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Throughout the appendix, for a matrix A, we shall define A4, (A) and Ay, (A) as the maximum
and minimum eigenvalue of A respectively. Further, the norm of a matrix A is defined as || A||3 =
Amaz (ATA).

Without loss of generality, we also assume that x, K, d, R, S, and T are greater than 1 throughout
the appendix.

7 Batched Multinomial Contextual Bandit Algorithm: B-MNL-CB

7.1 Notations

We first list a few matrices, vectors, and scalars that are commonly used throughout this section:

1. Vg = Mgxq+ z wtw;'—
teTs

2. ‘75 =Irgxr ® Vs
3. A(zx,0) = diag(z(x, 0)) — z(z,0)2(x,0)"

1
4. M(x,60,,0:) = [ A(z,v0, + (1 —v)0s) dv
0

5. HE = Mgaxkd+ E A(sct,O*) X SCtSCtT
teTs
6. y(\) = 128ylog T + Kd + 8SA~/2(log T + Kd) + 283/2)\1/2
frg 1 1/2 —
7. Bg(x) = exp (\/émln{/@ ~(9) ||$||Va 1 ,25})

A(z:,05) T
Bg(x:) ® LTy

8. Hg = Mgaxkxa+ .
t

€Ts
S A(x,65)'/?
9. Xg= "=
A v/ Bg(z) ©x
_(i) _ A(=,09)*
10 :cﬂ = %Bg(w) ez®w

1. m, = (l{ys = 1}7 ceey l{ys = K})T
We now present the regret upper bound for B-MNL-CB by restating Theorem 3.1:

Theorem 7.1. (Regret of B-MNL—CB) With high probability, at the end of T rounds, the regret
incurred by Algorithm 1 is bounded above by Rt where

Rr<0O <R55/4K5/2d\/f+ RS5/2K2q2 k121 /4 max{e3SK3/QS_1, nl/Qd}>

Proof. From Lemma 7.10, we have an upper bound for the regret incurred for any round ¢ € 7g41.
Thus, the regret incurred in batch 5 + 1 is given by:

Rp1 < 16RK2~y(\)\/dlog(Kd) (75“) F32RKKY2dy2 (N {e3SK3/QS_1\/10g(Kd) log d + 12%;1/2(1} (”3“)
VT8 s
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Choosing the batch lengths as 73 = T1-2"" results in the following observation (Hanna et al., 2023;
Gao et al., 2019):

T541 < o\/T TB41 < i
Nar 75

Thus, the regret incurred in batch S + 1 is bounded by:

Rpi1 < 32RK?*y(\)\/dlog(Kd)VT+32RK k' 2dy?()\) {635[(3/25—1 log(Kd)logd + 12,&/2(1} T4

We now trivially upper bound the regret for 77 as Rmy = R+v/T. Thus, adding the regret incurred in
each batch over all batches 8 € [1,loglog T + 1] results in:

Ry < (32RK27()\)\/d log(Kd) + R) VT loglog T
+ 32RKRY2d2(N) {635K3/ 26=1, /log(Kd) log d + 12x"/ Qd} TY410glog T

From Lemma 7.1, setting A\ = S~/2KdlogT along with the fact that Kd + logT < KdlogT
results in y(\) < 225%/4/Kdlog T. Substituting the value of () gives us:

Ry < (70455/4RK5/2d\/10gTlog(Kd) n R) VTloglog T
4 14784 RS5/2 K2d2 K1/ {e35K3/ 261, /log(Kd) log d + 12"/ Qd} TY410g2 Tloglog T

This concludes the proof. O

7.2 Supporting Lemmas for Theorem 7.1

Lemma 7.1. For batch 3, denoted by T, let {x1, ..., T, } be aset of i.i.d arms and {ry,...,7:,}

be the corresponding rewards associated with these arms, where T3 = |Tg|. Define 95 to be the
MLE estimate for this batch, i.e

K
A . . A
05 = arg min g E 1{ys =i} log z; (x5, 0) + 5”9”%
s€Tg i=1

Let the optimal Hessian matrix for batch 3, H}, be defined as in Section 7.1. Then, with probability
greater than 1 — %, we have:

0 — éﬁ‘ ‘H* <125\/log T + Kd + 85\~ 2 (log T + Kd) + 25%/2\1/2
B

Proof. For a batch (3, we define the following quantity:

G3(61,60:) = Z M(z,01,0:) @ zix, + Mrixka
teTs

Then,



Reinforcement Learning Journal 2025

1428

o] o]
Nl llas00.05)

< m’ Gs(6",05) (6" - éﬁ)H

G;'(6%,65)

1425 Z {M(m,e*,ég)@)ﬂ?t‘r:JFIdeKd] (9* *éﬁ)

e G5 (07.65)
(i#) A . A
< V28|30 [M(2,6%,05) @] | (67— 65) @i+ A (67— 6,)
t€Ts G;(6.65)
< \/1—1—2 Z [z(xt,G*) —z(wt,ég)} ® xp — A0 +)‘\/1+25||0*‘|G[;1(9*,éﬁ)
t€Ts G, (6%.05)

(iv) N A
< (1+28) ||y [z(wt, 0*) — 2(z, 05)] ® x, — A5 + /A1 29) 167,
teTa HE -1

(v)
<35 [2(xe,0°) — m] @ @y +V/3A/253/2

teTs H; -1

where (¢) follows from Lemma 9.2, (i) follows from Mixed Product Property, (iii) follows from
the Mean value Theorem and the trlangle inequality, (iv) follows from the fact that Gg = AI and
Lemma 9.2, and (v) follows from Lemma 9.3 and the fact that ||6*||, < S.

Now, consider the following term:

Z [2(x¢,0%) — M) @ x4 = Z H; -1/ ([z(x, ) — my] @ x)
teTs Hg -1 teTs 9
_ o -2 N .
x| <y, > (4,60") —m ]®wt)>
teTs

where B (K d) represents the K d—dimensional unit ball with respect to the /5 norm. We construct
an e—net for this unit ball, denoted as C.. For any y € By (K d), we define y. = argmin ||y — x||,,

xecC,
then,
Z [z(w¢, 07) — m,] @ @, = Hla);(d <y, Z H; 1/2 Z(xy,0%) —m,| ® wt)>
teTs yeBa( teTs

* —1
Hy

max ) <(y - ye) + Ye, Z Hg e ([Z(.’I}t,g*) - ms] ® mt)>

€Bs(Kd
yEBs( teTs

Thus, an application of the Cauchy-Schwarz inequality along with the fact that ||y — y.||, < € gives
us

N

Z [2(x¢,0%) — M) @ x4 <y€, Z H,™

teTs H* -1 teTs
B

([z(x¢,0%) — ms] ® a:t)>
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The above term can be bounded using the Bernstein Inequality (Lemma 9.4), which has been done

in Lemma 7.2. We note that |C,| < (%)Kd. We now set € = 0.5 and § = (T2|C.|)~! and then
perform a union bound over C.. We get that with probability greater than 1 — %, we have:

Z [z(x¢, ) — ms] @ x4 <2 ( 2log (T24K4d) + %)\_1/2 log(T24Kd))

teTs HL: -1

8
< 4\/logT + Kd + gA—1/2(1ogT + Kd)

Substituting this into the original bound finishes the proof. O

Lemma 7.2. Let y be a fixed vector with ||y||, < 1, then, with probability at least 1 — §

1 1 4 1
TH, 0*) — my </2log = + ——log =
Z[y 2 (x4, 0%) m]®wt}_\/ 085+ losg

teTs

Proof. Denote p; = yTHE % ([z(x¢,0%) — ms] ® x;). From Lemma 9.5, we have that E [¢;] =
0.

