

A(xt,ω)

Bs(xs)
↑ xtx

→
t

↫ εHt(ω)

where the second to last inequality follows since Bt(x) ⇐ 1.

Lemma 8.4. Let 1, ς1, . . . , ςm be the rounds at which a switch occurs, i.e det Hϑi+1(ω̂ϑi) ⇐

2 det Hϑi(ω̂ϑi)⇑i ↘ [m]. Let Ht(ω) and H
ε
t be defined as in Section 8.1. Then, for all i ↘ [m], we

have that

Hϑi(ω̂ϑi) ↫ H
ε
ϑi

Proof. From Lemma 9.1, for some x such that →x→ ↗ 1 and some ς ↘ {ς1, . . . , ςm}, we have that

A(x, ω̂ϑ ) ↫ A(x,ωε) exp
(↔

6
∥∥∥(I ↑ x

→)(ωε
↓ ω̂ϑ )

∥∥∥
2

)

Now, we can bound
∥∥∥(I ↑ x

→)(ωε
↓ ω̂ϑ )

∥∥∥
2

as follows:

∥∥∥(I ↑ x
→)(ωε

↓ ω̂ϑt)
∥∥∥
2

(i)
↗ 2S→(I ↑ x

→)→2
(ii)
= 2S


ωmax ((I ↑ x)(I ↑ x→))

(iii)
= 2S


ωmax (I ↑ xx→)

(iv)
↗ 2S

where (i) uses Cauchy-Schwarz inequality and the fact that →ω→2 ↗ S, (ii) uses the definition of the
norm as →A→2 =

√
ωmax (A→A), (iii) follows from the mixed product property of tensor products,

and (iv) follows from the fact that ωmax (A↑B) = ωmax (A)ωmax (B) and ωmax

(
xx

→) =
→x→

2
2 ↗ 1.
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We can also bound
∥∥∥(I ↑ x

→)(ωε
↓ ω̂ϑ )

∥∥∥
2

in the following way (note that the d↓ dimensional unit
ball is represented as B2(d)):

→(I ↑ x
→)(ωε

↓ ω̂ϑ )→2 = →(I ↑ x
→)Hε

ϑ
↔1/2

H
ε
ϑ
1/2(ωε

↓ ω̂ϑ )→2
(i)
↗ →(I ↑ x

→)Hε
ϑ
↔1/2

→2ϑ(ϖ)

(ii)
↗ ε

1/2
→(I ↑ x

→)Ṽ ↔1/2
ϑ →2ϑ(ϖ)

(iii)
↗ ε

1/2
→(I ↑ x

→)(I ↑ V
↔1/2
ϑ )→2ϑ(ϖ)

(iv)
= ε

1/2


ωmax

(
(I ↑ V

↔1/2
ϑ )(I ↑ x)(I ↑ x→)(I ↑ V

↔1/2
ϑ )

)
ϑ(ϖ)

(v)
= ε

1/2
ϑ(ϖ)|x→

V
→1
ϱ

↗ 2ε1/2
ϑ(ϖ)|x→

V
→1
ϱ

where (i) is obtained from the fact that →Ax→2 ↗ →A→2→x→2 and from Lemma 8.1, (ii) follows
from Lemma 8.2, (iii) is obtained from the definition of Ṽ and the fact that (A↑B)n = A

n
↑B

n,
(iv) follows from the definition of the norm, i.e, →A→2 =

√
ωmax (A→A), and (v) follows from

the cyclic property of eigenvalues and the fact that ωmax (A↑B) = ωmax (A)ωmax (B).

Thus, by combining both bounds, we obtain

A(x, ω̂ϑ ) ↫ A(x,ωε) exp
(↔

6min
{↔

2ε1/2
ϑ(ϖ)|x→

V
→1
ϱ

, 2S
})

Let Bϑ (x) denote the value exp
(↔

6min
{↔

2ε1/2
ϑ(ϖ)|x→

V
→1
ϱ

, 2S
})

. Then, we have that

H
ε
ϑ = ωI +

∑

s↓[ϑ ]

A(xs,ω
ε)↑ xsxs ↭ ωI +

∑

s↓[ϑ ]

A(xs, ω̂ϑ )

Bϑ (xs)
↑ xsxs = Hϑ (ω̂ϑ )

Lemma 8.5. For time round t, let ςt ↗ t be the last time round at which a switch occurred, i.e
det Ht(ω̂ϑt) ↗ 2 det Hϑt(ω̂ϑt). Let Ht(ω) and H

ε
t be defined as in Section 8.1.

