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Summary
Average-reward Markov decision processes (MDPs) provide a foundational framework for

sequential decision-making under uncertainty. However, average-reward MDPs have remained
largely unexplored in reinforcement learning (RL) settings, with the majority of RL-based ef-
forts having been allocated to discounted MDPs. In this work, we study a unique structural
property of average-reward MDPs and utilize it to introduce Reward-Extended Differential (or
RED) reinforcement learning: a novel RL framework that can be used to effectively and ef-
ficiently solve various learning objectives, or subtasks, simultaneously in the average-reward
setting. We introduce a family of RED learning algorithms for prediction and control, includ-
ing proven-convergent algorithms for the tabular case. We then showcase the power of these
algorithms by demonstrating how they can be used to learn a policy that optimizes, for the first
time, the well-known conditional value-at-risk (CVaR) risk measure in a fully-online manner,
without the use of an explicit bi-level optimization scheme or an augmented state-space.

Contribution(s)
1. We provide a general-purpose framework and a corresponding set of prediction/control al-

gorithms for solving an arbitrary number of learning objectives, or subtasks, simultane-
ously in the average-reward setting with only a TD error-based update, including proven-
convergent algorithms for the tabular case.
Context: Our work builds on (and can be viewed as a generalization of) Wan et al. (2021),
which proposed proven-convergent average-reward RL algorithms that are able to learn
and/or optimize the value function and average-reward simultaneously using only the TD
error. In particular, the focus in Wan et al. (2021) was on proving the convergence of such
algorithms, without exploring the underlying structural properties of the average-reward
MDP that made such a process possible to begin with. In this work, we formalize these
underlying properties, and utilize them to show that if one modifies, or extends, the reward
from the MDP with various learning objectives, then these objectives, or subtasks, can be
solved simultaneously using a modified, or reward-extended, version of the TD error.

2. We utilize the framework described in Contribution 1 to derive the first family of RL algo-
rithms that can optimize the well-known conditional value-at-risk (CVaR) risk measure in a
fully-online manner without the use of an explicit bi-level optimization scheme or an aug-
mented state-space. We perform an empirical evaluation on two toy experiments, thereby
illustrating the properties and effectiveness of the algorithms, while also noting that a more
comprehensive empirical study is needed to fully gauge their practical implications.
Context: Several prior works have investigated CVaR optimization in the discounted set-
ting (e.g. Bäuerle and Ott (2011) and Chow et al. (2015)). However, no prior work has
developed an algorithm for CVaR optimization that does not require either an augmented
state-space or an explicit bi-level optimization, which can, for example, involve solving
multiple MDPs. In the average-reward setting, Xia et al. (2023) proposed a set of algo-
rithms for optimizing the CVaR risk measure, however their methods require the use of an
augmented state-space and a sensitivity-based bi-level optimization. By contrast, our work,
to the best of our knowledge, is the first to optimize CVaR in an MDP-based setting without
the use of an explicit bi-level optimization scheme or an augmented state-space.
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Abstract

Average-reward Markov decision processes (MDPs) provide a foundational framework
for sequential decision-making under uncertainty. However, average-reward MDPs
have remained largely unexplored in reinforcement learning (RL) settings, with the ma-
jority of RL-based efforts having been allocated to discounted MDPs. In this work, we
study a unique structural property of average-reward MDPs and utilize it to introduce
Reward-Extended Differential (or RED) reinforcement learning: a novel RL framework
that can be used to effectively and efficiently solve various learning objectives, or sub-
tasks, simultaneously in the average-reward setting. We introduce a family of RED
learning algorithms for prediction and control, including proven-convergent algorithms
for the tabular case. We then showcase the power of these algorithms by demonstrating
how they can be used to learn a policy that optimizes, for the first time, the well-known
conditional value-at-risk (CVaR) risk measure in a fully-online manner, without the use
of an explicit bi-level optimization scheme or an augmented state-space.

1 Introduction

Markov decision processes (MDPs) (Puterman, 1994) are a long-established framework for sequen-
tial decision-making under uncertainty. Discounted MDPs, which aim to optimize a potentially-
discounted sum of rewards over time, have enjoyed success in recent years when utilizing reinforce-
ment learning (RL) solution methods (Sutton and Barto, 2018) to tackle certain problems of interest
in various domains. Despite this success, however, these MDP-based methods have yet to be fully
embraced in real-world applications due to the various intricacies and implications of real-world op-
eration that often outweigh the capabilities of current state-of-the-art methods (Dulac-Arnold et al.,
2021). We therefore turn to the less-explored average-reward MDP, which aims to optimize the re-
ward received per time-step, to see how its unique structural properties can be leveraged to tackle
challenging problems that have eluded its discounted counterpart.

In particular, we present results that show how the average-reward MDP’s unique structural prop-
erties can be leveraged to enable a more subtask-driven approach to reinforcement learning, where
various learning objectives, or subtasks, are solved simultaneously (and in a fully-online manner) to
help solve a larger, central learning objective. Importantly, we find a compelling case-study in the
realm of risk-aware decision-making that illustrates how this subtask-driven approach can alleviate
some of the computational challenges and complexities that can arise in the discounted setting.

More formally, we introduce Reward-Extended Differential (or RED) reinforcement learning: a
first-of-its-kind RL framework that makes it possible to solve various subtasks simultaneously in the
average-reward setting. At the heart of this framework is the novel concept of the reward-extended
temporal-difference (TD) error, an extension of the celebrated TD error (Sutton, 1988), which we
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derive by leveraging a unique structural property of average-reward MDPs, and utilize to solve
various subtasks simultaneously. We first present the RED RL framework in a generalized way, then
adopt it to successfully tackle a problem that has exceeded the capabilities of current state-of-the-art
methods in risk-aware decision-making: learning a policy that optimizes the well-known conditional
value-at-risk (CVaR) risk measure (Rockafellar and Uryasev, 2000) in a fully-online manner without
the use of an explicit bi-level optimization scheme or an augmented state-space.

Our work is organized as follows: In Section 2, we provide a brief overview of related work. In Sec-
tion 3, we give an overview of the fundamental concepts related to average-reward RL and CVaR.
In Section 4, we motivate the need and opportunity for a subtask-driven approach to RL through
the lens of CVaR optimization. In Section 5, we introduce the RED RL framework, including the
concept of the reward-extended TD error. We also introduce a family of RED RL algorithms for
prediction and control, and highlight their convergence properties (with full convergence proofs in
Appendix B). In Section 6, we use the RED RL framework to derive a subtask-driven approach for
CVaR optimization, and provide empirical results which show that this approach can be used to suc-
cessfully learn a policy that optimizes the CVaR risk measure. Finally, in Section 7, we emphasize
our framework’s potential usefulness towards tackling other challenging problems outside the realm
of risk-awareness, highlight some of its limitations, and suggest some directions for future research.

2 Related Work

Average-Reward Reinforcement Learning: Average-reward (or average-cost) MDPs, despite be-
ing one of the most well-studied frameworks for sequential decision-making under uncertainty (Put-
erman, 1994), have remained relatively unexplored in reinforcement learning (RL) settings. To date,
notable works on the subject (in the context of RL) include Schwartz (1993), Tsitsiklis and Van Roy
(1999), Abounadi et al. (2001), Gosavi (2004), Bhatnagar et al. (2009), and Wan et al. (2021). Most
relevant to our work is Wan et al. (2021), which provided a rigorous theoretical treatment of average-
reward MDPs in the context of RL, and proposed the proven-convergent ‘Differential TD-learning’
and ‘Differential Q-learning’ algorithms. Our work builds on the methods from Wan et al. (2021) to
develop a theoretical framework for solving various learning objectives simultaneously.

We note that these learning objectives, or subtasks, as explored in our work, are different from that
of hierarchical RL (e.g. Sutton et al. (1999)). In particular, in hierarchical RL, the focus is on using
temporally-abstracted actions, known as ‘options’ (or ‘skills’), such that the agent learns a policy for
each option, as well as an inter-option policy. By contrast, in our work, we learn a single policy, and
the subtasks are not part of the action-space. Similarly, the notion of solving multiple objectives in
parallel has been widely-explored in the discounted setting (e.g. McLeod et al. (2021)). However,
much of this work focuses on learning multiple state representations (or ‘features’), options, policies,
and/or value functions. By contrast, in our work, we learn a single policy and value function, and
the subtasks are not part of the state or action-spaces. To the best of our knowledge, our work is the
first to explore the solving of subtasks simultaneously in the average-reward setting.