Also,

Vip] =E [gpﬂ —E [gpt]z OF) [%(p;"]
B {yTHE T (2@, 07) — m] @ w0) (2(20,07) — ] @) Hj 7%9}

Yy H, P E [[2(20,67) - mu] 2@, 0) - m) T @ wa! | Hy Py

1 1

= yTHﬁ 2 (E [[z(:ct,O*) —mg] [2(x,0%) — ms]T] ® :I:ta::> H; Sy

« (iv)

i _1 1 s 1 L1
WyTH, (A, 0) @ wa) ) H 2y Y yTHS T (Hy - M) H) Py
<yly<l1

where (¢) follows from the fact that ¢; is a scalar and E[p;] = 0, (i) follows from the fact that
(A® B)T = A" ® BT and the mixed-product property of the Kronecker Product, (iii) follows
from Lemma 9.5, and (iv) follows from the definition of H.

Finally, we note that

At N (7) Nt N
o0~ Elpdl = lorl = [y H 7 (220, 07) — m] @ @)| < lyll, || 72 (2(20,67) — m] @ @)

‘ 2

(i1) .1 . (i) 1 N
< [lm e 09— ma @ ailly < et 07) —mal

(iv) 1 (v
< —= ([|z(ze, 07|, + [lmsly) <

VA

=

2
VA

where (i) follows from Cauchy-Schwarz, (ii) follows from the fact that ||y||, < 1 and ||Ax||, <
|| A[[||z||,, (i) follows from HJ = AI and the fact that ||a ® b[|, = ||a]|, [|b]],, (iv) follows
from ||x||, < 1 and uses the triangle inequality, and (v) follows from the fact ||z(x,0)|2 <
[2(z, 0)[l, < 1.

Substituting v = 1 and b = % in Lemma 9.4 finishes the proof. O
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Lemma 7.3. Let Vg and H E be the design and optimal Hessian matrices defined as in Section 7.1.
Then, we have that

Vg < IQHE

Proof. From the definition of , we know that A(x, 0) = L1.

Hence, using the fact that x > 1, we can say that

Vi =Igxxx @Vs=Irxx @ [ Maxa+ Z zix! | = Myaxra + Ixxr ® Z xx,
teTs teTs

S Myaxga+r Y A, 0°) @ ma, < KHJ
teTs

O

Lemma 7.4. Let HE and Hpg be the optimal and proxy Hessian matrices in batch 3 as defined in
Section 7.1. Then, we have that
H[g < HE

Proof. From Lemma 9.1, we have that

Alw,05) < Al 0 exp (V[T 0 2 T) (0"~ 65)]|)

We can bound H(I @x')(0* — éB)HQ as follows:

H(I I éﬁ)H2 os||re '], Y 25\ Anar (T @) (T 0 2T))

(iv)
W 98 Amas (I @ z2T) < 28
where (i) uses the sub-multiplicativity of the norm, a triangle inequality, and the fact that
[[6*]], < S, (ii) uses the definition of the norm, ie., ||A|l, = /Amaz (ATA), (i) fol-
lows from the Mixed-Product property of Kronecker Products, and (iv) follows from the fact that

A (A ® B) = AM(A)A(B) and since x| is a rank-one matrix, the only eigenvalues are ||z||3 and
0,and 0 < |[z||, < 1.

We can also bound ‘ ‘(I @x')(0* — ég) ‘ ‘2 as follows:

R . (@)
oo —o,)||, =[jaeam; "m0 6y, <

T * —1/2
(roahm; ], |

0" — 0 H
B8 H;

(i4) - iid cr— ou
< /{1/270\) H(I®x—r)ﬁl/2vﬁ_l/2H2 (i) Kl/%()\)\/)\mm (Vﬂ 1/2(I<E§>:B)(I®:BT)Vﬁ 1/2)

() K;l/Qv()\)\/)\maz ((I eV Il I Vgl/Q))

© ml/%(A)\/ e (1@ V; Paa TV %) S 1250 |y
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where (i) follows from the sub-multiplicativity of the norm, (i¢) follows from Lemma 7.1 and
Lemma 7.3, (iii) follows from the definition of the norm, (iv) follows from the definition of V3 and
the fact that (A ® B)" = A" ® B", (v) follows from the Mixed-Product property, and (vi) follows
from A(A ® B) = A(A)A(B).

Thus, we can say that H(I @x')(0* — éﬁ)Hz < min {7()\)/@1/2 ||9c||V/;1 ,25}.

Define Bj(x) = exp (\/émin {V(A)HW 2]y, ,23}). Then, A(z,05) < A(z,0%)Bs().
Hence, we can say,

z;,0
Hpg —)\IdeKd‘FZM@wtwt < Mgaxxa+ Y A, 0%) @ x| = Hj
tep Bﬁ(xt) tep
O
Lemma 7.5. (Proposition 1, Zhang & Sugiyama (2023)) For any arm x, we have that,
’p—rz(w7 6*) - pTz(m70])‘ < 61(j7 T, >\) + 62(j7 T, )\)
where
1/2 2 2
e1(j,z, A) = vy(A HH (I®x)A(x,0;) pH and ez(j, ¢, \) = 3Ry(A HI@:I: H; H2

Proof. We provide the proof for the sake of completeness:

o7 2(@,0%) — p" 2(2,0,)] = |3 pi[z:(,0%) — z(=.6,)

K
Vzi(2,0;)" [(Txxx @2 )07 = 0;)] + > pi||(Ikxx @x") (6" - 6,)]

i=1

K
> pil|Ikxx @) (0% - 6;)]

<|p A(2,0)(Ixxx @ )(0" — ;)| +

Z;
i=1
where
1
Z; = /l—szZ:cUO +(1-v)6;) dv

0
Beginning with the first term :
p Az, 0,)(Ixxx @z )(0" —0;)| = ‘pTA ,0,)Ixxx @z ) H; ?H; (0" - 0;)

S ||0* _ejHHj*

p Ax,0;)Ixxx @x' )H} _1/2H2
A) HH; P (Igux @ fB)A(«’E,Hj)pH

(”)
HH 1/ (Ikxx ® ) A(z, 0; PH

where (%) follows from the sub-multiplicativity of the norm and (%) is due to Lemma 7.4.
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For the second term, for some k € [1, K|, we make the following observation:

1 1
Z, = /(1 —0)V22 (2, 00" + (1 —v)0;) dv < 31/(1 —v) dv=3I
0 0

Thus, we have:

K
> 30 ||(Ikxx @ x")(0* - 0,1,

i=1

2
< 3RH(IK><K ®mT)H; _1/2H; 1/2(0* 703')H2

K
> oil|Uxwx @ 27)(0" - 6)]],

i=1

<

J

2
<3R10" = 051l || (T 0 0T H; 2|

2

< 3ROV || (T w2 VB 7|
2
< 3Ry VP | (T 02 ;2|

O

Lemma 7.6. Let x} be the optimal arm at round t, i.e x} = argmax ¢y, p' z(x,0*). Then, the
optimal arm never gets eliminated in any round.