Ht(ω̂ϑt) ↫ H
ε
t

Proof. Similar to Lemma 8.4 for some x such that →x→ ↗ 1, we have that

A(x, ω̂ϑt) ↫ A(x,ωε) exp
(↔

6
∥∥∥(I ↑ x

→)(ωε
↓ ω̂ϑt)

∥∥∥
2

)

Now, we can bound
∥∥∥(I ↑ x

→)(ωε
↓ ω̂ϑt)

∥∥∥
2

in two different ways: the first way results in 2S,
following the same method as Lemma 8.4. We can also bound it in the following way:
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→(I ↑ x
→)(ωε

↓ ω̂ϑt)→2 = →(I ↑ x
→)Hε

ϑt
↔1/2

H
ε
ϑt

1/2(ωε
↓ ω̂ϑt)→2

(i)
↗ →(I ↑ x

→)Hε
ϑt

↔1/2
→2ϑ(ϖ)

(ii)
↗ →(I ↑ x

→)Hϑt(ω̂ϑt)
↔1/2

→2ϑ(ϖ)

(iii)
↗

↔
2→(I ↑ x

→)Ht(ω̂ϑt)
↔1/2

→2ϑ(ϖ)

(iv)
↗

↔
2ε1/2

→(I ↑ x
→)Ṽ ↔1/2

→2ϑ(ϖ)

↗ 2ε1/2
ϑ(ϖ)|x→

V
→1
t

where (i) is obtained from the fact that →Ax→2 ↗ →A→2→x→2 and from Lemma 8.1, (ii) follows
from Lemma 8.4, (iii) follows from the combination of Lemma 9.13 and the fact that det Ht(ω̂ϑt) ↗
2 det Hϑt(ω̂ϑt), (iv) follows from Lemma 8.3, and (v) follows from the same steps used in Lemma
8.6.

Combining the bounds in the same manner as Lemma 8.4 finishes the proof.

Lemma 8.6. For time round t, let ςt ↗ t be the last time round at which a switch occurred. Let
H

(i)
t (ω̂ϑt) and Ht(ω̂ϑt) be defined as in Section 8.1. Then, we have

H
(i)
t (ω̂ϑt) ↫ Ht(ω̂ϑt)

Proof. We have:

Ht(ω̂ϑt) = ωI +
∑

s↓[t]

X̃s(ω̂ϑt)X̃s(ω̂ϑt)
→

(i)
= ωI +

∑

s↓[t]

K∑

i=1

x̃
(i)
s (ω̂ϑt)x̃

(i)
s (ω̂ϑt)

→

↭ ωI +
∑

s↓[t]

x̃
(i)
s (ω̂ϑt)x̃

(i)
s (ω̂ϑt)

→

= H
i
ϑ (ω̂ϑt)

where (i) follows from Lemma 7.11.

Lemma 8.7. Let ςt ↗ t be the last time round at which a switch was made. In other words,
det Ht(ω̂ϑt) ↗ 2 det Hϑt(ω̂ϑt). Then, for any arm x, we have that,

∣∣∣ε→
z(x,ωε)↓ ε

→
z(x, ω̂ϑ )

∣∣∣ ↗ ↼1(t, ςt,x) + ↼2(t, ςt,x)

where
↼1(t, ςt,x) =

↔
2ϑ(ϖ)

∣∣∣
∣∣∣Ht(ω̂ϑt)

↔1/2(I ↑ x)A(x, ω̂ϑt)ε
∣∣∣
∣∣∣
2

↼2(t, ςt,x) = 6Rϑ(ϖ)2
∣∣∣
∣∣∣(I ↑ x

→)Ht(ω̂ϑt)
↔1/2

∣∣∣
∣∣∣
2

2
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Proof. The proof follows on the same lines as that of Lemma 7.5 and uses the fact that
det Hϱt (ω̂ϱt )

→1

det Ht(ω̂ϱt )
→1

↗ 2 combined with Lemma 9.13 to convert Hϑt(ω̂ϑt) to Ht(ω̂ϑt).

