
Reinforcement Learning Journal 2025
∣∣ Cover Page

Achieving Limited Adaptivity for Multinomial
Logistic Bandits

Sukruta Prakash Midigeshi, Tanmay Goyal, Gaurav Sinha

Keywords: Multinomial Logistic Bandits, Limited Adaptivity, Batched Bandits, Contextual
Bandits

Summary
Multinomial Logistic Bandits have recently attracted much attention due to their ability

to model problems with multiple outcomes. In the multinomial model, each decision is as-
sociated with many possible outcomes, modeled using a multinomial logit function. Several
recent works on multinomial logistic bandits have simultaneously achieved optimal regret and
computational efficiency. However, motivated by real-world challenges and practicality, there
is a need to develop algorithms with limited adaptivity, wherein we are allowed only M policy
updates. To address these challenges, we present two algorithms, B-MNL-CB and RS-MNL,
that operate in the batched and rarely-switching paradigms, respectively. The batched setting
involves choosing the M policy update rounds at the start of the algorithm, while the rarely-
switching setting can choose these M policy update rounds in an adaptive fashion. Our first
algorithm, B-MNL-CB extends the notion of distributional optimal designs to the multinomial
setting and achieves Õ(

√
T) regret assuming the contexts are generated stochastically when

presented with Ω(log log T) update rounds. Our second algorithm, RS-MNL works with ad-
versarially generated contexts and can achieve Õ(

√
T) regret with Õ(log T) policy updates.

Further, we conducted experiments that demonstrate that our algorithms (with a fixed num-
ber of policy updates) are extremely competitive (and often better) than several state-of-the-art
baselines (which update their policy every round), showcasing the applicability of our algo-
rithms in various practical scenarios.

Contribution(s)
1. We present an algorithm, B-MNL-CB, that achieves an optimal Õ(

√
T) regret with

Ω(log log T) batches in the batched setting. Moreover, the leading term of the regret is
independent of κ, an instance-dependent non-linearity parameter.
Context: In the batched setting, the rounds at which the policy is updated are fixed before-
hand. Gao et al. (2019) showed that having Ω(log log T) batches is necessary to achieve the
optimal minimax regret. Our algorithm, B-MNL-CB, combines the idea of distributional
optimal designs (introduced in Ruan et al. (2021)) with the idea of suitable scalings for
arms (introduced in Sawarni et al. (2024)) to the multinomial logistic setting. This requires
a natural extension of distributional optimal designs to this setting. Achieving a κ− inde-
pendent regret is important because Amani & Thrampoulidis (2021) showed that κ scales
exponentially in several instance parameters and hence, can increase the regret significantly.

2. We present a rarely-switching algorithm RS-MNL that achieves an optimal Õ(
√
T) regret

(with a κ−free leading term) requiring O(log T) switches (policy updates).
Context: In the rarely-switching setting, the switching rounds (policy-update rounds) are
adaptively chosen during the course of the algorithm. The need for the update is decided
based on a switching criterion similar to the one in Abbasi-Yadkori et al. (2011). While
the algorithm bears similarities to the rarely-switching algorithm presented in Sawarni et al.
(2024), an alternate regret decomposition method allows us to get rid of the warm-up crite-
rion, which helps reduce the number of switches from O(log2 T) to O(log T). Further, we
also get rid of the Successive Eliminations in Sawarni et al. (2024) that determine the arm to
be played, and replace it with the simpler UCB-maximization rule of Abbasi-Yadkori et al.
(2011), resulting in a more efficient runtime for the algorithm.

Achieving Limited Adaptivity for Multinomial Logistic Bandits

Achieving Limited Adaptivity for Multinomial Logis-
tic Bandits

Sukruta Prakash Midigeshi1, Tanmay Goyal1, Gaurav Sinha1

{t-smidigeshi,t-tangoyal,gauravsinha}@microsoft.com

1Microsoft Research India

Abstract

Multinomial Logistic Bandits have recently attracted much attention due to their ability
to model problems with multiple outcomes. In the multinomial model, each decision is
associated with many possible outcomes, modeled using a multinomial logit function.
Several recent works on multinomial logistic bandits have simultaneously achieved op-
timal regret and computational efficiency. However, motivated by real-world challenges
and practicality, there is a need to develop algorithms with limited adaptivity, wherein
we are allowed only M policy updates. To address these challenges, we present two
algorithms, B-MNL-CB and RS-MNL, that operate in the batched and rarely-switching
paradigms, respectively. The batched setting involves choosing the M policy update
rounds at the start of the algorithm, while the rarely-switching setting can choose these
M policy update rounds in an adaptive fashion. Our first algorithm, B-MNL-CB extends
the notion of distributional optimal designs to the multinomial setting and achieves
Õ(
√
T) regret assuming the contexts are generated stochastically when presented with

Ω(log log T) update rounds. Our second algorithm, RS-MNL works with adversari-
ally generated contexts and can achieve Õ(

√
T) regret with Õ(log T) policy updates.

Further, we conducted experiments that demonstrate that our algorithms (with a fixed
number of policy updates) are extremely competitive (and often better) than several
state-of-the-art baselines (which update their policy every round), showcasing the ap-
plicability of our algorithms in various practical scenarios.

1 Introduction and Prior Works

Contextual Bandits help incorporate additional information that a learner may have with the standard
Multi-Armed Bandit (MAB) setting. In this setting, at each round, the learner is presented with a
set of arms and is expected to choose an arm. She is also presented with a context vector that helps
guide the decisions she makes. For each decision, the learner receives a reward, which is generated
using a hidden optimal parameter. The goal of the learner is to minimize her cumulative regret (or
equivalently, maximize her cumulative reward), over a specified number of rounds T . Contextual
Bandits have long been studied under various notions of reward models and settings. For instance,
one of the simplest models is to assume that the expected reward is a linear function of the arms
and the hidden parameter (Abbasi-Yadkori et al., 2011; Auer, 2003; Chu et al., 2011). This was
later extended to non-linear settings such as the logistic setting (Faury et al., 2020; Abeille et al.,
2021; Faury et al., 2022), generalized linear setting (Filippi et al., 2010; Li et al., 2017), and the
multinomial setting (Amani & Thrampoulidis, 2021; Zhang & Sugiyama, 2023). In this work, we
specifically focus on the multinomial setting that can model problems with multiple outcomes, which
makes this setting incredibly useful in the fields of machine and reinforcement learning, as well as,
in real life.

Reinforcement Learning Journal 2025

Though significant progress has been made in designing algorithms for the contextual setting, the
algorithms do not demonstrate a lot of applicability. There has been growing interest in constraining
the budget available for algorithmic updates. This limited adaptivity setting is crucial in real-world
applications, where frequent updates can hinder parallelism and large-scale deployment. Addition-
ally, practical and computational constraints may make it infeasible to make policy updates at every
time step. For example, in clinical trials (Group et al., 1997), the treatments made available to the
patients cannot be changed with every patient. Thus, the updates are made after administering the
treatment to a group of patients, observing the effects and outcomes, and then updating the treatment.
We observe a similar tendency in online advertising and recommendations, where it is difficult to
update the policy at each round due to resource constraints. A recent line of work (Ruan et al., 2021;
Sawarni et al., 2024) has introduced algorithms for contextual bandits in the linear and generalized
linear settings, respectively. They introduce algorithms for two different settings: the batched set-
ting, wherein the policy update rounds are fixed at the start of the algorithm, and the rarely-switching
algorithm, wherein the policy update rounds are decided in an adaptive fashion. Since multinomial
logistic bandits are not generalized linear models, it is not clear if the algorithms developed in past
works would apply in this setting. Hence, the major focus of this work is to develop algorithms with
limited adaptivity for the multinomial setting. We now list our contributions:

1.1 Contributions

• We propose a new algorithm B-MNL-CB, which operates in the batched setting where the con-
texts are generated stochastically. The algorithm achieves Õ(

√
T) regret with high probability,

with Ω(log log T) policy updates. In order to accommodate time-varying contexts, we adapt the
recently introduced concept of distributional optimal designs (Ruan et al., 2021) to the multinomial
logistic setting. This is done by introducing a new scaling technique to counter the non-linearity
associated with the reward function. Note that the leading term of the regret bound is free of the
instance-dependent non-linearity parameter κ, which can scale exponentially with the instance
parameters (refer to Section 2 for more details).

• Our second algorithm, RS-MNL operates in the rarely-switching setting, where the contexts are
generated adversarially. The algorithm achieves Õ(

√
T) regret while performing Õ(log T) policy

updates, each determined by a simple switching criterion. Further, our algorithm does not require a
warmup switching criterion, unlike the rarely-switching algorithm in Sawarni et al. (2024), which
helps in reducing the number of switches from Õ(log2 T) to Õ(log T).

• We empirically demonstrate the performance of our rarely-switching algorithm RS-MNL. Across
a range of randomly selected instances, our algorithm achieves regret comparable to, and often
better than, several logistic and multinomial logistic state-of-the-art baseline algorithms. Our
algorithm manages to do so with a limited number of policy updates as compared to the base-
lines, which perform an update at each time round. We also empirically show that the number of
switches made by our algorithm is Õ(log T), which is in agreement with our theoretical results.

1.2 Related works

The multinomial logistic setting was first studied by Amani & Thrampoulidis (2021). They proposed
an algorithm that achieved a regret bound of Õ(

√
κT), where κ is the instance-dependent non-

linearity parameter (defined in Section 2). This was further improved by Zhang & Sugiyama (2023),
who proposed a computationally efficient algorithm with a regret bound of Õ(

√
T), thus achieving

a κ−free bound (the leading term is free of κ). However, both of these algorithms face challenges in
real-world deployment due to infrastructural and practical constraints associated with updating the
policy at every round.

Thus, the limited adaptivity framework was introduced to combat this challenge, wherein the al-
gorithm could only undergo a limited number of policy switches. This framework consists of two

Achieving Limited Adaptivity for Multinomial Logistic Bandits

paradigms: the first being the Batched Setting, where the batch lengths are predetermined and was
first studied by Gao et al. (2019), who showed that Ω(log log T) batches are necessary to obtain
optimal minimax regret. The second setting is the Rarely Switching Setting, first introduced by
Abbasi-Yadkori et al. (2011), where batch lengths are determined adaptively, based on a switch-
ing criterion, such as the determinant doubling trick, wherein the policy is updated every time the
determinant of the information matrix doubles.

In the contextual setting, Ruan et al. (2021) used optimal designs to study the case where the arm
sets themselves were generated stochastically, providing a bound of Õ(

√
d log dT) for the batched

setting. This idea was then extended to the generalized linear setting by Sawarni et al. (2024),
who proposed algorithms that could achieve κ−free regret in both the batched and rarely-switching
settings (independent of κ in the leading term). However, to the best of our knowledge, the limited
adaptivity framework has not yet been explored in the multinomial setting. The primary focus of this
work is to propose optimal limited-adaptivity algorithms for the multinomial setting. We achieve
this by extending the results of Sawarni et al. (2024) and Ruan et al. (2021) to the multinomial
setting in the batched setting while preserving the regret bound of Zhang & Sugiyama (2023) in the
first-order term. In the rarely-switching setting, we further build upon the work of Abbasi-Yadkori
et al. (2011) and Sawarni et al. (2024) to adapt it for the multinomial case. This maintains the regret
bound of Zhang & Sugiyama (2023) while also reducing the number of switches as compared to
Sawarni et al. (2024).

2 Preliminaries

Notations: We denote all vectors with bold lower case letters, matrices with bold upper case letters,
and sets with upper case calligraphic symbols. We write M ≽ 0, if matrix M is positive semi-
definite (p.s.d). For a p.s.d matrix M , we define the norm of a vector x with respect to M as
||x||M =

√
x⊤Mx and the spectral norm of M as ||M ||2 =

√
λmax (M⊤M) where λmax (M)

denotes the maximum eigenvalue of M . We denote the set {1, . . . , N} as [N]. The Kronecker
product of matrices A ∈ Rp×q and B ∈ Rr×s is defined as (A ⊗ B)pr+v, qs+w = Ars · Bvw,
resulting in a pr×qs matrix, where Mij denotes the element of the matrix M present at the ith row
and the jth column. Finally, we use ∆(X) to denote the set of all probability distributions over X .
We use In to denote an identity matrix of dimension n, and we simply use I when the dimensions
are clear from context.

Multinomial Logistic Bandits: In the Multinomial Logistic Bandit Setting, at each round t, the
learner is presented with a set of arms Xt ⊆ Rd , and is expected to choose an arm xt ∈ Xt. Based
on the learner’s choice, the environment provides an outcome yt ∈ [K] ∪ {0}1. While choosing the
arm at round t, the learner can utilize all prior information, which can be encoded in the filtration
Ft = σ (F0,x1, y1, . . . ,xt−1, yt−1), where F0 represents any prior information the learner had
before starting the algorithm. The probability distribution over these K + 1 outcomes is modeled
using a multinomial logistic function2 as follows:

P {yt = i | xt,Ft} =

exp(x⊤

t θ∗
i)

1+
K∑

j=1
exp(x⊤

t θ∗
j)
, 1 ≤ i ≤ K,

1

1+
K∑

j=1
exp(x⊤

t θ∗
j)
, i = 0,

where θ⋆ =
(
θ⋆
1
⊤, . . . ,θ⋆

K
⊤
)⊤
∈ RdK comprises the hidden optimal parameter vectors associated

with each of the K outcomes. Based on the outcome yt, the learner receives a reward ρyt ≥ 0. It is
standard to set ρ0 = 0. We assume that the reward vector ρ = (ρ1, . . . , ρK)

⊤ is fixed and known.
We assume that ||θ⋆||2 ≤ S, ||ρ||2 ≤ R, and ||x||2 ≤ 1, for all x ∈ Xt, where R and S are fixed and

1The outcome 0 indicates no outcome.
2The multinomial logistic function is also referred to as the link function and would be used interchangeably throughout.

Reinforcement Learning Journal 2025

known beforehand. Note that when K = 1, the problem reduces to the binary logistic setting. For
simplicity, we denote the probability of the ith outcome P {yt = i | xt,Ft} as zi(xt,θ

⋆) and denote
the probability vector over the K outcomes as z(xt,θ

⋆) = (z1(xt,θ
⋆), . . . , zK(xt,θ

⋆))
⊤. Then,

it is easy to see that the expected reward of the learner at round t is given by ρ⊤z(xt,θ
⋆). The goal

of the learner is to choose an arm xt, t ∈ [T] so as to minimize her regret, which can have different
formulations based on the problem setting:

1. Stochastic Contextual setting : In this setting, at each time step, the feasible action sets are
sampled from the same (unknown) distribution D. Thus, the learner wishes to minimize her
expected cumulative regret which is given by

R(T) = E

[
T∑

t=1

[
max
x∈Xt

ρ⊤z(x,θ⋆)− ρ⊤z(xt,θ
⋆)

]]
.

Here, the expectation is over the distribution of the arm set D and the randomness inherently
present in the algorithm. In this setting, we assume that only M (fixed beforehand) policy updates
can be made and the rounds at which these updates can happen need to be decided prior to starting
the algorithm.

2. Adversarial Contextual setting : In this setting, there are no assumptions made on how the feature
vectors of the arms are generated. Thus, allowing M policy updates, the algorithm can choose the
rounds at which it updates its policy during the course of the algorithm. These dynamic updates
are based on a simple switching criterion similar to the one presented in Abbasi-Yadkori et al.
(2011). In this setting, the learner wishes to minimize her cumulative regret given by

R(T) =

T∑
t=1

[
max
x∈Xt

ρ⊤z(x,θ⋆)− ρ⊤z(xt,θ
⋆)

]
.

Discussion on the Instance-Dependent Non-Linearity Parameter κ: Several works on the binary
logistic model and generalized linear model (Filippi et al., 2010; Faury et al., 2020) as well as
the multinomial logistic model (Amani & Thrampoulidis, 2021; Zhang & Sugiyama, 2023) have
mentioned the importance of an instance dependent, non-linearity parameter κ, and have stressed
on the need to obtain regret guarantees independent of κ (at least in the leading term). κ was first
defined for the binary logistic reward model setting Filippi et al. (2010). A natural extension to
the multinomial logit setting was recently proposed in Amani & Thrampoulidis (2021). We use the
same definition as Amani & Thrampoulidis (2021), i.e.,

κ = sup

{
1

λmin(A(x,θ))
: x ∈ X1 ∪ . . . ∪ XT ,θ ∈ Θ

}
,

where A(x,θ) = ∇z(x,θ) = diag(z(x,θ))−z(x,θ)z(x,θ)⊤, is the gradient of the link function
z with respect to the vector x⊤θ. In Section 2, Faury et al. (2020), it was highlighted that that κ can
grow exponentially in the instance parameters such as S and therefore regret proportional to κ could
be detrimental when these parameters are large. In Section 3 of Amani & Thrampoulidis (2021),
the authors show that κ in the multinomial setting also scales exponentially with the diameter of the
parameter and action sets. We direct the reader to Section 3 of Amani & Thrampoulidis (2021) for
a more elaborate discussion on the importance of κ in the multinomial setting.