Proof. From Lemma 7.5, we know that

’pTz(w70*) - pTz(w70j)‘ < 61(j7w7>‘) + 62(j,337)\)

Also, from Algorithm 1, we have the definitions of UCB(j, , A) and LCB(j, z, A) as:
UCB(j, @, A) = p 2(x,0;) + €15, @, ) + €2(j, @, \)
LCB(]7w’/\) = pTz(w’0j> - 61<ja$a)‘) - 62(.77337 )‘)

From Algorithm 1, we know that an arm x € X, gets eliminated if UCB(j,z,\) <
maxyex, LCB(j,y,A). Thus, showing that UCB(j, },A) > maxycx, LCB(j,y, A) accounts to
showing that «} never gets eliminated.

We assume that arg max, ¢ v, LCB(j,y, ) = y. Then, for any arm = € X}, we have that
LCB(j,z,A) < max LCB(j,y, \)
YEX:

= pTZ(yvej) - 61(j7'ya )‘) - 62(j7y7)‘)

7

< [pTZ(yv 0*) + el(ja Y, >‘) + 62(j1 Y, A)] - 61(.7‘3 Y, >‘) - 62(j7 Y, )‘)
=p'z(y,0")

(i)

< pla(x},0%)

(444)
< pTz(m:an) + 61(j, ZCZ,)\) + 62(.ja m:a)‘)

— UCB(j, !, \)

—
a2

where (i) follows from Lemma 7.5, (i) follows from the fact that 7 = argmax p ' z(y, 6*), and
YEX:
(791) again follows from Lemma 7.5. O
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Lemma 7.7. Let Bg(x) be as defined in Section 7.1. Then, we have that

1 _
By() < e (NRH28 s + 1

Proof.

1 1
Bg(x) = exp (\/6min {S, 27(/\)"1/2”37“/}31}) < 5633’)/(/\)1%1/2871”:8”‘,/;1 +1

where the inequality follows from Lemma 9.6 by choosing min{25,~(\)x!/ QH:BHVﬂ—l} =
'y()\)/il/2||:c||vg_1 and M = \/6S.

Lemma 7.8. Let €1 (3, x, \) be as defined in Lemma 7.5. Then, we have

E [maxel(ﬁ,w A <

8RKY/2K5/2de35~(\)2S~1/log Kdlog d+4RK2d1/ *y(\)/log(Kd)
X~Dgi1 |xEX

7B VT8
Proof.

— —1/2 ~ H
XNIDEﬁJrl [ra?ea?}f( a(be, )\)} XNIDEﬁJrl [ra?ea}civ )HHﬁ (I ®x)A(z,05)p J

(@) —1/2 A \1
< /2H )
- 7(/\) XNIE/H—l {rmnea))(( ‘ ‘Hﬂ (I ® JI)A(.’B, Oﬁ) 2 ||p||A(m70ﬁ)

(i) -
< 1/2 T 71/2H
- R’Y()\) XN]]’;:BJA |:1’mIl€a)){( ‘ ‘A(:B’ 95) (I ww )HB 2

(444) 1/2
<
< Ry(A X~DB+1 [r;lea/%( \/Bg(x X s Hy }
(i) dlog Kd (1
< 2 1 35 1/2 o—1
< amyr [T sz g el +1)
(v) dlog Kd Kdlogd
2 im0k Og{zewwws—l 0g+1}
T 78
- 8Rk'2K5/2de3%y(\)2S~1/log Kdlogd N ARK?dY?y(\)\/log(K d)
B 73 VT8

where (i) follows from ||Az||, < ||A]|,||x||,, (#) follows from the fact that A(x,0) < I,

(i41) follows from the defintion of X, (iv) follows from Lemma 7.7, the fact that max {ab} <
max {a} max {b}, and Lemma 7.18, and (v) follows from Lemma 7.17.

O

Lemma 7.9. Let e5(3, x, \) be as defined in Lemma 7.5. Then, we have

96 Rry(\)?
< VIV
XNIEB+1 [EQ(ﬂa €, )‘)] — 5

Kd?
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Proof. Recall from Lemma 7.5, in one of the intermediate steps, we have that

s, ) = 3R [T 2Ty

Thus, we have

E [eBz\)]=_E [mangV(/\)QH(I@“BT)H;_UQ 2]

X~Dgi1 X~Dgiy |z€X

)
_ 2 Typgr* —1/2
= 3Ry()\) X~I7ED:5+1 {glg)}((“(I@ﬁ: JH

(4) _ 27
< 3RmI(V)? L E {;nea%c H(I@ x )

(i) ; 2
< 3Rry(\)? XN]%H] [IwneagH(IQ@ z(I® \Z 1/Q)HJ

(#44)
< 3Rm(N)?  E [max|:c||3,ﬁ—1 (K +1)d* <

ND5+1 xeX

} (2) 48Rry(N)?
T

where (i) follows from Lemma 7.3, (i7) follows from the definition of V3, (iii) follows from the
Mixed-Product Property and the fact that A(A ® B) = A(A)\(B), and (iv) follows from Lemma
7.16.

O

Lemma 7.10. Let t be a time round in batch 3+ 1, i.e t € Tg. Then, the expected regret incurred at
round t, denoted as R; can be bounded as:

2RKkY2d~y(\)?2 16 REK2dY/2~v(\)/log(Kd
R, < S2RER Ay {e3SK3/25’1\/10g(Kd) logd+12/<;1/2d}+ (3 y/log(Kd)
B VB

Proof. Using Lemma 7.5,
plz(x],0")—p 2(2:,0%) < p'2(af,05)—p  2(z1, 0)+e1 (B, 27, ) Fea (B, &, M) +er (B, 0, N Hea (B, 20, M)
Since x; was not eliminated, we have UCB(3, ¢, \) > 213}({ LCB(5,y,\) > LCB(B, x}, \) since
x; never gets eliminated (Lemma 7.6). Thus,
plz(@:,05) + (B0, N) +ea(Bxi, A) 2 plz(af,05) — er(B, 27, ) — ea(B, 2], N)
Thus, we get

pTz(x:7 0*) - PTZ(wt»H*) S 261(ﬁa Ty, >\) + 262(ﬁa T, >\) + 261(ﬁa EB:, )‘) + 262(57w;7 >\)
<
< 421@}({ e1(B,x, \) + 4gn€a)>(<eg(ﬁ,m, )