Lemma 8.8. Let ςt ↗ t be the last time step at which a switch was made. Let ↼1(t, ςt,x) and
↼2(t, ςt,x) be as defined in Lemma 8.7. Then, the regret at time step t can be bounded as

∣∣ε→
z(x≃

,ω
ε)↓ ε

→
z(xt,ω

ε)
∣∣ ↗ 2↼1(t, ςt,xt) + 2↼2(t, ςt,xt)

Proof.

∣∣ε→
z(xε

,ω
ε)↓ ε

→
z(xt,ω

ε)
∣∣ (i)
↗ ε

→
z(xε

, ω̂ϑt) + ↼1(t, ςt,x
ε) + ↼2(t, ςt,x

ε)↓ ε
→
z(xt, ω̂ϑt) + ↼1(t, ςt,xt) + ↼2(t, ςt,xt)

(ii)
↗ 2↼1(t, ςt,xt) + 2↼2(t, ςt,xt)

where (i) follows from Lemma 8.7 and (ii) follows from the fact that xt =

argmax
x↓X

UCB(t, ςt,x) = argmax
x↓X

[
ε
→
z(x, ω̂ϑt) + ↼1(t, ςt,x) + ↼2(t, ςt,x)

]
and hence, gets se-

lected at round t.

Lemma 8.9. Let Bt(x) be as defined in Section 8.1. Then, we have that
√
Bt(x) ↗ e

3S
ε
1/2

ϑ(ϖ)→x→
V

→1
t

+ 1

Proof.
√
Bt(x) = exp

(↔
6min

{
ε
1/2

ϑ(ϖ)→x→
V

→1
t

, S

})

(i)
↗ e

3S
ε
1/2

ϑ(ϖ)→x→
V

→1
t

+ 1

where (i) follows from Lemma 9.6 by choosing min
{
ε
1/2

ϑ(ϖ)→x→
V

→1
t

, S

}
= ε

1/2
ϑ(ϖ)→x→

V
→1
t

and M =
↔
6S.

Lemma 8.10. Let X̃ϑ (ω) and x̃
(i)
ϑ (ω) be defined as in Section 8.1. Then, we have

X̃ϑ (ω)X̃ϑ (ω)
→ =

K∑

i=1

x̃
(i)
ϑ (ω)x̃(i)

ϑ (ω)→

Proof. The proof follows on the same lines as Lemma 7.11.

Lemma 8.11. Let M ↘ RKd be any positive-semidefinite matrix. Then,

ωmax

(
X̃ϑ (ω)

→
MX̃ϑ (ω)

)
↗

K∑

i=1

∣∣∣
∣∣∣x̃(i)

ϑ (ω)
∣∣∣
∣∣∣
2

M

Proof. The proof follows on the same lines as Lemma 7.12.



Achieving Limited Adaptivity for Multinomial Logistic Bandits

Lemma 8.12. Let ↼1(t, ς,x) be as defined in Lemma 8.7, and ςt be the last switching round before
round t. Then, we have that

∑

t↓[T ]

↼1(t, ςt,xt) ↗ 8RKd log Tε1/2
e
3S
ϑ(ϖ)2 + 4RKd

1/2(log T )1/2ϑ(ϖ)
↔

T

Proof.

∑

t↓[T ]

↼1(t, ςt,xt) =
↔
2ϑ(ϖ)

∑

t↓[T ]

∣∣∣
∣∣∣Ht(ω̂ϑt)

↔1/2(I ↑ xt)A(xt, ω̂ϑt)ε
∣∣∣
∣∣∣
2

(i)
↗

↔
2ϑ(ϖ)

∑

t↓[T ]

∣∣∣
∣∣∣Ht(ω̂ϑt)

↔1/2(I ↑ xt)A(xt, ω̂ϑt)
1/2

∣∣∣
∣∣∣
2
||ε||

A(xt,ω̂ϱt )

↗
↔
2Rϑ(ϖ)

∑

t↓[T ]

∣∣∣
∣∣∣A(xt, ω̂ϑt)

1/2(I ↑ x
→
t )Ht(ω̂ϑt)

↔1/2
∣∣∣
∣∣∣
2

(ii)
↗

↔
2Rϑ(ϖ)

∑

t↓[T ]

∣∣∣
∣∣∣
√
Bt(xt)X̃t(ω̂ϑt)

→
Ht(ω̂ϑt)

↔1/2
∣∣∣
∣∣∣
2

(iii)
↗

↔
2Rϑ(ϖ)

∑

t↓[T ]

∣∣∣
∣∣∣X̃t(ω̂ϑt)

→
Ht(ω̂ϑt)

↔1/2
∣∣∣
∣∣∣
2

{
e
3S
ε
1/2

ϑ(ϖ)→xt→V →1
t

+ 1
}

where (i) follows from ||Ax||2 ↗ ||A||2 ||x||2, (ii) follows from the definition of X̃(ω), and (iii)
follows from Lemma 8.9.