Optimal Design policies: Optimal Experimental Designs are concerned with efficiently selecting
the best data points so as to minimize the variance (or equivalently, maximize the information) of
estimated parameters. For a set of points X ⊆ Rd and some distribution π defined on X , The infor-
mation matrix is defined as (Ex∼π xx

⊤)−1. Several criteria are used to maximize the information,
some of which are A-Criterion (minimize trace of the information matrix), E-Criterion (maximize
the minimum eigenvalue of the information matrix), and D-Criterion (maximize the determinant of
the information matrix). One of the popular criteria used in bandit literature is the G-Optimal Design
which is defined as follows:

Achieving Limited Adaptivity for Multinomial Logistic Bandits

Definition 2.1. G-Optimal Design: For a set X ⊆ Rd, the G-Optimal design πG(X) is the solution
to the following optimization problem:

min
π∈∆(X)

max
x∈X
∥x∥V (π)−1 , where V (π) = Ex∼π[xx

⊤].

The General Equivalence Theorem (Kiefer & Wolfowitz, 1960; Lattimore & Szepesvári, 2020) es-
tablishes an equivalence between the G-Optimal and D-Optimal criteria. Specifically, it shows that
for any set X ⊆ Rd, there exists a G-Optimal design πG(X) ∈ ∆(X) such that:

∥x∥V (π)−1 ≤ d ∀x ∈ X .

Furthermore, if X is a discrete set with finite cardinality, one can find a G-Optimal design in poly-
time with respect to |X | such that the right-hand side can be relaxed to 2d (Lemma 3, Ruan et al.
(2021)).

Distributional Optimal design: The extension of the G-Optimal design to the stochastic contextual
setting worsens the bound on ∥x∥V (π)−1 , i.e, in the worst case, the expected value of ∥x∥V (π)−1

is upper bounded by d2, where the expectation is over the arm set X . To address this, Ruan et al.
(2021) introduces the Distributional Optimal Design, formalized in the following result:

Lemma 2.1. (Theorem 5, Ruan et al. (2021)) Let π be the DISTRIBUTIONAL OPTIMAL DESIGN
policy that has been learned from s independent samples X1, . . . ,Xs ∼ D. Let V denote the
expected design matrix,

V = E
X∼D

E
x∼π(X)

[
xx⊤ | X

]
.

Then,

P
(

E
X∼D

[
max
x∈X
∥x∥V −1

]
≤ O(

√
d log d)

)
≥ 1− exp

(
O(d4 log2 d− sd−1.2 · 2−16)

)
.

We utilize the CoreLearning for Distributional G-Optimal Design algorithm (Algorithm 3, Ruan
et al. (2021)) to learn the distributional optimal design over a given set of context vectors. In this
paper, we extend both the G-Optimal and Distributional Optimal Design frameworks to the multi-
nomial logistic (MNL) setting by introducing directionally scaled sets. These sets are then used to
construct the design policies employed in our batched algorithm.

3 Batched Multinomial Contextual Bandit Algorithm: B-MNL-CB

In this section, we present our first algorithm, B-MNL-CB. This section is structured in the following
manner: we introduce the algorithm and explain each step in detail. This is followed by a few salient
remarks and the regret guarantee for the algorithm. We provide a proof sketch for this guarantee and
guide the reader to the full proof in the appendix.

B-MNL-CB operates in the stochastic contextual setting (described in Section 2), building upon
BATCHLINUCB-DG (Algorithm 5, Ruan et al. (2021)) and B-GLinCB (Algorithm 1, Sawarni et al.
(2024)), both of which are batched algorithms. In the batched paradigm, the rounds at which the
policy updates occur are fixed beforehand. We will refer to all the rounds between two consecutive
policy updates as a batch. The horizon is divided into M = O(log log T) disjoint batches denoted
by {Tβ}Mβ=1, and the lengths of the batches are denoted by τβ = |Tβ |.

The input to B-MNL-CB includes the number of batches M , the fixed (known) reward vector ρ,
the known upper bound on ||θ⋆||2 denoted by S, and the total number of rounds T . We denote the
policy learned in each batch β by πβ , initializing π0 with the G-Optimal design. We also initialize
λ to
√
Kd log T and define the batch lengths {τβ}Mβ=1 as follows:

τβ = ⌊T 1−2−β

⌋ ∀β ∈ [1,M]. (1)

Reinforcement Learning Journal 2025

Algorithm 1 Batched Multinomial Contextual Bandit Algorithm: B-MNL-CB

1: Input: M , ρ, S, T
2: Initialize {Tm}Mm=1 as per 1, λ =

√
Kd log T , and policy π0 as G-OPTIMAL DESIGN

3: for batches β ∈ [M] do
4: for each round t ∈ Tβ do
5: Observe arm set Xt

6: for j = 1 to β − 1 do
7: Update arm set Xt ← ULj(Xt) (defined in 5)
8: end for
9: Sample xt ∼ πβ−1(Xt) and obtain outcome yt along with the corresponding reward ρyt .

10: end for
11: Divide Tβ into two sets C and D such that |C| = |D|, C ∪D = Tβ , and C ∩D = ∅.
12: Compute θ̂β ← argmin

∑
s∈C

ℓ(θ,xs, ys), Hβ = λI +
∑
s∈C

A(xt,θ̂β)⊗xtx
⊤
t

Bβ(xt)
, and πβ using

Algorithm 2 with the inputs (β, {Xt}t∈D)
13: end for

We now provide a detailed explanation of the steps involved in the algorithm. In Steps 3-13, we
iterate over all batches β ∈ [M] and rounds t ∈ Tβ . During batch β and round t ∈ Tβ , first, in Step
5, we obtain the set of feasible arms Xt at round t. Then in Steps 6-8, we iterate over all the previous
batches j ∈ [β− 1] to prune Xt and retain only a subset of it via a Successive Elimination procedure
described next.

3.1 Successive Eliminations

For each prior batch j ∈ [β − 1], we compute an upper confidence bound UCB(j,x, λ) and a lower
confidence bound LCB(j,x, λ) as follows,

UCB(j,x, λ) = ρT θ̂j + ϵ1(j,x, λ) + ϵ2(j,x, λ), (2)

LCB(j,x, λ) = ρT θ̂j − ϵ1(j,x, λ)− ϵ2(j,x, λ), (3)

where the bonus terms ϵ1(j,x, λ) and ϵ2(j,x, λ) are defined as,

ϵ1(j,x, λ) = γ(λ)∥H − 1
2

j (I⊗x)A(x, θ̂j)ρ∥2, ϵ2(j,x, λ) = 3γ(λ)2∥ρ∥2∥(I⊗x⊤)H
− 1

2
j ∥22. (4)

Here, θ̂j and Hj are the estimators (computed during Steps 11,12 at the end of batch j) of the
true parameter vector θ⋆ and an optimal batch-level Hessian matrix H⋆

j and γ(λ) is defined to be
O(
√
Kd log T). We provide more details on these in Section 3.2. In Step 7, for batch j, we eliminate

a subset of Xt using the upper and lower confidence bounds just defined. In particular, we eliminate
all x ∈ Xt for which UCB(j,x, λ) ≤ maxx′ LCB(j,x′, λ). Thus, in Step 7, Xt is updated to
ULj(X), defined as,

ULj(X) = X \
{
x ∈ X : UCB(j,x, λ) ≤ max

y∈X
LCB(j,y, λ)

}
, (5)

Following the successive eliminations over all prior batches j ∈ [β − 1], in Step 9, we select an arm
xt from the pruned arm set according to the policy computed at the end of batch β − 1 using Al-
gorithm 2. The environment then returns the outcome yt and the corresponding reward ρyt . Details
of the policy computation (Algorithm 2) are provided in Section 3.3. After completing all rounds in
batch β (i.e., Tβ), we proceed to Step 11, where we partition these rounds equally into two sets, C
and D. The set C is used to define a batch-level Hessian matrix H⋆

β , compute an estimator θ̂β of θ⋆,
and construct a matrix Hβ that estimates H⋆

β as described in the next section.

Achieving Limited Adaptivity for Multinomial Logistic Bandits

3.2 Batch Level Hessian and Parameter Estimation

In batch β, we define a batch level Hessian matrix H⋆
β = λI +

∑
t∈C A(xt,θ

⋆) ⊗ xtx
⊤
t , which

is constructed using the set C. Since θ⋆ is unknown, we maintain an online proxy to estimate H⋆
β

by calculating a scaled Hessian matrix Hβ = λI +
∑

t∈C
A(xt,θ̂β)
Bβ(x)

⊗ xtx
⊤
t . Here, Bβ(x) is a

normalizing factor which is obtained using the self-concordance properties of the link function and
is given by:

Bβ(x) = exp
(√

6min
{
γ(λ)
√
κ ||x||V −1

β
, 2S

})
, (6)

where γ(λ) = O(
√
Kd log T) is the confidence radius for the permissible set of θ and Vβ is the

design matrix given by Vβ = λI +
∑

t∈C xtx
⊤
t . Using the self-concordance properties of the link

function, we can show that Hβ ≼ H⋆
β . The set C is also used to update the estimator θ̂β , which is

done by minimizing the negative log likelihood
∑
t∈C

ℓ(θ,xt, yt), where ℓ(θ,x, y) is defined as,

ℓ(θ,x, y) = −
K∑
i=1

1 {y = i} log 1

zi(x,θ)
+

λ

2
∥θ∥22, (7)

Next, we explain how the policy is updated to πβ at the end of batch β using the rounds in set D.

3.3 Policy calculation

Algorithm 2 Distributional Optimal Design for MNL bandits

1: Input Batch β and collection of arm sets {Xj}j
2: Create the sets {Fi({Xj}j , β)}Ki=1 as defined in Equation 8.
3: Compute the distributional optimal design policy πi for each of the sets Fi({Xj}j , β).
4: Compute the distributional optimal design policy π0 for the set {Xj}j .

5: Return π = 1
K+1

K∑
i=0

πi

To compute our final policy at the end of each batch, we utilize the idea of distributional optimal
design, first introduced in Ruan et al. (2021) (See Section 2). Recently, Sawarni et al. (2024) used
distributional optimal designs to develop limited adaptivity algorithms for stochastic contextual ban-
dits for generalized linear bandits. A key step in their algorithm (Step 13 and Equation 4, Algorithm
1 in Sawarni et al. (2024)) involves scaling the arm set (after pruning using successive eliminations)
with the derivative of the link function and a suitable normalization factor. Generalizing this idea

to the MNL setting results in a matrix X̃ = A(x,θ̂t)
1
2

Bβ(x)
⊗ x. Note that the notion of distributional

optimal designs introduced in Ruan et al. (2021) and used by Sawarni et al. (2024), applies only to
vectors. Hence, in Algorithm 2, we construct several sets of vectors from X̃ and learn the optimal
design for each of these sets.

In Step 12 of Algorithm 1, we invoke this algorithm (Algorithm 2) with inputs as the batch number
β and the collection of all the pruned arm sets {Xt}t∈D (Step 7, Algorithm 1). We then create K
different sets Fi({Xt}t∈D, β) (i ∈ [K]), which comprises of the arms in each arm set scaled by the
ith column of the gradient matrix. In particular,

Fi({Xt}t∈D, β) =

{{
A(x, θ̂β)

1
2√

Bβ(x)
ei ⊗ x : x ∈ Xt

}
: t ∈ D

}
, (8)

where ei ∈ RK is the ith standard basis vector. We calculate the distributional optimal design
for each of the sets Fi({Xt}t∈D, β) using Algorithm 2 in Ruan et al. (2021). In such a case, it is
easy to see that calculating the distributional optimal design over X̃ can be done by calculating the

Reinforcement Learning Journal 2025

distributional optimal designs for each of the sets Fi({Xt}t∈D, β). We provide the proof for the
same in Section 7.3. We also calculate the distributional optimal design over {Xt}t∈D. Finally, the
policy returned is a convex combination (in this case, a uniform combination) over all the K + 1
designs that were calculated.

This completes our explanation of Algorithm 1. We provide a regret guarantee in Theorem 3.1.

Remark 3.1. A direct application of the scaling techniques introduced in Sawarni et al. (2024) for
learning distributional optimal designs in the multinomial setting results in the creation of a scaled
matrix. Since the notion of distributional optimal design introduced in Ruan et al. (2021) applies
only to vectors, Algorithm 2 scales the original context vectors into K different sets and then learns
the optimal designs for each of them.

Remark 3.2. Sawarni et al. (2024) introduces a warm-up round with length O(κ1/3). Since κ can
scale exponentially with several instance-dependent parameters, the warm-up round can result in
a long exploration phase. Using the regret decomposition in Zhang & Sugiyama (2023), we can
eliminate the dependence on κ, resulting in κ−free batch lengths, including the length of the warm-
up round.

Remark 3.3. While Zhang & Sugiyama (2023) introduced a novel method of regret decomposition
into the error terms (refer 4), a straightforward application to the limited adaptivity setting is not
easy. Hence, with some additional insights, we incorporate their method into the batched setting
while being able to match the leading term of their regret bound.

Theorem 3.1. (Regret of B-MNL-CB) With high probability, at the end of T rounds, the regret
incurred by Algorithm 1 is bounded as RT ≤ R1 +R2 where

R1 = Õ
(
RS5/4K5/2d

√
T
)

and R2 = Õ
(
RS5/2K2d2κ1/2T 1/4 max{e3SK3/2S−1, κ1/2d}

)
.

Proof Sketch:

We know that the expected regret during batch β + 1 is given by:

Rβ+1 = E

∑
t∈β

ρ⊤z(x⋆
t ,θ

⋆)− ρ⊤z(xt,θ
⋆)

 ,

where x⋆
t = argmax

x∈Xt

ρ⊤z(x,θ⋆) is the best arm at round t and the expectation is taken over the

distribution of the arm set D. Using ideas similar to Zhang & Sugiyama (2023), we can decompose
the regret into

R(T) ≤ 4
∑
t∈β

{
E
[
max
x∈Xt

ϵ1(β,x, λ)

]
+ E

[
max
x∈Xt

ϵ2(β,x, λ)

]}
,

where ϵ1(β,x, λ) and ϵ2(β,x, λ) are as defined in 4. We proceed to bound each of these terms using
the extension of distributional optimal design we introduced in Algorithm 2.

Directly extending the ideas of Ruan et al. (2021) and Sawarni et al. (2024) to construct the distri-

butional optimal designs results in an attempt to learn the design for matrices X̃β =
A(x,θ̂β)

1
2

Bβ(x)
⊗ x.

Hence, we create K different sets Fi(X) for all i ∈ [K] (defined in 8), such that

X̃βX̃
⊤
β =

K∑
i=1

{
A(x, θ̂β)

1
2√

Bβ(x)
ei ⊗ x

}{
A(x, θ̂β)

1
2√

Bβ(x)
ei ⊗ x

}T

.

Thus, learning the optimal design over X̃ is equivalent to creating a convex combination of the
designs learned over Fi(X) for all i ∈ [K]. This gives us a way of bounding the scaled Hessian

Achieving Limited Adaptivity for Multinomial Logistic Bandits

matrix Hβ by the scaled Hessian matrices Hi
β constructed over Fi(X) for all i ∈ [K]. We then use

methods similar to Sawarni et al. (2024) and Ruan et al. (2021) to obtain the bound on the regret for
the batch β + 1 as:

Rβ+1 ≤ +32RKκ1/2dγ2(λ)
{
e3SK3/2S−1

√
log(Kd) log d+ 12κ1/2d

}(τβ+1

τβ

)
+ 16RK2γ(λ)

√
d log(Kd)

(
τβ+1√
τβ

)
Finally, using the batch lengths defined in 1 and summing over all the M batches completes the
proof. For the sake of brevity, we provide the complete proof in Section 7.