Risk-Aware Learning and Optimization in MDPs: The notion of risk-aware learning and opti-
mization in MDP-based settings has been long-studied, from the well-established expected utility
framework (Howard and Matheson, 1972), to the more contemporary framework of coherent risk
measures (Artzner et al., 1999). To date, these risk-based efforts have focused almost exclusively on
the discounted setting. Importantly, optimizing the CVaR risk measure in this setting typically re-
quires augmenting the state-space and/or having to utilize an explicit bi-level optimization scheme,
which can, for example, involve solving multiple MDPs. Seminal works that have investigated
CVaR optimization in the standard discounted setting include Bäuerle and Ott (2011) and Chow
et al. (2015); Hau et al. (2023a). In the distributional setting, works such as Dabney et al. (2018)
and Keramati et al. (2020) have proposed CVaR optimization approaches that do not require an aug-
mented state-space or an explicit bi-level optimization; however, it was later shown in Lim and Malik
(2022) that such approaches converge to neither the optimal dynamic-CVaR nor the optimal static-
CVaR policies (Lim and Malik (2022) then proposed a valid approach that utilizes an augmented
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state-space). Some works have investigated optimizing a time-consistent (Ruszczyński, 2010) in-
terpretation of CVaR; however, this only approximates CVaR, as CVaR is not a time-consistent risk
measure (Boda and Filar, 2006). Other works have investigated optimizing similar objectives to
CVaR that are more computationally tractable, such as the entropic value-at-risk (Hau et al., 2023b).

Most similar to our work (in non-average-reward settings) is Stanko and Macek (2019), which pro-
posed a similar CVaR update scheme to the one derived in our work. However, all of the methods
proposed in Stanko and Macek (2019) require either an augmented state-space or an explicit bi-level
optimization. In the average-reward setting, Xia et al. (2023) proposed a set of algorithms for opti-
mizing the CVaR risk measure; however, their methods require the use of an augmented state-space
and a sensitivity-based bi-level optimization. By contrast, our work, to the best of our knowledge, is
the first to optimize the CVaR risk measure in an MDP-based setting without the use of an explicit
bi-level optimization scheme or an augmented state-space. We note that other works have inves-
tigated optimizing other risk measures in the average-reward setting, such as the exponential cost
(Murthy et al., 2023), and variance (Prashanth and Ghavamzadeh, 2016).

3 Preliminaries

3.1 Average-Reward Reinforcement Learning

A finite average-reward MDP is the tupleM .
= ⟨S,A,R, p⟩, where S is a finite set of states, A is

a finite set of actions, R ⊂ R is a bounded set of rewards, and p : S × A × R × S → [0, 1] is
a probabilistic transition function that describes the dynamics of the environment. At each discrete
time step, t = 0, 1, 2, . . ., an agent chooses an action, At ∈ A, based on its current state, St ∈ S,
and receives a reward, Rt+1 ∈ R, while transitioning to a (potentially) new state, St+1, such that
p(s′, r | s, a) = P(St+1 = s′, Rt+1 = r | St = s,At = a). In an average-reward MDP, an agent
aims to find a policy, π : S → A, that optimizes the long-run (or limiting) average-reward, r̄, which
is defined as follows for a given policy, π:

r̄π(s)
.
= lim

n→∞

1

n

n∑
t=1

E[Rt | S0 = s,A0:t−1 ∼ π]. (1)

In this work, we limit our discussion to stationary Markov policies, which are time-independent
policies that satisfy the Markov property.

When working with average-reward MDPs, it is common to simplify Equation (1) into a more work-
able form by making certain assumptions about the Markov chain induced by following policy π. To
this end, a unichain assumption is typically used when doing prediction (learning) because it ensures
the existence of a unique limiting distribution of states, µπ(s)

.
= limt→∞ P(St = s | A0:t−1 ∼ π),

that is independent of the initial state, thereby simplifying Equation (1) to the following:

r̄π =
∑
s∈S

µπ(s)
∑
a∈A

π(a | s)
∑
s′∈S

∑
r∈R

p(s′, r | s, a)r. (2)

Similarly, a communicating assumption is typically used for control (optimization) because it en-
sures the existence of a unique optimal average-reward, r̄∗, that is independent of the initial state.

To solve an average-reward MDP, solution methods such as dynamic programming or RL can be
used in conjunction with the following Bellman (or Poisson) equations:

vπ(s) =
∑
a

π(a | s)
∑
s′

∑
r

p(s′, r | s, a)[r − r̄π + vπ(s
′)], (3)

qπ(s, a) =
∑
s′

∑
r

p(s′, r | s, a)[r − r̄π +max
a′

qπ(s
′, a′)], (4)



Reinforcement Learning Journal 2025

where vπ(s) is the state-value function and qπ(s, a) is the state-action value function for a given pol-
icy, π. Solution methods for average-reward MDPs are typically referred to as differential methods
because of the reward difference (i.e., r − r̄π) operation that occurs in Equations (3) and (4). We
note that solution methods typically find the solutions to Equations (3) and (4) up to a constant. This
is typically not a concern, given that the relative ordering of policies is usually what is of interest.

In the context of RL, Wan et al. (2021) proposed the tabular ‘Differential TD-learning’ and ‘Dif-
ferential Q-learning’ algorithms, which are able to learn and/or optimize the value function and
average-reward simultaneously using only the TD error. The ‘Differential TD-learning’ algorithm
is shown below:

δt
.
= Rt+1 − R̄t + Vt(St+1)− Vt(St) (5a)

Vt+1(s)
.
= Vt(s), ∀s ̸= St (5b)

Vt+1(St)
.
= Vt(St) + αtρtδt (5c)

R̄t+1
.
= R̄t + αr̄,tρtδt (5d)

where Vt : S → R is a table of state-value function estimates, R̄t is an estimate of the average-
reward, r̄π , δt is the TD error, ρt

.
= π(At | St) /B(At | St) is the importance sampling ratio (with

behavior policy, B), αt is the value function step size, and αr̄,t is the average-reward step size.

3.2 Conditional Value-at-Risk (CVaR)

Consider a random variable X with a finite mean on a probability space (Ω,F ,P), and with a
cumulative distribution function F (x) = P(X ≤ x). The (left-tail) value-at-risk (VaR) of X with
parameter τ ∈ (0, 1) represents the τ -quantile of X , such that VaRτ (X) = sup{x | F (x) ≤ τ}.
The (left-tail) conditional value-at-risk (CVaR) of X with parameter τ is defined as follows:

CVaRτ (X) =
1

τ

∫ τ

0

VaRu(X)du. (6)

When F (X) is continuous at x = VaRτ (X), CVaRτ (X) can be interpreted as the expected value
of X conditioned on X being less than or equal to VaRτ (X), such that CVaRτ (X) = E[X | X ≤
VaRτ (X)].

Importantly, CVaRτ (X) can be formulated as the solution to the following optimization problem
(Rockafellar and Uryasev, 2000):

CVaRτ (X) = sup
y∈R

E[y − 1

τ
(y −X)+] = E[VaRτ (X)− 1

τ
(VaRτ (X)−X)+], (7)

where (u)+ = max(u, 0). Existing MDP-based methods typically leverage the above formulation
when optimizing for CVaR, by augmenting the state-space with a state that corresponds (either
directly or indirectly) to an estimate of VaRτ (X) (in this case, y), and solving the following bi-level
optimization:

sup
π

CVaRτ (X) = sup
π

sup
y∈R

E[y − 1

τ
(y −X)+] = sup

y∈R
(y − 1

τ
sup
π

E[(y −X)+]), (8)

where the ‘inner’ optimization problem can be solved using standard MDP solution methods.

In discounted MDPs, the random variable X corresponds to a (potentially-discounted) sum of re-
wards. In average-reward MDPs, X corresponds to the limiting per-step reward. In other words, the
natural interpretation of CVaR in the average-reward setting is that of the CVaR associated with the
limiting per-step reward distribution, as shown below (for a given policy, π) (Xia et al., 2023):

CVaRτ,π(s)
.
= lim

n→∞

1

n

n∑
t=1

CVaRτ [Rt | S0 = s,A0:t−1 ∼ π]. (9)
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As with the average-reward (i.e., Equation (1)), a unichain assumption (or similar) makes this CVaR
objective independent of the initial state. In recent years, CVaR has emerged as a popular risk
measure, in part because it is a ‘coherent’ risk measure (Artzner et al., 1999), meaning that it satisfies
key mathematical properties which can be meaningful in safety-critical and risk-related applications.