Taking an expectation on both sides, we get

E [p2(x},0%) — p 2(z,0%)] <4 ( E [maxel(ﬁ,w7)\) + meag{(eg(ﬂ,m,/\)}>

X~Dsiq X~Dsiq |TEX
1/2 2 16RK2d1/2 1 K

< B2RRR Ty () {5 K325 Jlog(Kd) logd + 12x7/2d) + 000 7%)y/log(Kd)
8 V7B

which follows from Lemma 7.8 and Lemma 7.9.
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7.3 Supporting Results on Optimal Designs for 7

Recall from Section 7.1,

Also, recall that at each round ¢ € [T, the feasible set of context vectors X; is being sampled from
some distribution D. For a given batch 3, we denote Dg to be the distribution of the pruned arm-sets
post the successive elimination procedure (Section 3.1). Thus, we have that Dg 1 C Dg.

We now define K different partitions of X 5 as follows:
T

where ¢ € [K] and e; is the K —dimensional standard basis vector. We first show a few relations

between X 5 and :E(Bi):

Lemma 7.11. Let X g and 53}}) be defined as above. Then, we have

X5 X5 = Zig ) "

Proof.
K ~ 1 1
x 06 )2 T A(z,05)2 T)
x e;Rx e; x
2 P ( \/ () ) ( By(x)
)V2ee] A(z,05)? @
) @
]. ~ 1 ~ 1
= A(a}705)§ (Z eiez—'r> A(mveﬁ)é ®zx'
Bs(z) —
A(waéﬁ) T %
= ———= = XpX
By(w) =~ T
where we use the fact that Z ee] =Ixxk. O

i=1

Lemma 7.12. Let M € R¥? be any positive-semidefinite matrix. Then,

‘ 2

Amas (XFMX ) < i =),
1

1=
Proof.
- - . o 3 K
Amaz (XBTMXB) @ Ama (XﬂXBTM) (i9) A (Z 58(61)58(5) TM>
i=1

~(i)'r (1) ~ (%)
e (35 07) < 3

M=

(iii) K o i
S e (a5 ) 2
i—1

1

~.
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where (i) follows from the cyclic property of eigenvalues, (i7) follows from Lemma 7.11, (4i7)
follows from the fact that Az (A + B) < Anas (A) + Anaz (B), and (iv) again follows from
the cyclic property of eigenvalues. O

We first redefine the Distributional Optimal Design (Definition ??) for a set X'.

- _ FG(X) W.p.%
() {ﬁﬁ/l()\,’) w.p.%

where ¢ is the G-optimal design and Wf/[i represents the Softmax Policy with respect to M;. We
refer the reader to Definition ?? for more details.

We now define a few notations regarding some of the information and design matrices used through-
out this section.

1. I(r) = E LNIE(X) Xng]

2. W () = E &Yz} T}

X~D |::1:N7T(X)
0

Suppose Algorithm 2 is called with the inputs 3 and Sg, where 3 is the current batch index. Then,
the policy returned by the algorithm is denoted by 7, where

1 K

where 759 and wg; i € [K] represents the Distributional Optimal Design learned over Sz and
F;(Sp, B),1 € [K] respectively. Here F; is as defined in Equation 8.

We now state a few results that relate the design matrices H and V' as well as the matrices |I and
W.

Lemma 7.13. (Lemma A.16, Sawarni et al. (2024)) Let V3 and Hg as defined in Section 7.1 and
Wg)) (m5) and I (7g) be as defined in Section 7.3.

1

Then, with probability at least 1 — 7z, we have that

T 0
Vs = gﬁw%)(ﬂﬁ)

.
Hyy = Tp(m)

Lemma 7.14. For all i € [0, K], we have that

(K + 1)Ip(mp) 3= Ipy(ms.:)

Proof.
IN(mg) = E E XX, (Q(Kﬂr1 E i E XX,
DA™ XD |wmmg )~ PR 7 AND | S gy (X) pp

1 > oT| _ —17A _
7 (K+1) E LW]HE,i(X)XﬁX[’] = (K +1) Ip(ms,i)
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where () follows from the definition of 7. O

Lemma 7.15. For all i € [K], we have that

Iy (r) = W ()

Proof.

K . .
E &z T} =

A _ v v | @ = (1) () T _ yy®
Ip(m) = E_ LNIE(X)XﬁXﬁ] = E_ o) 2 = B { E &g, } =Wp'(m)

(X))

O

Using the lemmas stated above, we now derive a few results.

Lemma 7.16. Let Vi be as defined in Section 7.1 and 73 be the length of the (3 batch, i.e |Tg = 73.
Then, we have

16

—(K +1)d?
T8

E 2 <
B malial | <

Proof.

E vl < E 20 -
|:maX||:B||V5 1:| - T3 X~Dgiq |:I;1€a§|w||wgg 1(7713):|

2
s LE+D B [f;;a%”wilw;s;w@}

T8 X~Dg
(414) 16 9
< — _
T 18 (K + 1)X1ED,3 {glea§|w||wg); 1(Wc)}
() 1
< —6(K+ 1)d?
78

where (%) follows from Lemma 7.13, (i¢) follows from Lemma 7.14 and the fact that Dg1 1 C Dg
and hence, Ep,,, < Ep,, (iii) follows from the definition of 73 ¢ and uses the fact that 75 o = =&,
and (iv) follows from Lemma 9.8.

O

Lemma 7.17. Let V3 be as defined in Section 7.1 and T3 be the length of the 8 batch, i.e |Tg| = T3.
Then, we have
Kdlogd

E 1| <4
{max||a:|vﬁ 1] < P

X~Dgi1 |xEX
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Proof.

@ /8
E <,/— E
X~Dpiy |:I£1€a§||$|v ] — \/ 78 x~Dpg [;neaX”mHW(o) (Tfﬁ)]

< — 1
- (K +1) XLED[, |:I£lea2}(( HwHW%}; (Wﬁ,O)}

T
(i)
< \/8(K+ 1)dlogd
T
Kdlogd
T

where (7) follows from Lemma 7.13 and the fact that Dgy1 C Dg, (i7) follows in a similar manner
as Lemma 7.14, and (4i7) follows from Lemma 9.7.

O

Lemma 7.18. Let X3 and Hp be as defined in Section 7.1. Denote T3 = |T3|. Then, we have that

dlog(Kd)

E [maxHXgHg”ZH ] < 4K>
2 T8

XND5+1 xeX

Proof.