4 Rarely Switching Multinomial Contextual Bandit Algorithm: RS-MNL

Algorithm 3 RS-MNL

1: Inputs: ρ, S, T
2: Initialize: H1 = λI , τ = 1, λ := KdS−1/2 log(T/δ), γ := CS5/4

√
Kd log(T/δ)

3: for t = 1, . . . , T do
4: Observe arm set Xt

5: if det(Ht) > 2 det(Hτ) then
6: Set τ = t
7: Update θ̂τ ← argmin

θ

∑
s∈[t−1]

ℓ(θ,xs, ys) and Ht =
∑

s∈[t−1]

A(xs,θ̂τ)
Bτ (xs)

⊗ xsx
⊤
s + λIKd

8: end if
9: Select xt = argmax

x∈Xt

UCB(t, τ,x), observe yt, and update Ht+1 ←Ht +
A(xt,θ̂τ)
Bτ (xt)

⊗xtx
⊤
t

10: end for

In this section, we present our second algorithm RS-MNL. We introduce the algorithm and explain
the workings in a step-by-step fashion. We then mention a few salient remarks about our algorithm.
We conclude with the regret guarantee of our algorithm, a proof sketch for the same, and guide the
reader to the complete proof in the Appendix.

Our second algorithm, RS-MNL (Algorithm 3) operates in the Adversarial Contextual setting. In
this setting, there are no assumptions on the generation of the feature vectors. RS-MNL also limits
the number of policy updates in a rarely-switching fashion, i.e, the rounds where these updates
are made are decided dynamically, based on a simple switching criterion, similar to the one used
in Abbasi-Yadkori et al. (2011). While the algorithm is based on RS-GLinCB in Sawarni et al.
(2024), a unique regret decomposition method allows for the removal of the warmup criterion, in
turn, helping in the reduction in the number of switches made by the algorithm from O(log2 T)
to O(log T). Further, we successfully remove the idea of successive eliminations based on the
previous confidence regions and replace the idea with the maximization of the Upper Confidence
Bound (UCB) of each arm.

The inputs to the algorithm are ρ, the fixed and known reward vector, S, the fixed and known upper
bound on ∥θ∥2, and T , the number of rounds for which the algorithm is played. In Step 2, we ini-
tialize the scaled Hessian matrix H1 to I , λ to KdS−1/2 log(T/δ), and γ to CS5/4

√
Kd log(T/δ).

Next, at every round t ∈ [T], we receive the arm set Xt in Step 4. During Steps 5-8, we check if the
switching condition is met and update the policy accordingly.

4.1 Switching Criterion and Policy Update:

We use τ ≤ t to denote the last time round at which a switch occurred for some round t. In Step
5, we check for the switching condition: if the determinant of the scaled Hessian matrix Ht =

λI +
∑

s∈[t−1]
A(xs,θ̂τ)
B(xs)

⊗xsx
⊤
s has increased by a constant factor (in this case, 2) as compared to

Reinforcement Learning Journal 2025

Hτ . In case the switching condition is triggered, we set τ = t in Step 6 (since a switch was made in
round t). We then compute θ̂τ by minimizing the negative log likelihood

∑
s∈[t−1] ℓ(θ,xs, ys) (see

7 for definition of ℓ(θ,xs, ys)) over all previous rounds s ∈ [t − 1], and recompute the matrix Ht

with respect to the newly calculated θ̂τ (Step 7). The switching criterion is similar to the one used
in Abbasi-Yadkori et al. (2011) and helps to reduce the number of policy updates to O(log T).

4.2 Arm Selection:

Next, in Step 9, we determine the arm xt to be played based on the Upper Confidence Bound (UCB).
The upper confidence bound UCB(t, τ,x) for an arm x ∈ Xt with respect to the previous switching
round τ(≤ t) is defined as:

UCB(t, τ,x) = ρT θ̂τ + ϵ1(t, τ,x) + ϵ2(t, τ,x), (9)

where the error terms ϵ1(t, τ,x) and ϵ2(t, τ,x) are defined as:

ϵ1(t, τ,x) =
√
2γ(δ)∥H− 1

2
t (I⊗x)A(x, θ̂τ)ρ∥2, ϵ2(t, τ,x) = 6Rγ(δ)2∥(I⊗x⊤)H

− 1
2

t ∥22. (10)

We then obtain the outcome yt, which is sampled from z(xt,θ
⋆), and receives the corresponding

reward ρyt . The algorithm then updates the scaled Hessian matrix Ht+1. In Theorem 4.1, we
provide the regret guarantee for RS-MNL.

Remark 4.1. The goal of a rarely-switching algorithm is to reduce the number of switches (policy
updates) that are made. Our algorithm successfully reduces the number of switches fromO(log2 T)
to O(log T) due to the removal of the warm-up switching criterion. Additionally, the number of
switches is independent of κ.

Remark 4.2. Similar to the batched setting, using the regret decomposition method introduced in
Zhang & Sugiyama (2023) in the rarely-switching paradigm is non-trivial. We manage to extend
their results to match the leading term of their regret bound while performing a switch O(log T)
times.

Theorem 4.1. With high probability, after T rounds, Algorithm 3 achieves the following regret:

RT ≤ Õ
(
RK3/2S5/4d

√
T
)
.

Proof Sketch:

The expression for total regret is given by

R(T) =

T∑
t=1

ρ⊤z(x⋆
t ,θ

⋆)− ρ⊤z(xt,θ
⋆),

where x⋆
t = argmax

x∈Xt

ρ⊤z(x,θ⋆) is the best arm at any given round t. Using a method similar to

the one used in Zhang & Sugiyama (2023), we can upper bound the regret as

R(T) ≤ 2

T∑
t=1

{ϵ1(t, τ,xt) + ϵ2(t, τ,xt)} ,

where ϵ1(t, τ,xt) and ϵ2(t, τ,xt) are as defined in 10. We now wish to upper bound both the terms
separately.

Bounding ϵ1(t, τ,xt) using the switching criterion in Abbasi-Yadkori et al. (2011) along with the
selection rule in our algorithm can result in an exponential dependency in S. Sawarni et al. (2024)

Achieving Limited Adaptivity for Multinomial Logistic Bandits

was able to circumvent this exponential dependency by using an additional switching criterion,
referred to as a warmup criterion. However, this results in the increase in the number of switches
from O(log T) to O(log2 T). It also slows down the algorithm due to the successive eliminations
done at each round (similar to the ones in Algorithm 1). Our algorithm gets rid of the exponential
dependency from the first order term and the warm-up criterion by decomposing ϵ1(t, τ,xt) in an
alternate manner, resulting in an improved runtime as well as O(log T) switches.

We bound both ϵ1(t, τ,xt) and ϵ2(t, τ,xt) using an analysis similar to the one used for Theorem 3.1,
where we attempt to upper bound the scaled Hessian matrix Ht using the scaled Hessian matrices
calculated over the K different scaled sets introduced in 2. Note that nowhere do these K different
sets appear in the algorithm. They only serve to ease the analysis. Combining the bounds on each of
the error terms finishes the proof. For the sake of brevity, we provide the complete proof in Section
8 of the Appendix.

5 Experiments

In this section, we compare our algorithm RS-MNL to several contextual logistic and MNL bandit
algorithms3. We describe the experiments in detail below:

0 1000 2000 3000 4000 5000
Number of Rounds(T)

0

500

1000

1500

2000

Re
gr

et

RS-MNL
ada-OFU-ECOLog
OFUL-MLogB
RS-GLinCB
OFULog+

(a) Regret vs. T : Logistic Setting

0 1000 2000 3000 4000 5000
Number of Rounds(T)

0

200

400

600

800

Re
gr

et

RS-MNL
OFUL-MLogB

(b) Regret vs. T : K = 3

0 1000 2000 3000 4000 5000
Number of Rounds(T)

0

5

10

15

20

Nu
m

be
r o

f S
wi

tc
he

s

(c) Switches vs. T

Experiment 1 (R(T) vs. T for the Logistic (K = 1) Setting): In this experiment, we com-
pare our algorithm RS-MNL to several state-of-the-art contextual logistic bandit algorithms such as
ada-OFU-ECOLog (Algorithm 2, Faury et al. (2022)), RS-GLinCB (Algorithm 2, Sawarni et al.
(2024), OFUL-MLogB (Algorithm 2, Zhang & Sugiyama (2023)), and OFULog+ (Algorithm 1,
Lee et al. (2024)). The dimension of the arms d is set to 3 and the number of outcomes K is set
to 1, which reduces the problem to the logistic setting. The arm set X is constructed by sampling
10 different arms from [−1, 1]3 and normalizing them to unit vectors. The optimal parameter θ⋆ is
chosen randomly from [−1, 1]3 and normalized so that ∥θ⋆∥ = S = 2. We run all the algorithms
for T ∈ {1000, 2450, 4500} rounds and average the results over 10 different seeds (for sampling
rewards). The results are plotted in Figure 1a. We see that RS-MNL is incredibly competitive
with ada-OFU-ECOLog and OFULog+, while incurring much lower regret than RS-GLinCB and
OFUL-MLogB. We showcase the results with two standard deviations in Section 10.

Experiment 2 (R(T) vs. T for K = 3): In this experiment, we compare our algorithm RS-MNL to
OFUL-MLogB, the only algorithm that achieves an optimal (κ−free) regret while being computa-
tionally efficient for MNL Bandits (to the best of our knowledge). We set the number of outcomes
K as 3 and the dimension of the arms d is set to 3. The arm set X is constructed by sampling
10 different arms from [−1, 1]3 and normalizing them to unit vectors. The optimal parameter θ⋆

is sampled from [−1, 1]9 (since θ⋆ ∈ RKd and normalized so that ∥θ⋆∥ = S = 2. The reward
vector ρ is sampled from [0, 1]3 and normalized so that ∥ρ∥ = R = 2. We run both the algorithms
for T ∈ {1000, 2450, 4500} rounds and average these results over 10 different seeds (for sampling
rewards and ρ). The results are plotted in 1b. We see that RS-MNL incurs much lower regret than
OFUL-MLogB. We also showcase the results with two standard deviations in Section 10.

3The code for the experiments can be found here.

https://github.com/tanmaygoyal258/MNL_Limited_Adaptivity.git

Reinforcement Learning Journal 2025

Experiment 3 (Number of Switches vs. T): In this experiment, we plot the number of switches
RS-MNL makes as a function of the number of rounds T . We assume that the instance is simulated
in the same manner as Experiment 2. We run the algorithm for T = 5000 rounds and average over
10 different seeds. The results are shown in Figure 1c. We see that the number of switches made by
RS-MNL exhibits a strong logarithmic dependence with t ∈ [T]. This is in agreement with Lemma
8.14, where we show that RS-MNL switches O(log t) times, as compared to other algorithms, which
switch (update) O(t) times.

6 Conclusions and Future Work

In this paper, we present two algorithms B-MNL-CB and RS-MNL, for the multinomial logistic set-
ting in the batched and rarely-switching paradigms, respectively. The batched setting involves fixing
the policy update rounds at the start of the algorithm, while the rarely switching setting chooses the
policy update rounds adaptively. Our first algorithm, B-MNL-CB manages to extend the notion of
distributional optimal designs to the multinomial logit setting while being able to achieve an optimal
regret of Õ(

√
T) in Ω(log log T) batches. Our second algorithm, RS-MNL, builds upon the rarely-

switching algorithm presented in Sawarni et al. (2024) and obtains an optimal regret of Õ(
√
T)

while being able to reduce the number of switches to O(log T) using alternate ways of regret de-
composition. The regret of our algorithms scales with the number of outcomes K as K7/2 and K5/2

respectively, which can be detrimental for problems with a large number of outcomes. We believe
that this dependence on K can be further improved, which is an interesting line for future work.

References
Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic

bandits. In Advances in Neural Information Processing Systems 24 (NeurIPS), pp. 2312–2320,
2011.

Marc Abeille, Louis Faury, and Clement Calauzenes. Instance-wise minimax-optimal algorithms
for logistic bandits. In Arindam Banerjee and Kenji Fukumizu (eds.), Proceedings of The 24th
International Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings
of Machine Learning Research, pp. 3691–3699. PMLR, 13–15 Apr 2021. URL https://
proceedings.mlr.press/v130/abeille21a.html.

Sanae Amani and Christos Thrampoulidis. Ucb-based algorithms for multinomial logistic regression
bandits, 2021. URL https://arxiv.org/abs/2103.11489.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res.,
3(null):397–422, March 2003. ISSN 1532-4435.

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff func-
tions. In Geoffrey Gordon, David Dunson, and Miroslav Dudík (eds.), Proceedings of the Four-
teenth International Conference on Artificial Intelligence and Statistics, volume 15 of Proceed-
ings of Machine Learning Research, pp. 208–214, Fort Lauderdale, FL, USA, 11–13 Apr 2011.
PMLR. URL https://proceedings.mlr.press/v15/chu11a.html.

Louis Faury, Marc Abeille, Clément Calauzènes, and Olivier Fercoq. Improved optimistic algo-
rithms for logistic bandits, 2020. URL https://arxiv.org/abs/2002.07530.

Louis Faury, Marc Abeille, Kwang-Sung Jun, and Clément Calauzènes. Jointly efficient and optimal
algorithms for logistic bandits, 2022. URL https://arxiv.org/abs/2201.01985.

Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. Parametric bandits:
The generalized linear case. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and
A. Culotta (eds.), Advances in Neural Information Processing Systems, volume 23. Curran
Associates, Inc., 2010. URL https://proceedings.neurips.cc/paper_files/
paper/2010/file/c2626d850c80ea07e7511bbae4c76f4b-Paper.pdf.

https://proceedings.mlr.press/v130/abeille21a.html
https://proceedings.mlr.press/v130/abeille21a.html
https://arxiv.org/abs/2103.11489
https://proceedings.mlr.press/v15/chu11a.html
https://arxiv.org/abs/2002.07530
https://arxiv.org/abs/2201.01985
https://proceedings.neurips.cc/paper_files/paper/2010/file/c2626d850c80ea07e7511bbae4c76f4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/c2626d850c80ea07e7511bbae4c76f4b-Paper.pdf

Achieving Limited Adaptivity for Multinomial Logistic Bandits

Zijun Gao, Yanjun Han, Zhimei Ren, and Zhengqing Zhou. Batched multi-armed bandits problem.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32, pp. 503–513. Curran Associates,
Inc., 2019.

International Stroke Trial Collaborative Group et al. The international stroke trial (ist): a randomised
trial of aspirin, subcutaneous heparin, both, or neither among 19 435 patients with acute ischaemic
stroke. The Lancet, 349(9065):1569–1581, 1997.

Osama A. Hanna, Lin F. Yang, and Christina Fragouli. Efficient batched algorithm for contextual
linear bandits with large action space via soft elimination. In Proceedings of the 37th International
Conference on Neural Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2023.
Curran Associates Inc.

J. Kiefer and J. Wolfowitz. The equivalence of two extremum problems. Canadian Journal of
Mathematics, 12:363–366, 1960. DOI: 10.4153/CJM-1960-030-4.

Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.

Junghyun Lee, Se-Young Yun, and Kwang-Sung Jun. Improved regret bounds of (multinomial)
logistic bandits via regret-to-confidence-set conversion, 2024. URL https://arxiv.org/
abs/2310.18554.

L. Li, Y. Lu, and D. Zhou. Provably optimal algorithms for generalized linear contextual bandits.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 2071–
2080. JMLR.org, 2017.

Yufei Ruan, Jiaqi Yang, and Yuan Zhou. Linear bandits with limited adaptivity and learning distri-
butional optimal design, 2021. URL https://arxiv.org/abs/2007.01980.

Ayush Sawarni, Nirjhar Das, Siddharth Barman, and Gaurav Sinha. Generalized linear bandits with
limited adaptivity, 2024. URL https://arxiv.org/abs/2404.06831.

Yu-Jie Zhang and Masashi Sugiyama. Online (multinomial) logistic bandit: Im-
proved regret and constant computation cost. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 29741–29782. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
5ef04392708bb2340cb9b7da41225660-Paper-Conference.pdf.

https://arxiv.org/abs/2310.18554
https://arxiv.org/abs/2310.18554
https://arxiv.org/abs/2007.01980
https://arxiv.org/abs/2404.06831
https://proceedings.neurips.cc/paper_files/paper/2023/file/5ef04392708bb2340cb9b7da41225660-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/5ef04392708bb2340cb9b7da41225660-Paper-Conference.pdf

Reinforcement Learning Journal 2025

Supplementary Materials
The following content was not necessarily subject to peer review.

Throughout the appendix, for a matrix A, we shall define λmax (A) and λmin (A) as the maximum
and minimum eigenvalue of A respectively. Further, the norm of a matrix A is defined as ∥A∥22 =
λmax

(
A⊤A

)
.

Without loss of generality, we also assume that κ,K, d,R, S, and T are greater than 1 throughout
the appendix.