Figure 1 depicts the agent-environment interaction in an average-reward MDP, where following
policy π yields a limiting average-reward and reward CVaR.

Figure 1: Illustration of the agent-environment interaction in an average-reward MDP. As t →
∞, following policy π yields a limiting per-step reward distribution with an average-reward, r̄π ,
and a conditional value-at-risk, CVaRπ . Standard average-reward RL methods aim to optimize the
average-reward, r̄π . By contrast, in our work, we aim to optimize CVaRπ .

4 A Subtask-Driven Approach

In this section, we motivate the need and opportunity for a subtask-driven approach to RL through
the lens of CVaR optimization. Let us begin by considering the standard approach used by existing
MDP-based methods for CVaR optimization. This approach, which is described in Equation (8),
requires that we pick a wide range of guesses for the optimal value-at-risk, VaR, and that for each
guess, y, we solve an MDP. Then, among all the MDP solutions, we pick the best one as our final
solution (which corresponds to y = VaR). Moreover, to further compound the computational costs
associated with solving several MDPs, this approach requires that the state-space be augmented with
a state that corresponds (either directly or indirectly) to the VaR guess, y (e.g. see Bäuerle and Ott
(2011)). Hence, this approach requires the use of both an explicit bi-level optimization scheme, and
an augmented state-space. Importantly, however, this complex process would not be needed if we
somehow knew what the optimal value for y (i.e., VaR) was. In fact, in the average-reward setting,
if we know this optimal value, VaR, then optimizing for CVaR ultimately amounts to optimizing an
average (as per Equation (7)), which can be done trivially using the standard average-reward MDP.

As such, it would appear that, to optimize CVaR, we are stuck between two extremes: a significantly
computationally-expensive process if we do not know the optimal value-at-risk, VaR, and a trivial
process if we do. But what if we could somehow estimate VaR along the way? That is, keep some
sort of running estimate of VaR that we optimize simultaneously as we optimize CVaR. Indeed, such
an approach has been proposed in the discounted setting (e.g. Stanko and Macek (2019)); however,
no approach has been able to successfully remove both the augmented state-space and the explicit
bi-level optimization requirements. The primary difficulty lies in how one updates the estimate of
VaR along the way.

Critically, this is where the findings from Wan et al. (2021) become relevant. In particular, Wan et al.
(2021) proposed proven-convergent algorithms for the average-reward setting that can learn and/or
optimize the value function and average-reward simultaneously using only the TD error. In other
words, these algorithms are able to solve two learning objectives simultaneously using only the TD
error. Yet, the focus in Wan et al. (2021) was on proving the convergence of such algorithms, without
exploring the underlying structural properties of the average-reward MDP that made such a process
possible to begin with. In this work, we formalize these underlying properties, and utilize them to
show that if one modifies, or extends, the reward from the MDP with various learning objectives
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that satisfy certain key properties, then these objectives, or subtasks, can be solved simultaneously
using a modified, or reward-extended, version of the TD error. Consequently, in terms of CVaR
optimization, this allows us to develop appropriate learning updates for the VaR and CVaR estimates
based solely on the TD error, such that we can optimize the CVaR risk measure in a fully-online
manner without needing to augment the state-space or perform an explicit bi-level optimization.

In Section 5, we present the theoretical framework that enables the aforementioned subtask-driven
approach. Then, in Section 6, we adapt this general-purpose framework for CVaR optimization.

5 Reward-Extended Differential (RED) Reinforcement Learning

In this section, we present our primary contribution: a framework for solving various learning ob-
jectives, or subtasks, simultaneously in the average-reward setting. We call this framework reward-
extended differential (or RED) reinforcement learning. The ‘differential’ part of the name stems
from the use of differential algorithms typically associated with average-reward MDPs. The ‘reward-
extended’ part of the name stems from the use of the reward-extended TD error, a novel concept
that we will introduce shortly. Through this framework, we show how the average-reward MDP’s
unique structural properties can be leveraged to solve (i.e., learn or optimize) any given subtask by
using only a TD error-based update. We first provide a formal definition for a (generic) subtask,
then proceed to derive a framework that allows us to solve any subtask that satisfies this definition.
In the subsequent section, we utilize this framework to tackle the CVaR optimization problem.

Definition 5.1 (Subtask). A subtask, zi, is any scalar prediction or control objective belonging to
a corresponding bounded set Zi ⊂ R, such that there exists a linear or piecewise linear subtask
function, f : R × Z1 × Z2 × · · · × Zi × · · · × Zn → R̃, whereR is the bounded set of observed
per-step rewards from the MDPM, R̃ ⊂ R is a bounded set of ‘extended’ per-step rewards whose
long-run average is the primary prediction or control objective of the MDP, M̃ .

= ⟨S,A, R̃, p̃⟩, and
Z = {z1 ∈ Z1, z2 ∈ Z2, . . . , zn ∈ Zn} is the set of n subtasks that we wish to solve, such that:

i) f is invertible with respect to each input given all other inputs; and

ii) each subtask zi ∈ Z in f is independent of the states and actions, and hence independent of
the observed per-step reward, Rt ∈ R, such that P(St+1 = s′, R̃t+1 = f(r, z1, . . . , zn) | St =
s,At = a) = P(St+1 = s′, Rt+1 = r | St = s,At = a), and E[fj(Rt, z1, z2, . . . , zn)] =
fj(E[Rt], z1, z2, . . . , zn), where fj denotes the jth piecewise segment of f , and E denotes any ex-
pectation taken with respect to the states and actions.

In essence, the above definition states that a subtask is some constant, zi, that we wish to learn and/or
optimize. From an algorithmic perspective, this means that we will start with some initial estimate
(or guess) for the subtask, Zi,t, then update this estimate at every time step, such that Zi,t → zi or
Zi,t → z∗i , depending on whether we are doing prediction or control (where z∗i denotes the optimal
subtask value). But how can we derive an appropriate update rule that accomplishes this? In the
following section, we will introduce the reward-extended TD error, through which we can derive
such an update rule for any subtask that satisfies Definition 5.1, such that Zi,t → zi when doing
prediction and Zi,t → z∗i when doing control.

5.1 The Reward-Extended TD Error

In this section, we introduce and derive the reward-extended TD error. In particular, we derive
a generic, subtask-specific, TD-like error, βi,t, through which we can learn and/or optimize any
subtask that satisfies Definition 5.1 via the update rule: Zi,t+1 = Zi,t + αzi,tβi,t, where Zi,t is an
estimate of subtask zi, αzi,t is the step size, and βi,t is the reward-extended TD error for subtask zi.

Importantly, we will show that the reward-extended TD error satisfies the following property:
Eπ[βi,t] → 0 ∀i = 1, 2, . . . , n as Eπ[δt] → 0, where δt is the regular TD error, such that min-
imizing the regular TD error allows us to solve all subtasks simultaneously. This motivates our
naming of the reward-extended TD error, given that it is intrinsically tied to the regular TD error.
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Let us begin by considering the common RL update rule of the form: NewEstimate← OldEstimate
+ StepSize [Target − OldEstimate] (Sutton and Barto, 2018; Naik, 2024). Our aim is to find an
appropriate set of subtask-specific ‘targets’, {ϕi,t}ni=1, such that Eπ[βi,t] = Eπ[ϕi,t − Zi,t] →
0 ∀i = 1, 2, . . . , n as Eπ[δt] → 0. To this end, let us consider a generic piecewise linear subtask
function with m piecewise segments:

R̃t =


b1rRt + b10 + b11z1 + b12z2 + . . .+ b1nzn, r0 ≤ Rt < r1

b2rRt + b20 + b21z1 + b22z2 + . . .+ b2nzn, r1 ≤ Rt < r2
...
bmr Rt + bm0 + bm1 z1 + bm2 z2 + . . .+ bmn zn, rm−1 ≤ Rt ≤ rm

, (10)

where rk ∈ R ∀ k = 0, 1, . . . ,m, and r0 ≤ r1 ≤ . . . ≤ rm, such that r0, rm represent the lower
and upper bounds of the observed per-step reward, Rt, respectively. Moreover, bjr, b

j
0 ∈ R, and

bji ∈ R \ {0}, where bj denotes a (predefined) constant in the jth piecewise segment of R̃t.