We now bound the term
∑

t↓[T ]

∣∣∣
∣∣∣X̃t(ω̂ϑt)

→
Ht(ω̂ϑt)

↔1/2
∣∣∣
∣∣∣
2
:

∑

t↓[T ]

∣∣∣
∣∣∣X̃t(ω̂ϑt)Ht(ω̂ϑt)

↔1/2
∣∣∣
∣∣∣
2
=

∑

t↓[T ]


ωmax

(
Ht(ω̂ϑt)

↔1/2X̃t(ω̂ϑt)X̃t(ω̂ϑt)
→Ht(ω̂ϑt)

↔1/2
)

=
∑

t↓[T ]


ωmax

(
X̃t(ω̂ϑt)

→Ht(ω̂ϑt)
↔1X̃t(ω̂ϑt)

)

(i)
=

∑

t↓[T ]

√√√√
K∑

i=1

∣∣∣
∣∣∣x̃(i)

t (ω̂ϑt)
∣∣∣
∣∣∣
2

Ht(ω̂ϱt )
→1

(ii)
↗

∑

t↓[T ]

√√√√
K∑

i=1

∣∣∣
∣∣∣x̃(i)

t (ω̂ϑt)
∣∣∣
∣∣∣
2

H
i
t(ω̂ϱt )

→1

(iii)
↗

↔

T

√√√√
∑

t↓[T ]

K∑

i=1

∣∣∣
∣∣∣x̃(i)

t (ω̂ϑt)
∣∣∣
∣∣∣
2

H
i
t(ω̂ϱt )

→1

(iv)
↗ 2K

√
dT log T

where (i) follows from Lemma 8.11, (ii) follows from Lemma 8.6, (iii) follows from Cauchy-
Schwarz, and (iv) follows from Lemma 9.12 and the fact that

∣∣∣∣x̃(i)(ω)
∣∣∣∣
2
↗ ||A(x,ω)||2 ||x||2 ↗ 1.

We also bound the term
∑

t↓[T ]

∣∣∣
∣∣∣X̃t(ω̂ϑt)

→
Ht(ω̂ϑt)

↔1/2
∣∣∣
∣∣∣
2
→xt→V →1

t
as follows:
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∑

t↓[T ]

∣∣∣
∣∣∣X̃t(ω̂ϑt)

→
Ht(ω̂ϑt)

↔1/2
∣∣∣
∣∣∣
2
→xt→V →1

t

(i)
↗

√√√√
∑

t↓[T ]

∣∣∣
∣∣∣X̃t(ω̂ϑt)

→Ht(ω̂ϑt)
↔1/2

∣∣∣
∣∣∣
2

2

∑

t↓[T ]

→xt→
2
V

→1
t

(ii)
↗ 2K

√
d log T

∑

t↓[T ]

→xt→
2
V

→1
t

(ii)
↗ 4Kd log T

where (i) follows from Cauchy-Schwarz, (ii) follows from the same steps used to bound
∑

t↓[T ]

∣∣∣
∣∣∣X̃t(ω̂ϑt)

→
Ht(ω̂ϑt)

↔1/2
∣∣∣
∣∣∣
2

above, and (iii) follows from Lemma 9.12.

Substituting back, we get
∑

t↓[T ]

↼1(t, ςt,xt) ↗ 4
↔
2RKd log Tε1/2

e
3S
ϑ(ϖ)2 + 2

↔
2RKd

1/2(log T )1/2ϑ(ϖ)
↔

T

↗ 8RKd log Tε1/2
e
3S
ϑ(ϖ)2 + 4RKd

1/2(log T )1/2ϑ(ϖ)
↔

T

Lemma 8.13. Let ↼2(t, ς,x) be as defined in Lemma 8.7, and ςt be the last switching round before
round t. Then, we have that

∑

t↓[T ]

↼2(t, ςt,xt) ↗ 24dRK
2
e
2S
εϑ(ϖ)2 log T

Proof.