7 Batched Multinomial Contextual Bandit Algorithm: B-MNL-CB

7.1 Notations

We first list a few matrices, vectors, and scalars that are commonly used throughout this section:

1. Vβ = λId×d +
∑

t∈Tβ

xtx
⊤
t

2. Ṽβ = IK×K ⊗ Vβ

3. A(x,θ) = diag(z(x,θ))− z(x,θ)z(x,θ)⊤

4. M(x,θ1,θ2) =
1∫
0

A(x, vθ1 + (1− v)θ2) dv

5. H⋆
β := λIKd×Kd +

∑
t∈Tβ

A(xt,θ
⋆)⊗ xtx

⊤
t

6. γ(λ) = 12S
√
log T +Kd+ 8Sλ−1/2(log T +Kd) + 2S3/2λ1/2

7. Bβ(x) = exp
(√

6min
{
κ1/2γ(δ) ||x||V −1

β
, 2S

})
8. Hβ = λIKd×Kd +

∑
t∈Tβ

A(xt,θ̂β)
Bβ(xt)

⊗ xtx
⊤
t

9. X̃β =
A(x,θ̂β)

1/2

√
Bβ(x)

⊗ x

10. x̃
(i)
β =

A(x,θ̂β)
1/2

√
Bβ(x)

ei ⊗ x

11. ms = (1{ys = 1}, . . . ,1{ys = K})⊤

We now present the regret upper bound for B-MNL-CB by restating Theorem 3.1:

Theorem 7.1. (Regret of B-MNL-CB) With high probability, at the end of T rounds, the regret
incurred by Algorithm 1 is bounded above by RT where

RT ≤ Õ
(
RS5/4K5/2d

√
T +RS5/2K2d2κ1/2T 1/4 max{e3SK3/2S−1, κ1/2d}

)

Proof. From Lemma 7.10, we have an upper bound for the regret incurred for any round t ∈ Tβ+1.
Thus, the regret incurred in batch β + 1 is given by:

Rβ+1 ≤ 16RK2γ(λ)
√
d log(Kd)

(
τβ+1√
τβ

)
+32RKκ1/2dγ2(λ)

{
e3SK3/2S−1

√
log(Kd) log d+ 12κ1/2d

}(τβ+1

τβ

)

Achieving Limited Adaptivity for Multinomial Logistic Bandits

Choosing the batch lengths as τβ = T 1−2−β

results in the following observation (Hanna et al., 2023;
Gao et al., 2019):

τβ+1√
τβ
≤ 2
√
T

τβ+1

τβ
≤ T

1
4

Thus, the regret incurred in batch β + 1 is bounded by:

Rβ+1 ≤ 32RK2γ(λ)
√

d log(Kd)
√
T+32RKκ1/2dγ2(λ)

{
e3SK3/2S−1

√
log(Kd) log d+ 12κ1/2d

}
T 1/4

We now trivially upper bound the regret for T1 as Rτ1 = R
√
T . Thus, adding the regret incurred in

each batch over all batches β ∈ [1, log log T + 1] results in:

RT ≤
(
32RK2γ(λ)

√
d log(Kd) +R

)√
T log log T

+ 32RKκ1/2dγ2(λ)
{
e3SK3/2S−1

√
log(Kd) log d+ 12κ1/2d

}
T 1/4 log log T

From Lemma 7.1, setting λ = S−1/2Kd log T along with the fact that Kd + log T ≤ Kd log T
results in γ(λ) ≤ 22S5/4

√
Kd log T . Substituting the value of γ(λ) gives us:

RT ≤
(
704S5/4RK5/2d

√
log T log(Kd) +R

)√
T log log T

+ 14784RS5/2K2d2κ1/2
{
e3SK3/2S−1

√
log(Kd) log d+ 12κ1/2d

}
T 1/4 log2 T log log T

This concludes the proof.

7.2 Supporting Lemmas for Theorem 7.1

Lemma 7.1. For batch β, denoted by Tβ , let {x1, . . . ,xτβ} be a set of i.i.d arms and {r1, . . . , rτβ}
be the corresponding rewards associated with these arms, where τβ = |Tβ |. Define θ̂β to be the
MLE estimate for this batch, i.e

θ̂β = argmin
θ

∑
s∈Tβ

K∑
i=1

1{ys = i} log zi(xs,θ) +
λ

2
∥θ∥22

Let the optimal Hessian matrix for batch β, H⋆
β , be defined as in Section 7.1. Then, with probability

greater than 1− 1
T 2 , we have:∣∣∣∣∣∣θ⋆ − θ̂β

∣∣∣∣∣∣
H⋆

β

≤ 12S
√
log T +Kd+ 8Sλ−1/2(log T +Kd) + 2S3/2λ1/2

Proof. For a batch β, we define the following quantity:

Gβ(θ1,θ2) =
∑
t∈Tβ

M(x,θ1,θ2)⊗ xtx
⊤
t + λIKd×Kd

Then,

Reinforcement Learning Journal 2025

∣∣∣∣∣∣θ⋆ − θ̂β

∣∣∣∣∣∣
H⋆

β

(i)

≤
√
1 + 2S

∣∣∣∣∣∣θ⋆ − θ̂β

∣∣∣∣∣∣
Gβ(θ⋆,θ̂β)

≤
√
1 + 2S

∣∣∣∣∣∣Gβ(θ
⋆, θ̂β)

(
θ⋆ − θ̂β

)∣∣∣∣∣∣
G−1

β (θ⋆,θ̂β)

≤
√
1 + 2S

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
t∈Tβ

[
M(x,θ⋆, θ̂β)⊗ xtx

⊤
t + IKd×Kd

] (
θ⋆ − θ̂β

)∣∣∣∣∣∣
∣∣∣∣∣∣
G−1

β (θ⋆,θ̂β)

(ii)

≤
√
1 + 2S

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
t∈Tβ

[
M(x,θ⋆, θ̂β)⊗ x⊤

t

] (
θ⋆ − θ̂β

)
⊗ xt + λ

(
θ⋆ − θ̂β

)∣∣∣∣∣∣
∣∣∣∣∣∣
G−1

β (θ⋆,θ̂β)

(iii)

≤
√
1 + 2S

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
t∈Tβ

[
z(xt,θ

⋆)− z(xt, θ̂β)
]
⊗ xt − λθ̂β

∣∣∣∣∣∣
∣∣∣∣∣∣
G−1

β (θ⋆,θ̂β)

+ λ
√
1 + 2S ||θ⋆||G−1

β (θ⋆,θ̂β)

(iv)

≤ (1 + 2S)

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
t∈Tβ

[
z(xt,θ

⋆)− z(xt, θ̂β)
]
⊗ xt − λθ̂β

∣∣∣∣∣∣
∣∣∣∣∣∣
H⋆ −1

β

+
√
λ(1 + 2S) ||θ⋆||2

(v)

≤ 3S

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
t∈Tβ

[z(xt,θ
⋆)−ms]⊗ xt

∣∣∣∣∣∣
∣∣∣∣∣∣
H⋆ −1

β

+
√
3λ1/2S3/2

where (i) follows from Lemma 9.2 , (ii) follows from Mixed Product Property, (iii) follows from
the Mean value Theorem and the triangle inequality, (iv) follows from the fact that Gβ ≽ λI and
Lemma 9.2, and (v) follows from Lemma 9.3 and the fact that ||θ⋆||2 ≤ S.

Now, consider the following term:∣∣∣∣∣∣
∣∣∣∣∣∣
∑
t∈Tβ

[z(xt,θ
⋆)−ms]⊗ xt

∣∣∣∣∣∣
∣∣∣∣∣∣
H⋆ −1

β

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
t∈Tβ

H
⋆ −1/2
β ([z(xt,θ

⋆)−ms]⊗ xt)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

= max
y∈B2(Kd)

〈
y,
∑
t∈Tβ

H
⋆ −1/2
β ([z(xt,θ

⋆)−ms]⊗ xt)

〉
where B2(Kd) represents the Kd−dimensional unit ball with respect to the ℓ2 norm. We construct
an ϵ−net for this unit ball, denoted as Cϵ. For any y ∈ B2(Kd), we define yϵ = argmin

x∈Cϵ

||y − x||2,

then,

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
t∈Tβ

[z(xt,θ
⋆)−ms]⊗ xt

∣∣∣∣∣∣
∣∣∣∣∣∣
H⋆ −1

β

= max
y∈B2(Kd)

〈
y,
∑
t∈Tβ

H
⋆ −1/2
β ([z(xt,θ

⋆)−ms]⊗ xt)

〉

= max
y∈B2(Kd)

〈
(y − yϵ) + yϵ,

∑
t∈Tβ

H
⋆ −1/2
β ([z(xt,θ

⋆)−ms]⊗ xt)

〉

Thus, an application of the Cauchy-Schwarz inequality along with the fact that ||y − yϵ||2 ≤ ϵ gives
us ∣∣∣∣∣∣

∣∣∣∣∣∣
∑
t∈Tβ

[z(xt,θ
⋆)−ms]⊗ xt

∣∣∣∣∣∣
∣∣∣∣∣∣
H⋆ −1

β

≤ 1

1− ϵ

〈
yϵ,
∑
t∈Tβ

H
⋆ − 1

2

β ([z(xt,θ
⋆)−ms]⊗ xt)

〉

Achieving Limited Adaptivity for Multinomial Logistic Bandits

The above term can be bounded using the Bernstein Inequality (Lemma 9.4), which has been done
in Lemma 7.2. We note that |Cϵ| ≤

(
2
ϵ

)Kd
. We now set ϵ = 0.5 and δ = (T 2|Cϵ|)−1 and then

perform a union bound over Cϵ. We get that with probability greater than 1− 1
T 2 , we have:

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
t∈Tβ

[z(xt,θ
⋆)−ms]⊗ xt

∣∣∣∣∣∣
∣∣∣∣∣∣
H⋆ −1

β

≤ 2

(√
2 log (T 24Kd) +

4

3
λ−1/2 log(T 24Kd)

)

≤ 4
√

log T +Kd+
8

3
λ−1/2(log T +Kd)

Substituting this into the original bound finishes the proof.

Lemma 7.2. Let y be a fixed vector with ||y||2 ≤ 1, then, with probability at least 1− δ

∑
t∈Tβ

[
y⊤H

⋆ − 1
2

β [z(xt,θ
⋆)−ms]⊗ xt

]
≤
√
2 log

1

δ
+

4

3
√
λ
log

1

δ

Proof. Denote φt = y⊤H
⋆ − 1

2

β ([z(xt,θ
⋆)−ms]⊗ xt). From Lemma 9.5, we have that E [φt] =

0.

Also,

V [φt] = E
[
φ2
t

]
− E [φt]

2 (i)
= E

[
φtφ

⊤
t

]
= E

[
y⊤H

⋆ − 1
2

β ([z(xt,θ
⋆)−ms]⊗ xt) ([z(xt,θ

⋆)−ms]⊗ xt)
⊤
H

⋆ − 1
2

β y
]

(ii)
= y⊤H

⋆ − 1
2

β E
[
[z(xt,θ

⋆)−ms] [z(xt,θ
⋆)−ms]

⊤ ⊗ xtx
⊤
t

]
H

⋆ − 1
2

β y

= y⊤H
⋆ − 1

2

β

(
E
[
[z(xt,θ

⋆)−ms] [z(xt,θ
⋆)−ms]

⊤
]
⊗ xtx

⊤
t

)
H

⋆ − 1
2

β y

(iii)
= y⊤H

⋆ − 1
2

β

(
A(xt,θ

⋆)⊗ xtx
⊤
t

)
H

⋆ − 1
2

β y
(iv)
= y⊤H

⋆ − 1
2

β

(
H⋆

β − λI
)
H

⋆ − 1
2

β y

≤ y⊤y ≤ 1

where (i) follows from the fact that φt is a scalar and E[φt] = 0, (ii) follows from the fact that
(A⊗B)

⊤
= A⊤ ⊗B⊤ and the mixed-product property of the Kronecker Product, (iii) follows

from Lemma 9.5, and (iv) follows from the definition of H⋆
β .

Finally, we note that

|φt − E [φt]| = |φt| =
∣∣∣y⊤H

⋆ − 1
2

β ([z(xt,θ
⋆)−ms]⊗ xt)

∣∣∣ (i)≤ ||y||2 ∣∣∣∣∣∣H⋆ − 1
2

β ([z(xt,θ
⋆)−ms]⊗ xt)

∣∣∣∣∣∣
2

(ii)

≤
∣∣∣∣∣∣H⋆ − 1

2

β

∣∣∣∣∣∣ ||(z(xt,θ
⋆)−ms)⊗ xt||2

(iii)

≤ 1√
λ
||z(xt,θ

⋆)−ms||2 ||xt||2
(iv)

≤ 1√
λ
(||z(xt,θ

⋆)||2 + ||ms||2)
(v)

≤ 2√
λ

where (i) follows from Cauchy-Schwarz, (ii) follows from the fact that ||y||2 ≤ 1 and ||Ax||2 ≤
||A|| ||x||2, (iii) follows from H⋆

β ≽ λI and the fact that ||a⊗ b||2 = ||a||2 ||b||2, (iv) follows
from ||x||2 ≤ 1 and uses the triangle inequality, and (v) follows from the fact ∥z(x,θ)∥2 ≤
∥z(x,θ)∥1 ≤ 1.

Substituting v = 1 and b = 2√
λ

in Lemma 9.4 finishes the proof.

Reinforcement Learning Journal 2025

Lemma 7.3. Let Ṽβ and H⋆
β be the design and optimal Hessian matrices defined as in Section 7.1.

Then, we have that
Ṽβ ≼ κH⋆

β

Proof. From the definition of κ, we know that A(x,θ) ≽ 1
κI .

Hence, using the fact that κ > 1, we can say that

Ṽβ = IK×K ⊗ Vβ = IK×K ⊗

λId×d +
∑
t∈Tβ

xtx
⊤
t

 = λIKd×Kd + IK×K ⊗
∑
t∈Tβ

xtx
⊤
t

≼ λIKd×Kd + κ
∑
t∈Tβ

A(xt,θ
⋆)⊗ xtx

⊤
t ≼ κH⋆

β

Lemma 7.4. Let H⋆
β and Hβ be the optimal and proxy Hessian matrices in batch β as defined in

Section 7.1. Then, we have that
Hβ ≼ H⋆

β

Proof. From Lemma 9.1, we have that

A(x, θ̂β) ≼ A(x,θ⋆) exp
(√

6
∣∣∣∣∣∣(I ⊗ x⊤)(θ⋆ − θ̂β)

∣∣∣∣∣∣
2

)

We can bound
∣∣∣∣∣∣(I ⊗ x⊤)(θ⋆ − θ̂β)

∣∣∣∣∣∣
2

as follows:

∣∣∣∣∣∣(I ⊗ x⊤)(θ⋆ − θ̂β)
∣∣∣∣∣∣
2

(i)

≤ 2S
∣∣∣∣I ⊗ x⊤∣∣∣∣

2

(ii)
= 2S

√
λmax ((I ⊗ x)(I ⊗ x⊤))

(iii)
= 2S

√
λmax (I ⊗ xx⊤)

(iv)

≤ 2S

where (i) uses the sub-multiplicativity of the norm, a triangle inequality, and the fact that
||θ⋆||2 ≤ S, (ii) uses the definition of the norm, i.e., ||A||2 =

√
λmax (A⊤A), (iii) fol-

lows from the Mixed-Product property of Kronecker Products, and (iv) follows from the fact that
λ (A⊗B) = λ(A)λ(B) and since xx⊤ is a rank-one matrix, the only eigenvalues are ∥x∥22 and
0, and 0 ≤ ||x||2 ≤ 1.

We can also bound
∣∣∣∣∣∣(I ⊗ x⊤)(θ⋆ − θ̂β)

∣∣∣∣∣∣
2

as follows:

∣∣∣∣∣∣(I ⊗ x⊤)(θ⋆ − θ̂β)
∣∣∣∣∣∣
2
=
∣∣∣∣∣∣(I ⊗ x⊤)H

⋆ −1/2
β H

⋆ 1/2
β (θ⋆ − θ̂β)

∣∣∣∣∣∣
2

(i)

≤
∣∣∣∣∣∣(I ⊗ x⊤)H

⋆ −1/2
β

∣∣∣∣∣∣
2

∣∣∣∣∣∣θ⋆ − θ̂β

∣∣∣∣∣∣
H⋆

β

(ii)

≤ κ1/2γ(λ)
∣∣∣∣∣∣(I ⊗ x⊤)κ1/2Ṽ

−1/2
β

∣∣∣∣∣∣
2

(iii)
= κ1/2γ(λ)

√
λmax

(
Ṽ

−1/2
β (I ⊗ x)(I ⊗ x⊤)Ṽ

−1/2
β

)
(iv)
= κ1/2γ(λ)

√
λmax

(
(I ⊗ V

−1/2
β)(I ⊗ x)(I ⊗ x⊤)(I ⊗ V

−1/2
β)

)
(v)
= κ1/2γ(λ)

√
λmax

(
I ⊗ V

−1/2
β xx⊤V

−1/2
β

)
(vi)
= κ1/2γ(λ) ||x||V −1

β

Achieving Limited Adaptivity for Multinomial Logistic Bandits

where (i) follows from the sub-multiplicativity of the norm, (ii) follows from Lemma 7.1 and
Lemma 7.3, (iii) follows from the definition of the norm, (iv) follows from the definition of Ṽβ and
the fact that (A⊗B)n = An⊗Bn, (v) follows from the Mixed-Product property, and (vi) follows
from λ(A⊗B) = λ(A)λ(B).