Now, let us consider the TD error, δt, associated with (10) in the prediction setting. Let R̃j,t be
shorthand for the jth segment of (10), such that the TD error at any time step can be expressed as:

δj,t = R̃j,t+1 − R̄t + Vt(St+1)− Vt(St) (11a)

= bjrRt+1 + bj0 + bj1Z1,t + bj2Z2,t + . . .+ bjnZn,t − R̄t + Vt(St+1)− Vt(St), (11b)

where Vt : S → R denotes a table of state-value function estimates, R̄t denotes an estimate of the
average-reward, r̄π , Zi,t denotes an estimate of subtask zi ∀i = 1, 2, . . . , n, and j corresponds to
the piecewise condition, rj−1 ≤ Rt+1 ≤ rj , that is satisfied by the observed per-step reward, Rt+1.

Hence, as learning progresses, different R̃j,t+1 values will be used to define the TD error based on
which piecewise condition is satisfied at a given time step. Moreover, we know that the probability
that δt = δj,t is equal to the probability that rj−1 ≤ Rt+1 < rj . This allows us to express the
expected TD error associated with (10) as follows:

Eπ[δt] =

m∑
j=1

P(rj−1 ≤ Rt+1 < rj)Eπ[δj,t]. (12)

Now, let us consider the implications of Eπ[δt] → 0 as it relates to Eπ[δj,t]. One possibility is
that Eπ[δj,t] → 0 ∀j = 1, 2, . . . ,m. However, this may not necessarily be the case; it is possible
that, for example, a pair of non-zero P(rj−1 ≤ Rt+1 < rj)Eπ[δj,t] terms cancel each other out,
such that Eπ[δt] → 0 but Eπ[δj,t] → λj ∀j = 1, 2, . . . ,m, where λj ∈ R. In such a case, what
we do know is that if Eπ[δt] → 0, then the Bellman equation (3) must be satisfied, such that:
Vt(s) = Eπ[R̃t+1 − R̄t + Vt(St+1) | St = s]. As such, we can write the following expression for
λj , and solve for an arbitrary subtask, zi, as follows:

λj = Eπ[R̃j,t+1 − R̄t + Vt(St+1)− Vt(St)] (13a)

= Eπ

[
R̃j,t+1 − R̄t + Vt(St+1)−

(
R̃t+1 − R̄t + Vt(St+1)

)]
(13b)

= Eπ[R̃j,t+1]− Eπ[R̃t+1] (13c)

= Eπ[R̃j,t+1]− r̄π (13d)

= Eπ[b
j
rRt+1 + bj0 + . . .+ bji−1zi−1 + bji+1zi+1 + . . .+ bjnzn − r̄π] + bjizi (13e)

=⇒ zi = Eπ

[
− 1

bji

(
bjrRt+1 + bj0 + . . .+ bji−1zi−1 + bji+1zi+1 + . . .+ bjnzn − r̄π − λj

)]
(13f)

.
= Eπ[ϕi,j ], (13g)

where we used the fact that zi is independent of the states and actions to pull it out of the expectation.
Here, we use ϕi,j to denote the expression inside the expectation in Equation (13f).
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Hence, to learn zi from experience, we can utilize the common RL update rule, using the term inside
the expectation in Equation (13g), ϕi,j , as the ‘target’, which yields the update:

Zi,t+1 = Zi,t + αzi,t


ϕi,1,t − Zi,t, r0 ≤ Rt+1 < r1
...
ϕi,m,t − Zi,t, rm−1 ≤ Rt+1 ≤ rm

(14a)

= Zi,t + αzi,t


(−1/b1i )

(
R̃1,t+1 − R̄t − δt

)
, r0 ≤ Rt+1 < r1

...

(−1/bmi )
(
R̃m,t+1 − R̄t − δt

)
, rm−1 ≤ Rt+1 ≤ rm

(14b)

.
= Zi,t + αzi,tβi,t, (14c)

where Zi,t is the estimate of subtask zi at time t, ϕi,j,t
.
= (−1/bji )(bjrRt+1+b

j
0+ . . .+b

j
i−1Zi−1,t+

bji+1Zi+1,t + . . .+ bjnZn,t − R̄t − δt), and αzi,t is the step size.

As such, we now have an expression for the reward-extended TD error for subtask zi, βi,t. We will
now show that this term satisfies the desired property: Eπ[βi,t]→ 0 ∀i = 1, 2, . . . , n as Eπ[δt]→ 0,
such that minimizing the regular TD error allows us to solve all the subtasks simultaneously:
Theorem 5.1. Consider an average-reward MDP with a set of reward-extended TD errors,
{βi,t}ni=1, as defined in Equation (14), corresponding to a subtask function with n subtasks that
satisfy Definition 5.1. The set of reward-extended TD errors, {βi,t}ni=1, satisfies the following prop-
erty: Eπ[βi,t] → 0 ∀i = 1, 2, . . . , n as Eπ[δt] → 0, where βi,t denotes the reward-extended TD
error for subtask zi, and δt denotes the regular TD error.

Proof. Let us consider the reward-extended TD error associated with an arbitrary jth segment of
R̃t for an arbitrary ith subtask: βi,j,t

.
= (−1/bji )(R̃j,t+1 − R̄t − δt). As Eπ[δt] → 0, R̄t → r̄π

(by Theorem 3 of Wan et al. (2021); see Remark 5.3) and δt → λj for this jth segment. Hence,
Eπ[βi,j,t]→ (−1/bji )(Eπ[R̃j,t+1]− r̄π − λj) = (−1/bji )(λj − λj) = 0. Now, because we chose j
arbitrarily, we have, for all j ∈ {1, 2, . . . ,m}, that Eπ[βi,j,t] → 0. As such, and because we chose
i arbitrarily, we can conclude that Eπ[βi,t] =

∑m
j=1 P(rj−1 ≤ Rt+1 < rj)Eπ[βi,j,t] → 0 ∀i =

1, 2, . . . , n as Eπ[δt]→ 0. This completes the proof.

As such, we have derived the desired update rule that we can use to solve any given subtask in
the prediction setting. The same logic can be applied in the control setting to derive equivalent
updates, where we note that it directly follows from Definition 5.1 that the existence of an optimal
average-reward, r̄∗, implies the existence of corresponding optimal subtask values, z∗i ∀zi ∈ Z .

Remark 5.1. In the case of a (non-piecewise) linear subtask function, the expression for the
reward-extended TD error can be simplified to βi,t

.
= (−1/bi)δt by setting λ = 0 in Equation

(13a), solving for the target, zi, and applying a similar process to the one described in Equation (14).

Remark 5.2. Given Remark 5.1, it can be shown that if one treats the average-reward, r̄π , as a
subtask, and derives the reward-extended TD error for it, the process yields the average-reward
update (e.g. Equation (5d)) from the Differential algorithms proposed in Wan et al. (2021). Hence,
our work can be viewed as a generalization of the work performed in Wan et al. (2021).

Remark 5.3. Strictly speaking, R̄t → r̄π + c, c ∈ R. This is because average-reward solution
methods typically find the solutions to the Bellman equations (3) and (4) up to an additive constant,
c. This means that, like the average-reward estimate, our subtask estimates converge to the actual
subtask values, up to an additive constant. For simplicity, we omit this additive constant in our
work, unless strictly necessary, given that it is commonplace to assume that solutions in the average-
reward setting are correct up to an additive constant.
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5.2 The RED Algorithms

In this section, we introduce the RED RL algorithms, which integrate the update rules derived in the
previous section into the average-reward RL framework from Wan et al. (2021). The full algorithms,
including algorithms that utilize function approximation, are included in Appendix A.

RED TD-learning algorithm (tabular): We update a table of estimates, Vt : S → R as follows:

R̃t+1 = f(Rt+1, Z1,t, Z2,t, . . . , Zn,t) (15a)

δt = R̃t+1 − R̄t + Vt(St+1)− Vt(St) (15b)
Vt+1(St) = Vt(St) + αtρtδt (15c)
R̄t+1 = R̄t + αr̄,tρtδt (15d)
Zi,t+1 = Zi,t + αzi,tρtβi,t, ∀zi ∈ Z (15e)

where Rt is the observed reward, Zi,t is an estimate of subtask zi, βi,t is the reward-extended TD
error for subtask zi, R̄t is an estimate of the long-run average-reward of R̃t, r̄π , δt is the TD error,
ρt is the importance sampling ratio, and αt, αr̄,t, and αzi,t are the step sizes.