∑

t↓[T ]

↼2(t, ς,xt) = 6Rϑ(ϖ)2
∑

t↓[T ]

∣∣∣
∣∣∣(I ↑ x

→)Ht(ω̂ϑt)
↔1/2

∣∣∣
∣∣∣
2

2

(i)
= 6Rϑ(ϖ)2

∑

t↓[T ]

∣∣∣
∣∣∣A(xt, ω̂ϑ )

↔1/2
∣∣∣
∣∣∣
2

∣∣∣
∣∣∣X̃t(ω̂ϑt)Ht(ω̂ϑt)

↔1/2
∣∣∣
∣∣∣
2

2
Bt(xt)

(ii)
↗ 6Rϑ(ϖ)2e2S

∑

t↓[T ]

∣∣∣
∣∣∣A(xt, ω̂ϑt)

↔1/2
∣∣∣
∣∣∣
2

2

∣∣∣
∣∣∣X̃t(ω̂ϑt)Ht(ω̂ϑt)

↔1/2
∣∣∣
∣∣∣
2

2

(iii)
↗ 6Rϑ(ϖ)2e2Sε

∑

t↓[T ]

∣∣∣
∣∣∣X̃t(ω̂ϑt)Ht(ω̂ϑt)

↔1/2
∣∣∣
∣∣∣
2

2

(iv)
↗ 24dRK

2
e
2S
εϑ(ϖ)2 log T

where (i) follows from the definition of X̃ and Lemma 8.6, (ii) follows from the definition of
Bt(x), (iii) follows from the fact that A(x,ω) ↗ 1

ςI , and (iv) follows from the methods used in
Lemma 8.12.

Lemma 8.14. Let Algorithm 3 be run for t rounds. Then, the switching criterion is triggered a
maximum of dK log(1 + t

dϱ ) times.

Proof. Let ς0, ς1, . . . , ςm ↘ [1, t] be the time steps at which the switching criterion in Algorithm
3 is triggered, i.e, 2 det Hϑi(ω̂ϑi) ↗ det Hϑi+1(ω̂ϑi) for i ↘ [m ↓ 1], and ςm = t. Note that
Hϑ0(ω) = ωIKd↑Kd.
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det Ht(ω̂ϑm→1)

det Hϑ0(ω)
=

det Hϑm(ω̂ϑm→1)

det Hϑm→1(ω̂ϑm→1)
⇓

det Hϑm→1(ω̂ϑm→2)

det Hϑm→2(ω̂ϑm→2)

⇓ . . .⇓
det Hϑ1(ω̂ϑ0)

det Hϑ0(ω)

⇐ 2m

and hence, det Ht(ω̂ϑm→1) ⇐ 2mω
Kd since det H1 = ω

Kd. Also, we can say that:

det Ht(ω̂ϑm→1)
(i)
↗


trace Ht(ω̂ϑm→1)

Kd

Kd

(ii)
↗

∑
i↓[K] trace H

i
t(ω̂ϑm→1)

Kd

Kd

(iii)
↗


ωKd+

∑
i↓[K]

∑
s↓[t] →x̃

(i)
s (ω̂ϑm→1)→

2
2

Kd

Kd

(iv)
↗

(
ω+

t

d

)Kd

Here (i) follows from Lemma 9.11, (ii) follows from Lemma 8.6 alongside the linearity of the trace
operator, (iii) follows from the definition of Hi

t(ω) and the fact that the only non-zero eigenvalue
of xx→ is →x→22, and (iv) is due to the fact that →x̃(i)

t (ω)→2 ↗ →A(xt,ω)→ ↗ 1. Thus, we have

2mω
Kd

↗ det(Ht(ω̂ϑm→1) ↗

(
ω+

t

d

)Kd

and hence, 2m ↗
(
1 + t

ϱd

)Kd. This finishes the proof.