Thus, we can say that
∣∣∣∣∣∣(I ⊗ x⊤)(θ⋆ − θ̂β)

∣∣∣∣∣∣
2
≤ min

{
γ(λ)κ1/2 ||x||V −1

β
, 2S

}
.

Define Bβ(x) = exp
(√

6min
{
γ(λ)κ1/2 ||x||V −1

β
, 2S

})
. Then, A(x, θ̂β) ≼ A(x,θ⋆)Bβ(x).

Hence, we can say,

Hβ = λIKd×Kd +
∑
t∈β

A(xt, θ̂β)

Bβ(xt)
⊗ xtx

⊤
t ≼ λIKd×Kd +

∑
t∈β

A(xt,θ
⋆)⊗ xtx

⊤
t = H⋆

β

Lemma 7.5. (Proposition 1 , Zhang & Sugiyama (2023)) For any arm x, we have that,∣∣ρ⊤z(x,θ⋆)− ρ⊤z(x,θj)
∣∣ ≤ ϵ1(j,x, λ) + ϵ2(j,x, λ)

where

ϵ1(j,x, λ) = γ(λ)
∣∣∣∣∣∣H−1/2

j (I ⊗ x)A(x,θj)ρ
∣∣∣∣∣∣
2

and ϵ2(j,x, λ) = 3Rγ(λ)2
∣∣∣∣∣∣(I ⊗ x⊤)H

−1/2
j

∣∣∣∣∣∣2
2

Proof. We provide the proof for the sake of completeness:

∣∣ρ⊤z(x,θ⋆)− ρ⊤z(x,θj)
∣∣ = ∣∣∣∣∣

K∑
i=1

ρi [zi(x,θ
⋆)− zi(x,θj)]

∣∣∣∣∣
=

∣∣∣∣∣
K∑
i=1

ρi∇zi(x,θj)
⊤ [(IK×K ⊗ x⊤)(θ⋆ − θj)

]
+

K∑
i=1

ρi
∣∣∣∣(IK×K ⊗ x⊤)(θ⋆ − θj)

∣∣∣∣
Zi

∣∣∣∣∣
≤
∣∣ρ⊤A(x,θj)(IK×K ⊗ x⊤)(θ⋆ − θj)

∣∣+ ∣∣∣∣∣
K∑
i=1

ρi
∣∣∣∣(IK×K ⊗ x⊤)(θ⋆ − θj)

∣∣∣∣2
Zi

∣∣∣∣∣
where

Zi =

1∫
0

(1− v)∇2zi(x, vθ
⋆ + (1− v)θj) dv

Beginning with the first term :∣∣ρ⊤A(x,θj)(IK×K ⊗ x⊤)(θ⋆ − θj)
∣∣ = ∣∣∣ρ⊤A(x,θj)(IK×K ⊗ x⊤)H

⋆ −1/2
j H

⋆ 1/2
j (θ⋆ − θj)

∣∣∣
(i)

≤ ||θ⋆ − θj ||H⋆
j

∣∣∣∣∣∣ρ⊤A(x,θj)(IK×K ⊗ x⊤)H
⋆ −1/2
j

∣∣∣∣∣∣
2

≤ γ(λ)
∣∣∣∣∣∣H⋆ −1/2

j (IK×K ⊗ x)A(x,θj)ρ
∣∣∣∣∣∣
2

(ii)

≤ γ(λ)
∣∣∣∣∣∣H−1/2

j (IK×K ⊗ x)A(x,θj)ρ
∣∣∣∣∣∣
2

where (i) follows from the sub-multiplicativity of the norm and (ii) is due to Lemma 7.4.

Reinforcement Learning Journal 2025

For the second term, for some k ∈ [1,K], we make the following observation:

Zk =

1∫
0

(1− v)∇2zk(x, vθ
⋆ + (1− v)θj) dv ≼ 3I

1∫
0

(1− v) dv ≼ 3I

Thus, we have:∣∣∣∣∣
K∑
i=1

ρi
∣∣∣∣(IK×K ⊗ x⊤)(θ⋆ − θj)

∣∣∣∣2
Zi

∣∣∣∣∣ ≤
∣∣∣∣∣
K∑
i=1

3ρi
∣∣∣∣(IK×K ⊗ x⊤)(θ⋆ − θj)

∣∣∣∣2
2

∣∣∣∣∣
≤ 3R

∣∣∣∣∣∣(IK×K ⊗ x⊤)H
⋆ −1/2
j H

⋆ 1/2
j (θ⋆ − θj)

∣∣∣∣∣∣2
2

≤ 3R ||θ⋆ − θj ||2H⋆
j

∣∣∣∣∣∣(IK×K ⊗ x⊤)H
⋆ −1/2
j

∣∣∣∣∣∣2
2

≤ 3Rγ(λ)2
∣∣∣∣∣∣(IK×K ⊗ x⊤)H

⋆ −1/2
j

∣∣∣∣∣∣2
2

≤ 3Rγ(λ)2
∣∣∣∣∣∣(IK×K ⊗ x⊤)H

−1/2
j

∣∣∣∣∣∣2
2

Lemma 7.6. Let x⋆
t be the optimal arm at round t, i.e x⋆

t = argmaxx∈Xt
ρ⊤z(x,θ⋆). Then, the

optimal arm never gets eliminated in any round.

Proof. From Lemma 7.5, we know that∣∣ρ⊤z(x,θ⋆)− ρ⊤z(x,θj)
∣∣ ≤ ϵ1(j,x, λ) + ϵ2(j,x, λ)

Also, from Algorithm 1, we have the definitions of UCB(j,x, λ) and LCB(j,x, λ) as:

UCB(j,x, λ) = ρ⊤z(x,θj) + ϵ1(j,x, λ) + ϵ2(j,x, λ)

LCB(j,x, λ) = ρ⊤z(x,θj)− ϵ1(j,x, λ)− ϵ2(j,x, λ)

From Algorithm 1, we know that an arm x ∈ Xt gets eliminated if UCB(j,x, λ) ≤
maxy∈Xt

LCB(j,y, λ). Thus, showing that UCB(j,x⋆
t , λ) ≥ maxy∈Xt

LCB(j,y, λ) accounts to
showing that x⋆

t never gets eliminated.

We assume that argmaxy∈Xt
LCB(j,y, λ) = y. Then, for any arm x ∈ Xt, we have that

LCB(j,x, λ) ≤ max
y∈Xt

LCB(j,y, λ)

= ρ⊤z(y,θj)− ϵ1(j,y, λ)− ϵ2(j,y, λ)

(i)

≤
[
ρ⊤z(y,θ⋆) + ϵ1(j,y, λ) + ϵ2(j,y, λ)

]
− ϵ1(j,y, λ)− ϵ2(j,y, λ)

= ρ⊤z(y,θ⋆)

(ii)

≤ ρ⊤z(x⋆
t ,θ

⋆)

(iii)

≤ ρ⊤z(x⋆
t ,θj) + ϵ1(j,x

⋆
t , λ) + ϵ2(j,x

⋆
t , λ)

= UCB(j,x⋆
t , λ)

where (i) follows from Lemma 7.5, (ii) follows from the fact that x⋆
t = argmax

y∈Xt

ρ⊤z(y,θ⋆), and

(iii) again follows from Lemma 7.5.

Achieving Limited Adaptivity for Multinomial Logistic Bandits

Lemma 7.7. Let Bβ(x) be as defined in Section 7.1. Then, we have that√
Bβ(x) ≤

1

2
e3Sγ(λ)κ1/2S−1∥x∥V −1

β
+ 1

Proof.√
Bβ(x) = exp

(√
6min

{
S,

1

2
γ(λ)κ1/2∥x∥V −1

β

})
≤ 1

2
e3Sγ(λ)κ1/2S−1∥x∥V −1

β
+ 1

where the inequality follows from Lemma 9.6 by choosing min{2S, γ(λ)κ1/2∥x∥V −1
β
} =

γ(λ)κ1/2∥x∥V −1
β

and M =
√
6S.

Lemma 7.8. Let ϵ1(β,x, λ) be as defined in Lemma 7.5. Then, we have

E
X∼Dβ+1

[
max
x∈X

ϵ1(β,x, λ)

]
≤ 8Rκ1/2K5/2de3Sγ(λ)2S−1

√
logKd log d

τβ
+
4RK2d1/2γ(λ)

√
log(Kd)

√
τβ

Proof.

E
X∼Dβ+1

[
max
x∈X

ϵ1(β,x, λ)

]
= E

X∼Dβ+1

[
max
x∈X

γ(λ)
∣∣∣∣∣∣H−1/2

β (I ⊗ x)A(x, θ̂β)ρ
∣∣∣∣∣∣
2

]
(i)

≤ γ(λ) E
X∼Dβ+1

[
max
x∈X

∣∣∣∣∣∣H−1/2
β (I ⊗ x)A(x, θ̂β)

1/2
∣∣∣∣∣∣
2
||ρ||A(x,θ̂β)

]
(ii)

≤ Rγ(λ) E
X∼Dβ+1

[
max
x∈X

∣∣∣∣∣∣A(x, θ̂β)
1/2(I ⊗ x⊤)H

−1/2
β

∣∣∣∣∣∣
2

]
(iii)

≤ Rγ(λ) E
X∼Dβ+1

[
max
x∈X

∣∣∣∣∣∣∣∣√Bβ(x)X̃
⊤
β H

−1/2
β

∣∣∣∣∣∣∣∣
2

]
(iv)

≤ 4Rγ(λ)K2

√
d logKd

τβ

{
1

2
e3Sγ(λ)κ1/2S−1 E

X∼Dβ+1

[
max
x∈X
∥x∥V −1

β

]
+ 1

}
(v)

≤ 4Rγ(λ)K2

√
d logKd

τβ

{
2e3Sγ(λ)κ1/2S−1

√
Kd log d

τβ
+ 1

}

≤ 8Rκ1/2K5/2de3Sγ(λ)2S−1
√
logKd log d

τβ
+

4RK2d1/2γ(λ)
√
log(Kd)

√
τβ

where (i) follows from ||Ax||2 ≤ ||A||2 ||x||2, (ii) follows from the fact that A(x,θ) ≼ I ,
(iii) follows from the defintion of X̃ , (iv) follows from Lemma 7.7, the fact that max {ab} ≤
max {a}max {b}, and Lemma 7.18, and (v) follows from Lemma 7.17.

Lemma 7.9. Let ϵ2(β,x, λ) be as defined in Lemma 7.5. Then, we have

E
X∼Dβ+1

[ϵ2(β,x, λ)] ≤
96Rκγ(λ)2

τβ
Kd2

Reinforcement Learning Journal 2025

Proof. Recall from Lemma 7.5, in one of the intermediate steps, we have that

ϵ2(β,x, λ) = 3Rγ(λ)2
∣∣∣∣∣∣(I ⊗ x⊤)H

⋆ −1/2
β

∣∣∣∣∣∣2
2

Thus, we have

E
X∼Dβ+1

[ϵ2(β,x, λ)] = E
X∼Dβ+1

[
max
x∈X

3Rγ(λ)2
∣∣∣∣∣∣(I ⊗ x⊤)H

⋆ −1/2
β

∣∣∣∣∣∣2
2

]
= 3Rγ(λ)2 E

X∼Dβ+1

[
max
x∈X

∣∣∣∣∣∣(I ⊗ x⊤)H
⋆ −1/2
β

∣∣∣∣∣∣2
2

]
(i)

≤ 3Rκγ(λ)2 E
X∼Dβ+1

[
max
x∈X

∣∣∣∣∣∣(I ⊗ x⊤)Ṽ
−1/2
β

∣∣∣∣∣∣2
2

]
(ii)

≤ 3Rκγ(λ)2 E
X∼Dβ+1

[
max
x∈X

∣∣∣∣∣∣(I ⊗ x⊤)(I ⊗ V
−1/2
β)

∣∣∣∣∣∣2
2

]
(iii)

≤ 3Rκγ(λ)2 E
X∼Dβ+1

[
max
x∈X
||x||2V −1

β

]
(iv)

≤ 48Rκγ(λ)2

τβ
(K + 1)d2 ≤ 96Rκγ(λ)2

τβ
Kd2

where (i) follows from Lemma 7.3, (ii) follows from the definition of Ṽβ , (iii) follows from the
Mixed-Product Property and the fact that λ(A ⊗B) = λ(A)λ(B), and (iv) follows from Lemma
7.16.

Lemma 7.10. Let t be a time round in batch β+1, i.e t ∈ Tβ . Then, the expected regret incurred at
round t, denoted as Rt can be bounded as:

Rt ≤
32RKκ1/2dγ(λ)2

τβ

{
e3SK3/2S−1

√
log(Kd) log d+ 12κ1/2d

}
+

16RK2d1/2γ(λ)
√

log(Kd)
√
τβ

Proof. Using Lemma 7.5,

ρ⊤z(x⋆
t ,θ

⋆)−ρ⊤z(xt,θ
⋆) ≤ ρ⊤z(x⋆

t ,θβ)−ρ⊤z(xt,θβ)+ϵ1(β,x
⋆
t , λ)+ϵ2(β,x

⋆
t , λ)+ϵ1(β,xt, λ)+ϵ2(β,xt, λ)

Since xt was not eliminated, we have UCB(β,xt, λ) ≥ max
y∈X

LCB(β,y, λ) ≥ LCB(β,x⋆
t , λ) since

x⋆
t never gets eliminated (Lemma 7.6). Thus,

ρ⊤z(xt,θβ) + ϵ1(β,xt, λ) + ϵ2(β,xt, λ) ≥ ρ⊤z(x⋆
t ,θβ)− ϵ1(β,x

⋆
t , λ)− ϵ2(β,x

⋆
t , λ)

Thus, we get

ρ⊤z(x⋆
t ,θ

⋆)− ρ⊤z(xt,θ
⋆) ≤ 2ϵ1(β,xt, λ) + 2ϵ2(β,xt, λ) + 2ϵ1(β,x

⋆
t , λ) + 2ϵ2(β,x

⋆
t , λ)

≤ 4max
x∈X

ϵ1(β,x, λ) + 4max
x∈X

ϵ2(β,x, λ)

Taking an expectation on both sides, we get

E
X∼Dβ+1

[
ρ⊤z(x⋆

t ,θ
⋆)− ρ⊤z(xt,θ

⋆)
]
≤ 4

(
E

X∼Dβ+1

[
max
x∈X

ϵ1(β,x, λ) + max
x∈X

ϵ2(β,x, λ)

])
≤ 32RKκ1/2dγ(λ)2

τβ

{
e3SK3/2S−1

√
log(Kd) log d+ 12κ1/2d

}
+

16RK2d1/2γ(λ)
√

log(Kd)
√
τβ

which follows from Lemma 7.8 and Lemma 7.9.

Achieving Limited Adaptivity for Multinomial Logistic Bandits

7.3 Supporting Results on Optimal Designs for 7

Recall from Section 7.1,

X̃β =
A(x, θ̂β)

1
2√

Bβ(x)
⊗ x

Also, recall that at each round t ∈ [T], the feasible set of context vectors Xt is being sampled from
some distributionD. For a given batch β, we denoteDβ to be the distribution of the pruned arm-sets
post the successive elimination procedure (Section 3.1). Thus, we have that Dβ+1 ⊂ Dβ .

We now define K different partitions of X̃β as follows:

x̃
(i)
β =

A(x, θ̂β)
1
2√

Bβ(x)
ei ⊗ x

where i ∈ [K] and ei is the K−dimensional standard basis vector. We first show a few relations
between X̃β and x̃

(i)
β :

Lemma 7.11. Let X̃β and x̃
(i)
β be defined as above. Then, we have

X̃βX̃
⊤
β =

K∑
i=1

x̃
(i)
β x̃

(i) ⊤
β

Proof.