Wan et al. (2021) showed for their Differential TD-learning algorithm that Rt converges to r̄π , and
Vt converges to a solution of v in Equation (3) for a given policy, π. We now provide an equivalent
theorem for our RED TD-learning algorithm, which also shows that Zi,t converges to zi,π ∀zi ∈ Z ,
where zi,π denotes the subtask value induced when following policy π:

Theorem 5.2 (informal). The RED TD-learning algorithm (15) converges, almost surely, R̄t to r̄π ,
Zi,t to zi,π ∀zi ∈ Z , and Vt to a solution of v in the Bellman equation (3), up to an additive
constant, c, if the following assumptions hold: 1) the Markov chain induced by the target policy,
π, is unichain, 2) every state–action pair for which π(a|s) > 0 occurs an infinite number of times
under the behavior policy, 3) the step sizes are decreased appropriately, 4) Vt is updated an infinite
number of times for all states, such that the ratio of the update frequency of the most-updated state
to the least-updated state is finite, and 5) the subtasks are in accordance with Definition 5.1.

RED Q-learning algorithm (tabular): We update Qt : S × A → R as follows:

R̃t+1 = f(Rt+1, Z1,t, Z2,t, . . . , Zn,t) (16a)

δt = R̃t+1 − R̄t +max
a

Qt(St+1, a)−Qt(St, At) (16b)

Qt+1(St, At) = Qt(St, At) + αtδt (16c)
R̄t+1 = R̄t + αr̄,tδt (16d)
Zi,t+1 = Zi,t + αzi,tβi,t, ∀zi ∈ Z (16e)

where Rt is the observed reward, Zi,t is an estimate of subtask zi, βi,t is the reward-extended
TD error for subtask zi, R̄t is an estimate of the long-run average-reward of R̃t, r̄π , δt is the TD
error, and αt, αr̄,t, and αzi,t are the step sizes. Wan et al. (2021) showed for their Differential Q-
learning algorithm that Rt converges to r̄∗, and Qt converges to a solution of q in Equation (4). We
now provide an equivalent theorem for our RED Q-learning algorithm, which also shows that Zi,t

converges to the corresponding optimal subtask value z∗i ∀zi ∈ Z:

Theorem 5.3 (informal). The RED Q-learning algorithm (16) converges, almost surely, R̄t to r̄∗,
Zi,t to z∗i ∀zi ∈ Z , r̄πt

to r̄∗, zi,πt
to z∗i ∀zi ∈ Z , and Qt to a solution of q in the Bellman

optimality equation (4), up to an additive constant, c, where πt is any greedy policy with respect to
Qt, if the following assumptions hold: 1) the MDP is communicating, 2) the solution of q in (4) is
unique up to a constant, 3) the step sizes are decreased appropriately, 4) Qt is updated an infinite
number of times for all state-action pairs, such that the ratio of the update frequency of the most-
updated state–action pair to the least-updated state–action pair is finite, and 5) the subtasks are in
accordance with Definition 5.1.

See Appendix B for the formal version of these theorems, along with the full convergence proofs.
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6 Case Study: RED RL for CVaR Optimization

In this section, we present a case-study which illustrates how the subtask-driven approach that was
derived in Section 5 can be used to successfully optimize the CVaR risk measure, without the use of
an explicit bi-level optimization scheme (as in Equation (8)), or an augmented state-space.

First, in order to leverage the RED RL framework for CVaR optimization, we need to derive a valid
subtask function for CVaR that satisfies the requirements of Definition 5.1. It turns out that we can
use Equation (7) as a basis for the subtask function. The details of the adaptation of Equation (7)
into a subtask function are presented in Appendix C. Critically, as discussed in Appendix C, opti-
mizing the long-run average of the extended reward (R̃t) from this subtask function corresponds to
optimizing the long-run CVaR of the observed reward (Rt). Hence, we can utilize CVaR-specific
versions of the RED algorithms presented in Equations (15) and (16) (or their non-tabular equiva-
lents) to optimize VaR and CVaR, such that CVaR corresponds to the primary control objective (i.e.,
the r̄π that we want to optimize), and VaR is the (single) subtask. We call the resulting algorithms,
the RED CVaR algorithms. These algorithms, which are shown in full in Appendix C, update CVaR
in an analogous way to the average-reward (i.e., CVaR corresponds to R̄t in Equations (15) or (16)),
and update VaR using a VaR-specific version of Equation (15e) or (16e) as follows:

VaRt+1 =

{
VaRt + αVaR,t (δt + CVaRt − VaRt) , Rt+1 ≥ VaRt

VaRt + αVaR,t

((
τ

τ−1

)
δt + CVaRt − VaRt

)
, Rt+1 < VaRt

, (17)

where τ is the CVaR parameter, δt is the TD error, Rt is the observed reward, and αVaR,t is the step
size. As such, given Theorems 5.1 - 5.3, we now have a subtask-driven approach for CVaR optimiza-
tion that is able to simultaneously optimize VaR and CVaR without the use of an explicit bi-level
optimization scheme or an augmented state-space (see Appendix C for a more formal argument).

We now present empirical results obtained when applying the RED CVaR algorithms on two RL
tasks. The first task corresponds to a two-state environment that we created to test the RED CVaR
algorithms. It is called the red-pill blue-pill task (see Appendix E), where at every time step an agent
can take either a ‘red pill’, which takes them to the ‘red world’ state, or a ‘blue pill’, which takes
them to the ‘blue world’ state. Each state has its own characteristic per-step reward distribution, and
in this case, for a sufficiently low CVaR parameter, τ , the red world state has a reward distribution
with a lower (worse) mean but a higher (better) CVaR compared to the blue world state. As such, this
task allows us to answer the following question: can the RED CVaR algorithms successfully enable
the agent to learn a policy that prioritizes optimizing the reward CVaR over the average-reward? In
particular, we would expect that the RED CVaR algorithms learn a policy that prefers to stay in the
red world, and that regular, risk-neutral Differential algorithms (i.e., from Wan et al. (2021)) learn a
policy that prefers to stay in the blue world. This task is illustrated in Figure 2.

Figure 2: a) The red-pill blue-pill environment. b) + c) The per-step reward distributions of the b)
‘red world’, and c) ‘blue world’ states. For a sufficiently low CVaR parameter, τ , the red world state
has a lower (worse) average-reward but a higher (better) reward CVaR than the blue world state.
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The second task is the well-known inverted pendulum task, where an agent learns how to optimally
balance an inverted pendulum. We chose this task because it provides us with the opportunity to test
our algorithms in an environment where: 1) we must use function approximation (given the high-
dimensional state-space), and 2) where the optimal CVaR policy and the optimal average-reward
policy are the same policy (i.e., the policy that best balances the pendulum will yield a limiting
reward distribution with both the optimal average-reward and reward CVaR). This hence allows us
to directly compare the performance of our RED CVaR algorithms to that of the Differential algo-
rithms, as well as to gauge how function approximation affects the performance of our algorithms.

In terms of empirical results, Figure 3 shows rolling averages of the average-reward and reward
CVaR as learning progresses in both tasks when using a regular (risk-neutral) Differential algorithm
(to optimize the average-reward) vs. a RED CVaR algorithm (to optimize the reward CVaR). As
shown in the figure, in the red-pill blue-pill task, the RED CVaR algorithm successfully enables
the agent to learn a policy that prioritizes maximizing the reward CVaR over the average-reward,
thereby achieving a sort of risk-awareness. In the inverted pendulum task, both methods converge
to the same policy, as expected.

Figure 3: Rolling average-reward and reward CVaR as learning progresses when using a (risk-
neutral) Differential algorithm vs. a (risk-aware) RED CVaR algorithm in the a) red-pill blue-pill,
and b) inverted pendulum tasks. A solid line denotes the mean average-reward or reward CVaR, and
the corresponding shaded region denotes a 95% confidence interval over a) 50 runs, or b) 10 runs. In
both tasks, the RED CVaR algorithms enable the agent to learn a policy that prioritizes maximizing
the reward CVaR over the average-reward, thereby achieving a sort of risk-awareness.