9 General Lemmas and Results

Lemma 9.1. (Self-Concordance) Let A(x,ω) = ≃z(x,ω). Then, A(x,ω) is (M, v)↓generalized
self-concordant with v = 1 and M =

↔
6. In other words, for any given x1,x2,ω1,ω2, denote

A1 = A(x1,ω1) and A2 = A(x2,ω2). Then, we have

A2 exp
(
↓
↔
6
∣∣∣∣(I ↑ x

→
1

)
ω1 ↓

(
I ↑ x

→
2

)
ω2

∣∣∣∣
2

)
↫ A1 ↫ A2 exp

(↔
6
∣∣∣∣(I ↑ x

→
1

)
ω1 ↓

(
I ↑ x

→
2

)
ω2

∣∣∣∣
2

)

Lemma 9.2. (Lemma 13, Amani & Thrampoulidis (2021)) Let ϱ = {t1, . . . , tN} be a set of time
indices and define

Gω(ω1,ω2) =
∑

t↓ω

M(x,ω1,ω2)↑ xtx
→
t + ωIKd↑Kd

and
H

ε
ω =

∑

t↓ω

A(xt,ω
ε)↑ xtx

→
t + ωIKd↑Kd

where

M(x,ω1,ω2) =

1

0

A(x, vω1 + (1↓ v)ω2) dv
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Then,
Gω(ω,ω

ε) ↭ 1

1 + 2S
H

ε
ω

Lemma 9.3. Define the log-likelihood function as follows:

Lt(ω) =
t↔1∑

s=1

K∑

i=1

{ys = i} log
1

zi(xs,ω)
+

ω

2
→ω→

2
2

Let ω̂ be the MLE of ωε, i.e., ω̂ = argmin
ω

Lt(ω), then

t↔1∑

s=1

z(xs, ω̂)↑ xs + ωω̂ =
t↔1∑

s=1

ms ↑ xs

where ms = ( {ys = 1} , . . . , {ys = K})→ is the user-response vector.

Proof. For the sake of convenience, define the loss incurred at round t (without the regularization
term) as

lt(ω) =
K∑

i=1

{ys = i} log
1

zi(xs,ω)

Then, it is easy to see that

∂lt(ω)

∂θm
= ↓

K∑

i=1

{ys = i}
1

zi(xs,ω)

∂zi(xs,ω)

∂θm

= ↓

K∑

i=1

{ys = i}
1

zi(xs,ω)
[ {i = m} zi(xs,ω)↓ zi(xs,ω)zm(xs,ω)]↑ xs

= [ {ys = m}↓ zm(xs,ω)]↑ xs

and hence,
≃lt(ω) = [ms ↓ z(xs,ω)]↑ xs

Since ω̂ = argmin
ω

Lt(ω), we have that ≃Lt(ω̂) = argmin
ω

∑t↔1
s=1 ls(ω̂) + ωω̂ = 0, which results in

the claim.

Lemma 9.4. (Bernstein’s Inequality) Let X1, . . . , Xn be a sequence of independent random vari-

ables with |Xt ↓ E [Xt]| ↗ b. Let S =
n∑

t=1
(Xt ↓ E [Xt]) and v =

n∑
t=1

V[Xt]. Then, for any

ϖ ↘ [0, 1], we have

P

S ⇐


2v log

1

ϖ
+

2b

3
log

1

ϖ


↗ ϖ

Lemma 9.5. Let ms = ( {ys = 1} , . . . , {ys = K}) be the user-response vector as defined in
Section 7.1. Then,

E [ms] = z(xs,ω
ε) and E


msm

→
s


= diag(z(xs,ω

ε))



Achieving Limited Adaptivity for Multinomial Logistic Bandits

Proof. Since ms = ( {ys = 1} , . . . , {ys = K}), we have

E [ms] = (E [ {ys = 1}] , . . . ,E [ {ys = K}]) = (z1(xs,ω
ε), . . . , zK(xs,ω

ε)) = z(xs,ω
ε)

For the second part, note that


msm

→
s


i,j

= {ys = i} {ys = j} =


{ys = i} i = j

0 i ⇔= j

Thus, we have

E

msm

→
s


= E [diag ( {ys = 1} , . . . , {ys = K})] = diag (E [ {ys = 1}] , . . . ,E [ {ys = K}])

= diag (z1(xs,ω
ε), . . . , zK(xs,ω

ε)) = diag(z(xs,ω
ε))