E HXTH*/?H < E
[max B B 9 >~

XN'D5+1 zeX XNDB pAS
(#4) ( o -1 )
X]NEDﬁ wen \/)\m” pip B ]

X~Dg | weX Ha_l
(iv)
CHESEN PPl
Tg XDy |@EX Iyt (ma)
(v) 8 = (1)
< —
=\ s (K+1) Xf]\/EDﬁ ;neai’( Z H ]IA , (m.0)
(vi) 8 =
< —_
< TB(KH)XNDB ey Z}H Wi~ (ms.0)
(vid) 8
< JR—
<o) B [g?;Z\ . )]
(viid) X
< é(K'Jrl) maXH g (@) -1
5 - 1X~DB zEX W, ™ (ms.4)
o) dlog(Kd
< K\/8(K+1)Kdlog(Kd)§4K2 dlog(Kd)
T8 T8
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where (i) follows from the definition of the norm ||A||, = \/Amaes (AT A) and the fact that
Dgsy1 C Dg, (i) follows from the cyclic property of eigenvalues, (iii) follows from Lemma 7.12,

(iv) follows from Lemma 7.13, (v) follows from Lemma 7.14, (vi) follows from Lemma 7.15, (vi7)
uses the fact that for {az}l =y Z a? < az Z a;, (viii) uses the linearity of expec-
tations and the fact that max < max f )+ max g(x), and (iz) follows from Lemma
9.7. O

8 Rarely Switching Multinomial Contextual Bandit Algorithm: RS-MNL

8.1 Notations

We first define a few matrices, vectors, and scalars that are used throughout this section (here, e;
denotes the i*" —standard basis vector):

1. V, = >\Id><d + Z :BSCCI
s€E[t]

2. Vi=Ixkxk @V,

3. A(zx,0) = diag(z(x, 0)) — z(z,0)2(x,0)"
4. M(x,01,0,) = OflA(w,vﬂl + (1 —v)03) dv
5. Hf = Miaxxa+ eZ[t]A(ocs,t‘)*) ® Tsa]
6. v(6) = CS°/*\/Kdlog(T/))

7. Bi(x) = exp (\/émin {2&1/27(6)\@”‘71,25})

8. Ht(e) = Mggxkad+ Z 1‘]‘5’?(;’5)) ® CCSZCI
s€e(t]

9. Hy(0) = Mgaxxa+ 5. g@g;ﬂ ® xox]
s€(t]

N 1
10. X,(0) = A@0)’ o o,

. 1
11. 2()(g) = Alze0)2
12. Hi(@)= 3 ;z&ke)::z@(eﬁ Y,
€[t

We now present the regret upper bound for RS-MNL by restating Theorem 4.1.
Theorem 8.1. With high probability, the regret incurred by Algorithm 3 is bounded above by R
where:

Ry < CRK3/28%/*(log T log(T/6))/?dVT+CRK?d?S%/? log T log(T/6)x'/?e?% (e + K k'/?)

Proof. For any round ¢ € [T, let 7, < t denote the last round at which a switch was made. Then,
using the value of y(J) alongside Lemma 8.8, Lemma 8.12, and Lemma 8.13, we get:

Z lp"z(z},0%) — p'z(x,0%)] < Z 2€1(t, 74, ) + 2e2(t, 7y, )
te[T) te(T]
< 4RKdY?*(log T)Y*~y(6)VT + 8RK dlog Tr'/?e*3~(5)? + 24dRK?e* kv (5)? log T

< CRK®/?85/4(log T'1og(T/5))"?dVT 4+ CRK?d*S°/? log Tlog(T/8)k*/?e*% (e + Kr'/?)

O
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8.2 Supporting Lemmas for 8

Lemma8.1. Let {x1,...,x,} beasetofarmsand {r1,...,r:} be the set of corresponding rewards
associated with the arms. Define 0. be the MLE estimate calculated using this set of arms and
rewards, i.e

K
A A
0, = i Hys =i}l i 570 =10 3
argemm E E {ys = i} log zi(xs, 0) + 2” 12

s€[r] =1

Let H: be as defined in Section 8.1. Then, with high probability, and the choice of A\ =
KdS—1/?10g(T/5), we have that

16, — 0% < CS%/4/Kdlog(T/3)

Proof. We define G (601, 0-) as:

Gr(61,62) = Y M(x1,01,02) @ mpa| + A

telr]
where M (x, 01, 62) is as defined in Section 8.1. Thus, from Lemma 9.2, we have that

(1+29)7'G, = H!

T
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Thus, we have

1+28

G.(6,,0%)

< V1+25||G.(6,,67) (6, - 6)

H*

G:'(6-,6%)

(0 A )
< VIT25|| | M(6,.0%) ® 2@ + Mraxra (eT - 9*)

te(r] G:1(6,,0%)
(i4) R . R
< V1+2S Z {M(m70*707) ®w:} (9* _ 07) @z + A <0T _ 9*)
G71(61,62)
(#47) N N
< Vita2s| Y [z(mt,QT) — 2(y, 0*)} ® @ + A (GT - 0*)
te(r] G;1(01,92)
@ VIt28||Y [m - * — )"
> + — 2(x:,0")] @ T — \O
te(r] G:1(91,92)
(v)
< VI+25||) 0 [me— z(z0,0%)] @2y + AT +2510% =1 (6, 60
te(r] G=1(6,,09)
<1429 (> [y — z(m1, 6] @ @ + A1 +25(16%|g-1 (0, .0)
te(r] !

(ve)
< (14 29) Zq@a:t + S5vV1+ 25V

te(r] Hr !

(vi)
< 3S Z €t ® Lt + \/§A1/253/2

te(r] H} -1

where () follows from Lemma 9.2, (i) follows from Mixed Product Property , (ii) follows from
the Mean value Theorem, (iv) from Lemma 9.3, (v) follows from Cauchy-Schwarz, and (vi) follows
from the fact that G > AI and ||0]|, < S.

Note that €, = 1, — z(x;, 0*) and since E [m,] = z(x;, 0*), we get E [e;€/ | = A(xy, 6%). Also,
note that ||e;||1 < ||m||1 + ||z(x¢, 0%)]|1 < 2. Thus, using Lemma 9.10, we get

ﬁ 4 det H/? 4
0, — 0" <3S log | ———— —Kdlog?2 | +283/2)\1/2
H: ( 0g aK + IN 0g +

4 S\

where H, = M+, Az, 0) @ z/ .
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We can calculate det H, as follows:

(1) (trace H, Kd
det H, < | ————~
) —( Kd )

Kd
- (trace M + trace Y-, Az, 0%) ® :cgcj)
- Kd

Kd

L)

(@) <,\Kd + T||:nt||§)Kd

where (7) follows from Lemma 9.11, (4¢) follows from the fact that tr (A® B) = > A(A)A(B) and
the fact that A(x,0*) < I and the only non-zero eigenvalue of z;x, is ||z;||3, and (i7i) follows
since ||| < 1.