K∑
i=1

x̃
(i)
β x̃

(i) ⊤
β =

K∑
i=1

(
A(x, θ̂β)

1
2√

Bβ(x)
ei ⊗ x

)(
e⊤i

A(x, θ̂β)
1
2√

Bβ(x)
⊗ x⊤

)

=
1

Bβ(x)

K∑
i=1

A(x, θ̂β)
1
2 eie

⊤
i A(x, θ̂β)

1
2 ⊗ xx⊤

=
1

Bβ(x)
A(x, θ̂β)

1
2

(
K∑
i=1

eie
⊤
i

)
A(x, θ̂β)

1
2 ⊗ xx⊤

=
A(x, θ̂β)

Bβ(x)
⊗ xx⊤ = X̃βX̃

⊤
β

where we use the fact that
K∑
i=1

eie
⊤
i = IK×K .

Lemma 7.12. Let M ∈ RKd be any positive-semidefinite matrix. Then,

λmax

(
X̃⊤

β MX̃β

)
≤

K∑
i=1

∣∣∣∣∣∣x̃(i)
β

∣∣∣∣∣∣2
M

Proof.

λmax

(
X̃⊤

β MX̃β

)
(i)
= λmax

(
X̃βX̃

⊤
β M

)
(ii)
= λmax

(
K∑
i=1

x̃
(i)
β x̃

(i) ⊤
β M

)
(iii)

≤
K∑
i=1

λmax

(
x̃
(i)
β x̃

(i) ⊤
β M

)
(iv)
=

K∑
i=1

λmax

(
x̃
(i) ⊤
β Mx̃

(i)
β

)
=

K∑
i=1

∣∣∣∣∣∣x̃(i)
β

∣∣∣∣∣∣2
M

Reinforcement Learning Journal 2025

where (i) follows from the cyclic property of eigenvalues, (ii) follows from Lemma 7.11, (iii)
follows from the fact that λmax (A+B) ≤ λmax (A) + λmax (B), and (iv) again follows from
the cyclic property of eigenvalues.

We first redefine the Distributional Optimal Design (Definition ??) for a set X .

π(X) =

{
πG(X) w.p. 12
πS
Mi

(X) w.p.pi

2

where πG is the G-optimal design and πS
Mi

represents the Softmax Policy with respect to Mi. We
refer the reader to Definition ?? for more details.

We now define a few notations regarding some of the information and design matrices used through-
out this section.

1. IλD(π) = E
X∼D

[
E

x∼π(X)
X̃βX̃

⊤
β

]
2. W(i)

D (π) = E
X∼D

[
E

x∼π(X)
x̃
(i)
β x̃

(i) ⊤
β

]
3. W(0)

D (π) = E
X∼D

[
E

x∼π(X)
xx⊤

]
Suppose Algorithm 2 is called with the inputs β and Sβ , where β is the current batch index. Then,
the policy returned by the algorithm is denoted by πβ , where

πβ =
1

K + 1

(
K∑
i=0

πβ,i

)

where πβ,0 and πβ,i i ∈ [K] represents the Distributional Optimal Design learned over Sβ and
Fi(Sβ , β), i ∈ [K] respectively. Here Fi is as defined in Equation 8.

We now state a few results that relate the design matrices H and V as well as the matrices |I and
W.

Lemma 7.13. (Lemma A.16, Sawarni et al. (2024)) Let Vβ and Hβ as defined in Section 7.1 and
W

(0)
D (πβ) and Iλ

D(πβ) be as defined in Section 7.3.

Then, with probability at least 1− 1
T 2 , we have that

Vβ ≽
τβ
8
W(0)

D (πβ)

Hβ ≽
τβ
8
IλD(πβ)

Lemma 7.14. For all i ∈ [0,K], we have that

(K + 1)IλD(πβ) ≽ IλD(πβ,i)

Proof.

IλD(πβ) = E
X∼D

[
E

x∼πβ(X)
X̃βX̃

⊤
β

]
(i)

≽ (K + 1)−1 E
X∼D

[
K∑
i=0

E
x∼πβ,i(X)

X̃βX̃
⊤
β

]

≽ (K + 1)−1 E
X∼D

[
E

x∼πβ,i(X)
X̃βX̃

⊤
β

]
= (K + 1)−1IλD(πβ,i)

Achieving Limited Adaptivity for Multinomial Logistic Bandits

where (i) follows from the definition of πβ .

Lemma 7.15. For all i ∈ [K], we have that

IλD(π) ≽ W(i)
D (π)

Proof.

IλD(π) = E
X∼D

[
E

x∼π(X)
X̃βX̃

⊤
β

]
(i)
= E

X∼D

[
E

x∼π(X)

K∑
i=1

x̃
(i)
β x̃

(i) ⊤
β

]
≽ E

X∼D

[
E

x∼π(X)
x̃
(i)
β x̃

(i) ⊤
β

]
= W(i)

D (π)

Using the lemmas stated above, we now derive a few results.

Lemma 7.16. Let Vβ be as defined in Section 7.1 and τβ be the length of the β batch, i.e |Tβ = τβ .
Then, we have

E
X∼Dβ+1

[
max
x∈X
||x||2V −1

β

]
≤ 16

τβ
(K + 1)d2

Proof.

E
X∼Dβ+1

[
max
x∈X
||x||2V −1

β

]
(i)

≤ 8

τβ
E

X∼Dβ+1

[
max
x∈X
||x||2W(0) −1

Dβ
(πβ)

]
(ii)

≤ 8

τβ
(K + 1) E

X∼Dβ

[
max
x∈X
||x||2W(0) −1

Dβ
(πβ,0)

]
(iii)

≤ 16

τβ
(K + 1) E

X∼Dβ

[
max
x∈X
||x||2W(0) −1

Dβ
(πG)

]
(iv)

≤ 16

τβ
(K + 1)d2

where (i) follows from Lemma 7.13, (ii) follows from Lemma 7.14 and the fact that Dβ+1 ⊂ Dβ

and hence, EDβ+1
≤ EDβ

, (iii) follows from the definition of πβ,0 and uses the fact that πβ,0 ≽ πG

2 ,
and (iv) follows from Lemma 9.8.

Lemma 7.17. Let Vβ be as defined in Section 7.1 and τβ be the length of the β batch, i.e |Tβ | = τβ .
Then, we have

E
X∼Dβ+1

[
max
x∈X
||x||V −1

β

]
≤ 4

√
Kd log d

τβ

Reinforcement Learning Journal 2025

Proof.

E
X∼Dβ+1

[
max
x∈X
||x||V −1

β

]
(i)

≤

√
8

τβ
E

X∼Dβ

[
max
x∈X
||x||W(0) −1

Dβ
(πβ)

]
(ii)

≤

√
8

τβ
(K + 1) E

X∼Dβ

[
max
x∈X
||x||W(0) −1

Dβ
(πβ,0)

]
(iii)

≤

√
8

τβ
(K + 1)d log d

≤ 4

√
Kd log d

τβ

where (i) follows from Lemma 7.13 and the fact that Dβ+1 ⊂ Dβ , (ii) follows in a similar manner
as Lemma 7.14, and (iii) follows from Lemma 9.7.

Lemma 7.18. Let X̃β and Hβ be as defined in Section 7.1. Denote τβ = |Tβ |. Then, we have that

E
X∼Dβ+1

[
max
x∈X

∣∣∣∣∣∣X̃⊤
β H

−1/2
β

∣∣∣∣∣∣
2

]
≤ 4K2

√
d log(Kd)

τβ

Proof.

E
X∼Dβ+1

[
max
x∈X

∣∣∣∣∣∣X̃⊤
β H

−1/2
β

∣∣∣∣∣∣
2

]
(i)

≤ E
X∼Dβ

[
max
x∈X

√
λmax

(
H

−1/2
β X̃βX̃⊤

β H
−1/2
β

)]
(ii)
= E

X∼Dβ

[
max
x∈X

√
λmax

(
X̃⊤

β H−1
β X̃β

)]
(iii)

≤ E
X∼Dβ

max
x∈X

√√√√ K∑
i=1

∣∣∣∣∣∣x̃(i)
β

∣∣∣∣∣∣2
H−1

β

(iv)

≤

√
8

τβ
E

X∼Dβ

max
x∈X

√√√√ K∑
i=1

∣∣∣∣∣∣x̃(i)
β

∣∣∣∣∣∣2
Iλ −1
Dβ

(πβ)

(v)

≤

√
8

τβ
(K + 1) E

X∼Dβ

max
x∈X

√√√√ K∑
i=1

∣∣∣∣∣∣x̃(i)
β

∣∣∣∣∣∣2
Iλ −1
Dβ

(πβ,i)

(vi)

≤

√
8

τβ
(K + 1) E

X∼Dβ

max
x∈X

√√√√ K∑
i=1

∣∣∣∣∣∣x̃(i)
β

∣∣∣∣∣∣2
W(i) −1

Dβ
(πβ,i)

(vii)

≤

√
8

τβ
(K + 1) E

X∼Dβ

[
max
x∈X

K∑
i=1

∣∣∣∣∣∣x̃(i)
β

∣∣∣∣∣∣
W(i) −1

Dβ
(πβ,i)

]
(viii)

≤

√
8

τβ
(K + 1)

K∑
i=1

E
X∼Dβ

[
max
x∈X

∣∣∣∣∣∣x̃(i)
β

∣∣∣∣∣∣
W(i) −1

Dβ
(πβ,i)

]
(ix)

≤ K

√
8

τβ
(K + 1)Kd log(Kd) ≤ 4K2

√
d log(Kd)

τβ

Achieving Limited Adaptivity for Multinomial Logistic Bandits

where (i) follows from the definition of the norm ||A||2 =
√
λmax (A⊤A) and the fact that

Dβ+1 ⊂ Dβ , (ii) follows from the cyclic property of eigenvalues, (iii) follows from Lemma 7.12,
(iv) follows from Lemma 7.13, (v) follows from Lemma 7.14, (vi) follows from Lemma 7.15, (vii)

uses the fact that for {ai}Ni=1,

√
N∑
i=1

a2i ≤

√(
N∑
i=1

ai

)2

=
N∑
i=1

ai, (viii) uses the linearity of expec-

tations and the fact that max
x

[f(x) + g(x)] ≤ max
x

f(x) +max
x

g(x), and (ix) follows from Lemma
9.7.

8 Rarely Switching Multinomial Contextual Bandit Algorithm: RS-MNL

8.1 Notations

We first define a few matrices, vectors, and scalars that are used throughout this section (here, ei
denotes the ith−standard basis vector):

1. Vt = λId×d +
∑
s∈[t]

xsx
⊤
s

2. Ṽt = IK×K ⊗ Vt

3. A(x,θ) = diag(z(x,θ))− z(x,θ)z(x,θ)⊤

4. M(x,θ1,θ2) =
1∫
0

A(x, vθ1 + (1− v)θ2) dv

5. H⋆
t = λIKd×Kd +

∑
s∈[t]

A(xs,θ
⋆)⊗ xsx

⊤
t

6. γ(δ) = CS5/4
√
Kd log(T/δ)

7. Bt(x) = exp
(√

6min
{
2κ1/2γ(δ)∥x∥V −1

t
, 2S

})
8. Ht(θ) = λIKd×Kd +

∑
s∈[t]

A(xs,θ)
Bs(xs)

⊗ xsx
⊤
s

9. Ht(θ) = λIKd×Kd +
∑
s∈[t]

A(xs,θ)
Bs(xs)

⊗ xsx
⊤
s

10. X̃t(θ) =
A(xt,θ)

1
2√

Bt(xt)
⊗ xt

11. x̃
(i)
t (θ) = A(xt,θ)

1
2√

Bt(xt)
ei ⊗ xt

12. Hi
t(θ) =

∑
s∈[t]

x̃
(i)
s (θ)x̃

(i)
s (θ)⊤ + λI

We now present the regret upper bound for RS-MNL by restating Theorem 4.1.
Theorem 8.1. With high probability, the regret incurred by Algorithm 3 is bounded above by RT

where:

RT ≤ CRK3/2S5/4(log T log(T/δ))1/2d
√
T+CRK2d2S5/2 log T log(T/δ)κ1/2e2S(eS+Kκ1/2)

Proof. For any round t ∈ [T], let τt ≤ t denote the last round at which a switch was made. Then,
using the value of γ(δ) alongside Lemma 8.8, Lemma 8.12, and Lemma 8.13, we get:

R(T) ≤
∑
t∈[T]

|ρ⊤z(x⋆
t ,θ

⋆)− ρ⊤z(xt,θ
⋆)| ≤

∑
t∈[T]

2ϵ1(t, τt,xt) + 2ϵ2(t, τt,xt)

≤ 4RKd1/2(log T)1/2γ(δ)
√
T + 8RKd log Tκ1/2e3Sγ(δ)2 + 24dRK2e2Sκγ(δ)2 log T

≤ CRK3/2S5/4(log T log(T/δ))1/2d
√
T + CRK2d2S5/2 log T log(T/δ)κ1/2e2S(eS +Kκ1/2)

Reinforcement Learning Journal 2025

8.2 Supporting Lemmas for 8

Lemma 8.1. Let {x1, . . . ,xτ} be a set of arms and {r1, . . . , rτ} be the set of corresponding rewards
associated with the arms. Define θ̂τ be the MLE estimate calculated using this set of arms and
rewards, i.e

θ̂τ = argmin
θ

∑
s∈[τ]

K∑
i=1

1{ys = i} log zi(xs,θ) +
λ

2
∥θ∥22

Let H⋆
τ be as defined in Section 8.1. Then, with high probability, and the choice of λ =

KdS−1/2 log(T/δ), we have that

∥θ̂τ − θ⋆∥H⋆
τ
≤ CS5/4

√
Kd log(T/δ)

Proof. We define Gτ (θ1,θ2) as:

Gτ (θ1,θ2) =
∑
t∈[τ]

M(xt,θ1,θ2)⊗ xtx
⊤
t + λI

where M(x,θ1,θ2) is as defined in Section 8.1. Thus, from Lemma 9.2, we have that

(1 + 2S)−1Gτ ≽ H⋆
τ

Achieving Limited Adaptivity for Multinomial Logistic Bandits

Thus, we have

∣∣∣∣∣∣θ̂τ − θ⋆
∣∣∣∣∣∣
H⋆

τ

≤
√
1 + 2S

∣∣∣∣∣∣θ̂τ − θ⋆
∣∣∣∣∣∣
Gτ (θ̂τ ,θ⋆)

≤
√
1 + 2S

∣∣∣∣∣∣Gτ (θ̂τ ,θ
⋆)
(
θ̂τ − θ⋆

)∣∣∣∣∣∣
G−1

τ (θ̂τ ,θ⋆)

(i)

≤
√
1 + 2S

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
t∈[τ]

M(θ̂τ ,θ
⋆)⊗ xtx

⊤
t + λIKd×Kd

(θ̂τ − θ⋆
)∣∣∣∣∣∣
∣∣∣∣∣∣
G−1

τ (θ̂τ ,θ⋆)

(ii)

≤
√
1 + 2S

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
t∈[τ]

[
M(x,θ⋆, θ̂τ)⊗ x⊤

t

] (
θ⋆ − θ̂τ

)
⊗ xt + λ

(
θ̂τ − θ⋆

)∣∣∣∣∣∣
∣∣∣∣∣∣
G−1

τ (θ1,θ2)

(iii)

≤
√
1 + 2S

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
t∈[τ]

[
z(xt, θ̂τ)− z(xt,θ

⋆)
]
⊗ xt + λ

(
θ̂τ − θ⋆

)∣∣∣∣∣∣
∣∣∣∣∣∣
G−1

τ (θ1,θ2)

(iv)

≤
√
1 + 2S

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
t∈[τ]

[mt − z(xt,θ
⋆)]⊗ xt − λθ⋆

∣∣∣∣∣∣
∣∣∣∣∣∣
G−1

τ (θ1,θ2)

(v)

≤
√
1 + 2S

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
t∈[τ]

[mt − z(xt,θ
⋆)]⊗ xt

∣∣∣∣∣∣
∣∣∣∣∣∣
G−1

τ (θ1,θ2)

+ λ
√
1 + 2S ||θ⋆||G−1

τ (θ1,θ2)

≤ (1 + 2S)

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
t∈[τ]

[mt − z(xt,θ
⋆)]⊗ xt

∣∣∣∣∣∣
∣∣∣∣∣∣
H⋆ −1

τ

+ λ
√
1 + 2S ||θ⋆||G−1

τ (θ1,θ2)

(vi)

≤ (1 + 2S)

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
t∈[τ]

ϵt ⊗ xt

∣∣∣∣∣∣
∣∣∣∣∣∣
H⋆ −1

τ

+ S
√
1 + 2S

√
λ

(vi)

≤ 3S

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
t∈[τ]

ϵt ⊗ xt

∣∣∣∣∣∣
∣∣∣∣∣∣
H⋆ −1

τ

+
√
3λ1/2S3/2

where (i) follows from Lemma 9.2 , (ii) follows from Mixed Product Property , (iii) follows from
the Mean value Theorem, (iv) from Lemma 9.3, (v) follows from Cauchy-Schwarz, and (vi) follows
from the fact that Gτ ≥ λI and ||θ||2 ≤ S.