Lemma 9.6. (Claim A.8, Sawarni et al. (2024)) For any x ↘ [0,M ],

e
x
↗ e

M
(
x

M

)
+ 1

Lemma 9.7. (Theorem 5, Ruan et al. (2021)) Let ⇁ represent the G-Optimal Distributional De-
sign learnt from X1 . . .Xs

i.i.d
↖ D and let W be the expected data matrix, i.e. W = ωI +

E
X↘D


E

x↘φ(X )
xx

→
|X


, then, we have

P


E

X↘D


max
x↓X

||x||
W→1


↗ O(

√
d log d)


⇐ 1↓ exp

(
O(d4 log2 d)↓ sd

↔122↔16
)

Lemma 9.8. (Lemma 4, Ruan et al. (2021)) Let ⇁G represent the G-Optimal design and define the

design matrix WG = ωI + E
X↘D


E

x↓φG(X )
xx

→
| X


, then we have

E
X↘D


max
x↓X

||x||
2
W

→1
G


↗ O(d2)

Lemma 9.9. (Lemma A.15, Sawarni et al. (2024) , Ruan et al. (2021)) Let x1 . . .xn ↖ D be vectors
with ||x||2 ↗ 1, then

P

3↼NI +

n∑

i=1

xix
→
i ↭ n

8
E

x↘D


xx

→


⇐ 1↓ 2d exp
(
↓
↼n

8

)

Lemma 9.10. (Lemma 6, Zhang & Sugiyama (2023)) Let {Ft}
⇐
t=1 be a filteration and {xt}

⇐
t=1 be a

stochastic process in B2(d) =
{
x ↘ Rd

| ||xt||2 ↗ 1
}

such that xt is Ft↓ measurable. Let {ϑt}
⇐
t=1

be a martingale difference sequence such that ϑt is Ft+1↓measurable. Assume that conditioned on
Ft, we have ||ϑt||1 ↗ 2 almost surely, and is denoted by ϖt = E


ϑtϑ

→
t | Ft


. Let ω > 0 and for any

t ⇐ 1, define

St =
t↔1∑

s=1

ϑs ↑ xs and Ht = ωIdK↑dK +
t↔1∑

s=1

ϖs ↑ xsx
→
s

Then, for any ϖ ↘ (0, 1), we have

P

↙t > 1, ||St||H→1

t
⇐

↔
ω

4
+

4
↔
ω
log


det H1/2

t

ϖω
dK
2


+

4
↔
ω
Kd log 2


↗ ϖ
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Lemma 9.11. (Determinant-Trace Inequality) Let the determinant and trace of a p.s.d matrix A ↘

Rd↑d be denoted by det A and trace A. Then, we have

det A ↗

(
trace A

d

)d

Proof. Let the eigenvalues of A be denoted by ω(A) ⇐ 0 since A ↭ 0. Then, we know, det A =∏
ω(A) and trace A =

∑
ω(A). Thus, applying the inequality for arithmetic means and geometric

means, we get that

(∏
ω(A)

)1/d
↗

∑
ω(A)

d
=∝ det A ↗

(
trace A

d

)d

Lemma 9.12. (Elliptical Potential Lemma, Lemma 11, Abbasi-Yadkori et al. (2011) ) Let {xs}
t
s=1

represent a set of vectors in Rd and let ||xs||2 ↗ L. Let Vs = ωId↑d+
s↔1∑
m=1

xmx
→
m. Then, for ω ⇐ 1

t∑

s=1

||xs||
2
V

→1
s

↗ 2d log

(
1 +

tL
2

ωd

)
↗ 4d log(tL2)

Lemma 9.13. (Lemma 12, Abbasi-Yadkori et al. (2011)) If A ↭ B ↭ 0, then

sup
x ⇒=0

x
→
Ax

x→Bx
↗

det (A)

det (B)

10 Additional Experiments

In this section, we supplement the experiments from Section 5 (in particular, Experiment 1 and
Experiment 2).

(a) Regret vs. T : Logistic (K = 1) Setting (b) Regret vs. T : K = 3

Experiment 1 (R(T ) vs. T for the Logistic (K = 1) Setting): In this experiment, we use the same
instance as in Experiment 1 (Section 5) and average the regret over 10 different seeds for sampling
rewards. The averaged results with two standard deviations can be found in Figure 2a.

Experiment 2 (R(T ) vs. T for K = 3): In this experiment, we use the same instance as in Ex-
periment 2 (Section 5) and average the regret over 10 different seeds for sampling rewards. The
averaged results with two standard deviations are reported in Figure 2b.