Figure 4: Typical convergence plots of the agent’s VaR and CVaR estimates as learning progresses
when using the RED CVaR algorithms in the a) red-pill blue-pill, and b) inverted pendulum tasks
with an initial guess of 0.0 for both estimates. In both tasks, the estimates converge to the correct
VaR and CVaR values, up to an additive constant, thereby yielding the optimal CVaR policy, and
hence, the results shown in Figure 3.
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Figure 4 shows typical convergence plots of the agent’s VaR and CVaR estimates as learning pro-
gresses in both tasks when using the RED CVaR algorithms. As shown in the figure, the estimates
converge in both tasks. In particular, the estimates converge to the correct VaR and CVaR values, up
to an additive constant, thereby yielding the optimal CVaR policy, and hence, the results in Figure 3.

The full set of experimental details and results, including additional experiments performed, can be
found in Appendix D.

7 Discussion, Limitations, and Future Work

In this work, we introduced reward-extended differential (or RED) reinforcement learning: a novel
reinforcement learning framework that can be used to solve various learning objectives, or subtasks,
simultaneously in the average-reward setting. We introduced a family of RED RL algorithms for
prediction and control, and then showcased how these algorithms could be utilized to effectively and
efficiently tackle the CVaR optimization problem. More specifically, we were able to use the RED
RL framework to derive a set of algorithms that can optimize the CVaR risk measure without using
an explicit bi-level optimization scheme or an augmented state-space, thereby alleviating some of
the computational challenges and complexities that arise when performing risk-based optimization
in the discounted setting. Empirically, we showed that the RED-based CVaR algorithms fared well
in both tabular and linear function approximation settings.

More broadly, our work has introduced a theoretically-sound framework that allows for a subtask-
driven approach to reinforcement learning, where various learning objectives (or subtasks) are solved
simultaneously to help solve a larger, central learning objective. In this work, we showed (both
theoretically and empirically) how this framework can be utilized to predict and/or optimize any
arbitrary number of subtasks simultaneously in the average-reward setting. Central to this result is
the novel concept of the reward-extended TD error, which is utilized in our framework to develop
learning rules for the subtasks, and satisfies key theoretical properties that make it possible to solve
any given subtask in a fully-online manner by minimizing the regular TD error. Moreover, we
built upon existing results from Wan et al. (2021) to show the almost sure convergence of tabular
algorithms derived from our framework. While we have only begun to grasp the implications of our
framework, we have already seen some promising indications in the CVaR case study: the ability
to turn explicit bi-level optimization problems into implicit bi-level optimizations that can be solved
in a fully-online manner, as well as the potential to turn certain states (that meet certain conditions)
into subtasks, thereby reducing the size of the state-space.

Nonetheless, while these results are encouraging, they are subject to a number of limitations. Firstly,
by nature of operating in the average-reward setting, we are subject to the somewhat-strict assump-
tions made about the Markov chain induced by the policy (e.g. unichain or communicating). These
assumptions could restrict the applicability of our framework, as they may not always hold in prac-
tice. Similarly, our definition for a subtask requires that the associated subtask function be linear
or piecewise linear with respect to the subtasks, which may limit the applicability of our frame-
work to simpler subtask functions. Finally, it remains to be seen empirically how our framework
performs when dealing with multiple subtasks, when taking on more complex tasks, and/or when
utilizing nonlinear function approximation. Importantly, we emphasize that the empirical evaluation
performed in this work is limited, and as such, a more comprehensive empirical study is needed to
fully gauge the practical implications of the proposed framework and CVaR algorithms.

Future work should look to address these limitations, as well as explore how these promising results
can be extended to other domains, beyond the risk-awareness problem. In particular, we believe that
the ability to optimize various subtasks simultaneously, as well as the potential to reduce the size
of the state-space, by converting certain states to subtasks (where appropriate), could help alleviate
significant computational challenges in other areas moving forward.
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Andrzej Ruszczyński. Risk-averse dynamic programming for markov decision processes. Math.
Program., 125(2):235–261, October 2010.

Anton Schwartz. A reinforcement learning method for maximizing undiscounted rewards. In Inter-
national Conference on Machine Learning, 1993.

Silvestr Stanko and Karel Macek. Risk-averse distributional reinforcement learning: A CVaR opti-
mization approach. In Proceedings of the 11th International Joint Conference on Computational
Intelligence, 2019.

Richard S Sutton. Learning to predict by the methods of temporal differences. Mach. Learn., 3:944,
1988.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction, 2nd edition. MIT
Press, November 2018.

Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning. Artif. Intell., 112(1):181–211, August 1999.

John N Tsitsiklis and Benjamin Van Roy. Average cost temporal-difference learning. Automatica,
35:1799, 1999.

Yi Wan, Abhishek Naik, and Richard S Sutton. Learning and planning in average-reward markov
decision processes. In Proceedings of the 38th International Conference on Machine Learning,
2021.

Li Xia, Luyao Zhang, and Peter W Glynn. Risk-sensitive markov decision processes with long-run
CVaR criterion. Prod. Oper. Manag., 32(12):4049–4067, December 2023.



Burning RED: Unlocking Subtask-Driven RL and Risk-Awareness in Average-Reward MDPs

A RED RL Algorithms

In this appendix, we provide pseudocode for our RED RL algorithms. We first present tabular
algorithms, whose convergence proofs are included in Appendix B, and then provide equivalent
algorithms that utilize function approximation.

Algorithm 1 RED TD-Learning (Tabular)

Input: the policy π to be evaluated, policy B to be used, piecewise linear subtask function f with
n subtasks, m piecewise segments, piecewise conditions rj−1 ≤ R < rj such that fj denotes the
jth segment of f that satisfies rj−1 ≤ R < rj , and constants bj1, b

j
2, . . . , b

j
n ∀j = 1, 2, . . . ,m

Algorithm parameters: step size parameters α, αr̄, αz1 , αz2 , . . . , αzn

Initialize V (s) ∀s; R̄ arbitrarily (e.g. to zero)
Initialize subtasks Z1, Z2, . . . , Zn arbitrarily (e.g. to zero)
Obtain initial S
while still time to train do
A← action given by B for S
Take action A, observe R,S′

R̃ = f(R,Z1, Z2, . . . , Zn)
δ = R̃− R̄+ V (S′)− V (S)
ρ = π(A | S)/B(A | S)
V (S) = V (S) + αρδ
R̄ = R̄+ αr̄ρδ
for i = 1, 2, . . . , n do
βi =

∑m
j=1(−1/b

j
i )(fj − R̄− δ)1{rj−1 ≤ R < rj} (see Remark 5.1 for non-piecewise f )

Zi = Zi + αziρβi
end for
S = S′

end while
return V

Algorithm 2 RED Q-Learning (Tabular)

Input: the policy π to be used (e.g., ε-greedy), piecewise linear subtask function f with n sub-
tasks, m piecewise segments, piecewise conditions rj−1 ≤ R < rj such that fj denotes the jth
segment of f that satisfies rj−1 ≤ R < rj , and constants bj1, b

j
2, . . . , b

j
n ∀j = 1, 2, . . . ,m

Algorithm parameters: step size parameters α, αr̄, αz1 , αz2 , . . . , αzn

Initialize Q(s, a) ∀s, a; R̄ arbitrarily (e.g. to zero)
Initialize subtasks Z1, Z2, . . . , Zn arbitrarily (e.g. to zero)
Obtain initial S
while still time to train do
A← action given by π for S
Take action A, observe R,S′

R̃ = f(R,Z1, Z2, . . . , Zn)
δ = R̃− R̄+maxaQ(S′, a)−Q(S,A)
Q(S,A) = Q(S,A) + αδ
R̄ = R̄+ αr̄δ
for i = 1, 2, . . . , n do
βi =

∑m
j=1(−1/b

j
i )(fj − R̄− δ)1{rj−1 ≤ R < rj} (see Remark 5.1 for non-piecewise f )

Zi = Zi + αziβi
end for
S = S′

end while
return Q
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Algorithm 3 RED TD-Learning (Function Approximation)

Input: the policy π to be evaluated, policy B to be used, a differentiable state-value function
parameterization: v̂(s,w), piecewise linear subtask function f with n subtasks, m piecewise
segments, piecewise conditions rj−1 ≤ R < rj such that fj denotes the jth segment of f that
satisfies rj−1 ≤ R < rj , and constants bj1, b

j
2, . . . , b

j
n ∀j = 1, 2, . . . ,m

Algorithm parameters: step size parameters α, αr̄, αz1 , αz2 , . . . , αzn

Initialize state-value weights w ∈ Rd arbitrarily (e.g. to 0)
Initialize subtasks Z1, Z2, . . . , Zn arbitrarily (e.g. to zero)
Obtain initial S
while still time to train do
A← action given by B for S
Take action A, observe R,S′