Note that ϵt = mt−z(xt,θ
⋆) and since E [mt] = z(xt,θ

⋆), we get E
[
ϵtϵ

⊤
t

]
= A(xt,θ

⋆). Also,
note that ∥ϵt∥1 ≤ ∥mt∥1 + ∥z(xt,θ

⋆)∥1 ≤ 2. Thus, using Lemma 9.10, we get

∣∣∣∣∣∣θ̂τ − θ⋆
∣∣∣∣∣∣
H⋆

τ

≤ 3S

(√
λ

4
+

4√
λ
log

(
det H1/2

τ

δλ
dK
2

)
+

4√
λ
Kd log 2

)
+ 2S3/2λ1/2

where Hτ = λI +
∑

t∈τ A(xt,θ
⋆)⊗ xtx

⊤
t .

Reinforcement Learning Journal 2025

We can calculate det Hτ as follows:

det Hτ

(i)

≤
(

trace Hτ

Kd

)Kd

≤

(
trace λI + trace

∑
t∈τ A(xt,θ

⋆)⊗ xtx
⊤
t

Kd

)Kd

(ii)

≤
(
λKd+ τ∥xt∥22

Kd

)Kd

(iii)

≤ λKd
(
1 +

τ

λKd

)Kd

where (i) follows from Lemma 9.11, (ii) follows from the fact that tr (A⊗B) =
∑

λ(A)λ(B) and
the fact that A(x,θ⋆) ≼ I and the only non-zero eigenvalue of xtx

⊤
t is ∥xt∥22, and (iii) follows

since ∥x∥ ≤ 1.

Thus, we have

∣∣∣∣∣∣θ̂τ − θ⋆
∣∣∣∣∣∣
H⋆

τ

≤ 3S

√λ
4

+
4√
λ
log

(1 + τ
λKd

)Kd
2

δ

+
4√
λ
Kd log 2

+ 2S3/2λ1/2

= 3S

(√
λ

4
+

2Kd√
λ

log
(
1 +

τ

λd

)
+

4√
λ
log

1

δ
+

4√
λ
Kd log 2

)
+ 2S3/2λ1/2

Finally, by setting λ = KdS−1/2 log(T/δ) and simplifying the constants, we get that for some
appropriately tuned constant C∣∣∣∣∣∣θ̂τ − θ⋆

∣∣∣∣∣∣
H⋆

τ

≤ CS5/4
√
Kd log(T/δ)

From here on, we shall use the notation γ(δ) = CS5/4
√

Kd log(T/δ).

Lemma 8.2. Let Ṽt and H⋆
t be defined as in Section 8.1. Then, for any round t ∈ [T], we have that

Ṽt ≼ κH⋆
t

Proof. From the definition of κ, we have A(x,θ) ≽ 1
κI . Hence, using the fact that κ ≥ 1, we have

Ṽt = IK×K ⊗ Vt = IK×K ⊗

λId×d +
∑
s∈[t]

xsx
⊤
s

= λIKd×Kd + IK×K ⊗

∑
s∈[t]

xtx
⊤
t

≼ κλIKd×Kd + κ
∑
s∈[t]

A(xt,θ
⋆)⊗ xtx

⊤
t

≼ κH⋆
t

Achieving Limited Adaptivity for Multinomial Logistic Bandits

Lemma 8.3. Let Ṽt and Ht(θ) be defined as in Section 8.1. Then, for any round t ∈ [T], we have
that

Ṽt ≼ κHt(θ)

Proof. From the definition of κ, we have A(x,θ) ≽ 1
κI . Hence, using the fact that κ ≥ 1, we have

Ṽt = IK×K ⊗ Vt = IK×K ⊗

λId×d +
∑
s∈[t]

xsx
⊤
s

= λIKd×Kd + IK×K ⊗

∑
s∈[t]

xtx
⊤
t

≼ κλIKd×Kd + κ
∑
s∈[t]

A(xt,θ)⊗ xtx
⊤
t

≼ κλIKd×Kd + κ
∑
s∈[t]

A(xt,θ)

Bs(xs)
⊗ xtx

⊤
t

≼ κHt(θ)

where the second to last inequality follows since Bt(x) ≥ 1.

Lemma 8.4. Let 1, τ1, . . . , τm be the rounds at which a switch occurs, i.e det Hτi+1
(θ̂τi) ≥

2 det Hτi(θ̂τi)∀i ∈ [m]. Let Ht(θ) and H⋆
t be defined as in Section 8.1. Then, for all i ∈ [m], we

have that

Hτi(θ̂τi) ≼ H⋆
τi

Proof. From Lemma 9.1, for some x such that ∥x∥ ≤ 1 and some τ ∈ {τ1, . . . , τm}, we have that

A(x, θ̂τ) ≼ A(x,θ⋆) exp
(√

6
∥∥∥(I ⊗ x⊤)(θ⋆ − θ̂τ)

∥∥∥
2

)

Now, we can bound
∥∥∥(I ⊗ x⊤)(θ⋆ − θ̂τ)

∥∥∥
2

as follows:

∥∥∥(I ⊗ x⊤)(θ⋆ − θ̂τt)
∥∥∥
2

(i)

≤ 2S∥(I ⊗ x⊤)∥2
(ii)
= 2S

√
λmax ((I ⊗ x)(I ⊗ x⊤))

(iii)
= 2S

√
λmax (I ⊗ xx⊤)

(iv)

≤ 2S

where (i) uses Cauchy-Schwarz inequality and the fact that ∥θ∥2 ≤ S, (ii) uses the definition of the
norm as ∥A∥2 =

√
λmax (A⊤A), (iii) follows from the mixed product property of tensor products,

and (iv) follows from the fact that λmax (A⊗B) = λmax (A)λmax (B) and λmax

(
xx⊤) =

∥x∥22 ≤ 1.

Reinforcement Learning Journal 2025

We can also bound
∥∥∥(I ⊗ x⊤)(θ⋆ − θ̂τ)

∥∥∥
2

in the following way (note that the d− dimensional unit

ball is represented as B2(d)):

∥(I ⊗ x⊤)(θ⋆ − θ̂τ)∥2 = ∥(I ⊗ x⊤)H⋆
τ
−1/2H⋆

τ
1/2(θ⋆ − θ̂τ)∥2

(i)

≤ ∥(I ⊗ x⊤)H⋆
τ
−1/2∥2γ(δ)

(ii)

≤ κ1/2∥(I ⊗ x⊤)Ṽ −1/2
τ ∥2γ(δ)

(iii)

≤ κ1/2∥(I ⊗ x⊤)(I ⊗ V −1/2
τ)∥2γ(δ)

(iv)
= κ1/2

√
λmax

(
(I ⊗ V

−1/2
τ)(I ⊗ x)(I ⊗ x⊤)(I ⊗ V

−1/2
τ)

)
γ(δ)

(v)
= κ1/2γ(δ)|x∥V −1

τ

≤ 2κ1/2γ(δ)|x∥V −1
τ

where (i) is obtained from the fact that ∥Ax∥2 ≤ ∥A∥2∥x∥2 and from Lemma 8.1, (ii) follows
from Lemma 8.2, (iii) is obtained from the definition of Ṽ and the fact that (A⊗B)n = An⊗Bn,
(iv) follows from the definition of the norm, i.e, ∥A∥2 =

√
λmax (A⊤A), and (v) follows from

the cyclic property of eigenvalues and the fact that λmax (A⊗B) = λmax (A)λmax (B).

Thus, by combining both bounds, we obtain

A(x, θ̂τ) ≼ A(x,θ⋆) exp
(√

6min
{√

2κ1/2γ(δ)|x∥V −1
τ

, 2S
})

Let Bτ (x) denote the value exp
(√

6min
{√

2κ1/2γ(δ)|x∥V −1
τ

, 2S
})

. Then, we have that

H⋆
τ = λI +

∑
s∈[τ]

A(xs,θ
⋆)⊗ xsxs ≽ λI +

∑
s∈[τ]

A(xs, θ̂τ)

Bτ (xs)
⊗ xsxs = Hτ (θ̂τ)

Lemma 8.5. For time round t, let τt ≤ t be the last time round at which a switch occurred, i.e
det Ht(θ̂τt) ≤ 2 det Hτt(θ̂τt). Let Ht(θ) and H⋆

t be defined as in Section 8.1.

Ht(θ̂τt) ≼ H⋆
t

Proof. Similar to Lemma 8.4 for some x such that ∥x∥ ≤ 1, we have that

A(x, θ̂τt) ≼ A(x,θ⋆) exp
(√

6
∥∥∥(I ⊗ x⊤)(θ⋆ − θ̂τt)

∥∥∥
2

)

Now, we can bound
∥∥∥(I ⊗ x⊤)(θ⋆ − θ̂τt)

∥∥∥
2

in two different ways: the first way results in 2S,
following the same method as Lemma 8.4. We can also bound it in the following way:

Achieving Limited Adaptivity for Multinomial Logistic Bandits

∥(I ⊗ x⊤)(θ⋆ − θ̂τt)∥2 = ∥(I ⊗ x⊤)H⋆
τt

−1/2H⋆
τt

1/2(θ⋆ − θ̂τt)∥2
(i)

≤ ∥(I ⊗ x⊤)H⋆
τt

−1/2∥2γ(δ)
(ii)

≤ ∥(I ⊗ x⊤)Hτt(θ̂τt)
−1/2∥2γ(δ)

(iii)

≤
√
2∥(I ⊗ x⊤)Ht(θ̂τt)

−1/2∥2γ(δ)
(iv)

≤
√
2κ1/2∥(I ⊗ x⊤)Ṽ −1/2∥2γ(δ)

≤ 2κ1/2γ(δ)|x∥V −1
t

where (i) is obtained from the fact that ∥Ax∥2 ≤ ∥A∥2∥x∥2 and from Lemma 8.1, (ii) follows
from Lemma 8.4, (iii) follows from the combination of Lemma 9.13 and the fact that det Ht(θ̂τt) ≤
2 det Hτt(θ̂τt), (iv) follows from Lemma 8.3, and (v) follows from the same steps used in Lemma
8.6.

Combining the bounds in the same manner as Lemma 8.4 finishes the proof.

Lemma 8.6. For time round t, let τt ≤ t be the last time round at which a switch occurred. Let
H

(i)
t (θ̂τt) and Ht(θ̂τt) be defined as in Section 8.1. Then, we have

H
(i)
t (θ̂τt) ≼ Ht(θ̂τt)

Proof. We have:

Ht(θ̂τt) = λI +
∑
s∈[t]

X̃s(θ̂τt)X̃s(θ̂τt)
⊤

(i)
= λI +

∑
s∈[t]

K∑
i=1

x̃(i)
s (θ̂τt)x̃

(i)
s (θ̂τt)

⊤

≽ λI +
∑
s∈[t]

x̃(i)
s (θ̂τt)x̃

(i)
s (θ̂τt)

⊤

= Hi
τ (θ̂τt)

where (i) follows from Lemma 7.11.

Lemma 8.7. Let τt ≤ t be the last time round at which a switch was made. In other words,
det Ht(θ̂τt) ≤ 2 det Hτt(θ̂τt). Then, for any arm x, we have that,∣∣∣ρ⊤z(x,θ⋆)− ρ⊤z(x, θ̂τ)

∣∣∣ ≤ ϵ1(t, τt,x) + ϵ2(t, τt,x)

where
ϵ1(t, τt,x) =

√
2γ(δ)

∣∣∣∣∣∣Ht(θ̂τt)
−1/2(I ⊗ x)A(x, θ̂τt)ρ

∣∣∣∣∣∣
2

ϵ2(t, τt,x) = 6Rγ(δ)2
∣∣∣∣∣∣(I ⊗ x⊤)Ht(θ̂τt)

−1/2
∣∣∣∣∣∣2
2

Reinforcement Learning Journal 2025

Proof. The proof follows on the same lines as that of Lemma 7.5 and uses the fact that
det Hτt (θ̂τt)

−1

det Ht(θ̂τt)
−1
≤ 2 combined with Lemma 9.13 to convert Hτt(θ̂τt) to Ht(θ̂τt).

Lemma 8.8. Let τt ≤ t be the last time step at which a switch was made. Let ϵ1(t, τt,x) and
ϵ2(t, τt,x) be as defined in Lemma 8.7. Then, the regret at time step t can be bounded as∣∣ρ⊤z(x∗,θ⋆)− ρ⊤z(xt,θ

⋆)
∣∣ ≤ 2ϵ1(t, τt,xt) + 2ϵ2(t, τt,xt)

Proof.

∣∣ρ⊤z(x⋆,θ⋆)− ρ⊤z(xt,θ
⋆)
∣∣ (i)≤ ρ⊤z(x⋆, θ̂τt) + ϵ1(t, τt,x

⋆) + ϵ2(t, τt,x
⋆)− ρ⊤z(xt, θ̂τt) + ϵ1(t, τt,xt) + ϵ2(t, τt,xt)

(ii)

≤ 2ϵ1(t, τt,xt) + 2ϵ2(t, τt,xt)

where (i) follows from Lemma 8.7 and (ii) follows from the fact that xt =

argmax
x∈X

UCB(t, τt,x) = argmax
x∈X

[
ρ⊤z(x, θ̂τt) + ϵ1(t, τt,x) + ϵ2(t, τt,x)

]
and hence, gets se-

lected at round t.

Lemma 8.9. Let Bt(x) be as defined in Section 8.1. Then, we have that√
Bt(x) ≤ e3Sκ1/2γ(δ)∥x∥V −1

t
+ 1

Proof. √
Bt(x) = exp

(√
6min

{
κ1/2γ(δ)∥x∥V −1

t
, S
})

(i)

≤ e3Sκ1/2γ(δ)∥x∥V −1
t

+ 1

where (i) follows from Lemma 9.6 by choosing min
{
κ1/2γ(δ)∥x∥V −1

t
, S
}

= κ1/2γ(δ)∥x∥V −1
t

and M =
√
6S.

Lemma 8.10. Let X̃τ (θ) and x̃
(i)
τ (θ) be defined as in Section 8.1. Then, we have

X̃τ (θ)X̃τ (θ)
⊤ =

K∑
i=1

x̃(i)
τ (θ)x̃(i)

τ (θ)⊤

Proof. The proof follows on the same lines as Lemma 7.11.

Lemma 8.11. Let M ∈ RKd be any positive-semidefinite matrix. Then,

λmax

(
X̃τ (θ)

⊤MX̃τ (θ)
)
≤

K∑
i=1

∣∣∣∣∣∣x̃(i)
τ (θ)

∣∣∣∣∣∣2
M

Proof. The proof follows on the same lines as Lemma 7.12.

Achieving Limited Adaptivity for Multinomial Logistic Bandits

Lemma 8.12. Let ϵ1(t, τ,x) be as defined in Lemma 8.7, and τt be the last switching round before
round t. Then, we have that∑

t∈[T]

ϵ1(t, τt,xt) ≤ 8RKd log Tκ1/2e3Sγ(δ)2 + 4RKd1/2(log T)1/2γ(δ)
√
T

Proof.∑
t∈[T]

ϵ1(t, τt,xt) =
√
2γ(δ)

∑
t∈[T]

∣∣∣∣∣∣Ht(θ̂τt)
−1/2(I ⊗ xt)A(xt, θ̂τt)ρ

∣∣∣∣∣∣
2

(i)

≤
√
2γ(δ)

∑
t∈[T]

∣∣∣∣∣∣Ht(θ̂τt)
−1/2(I ⊗ xt)A(xt, θ̂τt)

1/2
∣∣∣∣∣∣
2
||ρ||A(xt,θ̂τt)

≤
√
2Rγ(δ)

∑
t∈[T]

∣∣∣∣∣∣A(xt, θ̂τt)
1/2(I ⊗ x⊤

t)Ht(θ̂τt)
−1/2

∣∣∣∣∣∣
2

(ii)

≤
√
2Rγ(δ)

∑
t∈[T]

∣∣∣∣∣∣√Bt(xt)X̃t(θ̂τt)
⊤Ht(θ̂τt)

−1/2
∣∣∣∣∣∣
2

(iii)

≤
√
2Rγ(δ)

∑
t∈[T]

∣∣∣∣∣∣X̃t(θ̂τt)
⊤Ht(θ̂τt)

−1/2
∣∣∣∣∣∣
2

{
e3Sκ1/2γ(δ)∥xt∥V −1

t
+ 1
}

where (i) follows from ||Ax||2 ≤ ||A||2 ||x||2, (ii) follows from the definition of X̃(θ), and (iii)
follows from Lemma 8.9.