Thus, we have

Kd

. NS 1+ 5&k7) * 4
0, — 6" < L log | ——AKd —Kdlog2 | +253/2\1/2
‘ - 35 1 + Y og 5 + Y og2 | +
VA 2Kd T 4 1 4
= T T log (14 — ) + —=log = + —Kdlog?2 | + 283/2\1/2
SS<4+ﬁOg(+)\d>+ﬁOg5+ﬁ 0g2 | +

Finally, by setting A\ = KdS~'/?log(T/) and simplifying the constants, we get that for some
appropriately tuned constant C'

0. —0*

" < CS5/*\/Kdlog(T/b)

From here on, we shall use the notation (8) = C'S®/*\/Kdlog(T/0).
Lemma 8.2. Let V; and H be defined as in Section 8.1. Then, for any round t € [T, we have that

Vi < kHf

Proof. From the definition of k, we have A(x, 0) = %I . Hence, using the fact that x > 1, we have

‘ZﬁZIKxK®V;5:IK><K® Mgxq+ Zwswz

sE(t]
= Myaxxa+ Ixxx ® Yz
s€[t]
< kMiaxkd + K Z Az, 0%) @ 2z,

s€(t]
< KHf
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Lemma 8.3. Let V; and H(0) be defined as in Section 8.1. Then, for any round t € [T, we have
that

Vi < kH(0)

Proof. From the definition of , we have A(x, 0) = %I . Hence, using the fact that x > 1, we have

Vi=Igx @Vi=Ikxr @ | Maxa + Z Tx,

sE(t]
= Mgaxga+ Ixxx ® Yz
s€t]
< kM gaxkd + K Z A(z:,0) ® T/
s€([t]
Az, 0
< kM Edaxkd + K Z B(q(;g)) ® @yx,
s€[t]
< K/Hf(e)
where the second to last inequality follows since B;(x) > 1. O
Lemma 8.4. Let 1,71,...,7y be the rounds at which a switch occurs, i.e det HTHI(HAH) >

2 det H,(0,,)Vi € [m]. Let H,(8) and H} be defined as in Section 8.1. Then, for all i € [m], we
have that

Proof. From Lemma 9.1, for some x such that ||z|| < 1 and some 7 € {7,..., Ty}, we have that

)

Az, 0,) < Az, 0) exp (\/6 H(I @x')(0" —0,)

Now, we can bound H(I @xT)(0* —0,)

as follows:
2

|@eaT)or -6, LasiToa): D 25 A (T2 )T 0 27)

i (iv)
D 98/ Amas (T @ zaT) < 28

where (%) uses Cauchy-Schwarz inequality and the fact that ||@||2 < S, (i%) uses the definition of the
normas || A2 = \/Amaz (AT A), (44i) follows from the mixed product property of tensor products,
and (iv) follows from the fact that Apaz (A ® B) = ez (A) Anag (B) and Apes (z2') =
3 < 1.
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We can also bound H Iox")(6* —8,)
ball is represented as Ba(d)):

in the following way (note that the d— dimensional unit
2

I(TezT)(0" —0,)|: = |Ioz ) H: *H:?0" —6.)|,
(%) _
< NI @a ) H:?||27(6)
(i) -
< KY2|(I @ 2T VY2 ay(0)

(#id)
< RP(I @) (T @ V2))2y(9)

D2 s (0 VAT 2 )T 02T T @ V)0

W e125(5) ]y

< 2ﬁ1/27<5)|w||v;1

where (i) is obtained from the fact that ||Az|s < [|A||2[|z|]2 and from Lemma 8.1, (i7) follows

from Lemma 8.2, (i) is obtained from the definition of V" and the fact that (A® B)" = A" ® B™,

(1v) follows from the definition of the norm, i.e, ||All2 = \/Amaz (AT A), and (v) follows from
the cyclic property of eigenvalues and the fact that Ay (A @ B) = Amax (A) Amaz (B).

Thus, by combining both bounds, we obtain

A(z,0,) < Az, 0%) exp (\/émin {\/551/27(5)|m||‘,;1,25})

Let B, (x) denote the value exp (ﬁ min {\/551/27(5)@”‘,;1 , 2.5'}). Then, we have that

Az, 0 )
H: = AI—‘r Z A(ws,a*) RXxg = )\I+ Z ‘éngv;) Rxsxrs = HT(OT)
se(r] s

selT]

Lemma 8.5. For time round t, let 7, < t be the last time round at which a switch occurred, i.e

det Hy(6,,) < 2 det H,,(0,,). Let H,(0) and H} be defined as in Section 8.1.

H.(0-) < H;

Proof. Similar to Lemma 8.4 for some @ such that ||| < 1, we have that

A(w,6,,) < Az, 0%) exp (V6 H(I o )6 6.,

)

Now, we can bound H(I @ax’)(0* —0,,) ‘ in two different ways: the first way results in 2.5,
2
following the same method as Lemma 8.4. We can also bound it in the following way:
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I(T@z")(0" —6,)|> = |(Te=")H;, V2 H:, (0" - 6,,)2
21T o eV HL 2 (6)
T aT)HL, (0r) 2 ()
BT &) HL(6,,) 2 (5)

(iv) ~
< V2R2|[(T @ 2" )V12]27(9)
< 261/25(0) ]y, -

where (¢) is obtained from the fact that ||Ax||2 < ||Al2||z|2 and from Lemma 8.1, (i7) follows

from Lemma 8.4, (i74) follows from the combination of Lemma 9.13 and the fact that det H(0,) <

2 det H,(0,,), (iv) follows from Lemma 8.3, and (v) follows from the same steps used in Lemma
8.6.

Combining the bounds in the same manner as Lemma 8.4 finishes the proof.
O

Lemmfl 8.6. For time round t, let 7, < t be the last time round at which a switch occurred. Let
Ht(l)(OTt) and H(0;,) be defined as in Section 8.1. Then, we have

H(0,,) < H/(6,)

Proof. We have:

Ht(éﬂ) =AM+ Z XS(éTt)XS(én)T
s€E(t]

) K
EAL+ Y3 a0 (0,02 (0,)T
€[t] i=1

A+ #7(6,,)%(6,,)"
sSEt]

= H;‘ (é‘l't )
where (7) follows from Lemma 7.11. O

Lemma 8.7. Let 74 < t be the last time round at which a switch was made. In other words,

det Hy(0,,) < 2 det H,,(8..,). Then, for any arm x, we have that,

PTZ(%H*) — PTZ(fE»éT) < e (t, e, x) + ea(t, 7, )

where
et @) = V2y(0) || Hi(0:) (T @ @) Alw, 6.,

ea(t, 7y, ) = 6R(5)? H(I ® :L‘T)Ht(ér,,)il/QHz
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Proof. The proof follows on the same lines as that of Lemma 7.5 and uses the fact that

e ! !
751;;}:;(?”))71 < 2 combined with Lemma 9.13 to convert H ., (6.,) to H:(0.,). O

Lemma 8.8. Let 7, < t be the last time step at which a switch was made. Let €1(t, 7, x) and
€a(t, ¢, ) be as defined in Lemma 8.7. Then, the regret at time step t can be bounded as

’pTZ(IB*76*) - pTz<fL't70*)| S 261(t77t7wt> + 262(15,7},3%)

Proof.