R̃ = f(R,Z1, Z2, . . . , Zn)
δ = R̃− R̄+ v̂(S′,w)− v̂(S,w)
ρ = π(A | S)/B(A | S)
w = w + αρδ∇v̂(S,w)
R̄ = R̄+ αr̄ρδ
for i = 1, 2, . . . , n do
βi =

∑m
j=1(−1/b

j
i )(fj − R̄− δ)1{rj−1 ≤ R < rj} (see Remark 5.1 for non-piecewise f )

Zi = Zi + αziρβi
end for
S = S′

end while
return w

Algorithm 4 RED Q-Learning (Function Approximation)

Input: the policy π to be used (e.g., ε-greedy), a differentiable state-action value function pa-
rameterization: q̂(s, a,w), piecewise linear subtask function f with n subtasks, m piecewise
segments, piecewise conditions rj−1 ≤ R < rj such that fj denotes the jth segment of f that
satisfies rj−1 ≤ R < rj , and constants bj1, b

j
2, . . . , b

j
n ∀j = 1, 2, . . . ,m

Algorithm parameters: step size parameters α, αr̄, αz1 , αz2 , . . . , αzn

Initialize state-action value weights w ∈ Rd arbitrarily (e.g. to 0)
Initialize subtasks Z1, Z2, . . . , Zn arbitrarily (e.g. to zero)
Obtain initial S
while still time to train do
A← action given by π for S
Take action A, observe R,S′

R̃ = f(R,Z1, Z2, . . . , Zn)
δ = R̃− R̄+maxa q̂(S

′, a,w)− q̂(S,A,w)
w = w + αδ∇q̂(S,A,w)
R̄ = R̄+ αr̄δ
for i = 1, 2, . . . , n do
βi =

∑m
j=1(−1/b

j
i )(fj − R̄− δ)1{rj−1 ≤ R < rj} (see Remark 5.1 for non-piecewise f )

Zi = Zi + αziβi
end for
S = S′

end while
return w
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B Convergence Proofs

In this appendix, we present the full convergence proofs for the tabular RED TD-learning and tabular
RED Q-learning algorithms. Our general strategy is as follows: we first show that the results from
Wan et al. (2021), which show the almost sure convergence of the value function and average-
reward estimates of differential algorithms, are applicable to our algorithms. We then build upon
these results to show that the subtask estimates of our algorithms converge as well.

For consistency, we adopt similar notation as Wan et al. (2021) for our proofs:

• For a given vector x, let
∑
x denote the sum of all elements in x, such that

∑
x
.
=

∑
i x(i).

• Let r̄∗ denote the optimal average-reward.

• Let zi∗ denote the corresponding optimal subtask value for subtask zi ∈ Z .

B.1 Convergence Proof for the Tabular RED TD-learning Algorithm

In this section, we present the proof for the convergence of the value function, average-reward, and
subtask estimates of the RED TD-learning algorithm. Similar to what was done in Wan et al. (2021),
we will begin by considering a general algorithm, called General RED TD. We will first define
General RED TD, then show how the RED TD-learning algorithm is a special case of this algorithm.
We will then provide the necessary assumptions, state the convergence theorem of General RED TD,
and then provide a proof for the theorem, where we show that the value function, average-reward,
and subtask estimates converge, thereby showing that the RED TD-learning algorithm converges.
We begin by introducing the General RED TD algorithm:

Consider an MDPM .
= ⟨S,A,R, p⟩, a behavior policy, B, and a target policy, π. Given a state s ∈

S and discrete step n ≥ 0, letAn(s) ∼ B(· | s) denote the action selected using the behavior policy,
let Rn(s,An(s)) ∈ R denote a sample of the resulting reward, and let S′

n(s,An(s)) ∼ p(·, · | s, a)
denote a sample of the resulting state. Let {Yn} be a set-valued process taking values in the set
of nonempty subsets of S, such that: Yn = {s : s component of the |S|-sized table of state-value
estimates, V , that was updated at step n}. Let ν(n, s) .=

∑n
j=0 I{s ∈ Yj}, where I is the indicator

function, such that ν(n, s) represents the number of times that V (s) was updated up until step n.

Now, let f be a valid subtask function (see Definition 5.1), such that R̃n(s,An(s))
.
=

f(Rn(s,An(s)), Z1,n, Z2,n, . . . , Zk,n) for k subtasks ∈ Z , where R̃n(s,An(s)) is the extended
reward, Z is the set of subtasks, and Zi,n denotes the estimate of subtask zi ∈ Z at step n. Consider
an MDP with the extended reward: M̃ .

= ⟨S,A, R̃, p̃⟩, such that R̃n(s,An(s)) ∈ R̃. The update
rules of General RED TD for this MDP are as follows, ∀n ≥ 0:

Vn+1(s)
.
= Vn(s) + αν(n,s)ρn(s)δn(s)I{s ∈ Yn}, ∀s ∈ S, (B.1)

R̄n+1
.
= R̄n +

∑
s

αr̄,ν(n,s)ρn(s)δn(s)I{s ∈ Yn}, (B.2)

Zi,n+1
.
= Zi,n +

∑
s

αzi,ν(n,s)ρn(s)βi,n(s)I{s ∈ Yn}, ∀zi ∈ Z, (B.3)

where,

δn(s)
.
= R̃n(s,An(s))− R̄n + Vn(S

′
n(s,An(s)))− Vn(s)

= f(Rn(s,An(s)), Z1,n, Z2,n, . . . , Zk,n)− R̄n + Vn(S
′
n(s,An(s)))− Vn(s),

(B.4)

and,

βi,n(s)
.
= ϕi,n(s)− Zi,n, ∀zi ∈ Z. (B.5)
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Here, ρn(s)
.
= π(An(s) | s) /B(An(s) | s) denotes the importance sampling ratio (with behavior

policy, B), R̄n denotes the estimate of the average-reward (see Equation (2)), δn(s) denotes the
TD error, ϕi,n(s) denotes the (potentially-piecewise) subtask target, as defined in Section 5.1, and
αν(n,s), αr̄,ν(n,s), and αzi,ν(n,s) denote the step sizes at time step n for state s.

We now show that the RED TD-learning algorithm is a special case of the General RED TD algo-
rithm. Consider a sequence of experience from our MDP, M̃: St, At(St), R̃t+1, St+1, . . . . Now
recall the set-valued process {Yn}. If we let n = time step t, we have:

Yt(s) =

{
1, s = St,

0, otherwise,

as well as S′
n(St, At(St)) = St+1, Rn(St, At) = Rt+1, and R̃n(St, At(St)) = R̃t+1.

Hence, update rules (B.1), (B.2), (B.3), (B.4), and (B.5) become:

Vt+1(St)
.
= Vt(St) + αν(t,St)ρt(St)δt and Vt+1(s)

.
= Vt(s),∀s ̸= St, (B.6)

R̄t+1
.
= R̄t + αr̄,ν(t,St)ρt(St)δt, (B.7)

Zi,t+1
.
= Zi,t + αzi,ν(t,St)ρt(St)βi,t, ∀zi ∈ Z, (B.8)

δt
.
= R̃t+1 − R̄t + Vt(St+1)− Vt(St),

= f(Rt+1, Z1,t, Z2,t, . . . , Zk,t)− R̄t + Vt(St+1)− Vt(St),
(B.9)

βi,t
.
= ϕi,t − Zi,t, ∀zi ∈ Z, (B.10)

which are RED TD-learning’s update rules with αν(t,St), αr̄,ν(t,St), and αzi,ν(t,St) denoting the
step sizes at time t.

We now specify the assumptions on General RED TD that are needed to ensure convergence:

Assumption B.1 (Unichain Assumption). The Markov chain induced by the policy is unichain.
That is, the induced Markov chain consists of a single recurrent class and a potentially-empty set of
transient states.

Assumption B.2 (Coverage Assumption). B(a | s) > 0 if π(a | s) > 0 for all s ∈ S, a ∈ A.

Assumption B.3 (Step Size Assumption). αn > 0,
∑∞

n=0 αn =∞,
∑∞

n=0 α
2
n <∞.