We now bound the term
∑

t∈[T]

∣∣∣∣∣∣X̃t(θ̂τt)
⊤Ht(θ̂τt)

−1/2
∣∣∣∣∣∣
2
:

∑
t∈[T]

∣∣∣∣∣∣X̃t(θ̂τt)Ht(θ̂τt)
−1/2

∣∣∣∣∣∣
2
=
∑
t∈[T]

√
λmax

(
Ht(θ̂τt)

−1/2X̃t(θ̂τt)X̃t(θ̂τt)
⊤Ht(θ̂τt)

−1/2
)

=
∑
t∈[T]

√
λmax

(
X̃t(θ̂τt)

⊤Ht(θ̂τt)
−1X̃t(θ̂τt)

)
(i)
=
∑
t∈[T]

√√√√ K∑
i=1

∣∣∣∣∣∣x̃(i)
t (θ̂τt)

∣∣∣∣∣∣2
Ht(θ̂τt)

−1

(ii)

≤
∑
t∈[T]

√√√√ K∑
i=1

∣∣∣∣∣∣x̃(i)
t (θ̂τt)

∣∣∣∣∣∣2
Hi

t(θ̂τt)
−1

(iii)

≤
√
T

√√√√∑
t∈[T]

K∑
i=1

∣∣∣∣∣∣x̃(i)
t (θ̂τt)

∣∣∣∣∣∣2
Hi

t(θ̂τt)
−1

(iv)

≤ 2K
√
dT log T

where (i) follows from Lemma 8.11, (ii) follows from Lemma 8.6, (iii) follows from Cauchy-
Schwarz, and (iv) follows from Lemma 9.12 and the fact that

∣∣∣∣x̃(i)(θ)
∣∣∣∣
2
≤ ||A(x,θ)||2 ||x||2 ≤ 1.

We also bound the term
∑

t∈[T]

∣∣∣∣∣∣X̃t(θ̂τt)
⊤Ht(θ̂τt)

−1/2
∣∣∣∣∣∣
2
∥xt∥V −1

t
as follows:

Reinforcement Learning Journal 2025

∑
t∈[T]

∣∣∣∣∣∣X̃t(θ̂τt)
⊤Ht(θ̂τt)

−1/2
∣∣∣∣∣∣
2
∥xt∥V −1

t

(i)

≤

√√√√∑
t∈[T]

∣∣∣∣∣∣X̃t(θ̂τt)
⊤Ht(θ̂τt)

−1/2
∣∣∣∣∣∣2
2

√∑
t∈[T]

∥xt∥2V −1
t

(ii)

≤ 2K
√

d log T

√∑
t∈[T]

∥xt∥2V −1
t

(ii)

≤ 4Kd log T

where (i) follows from Cauchy-Schwarz, (ii) follows from the same steps used to bound∑
t∈[T]

∣∣∣∣∣∣X̃t(θ̂τt)
⊤Ht(θ̂τt)

−1/2
∣∣∣∣∣∣
2

above, and (iii) follows from Lemma 9.12.

Substituting back, we get∑
t∈[T]

ϵ1(t, τt,xt) ≤ 4
√
2RKd log Tκ1/2e3Sγ(δ)2 + 2

√
2RKd1/2(log T)1/2γ(δ)

√
T

≤ 8RKd log Tκ1/2e3Sγ(δ)2 + 4RKd1/2(log T)1/2γ(δ)
√
T

Lemma 8.13. Let ϵ2(t, τ,x) be as defined in Lemma 8.7, and τt be the last switching round before
round t. Then, we have that∑

t∈[T]

ϵ2(t, τt,xt) ≤ 24dRK2e2Sκγ(δ)2 log T

Proof.∑
t∈[T]

ϵ2(t, τ,xt) = 6Rγ(δ)2
∑
t∈[T]

∣∣∣∣∣∣(I ⊗ x⊤)Ht(θ̂τt)
−1/2

∣∣∣∣∣∣2
2

(i)
= 6Rγ(δ)2

∑
t∈[T]

∣∣∣∣∣∣A(xt, θ̂τ)
−1/2

∣∣∣∣∣∣
2

∣∣∣∣∣∣X̃t(θ̂τt)Ht(θ̂τt)
−1/2

∣∣∣∣∣∣2
2
Bt(xt)

(ii)

≤ 6Rγ(δ)2e2S
∑
t∈[T]

∣∣∣∣∣∣A(xt, θ̂τt)
−1/2

∣∣∣∣∣∣2
2

∣∣∣∣∣∣X̃t(θ̂τt)Ht(θ̂τt)
−1/2

∣∣∣∣∣∣2
2

(iii)

≤ 6Rγ(δ)2e2Sκ
∑
t∈[T]

∣∣∣∣∣∣X̃t(θ̂τt)Ht(θ̂τt)
−1/2

∣∣∣∣∣∣2
2

(iv)

≤ 24dRK2e2Sκγ(δ)2 log T

where (i) follows from the definition of X̃ and Lemma 8.6, (ii) follows from the definition of
Bt(x), (iii) follows from the fact that A(x,θ) ≤ 1

κI , and (iv) follows from the methods used in
Lemma 8.12.

Lemma 8.14. Let Algorithm 3 be run for t rounds. Then, the switching criterion is triggered a
maximum of dK log(1 + t

dλ) times.

Proof. Let τ0, τ1, . . . , τm ∈ [1, t] be the time steps at which the switching criterion in Algorithm
3 is triggered, i.e, 2 det Hτi(θ̂τi) ≤ det Hτi+1

(θ̂τi) for i ∈ [m − 1], and τm = t. Note that
Hτ0(θ) = λIKd×Kd.

Achieving Limited Adaptivity for Multinomial Logistic Bandits

det Ht(θ̂τm−1
)

det Hτ0(θ)
=

det Hτm(θ̂τm−1
)

det Hτm−1
(θ̂τm−1

)
×

det Hτm−1
(θ̂τm−2

)

det Hτm−2
(θ̂τm−2)

× . . .× det Hτ1(θ̂τ0)

det Hτ0(θ)

≥ 2m

and hence, det Ht(θ̂τm−1) ≥ 2mλKd since det H1 = λKd. Also, we can say that:

det Ht(θ̂τm−1)
(i)

≤

(
trace Ht(θ̂τm−1)

Kd

)Kd

(ii)

≤

(∑
i∈[K] trace Hi

t(θ̂τm−1
)

Kd

)Kd

(iii)

≤

(
λKd+

∑
i∈[K]

∑
s∈[t] ∥x̃

(i)
s (θ̂τm−1

)∥22
Kd

)Kd

(iv)

≤
(
λ+

t

d

)Kd

Here (i) follows from Lemma 9.11, (ii) follows from Lemma 8.6 alongside the linearity of the trace
operator, (iii) follows from the definition of Hi

t(θ) and the fact that the only non-zero eigenvalue
of xx⊤ is ∥x∥22, and (iv) is due to the fact that ∥x̃(i)

t (θ)∥2 ≤ ∥A(xt,θ)∥ ≤ 1. Thus, we have

2mλKd ≤ det(Ht(θ̂τm−1
) ≤

(
λ+

t

d

)Kd

and hence, 2m ≤
(
1 + t

λd

)Kd
. This finishes the proof.

9 General Lemmas and Results

Lemma 9.1. (Self-Concordance) Let A(x,θ) = ∇z(x,θ). Then, A(x,θ) is (M,v)−generalized
self-concordant with v = 1 and M =

√
6. In other words, for any given x1,x2,θ1,θ2, denote

A1 = A(x1,θ1) and A2 = A(x2,θ2). Then, we have

A2 exp
(
−
√
6
∣∣∣∣(I ⊗ x⊤

1

)
θ1 −

(
I ⊗ x⊤

2

)
θ2
∣∣∣∣
2

)
≼ A1 ≼ A2 exp

(√
6
∣∣∣∣(I ⊗ x⊤

1

)
θ1 −

(
I ⊗ x⊤

2

)
θ2
∣∣∣∣
2

)

Lemma 9.2. (Lemma 13, Amani & Thrampoulidis (2021)) Let β = {t1, . . . , tN} be a set of time
indices and define

Gβ(θ1,θ2) =
∑
t∈β

M(x,θ1,θ2)⊗ xtx
⊤
t + λIKd×Kd

and
H⋆

β =
∑
t∈β

A(xt,θ
⋆)⊗ xtx

⊤
t + λIKd×Kd

where

M(x,θ1,θ2) =

1∫
0

A(x, vθ1 + (1− v)θ2) dv

Reinforcement Learning Journal 2025

Then,

Gβ(θ,θ
⋆) ≽

1

1 + 2S
H⋆

β

Lemma 9.3. Define the log-likelihood function as follows:

Lt(θ) =

t−1∑
s=1

K∑
i=1

1 {ys = i} log 1

zi(xs,θ)
+

λ

2
∥θ∥22

Let θ̂ be the MLE of θ⋆, i.e., θ̂ = argmin
θ

Lt(θ), then

t−1∑
s=1

z(xs, θ̂)⊗ xs + λθ̂ =

t−1∑
s=1

ms ⊗ xs

where ms = (1 {ys = 1} , . . . ,1 {ys = K})⊤ is the user-response vector.

Proof. For the sake of convenience, define the loss incurred at round t (without the regularization
term) as

lt(θ) =

K∑
i=1

1 {ys = i} log 1

zi(xs,θ)

Then, it is easy to see that

∂lt(θ)

∂θm
= −

K∑
i=1

1 {ys = i} 1

zi(xs,θ)

∂zi(xs,θ)

∂θm

= −
K∑
i=1

1 {ys = i} 1

zi(xs,θ)
[1 {i = m} zi(xs,θ)− zi(xs,θ)zm(xs,θ)]⊗ xs

= [1 {ys = m} − zm(xs,θ)]⊗ xs

and hence,
∇lt(θ) = [ms − z(xs,θ)]⊗ xs

Since θ̂ = argmin
θ

Lt(θ), we have that∇Lt(θ̂) = argmin
θ

∑t−1
s=1 ls(θ̂) + λθ̂ = 0, which results in

the claim.

Lemma 9.4. (Bernstein’s Inequality) Let X1, . . . , Xn be a sequence of independent random vari-

ables with |Xt − E [Xt]| ≤ b. Let S =
n∑

t=1
(Xt − E [Xt]) and v =

n∑
t=1

V[Xt]. Then, for any

δ ∈ [0, 1], we have

P

{
S ≥

√
2v log

1

δ
+

2b

3
log

1

δ

}
≤ δ

Lemma 9.5. Let ms = (1 {ys = 1} , . . . ,1 {ys = K}) be the user-response vector as defined in
Section 7.1. Then,

E [ms] = z(xs,θ
⋆) and E

[
msm

⊤
s

]
= diag(z(xs,θ

⋆))

Achieving Limited Adaptivity for Multinomial Logistic Bandits

Proof. Since ms = (1 {ys = 1} , . . . ,1 {ys = K}), we have

E [ms] = (E [1 {ys = 1}] , . . . ,E [1 {ys = K}]) = (z1(xs,θ
⋆), . . . , zK(xs,θ

⋆)) = z(xs,θ
⋆)

For the second part, note that

[
msm

⊤
s

]
i,j

= 1 {ys = i}1 {ys = j} =

{
1 {ys = i} i = j

0 i ̸= j

Thus, we have

E
[
msm

⊤
s

]
= E [diag (1 {ys = 1} , . . . ,1 {ys = K})] = diag (E [1 {ys = 1}] , . . . ,E [1 {ys = K}])
= diag (z1(xs,θ

⋆), . . . , zK(xs,θ
⋆)) = diag(z(xs,θ

⋆))

Lemma 9.6. (Claim A.8, Sawarni et al. (2024)) For any x ∈ [0,M],

ex ≤ eM
(x

M

)
+ 1

Lemma 9.7. (Theorem 5, Ruan et al. (2021)) Let π represent the G-Optimal Distributional De-
sign learnt from X1 . . .Xs

i.i.d∼ D and let W be the expected data matrix, i.e. W = λI +

E
X∼D

[
E

x∼π(X)
xx⊤|X

]
, then, we have

P

{
E

X∼D

[
max
x∈X
||x||W−1

]
≤ O(

√
d log d)

}
≥ 1− exp

(
O(d4 log2 d)− sd−122−16

)
Lemma 9.8. (Lemma 4, Ruan et al. (2021)) Let πG represent the G-Optimal design and define the

design matrix WG = λI + E
X∼D

[
E

x∈πG(X)
xx⊤ | X

]
, then we have

E
X∼D

[
max
x∈X
||x||2W−1

G

]
≤ O(d2)

Lemma 9.9. (Lemma A.15, Sawarni et al. (2024) , Ruan et al. (2021)) Let x1 . . .xn ∼ D be vectors
with ||x||2 ≤ 1, then

P

{
3ϵNI +

n∑
i=1

xix
⊤
i ≽

n

8
E

x∼D

[
xx⊤]} ≥ 1− 2d exp

(
−ϵn

8

)
Lemma 9.10. (Lemma 6, Zhang & Sugiyama (2023)) Let {Ft}∞t=1 be a filteration and {xt}∞t=1 be a
stochastic process in B2(d) =

{
x ∈ Rd | ||xt||2 ≤ 1

}
such that xt is Ft−measurable. Let {ϵt}∞t=1

be a martingale difference sequence such that ϵt is Ft+1−measurable. Assume that conditioned on
Ft, we have ||ϵt||1 ≤ 2 almost surely, and is denoted by ηt = E

[
ϵtϵ

⊤
t | Ft

]
. Let λ > 0 and for any

t ≥ 1, define

St =

t−1∑
s=1

ϵs ⊗ xs and Ht = λIdK×dK +

t−1∑
s=1

ηs ⊗ xsx
⊤
s

Then, for any δ ∈ (0, 1), we have

P

{
∃t > 1, ||St||H−1

t
≥
√
λ

4
+

4√
λ
log

(
det H1/2

t

δλ
dK
2

)
+

4√
λ
Kd log 2

}
≤ δ

Reinforcement Learning Journal 2025

Lemma 9.11. (Determinant-Trace Inequality) Let the determinant and trace of a p.s.d matrix A ∈
Rd×d be denoted by det A and trace A. Then, we have

det A ≤
(

trace A

d

)d

Proof. Let the eigenvalues of A be denoted by λ(A) ≥ 0 since A ≽ 0. Then, we know, det A =∏
λ(A) and trace A =

∑
λ(A). Thus, applying the inequality for arithmetic means and geometric

means, we get that (∏
λ(A)

)1/d
≤
∑

λ(A)

d
=⇒ det A ≤

(
trace A

d

)d

Lemma 9.12. (Elliptical Potential Lemma, Lemma 11, Abbasi-Yadkori et al. (2011)) Let {xs}ts=1

represent a set of vectors in Rd and let ||xs||2 ≤ L. Let Vs = λId×d+
s−1∑
m=1

xmx⊤
m. Then, for λ ≥ 1

t∑
s=1

||xs||2V −1
s
≤ 2d log

(
1 +

tL2

λd

)
≤ 4d log(tL2)

Lemma 9.13. (Lemma 12, Abbasi-Yadkori et al. (2011)) If A ≽ B ≽ 0, then

sup
x ̸=0

x⊤Ax

x⊤Bx
≤ det (A)

det (B)

10 Additional Experiments

In this section, we supplement the experiments from Section 5 (in particular, Experiment 1 and
Experiment 2).

0 1000 2000 3000 4000 5000
Number of Rounds(T)

0

500

1000

1500

2000

Re
gr

et

RS-MNL
ada-OFU-ECOLog
OFUL-MLogB
RS-GLinCB
OFULog+

(a) Regret vs. T : Logistic (K = 1) Setting

0 1000 2000 3000 4000 5000
Number of Rounds(T)

0

250

500

750

1000

1250

1500

1750

Re
gr

et

RS-MNL
OFUL-MLogB

(b) Regret vs. T : K = 3

Experiment 1 (R(T) vs. T for the Logistic (K = 1) Setting): In this experiment, we use the same
instance as in Experiment 1 (Section 5) and average the regret over 10 different seeds for sampling
rewards. The averaged results with two standard deviations can be found in Figure 2a.

Experiment 2 (R(T) vs. T for K = 3): In this experiment, we use the same instance as in Ex-
periment 2 (Section 5) and average the regret over 10 different seeds for sampling rewards. The
averaged results with two standard deviations are reported in Figure 2b.