(@) N N

’pTz(:B*a 0*) - pTZ(Scta 0*)‘ S pTz(w*a 07}) + €l(t7 Tt, w*) + 62(ta Tt, IE*) - pTZ(SUt; 07}) + 61(t7 Tt, :Et) + 62(t7 Tt :Et)
(i1)
S 261 (t, Tt, .’Bt) —+ 262(t, Tt .’Bt)

where (i) follows from Lemma 8.7 and (i) follows from the fact that x; =

arg max UCB(t, 74, ) = argmax [pTz(a:, 0.) + e (t, 7, @) + ex(t, 11, :c)] and hence, gets se-
TeEX reX
lected at round ¢. O

Lemma 8.9. Let Bi(x) be as defined in Section 8.1. Then, we have that

VBi(@) < 512y (0) | ly,-1 + 1

Proof.

VEBi(@) = exp (VB min {x/2y(8)||zlly,-1, S} )

< €BSI€1/2’7(6)HwH‘4—1 +1

—~
=

where (i) follows from Lemma 9.6 by choosing min {&1/27(6)||a:||‘471, S} = /@1/27(6)||:c|\V;1
and M = /65.

O
Lemma 8.10. Let X () and &\ (0) be defined as in Section 8.1. Then, we have
X, (0)X-(0)" =) & (0)a ()"
i=1
Proof. The proof follows on the same lines as Lemma 7.11. O

Lemma 8.11. Let M € R¥? be any positive-semidefinite matrix. Then,

2

#9(0)||

Ao (X+(0)TMX,(6)) < i | y

Proof. The proof follows on the same lines as Lemma 7.12. O
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Lemma 8.12. Let €1(t, T, x) be as defined in Lemma 8.7, and T, be the last switching round before
round t. Then, we have that

Z e1(t, 7, 2¢) < 8RKdlog Tk'/?e*%4(8)? + ARKd'/?(log T)'/?~(8)VT
te[T]

Proof.

S altrm) = v2y0) 3 || Hul6n) AT @ @) Al 00|

te[T] te[T]

(1) A 0

<V2y(0) Y || E6.) A (1 @ @) A 00| Nl ace, o
te[T)

< VER(3) Y H%wnfﬂu@mnﬂt(énr”H
te(T] ’

(74)

£ Ve (0) Y || VB X6, 6,
te[T] ’

(#47) A A

NG ZHXtG (6,072 {5 2@y +1)

te[T]

where (i) follows from || Az||, < [|A]|, ||z|,, (ii) follows from the definition of X (), and (iii)
follows from Lemma 8.9.

We now bound the term ) HXt(GATt)THt(éTt)*lﬂH .
te[T) 2

3 "Xt(éTt)Ht(éTt)*l/Z“Q == \/AJ (Ht(én)—l/QXt(O )X (0, )THt(én)—l/Q)

te[T) te(T]

= 3 P (K0T 0, %,0,)
te[T]

(i) = @4 |2

2y S|l ,
tE[T] i=1 Ht(eﬂ)

(i) K o2

~ (%)

= Z‘ 2,7 (6r) ’Hg’(é,t) 1
te[T] =1

(444) K N 2

= VT ZZHNY)(%) ‘Hié .

te[T] i=1 i6re)

(iv)
< 2K+/dT'logT

where (i) follows from Lemma 8.11, (i7) follows from Lemma 8.6, (ii:) follows from Cauchy-
Schwarz, and (iv) follows from Lemma 9.12 and the fact that {|:5<i>(0) |2 <||A(z,0)|], ||=||, < 1.

We also bound the term HXt 0, TH,g(éﬂ)_l/QH |||y~ as follows:
te[T) 2 ¢
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A (%) - . . 2
Z HXt (6., 1/2H2||wt||‘,;1 < Y ’’Xt(@n)THt(@ﬁ)—uQH2 > N2,
te[T]

te[T)

< 2K +/dlog T Z||act||vl
te[T)

D)
< 4KdlogT

where (i) follows from Cauchy-Schwarz, (i¢) follows from the same steps used to bound

HXt )T H(6,,) /2 ‘ ‘2 above, and (¢4¢) follows from Lemma 9.12.
te[T)

Substituting back, we get

Z e1(t, 7, z¢) < 4V2RK dlog Tr'2e394(5)? + 2v2RKd/?*(log T)' /24 (5)VT
te(T)

< 8RKdlog Tr'?e*3~(0)? + 4RKd"/?(log T)'/?4(8)V'T
O

Lemma 8.13. Ler e5(t, 7, x) be as defined in Lemma 8.7, and T; be the last switching round before
round t. Then, we have that

Z ea(t, 7, ;) < 24dRK?e* ky(5)* log T
te[T]

Proof.

Zeg(tT:Et =6Rv( ZHI@:B é UQHE

te[T]

o 5 [ ] e

(i1) . 20 ~ . R 2
< 6Ry(072% Y || Alwe, 0,) 72| || X6, H(6,) 12|

te[T]

(#i7) 2
< G6RY(5)2e*Sx Z %6 6,12

te[T]
(iv)
< 24dRK?e*Sky(0)*log T

where (i) follows from the definition of X and Lemma 8.6, (ii) follows from the definition of
By(), (iii) follows from the fact that A(x,6) < 11, and (iv) follows from the methods used in
Lemma 8.12. O

Lemma 8.14. Let Algorithm 3 be run for t rounds. Then, the switching criterion is triggered a
maximum of dK log(1 + ;) times.

Proof. Let 19,71,...,Tm € [1,t] be the time steps at which the switching criterion in Algorithm
3 is triggered, i.e, 2det H,,(0,,) < det H. (0;,) fori € [m — 1], and 7,, = t. Note that
H. (0) = Mkaxxa-



Achieving Limited Adaptivity for Multinomial Logistic Bandits

det Hy(0,,_,)  detH, (8, ) y det H, (0, _.) o det H.,, (6,,)
det Hy,(8)  detH,, ,(0., ,) detH, ,(0 det H,, ()
227)1

Tm—2)

and hence, det Hy(0,, ) > 2™ A\X4 since det Hy = A\¥?. Also, we can say that:

det H t Tm S

1

Kd
(l) trace Ht 1) )

I/\:

(Zle k) trace H (OATml))Kd

(i1

s

IA

=)@ 2\ 4
i) <>‘Kd+Zve[K Zse[t] |25 (eTm_l)”Z)

Kd
<
< <A+d>

Here (7) follows from Lemma 9.11, (i) follows from Lemma 8.6 alongside the linearity of the trace
operator, (iii) follows from the definition of H} () and the fact that the only non-zero eigenvalue

of z T is |z||2, and (i) is due to the fact that ||&\” (0)||> < ||A(zy, 0)|| < 1. Thus, we have

Kd
M A < det(H, (0, ) < (A + 2)

and hence, 2™ < (1 + ﬁ)Kd. This finishes the proof.

9 General Lemmas and Results

Lemma 9.1. (Self-Concordance) Let A(x,0) = Vz(x,0). Then, A(x,0) is (M, v)—generalized
self-concordant with v = 1 and M = /6. In other words, for any given x1, X, 01,0, denote
A; = A(x1,601) and Ay = A(xo,03). Then, we have

Azexp (—VB||(T@a]) 0 — (T2 2]) 6s]],) < Av < Azexp (VB[ 0 2]) 01 — (T 9 2]) s, )

Lemma 9.2. (Lemma 13, Amani & Thrampoulidis (2021)) Let = {t1,...,tn} be a set of time
indices and define

G3(60,,02) = ZM(fB,91792) @z, + Mrixkad

teps
and
Hjy =Y A, 60") ® me] + Mgaxxa
tep
where
1
Mz, 0,,0,) = /A(x,v@l + (1= 0)8) du
0
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Then,
1 *

G3(0,6%) = mHﬂ

Lemma 9.3. Define the log-likelihood function as follows:

t—-1 K
1

£406) = 2301 = i}log g + 51013

s=11i=1

Let 0 be the MLE of 0%, i.e., 0= argmin £;(0), then
0

t—1 t—1

z(ws,é)@)ws—i—)\é:ZmS@ws

s=1 s=1

where mg = (1{ys = 1},...,1{ys = K})" is the user-response vector.

Proof. For the sake of convenience, define the loss incurred at round ¢ (without the regularization
term) as

- 1
1:(0) = Z 1{y, = i}logm

Then, it is easy to see that

oly(0) . 1 0zi(xs,0)
o _Zﬂ{ys =i} zi(xs,0) 00,

K
===} ﬁ [1{i = m} 2:(ms,0) — 2i(@s,0) 2 (w4, 0)] ® 2.

= [1{ys =m} — zm(x,,0)] @ x4

and hence,
Vi (0) = [ms — z(xs,0)] @ x4

Since @ = arg min £;(8), we have that V.£,(0) = arg min Zi;ll 1,(8) + A8 = 0, which results in
0 0

the claim.

O
Lemma 9.4. (Bernstein’s Inequality) Let X1, ..., X, be a sequence of independent random vari-
ables with | X; —E[X¢]| < b. Let S = tznjl (X —E[Xy]) and v = tznjl V[X:]. Then, for any

0 € [0, 1], we have
1 2b 1
P >1/2vlog -+ —log = <
{S_\/vog§+3og5}_5

Lemma 9.5. Let m; = (1{ys = 1},...,1{ys = K}) be the user-response vector as defined in
Section 7.1. Then,

E[m,] = z(z,,0") and E [m,m] = diag(z(xs,6"))
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Proof. Since m, = (1{ys =1},...,1{ys = K}), we have
E[m,] = E[1{y; = 1}],....E[l{ys = K}]) = (21(25,0"), ..., 2 (@5, 0")) = 2(5, 07)
For the second part, note that
[msmmm =1{y, =i} 1{ys =j} = {3 tos =1} 2 ;j

Thus, we have
E [mom]] = E[diag (1{y, = 1},...,1 {y, = K})] = diag (E[1{y, = 1}] ..., E[1 {y, = K})

= diag (z1(xs, 0%), ..., 2k (xs,0%)) = diag(z(xs, 07))

O

Lemma 9.6. (Claim A.8, Sawarni et al. (2024)) For any x € [0, M],

o (5)

Lemma 9.7. (Theorem 5, Ruan et al. (2021)) Let m represent the G-Optimal Distributional De-
sign learnt from X ... X YD and let W be the expected data matrix, i.e. W = M +

E { E mmT|X],then, we have
X~D |z~m(X)

P {XIED [m€a§|w|wl] < O(\/dlogd)} >1—exp (O(d*log®d) — sd~'?2716)

Lemma 9.8. (Lemma 4, Ruan et al. (2021)) Let mg represent the G-Optimal design and define the

design matrix W = A+ E { E zz' \ X}, then we have
X~D |zema(X)

2 2
By [y el < 0)

Lemma 9.9. (Lemma A.15, Sawarni et al. (2024), Ruan et al. (2021)) Let x1 . . . x,, ~ D be vectors
with ||x||y < 1, then

i T n T ( 6n>
P {36]\/‘] + ; 1 T,x; = S o [:B:I: ] } 1 — 2dexp 3

Lemma 9.10. (Lemma 6, Zhang & Sugiyama (2023)) Let {F;},-, be a filteration and {x,},- , be a
stochastic process in Bz(d) = {x € R? | |||, < 1} such that x; is F;— measurable. Let {es},
be a martingale difference sequence such that €; is F; 1 —measurable. Assume that conditioned on
Fi, we have ||€;||, < 2 almost surely, and is denoted by n, = E [e,€/] | F;]. Let A > 0 and for any
t > 1, define

t—1 t—1
S; = Zes ®xs and Hy = Mg« ax + Zns 29 msm;r
s=1 s=1

Then, for any § € (0, 1), we have

+ PR
SN

VA4 det H}'*
P{3t>17|5t|Ht124 \F/\IOg T aE

4
+ —Kdlog2, <¢
N }—
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Lemma 9.11. (Determinant-Trace Inequality) Let the determinant and trace of a p.s.d matrix A €
R¥*? pe denoted by det A and trace A. Then, we have

d
det A < <tmce A>

d

Proof. Let the eigenvalues of A be denoted by A\(A) > 0 since A 3= 0. Then, we know, det A =
[TA(A) and trace A = > A\(A). Thus, applying the inequality for arithmetic means and geometric
means, we get that

(H )\(A))l/d < % = det A < (trac;A)d

O
Lemma 9.12. (Elliptical Potential Lemma, Lemma 11, Abbasi-Yadkori et al. (2011) ) Let {ms}i:1

s—1

represent a set of vectors in R¢ and let l|zs||ly < L. Let Vs = Mg+ > T, . Then, for X > 1
m=1

! tL?
> lzal3—1 < 2dlog (1 + M) < 4dlog(tL?)

s=1

Lemma 9.13. (Lemma 12, Abbasi-Yadkori et al. (2011)) If A = B = 0, then

x' Az _ det (A)
su
w;él()) "Bz ~ det (B)

10 Additional Experiments

In this section, we supplement the experiments from Section 5 (in particular, Experiment 1 and
Experiment 2).
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(a) Regret vs. T": Logistic (K = 1) Setting (b) Regretvs. T: K = 3
Experiment 1 (R(T') vs. T for the Logistic (K = 1) Setting): In this experiment, we use the same
instance as in Experiment 1 (Section 5) and average the regret over 10 different seeds for sampling
rewards. The averaged results with two standard deviations can be found in Figure 2a.

Experiment 2 (R(T) vs. T for K = 3): In this experiment, we use the same instance as in Ex-
periment 2 (Section 5) and average the regret over 10 different seeds for sampling rewards. The
averaged results with two standard deviations are reported in Figure 2b.