Assumption B.4 (Asynchronous Step Size Assumption 1). Let [·] denote the integer part of (·). For
x ∈ (0, 1),

sup
i

α[xi]

αi
<∞

and ∑[yi]
j=0 αj∑i
j=0 αj

→ 1

uniformly in y ∈ [x, 1].
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Assumption B.5 (Asynchronous Step Size Assumption 2). There exists ∆ > 0 such that

lim inf
n→∞

ν(n, s)

n+ 1
≥ ∆,

a.s., for all s ∈ S.

Furthermore, for all x > 0, and

N(n, x) = min

{
m ≥ n :

m∑
i=n+1

αi ≥ x

}
,

the limit

lim
n→∞

∑ν(N(n,x),s)
i=ν(n,s) αi∑ν(N(n,x),s′)
i=ν(n,s′) αi

exists a.s. for all s, s′.

Assumption B.6 (Average-Reward Step Size Assumption). The average-reward step size, αr̄,n,
can be written as a constant fraction of the value function step size, αn, such that αr̄,n

.
= ηrαn,

where ηr is a positive scalar.

Assumption B.7 (Subtask Function Assumption). The subtask function, f , is 1) linear or piecewise
linear, and 2) is invertible with respect to each input given all other inputs.

Assumption B.8 (Subtask Independence Assumption). Each subtask, zi ∈ Z , in f is in-
dependent of the states and actions, and hence independent of the observed reward, Rn,
such that p̃(s′, f(r, z1, . . . , zk)|s, a) = p(s′, r|s, a), and E[fj(Rn, Z1,n, Z2,n, . . . , Zk,n)] =
fj(E[Rn], Z1,n, Z2,n, . . . , Zk,n), where fj denotes the jth piecewise segment of f , and E denotes
any expectation taken with respect to the states and actions.

Assumption B.9 (Subtask Uniqueness Assumption). If the Bellman equation associated with
f(Rn, z1, z2, . . . , zk) admits a unique solution, then that unique solution corresponds to a unique
combination of subtasks, z1, z2, . . . , zk.

Assumption B.10 (Subtask Step Size Assumptions). If the subtask function is strictly (i.e., non-
piecewise) linear, the subtask step sizes, {αzi,n}ki=1, can be written as constant, subtask-specific
fractions of the value function step size, αn, such that αzi,n

.
= ηziαn ∀zi ∈ Z , where {ηzi}ki=1 are

positive scalars. Alternatively, if the subtask function is piecewise linear with at least two piecewise
segments, the subtask step sizes satisfy the following properties: αz1,n/αn → 0, αz1,n/αr̄,n → 0,
{αzi,n/αzi−1,n → 0}ki=2, and

∑∞
n=0(α

2
n + α2

r̄,n + α2
z1,n + α2

z2,n + . . .+ α2
zk,n

) <∞.

We refer the reader to Wan et al. (2021) for an in-depth discussion on Assumptions B.1 – B.6. Note
that Assumptions B.3 – B.5 apply to the value function, average-reward, and subtask step sizes.
Assumptions B.7 – B.10 outline the subtask-related requirements needed to show convergence.
In particular, Assumption B.7 ensures that we can explicitly write out the update (B.3), and
Assumption B.8 ensures that we do not break the Markov property in the process (i.e., we preserve
the Markov property by ensuring that the subtasks are independent of the states and actions, and
thereby also independent of the observed reward). Assumption B.9 ensures that only a unique
combination of subtasks yields the solution to a given Bellman equation. Finally, Assumption B.10
outlines additional step size requirements needed to show convergence.
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Having stated the necessary assumptions, we next point out that it is easy to verify that under As-
sumption B.1, the following system of equations:

vπ(s) =
∑
a

π(a | s)
∑
s′,r̃

p̃(s′, r̃ | s, a)(r̃ − r̄π + vπ(s
′)), ∀s ∈ S

=
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)(f(r, z1,π, z2,π, . . . , zk,π)− r̄π + vπ(s
′)), ∀s ∈ S,

(B.11)

and,

r̄π − R̄0 = η
r

(∑
vπ −

∑
V0

)
, (B.12)

zi,π − Zi,0 = η
i

(∑
vπ −

∑
V0

)
, for all zi ∈ Z, (B.13)

has a unique solution of vπ , where r̄π denotes the average-reward induced by following a given
policy, π, and zi,π denotes the corresponding subtask value for subtask zi ∈ Z . Denote this unique
solution of vπ as v∞.

We are now ready to state the convergence theorem:

Theorem B.1.1 (Convergence of General RED TD). If Assumptions B.1 – B.10 hold, then General
RED TD (Equations (B.1) – (B.5)) converges a.s., R̄n to r̄π , Zi,n to zi,π ∀zi ∈ Z , and Vn to v∞.

We prove this theorem in Sections B.1.1 and B.1.2. To do so, we first show that General RED TD
is of the same form as General Differential TD from Wan et al. (2021), thereby allowing us to apply
their convergence results for the value function and average-reward estimates of General Differential
TD to General RED TD. We then build upon these results, using similar techniques as Wan et al.
(2021), to show that the subtask estimates converge as well.

B.1.1 Proof of Theorem B.1.1 (for Linear Subtask Functions)

We first provide the proof for linear subtask functions, where the reward-extended TD error
can be expressed as a constant, subtask-specific fraction of the regular TD error, such that
βi,n(s) = (−1/bi)δn(s). We consider the piecewise linear case in Section B.1.2.

Convergence of the value function and average-reward estimates:

Consider the increment to R̄n at each step. Given Assumption B.6, we can see from Equation (B.2)
that the increment is η

r
times the increment to Vn. As such, as was done in Wan et al. (2021), we

can write the cumulative increment as follows:

R̄n − R̄0 = η
r

n−1∑
j=0

∑
s

αν(j,s)ρj(s)δj(s)I{s ∈ Yj}

= η
r

(∑
Vn −

∑
V0

)

=⇒ R̄n = η
r

∑
Vn − ηr

∑
V0 + R̄0 = η

r

∑
Vn − cr, (B.14)

where cr
.
= η

r

∑
V0 − R̄0. (B.15)
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Similarly, consider the increment to Zi,n (for an arbitrary subtask zi ∈ Z) at each step. As per
Remark 5.1, and given Assumption B.10, we can write the increment in Equation (B.3) as some
constant, subtask-specific fraction of the increment to Vn. Consequently, we can write the cumula-
tive increment as follows:

Zi,n − Zi,0 = ηzi

n−1∑
j=0

∑
s

αν(j,s)ρj(s)βi,j(s)I{s ∈ Yj}

= ηzi

n−1∑
j=0

∑
s

αν(j,s)ρj(s)(−1/bi)δj(s)I{s ∈ Yj}

= ηi

(∑
Vn −

∑
V0

)

=⇒ Zi,n = ηi

∑
Vn − ηi

∑
V0 + Zi,0 = ηi

∑
Vn − ci, (B.16)

where,

ci
.
= η

i

∑
V0 − Zi,0, and (B.17)

η
i

.
= (−1/bi)ηzi . (B.18)

Now consider the subtask function, f . At any given time step, the subtask function can be written
as: fn = R̃n(s,An(s)) = brRn(s,An(s)) + b0 + b1Z1,n + . . . + bkZk,n, where br, b0 ∈ R and
bi ∈ R \ {0}. Given Equation (B.16), we can write the subtask function as follows:

fn = brRn(s,An(s)) + b0 + b1(η1

∑
Vn − c1) + . . .+ bk(ηk

∑
Vn − ck)

= brRn(s,An(s)) + η
f

∑
Vn − cf , (B.19)

where, η
f
=

∑k
j=1 bjηj

and cf =
∑k

j=1 bjcj − b0.

As such, we can substitute R̄n and Zi,n ∀zi ∈ Z in (B.1) with (B.14) and (B.19), respectively,
∀s ∈ S, which yields:

Vn+1(s) = Vn(s) + . . .

αν(n,s)ρn(s)
(
brRn(s,An(s)) + Vn(S

′
n(s,An(s)))− Vn(s)− ηr

∑
Vn + cr + η

f

∑
Vn − cf

)
I{s ∈ Yn}

Vn+1(s) = Vn(s) + . . .

αν(n,s)ρn(s)
(
brRn(s,An(s)) + Vn(S

′
n(s,An(s)))− Vn(s)− ηT

∑
Vn + c

T

)
I{s ∈ Yn}

Vn+1(s) = Vn(s) + . . .

αν(n,s)ρn(s)
(
R̂n(s,An(s)) + Vn(S

′
n(s,An(s)))− Vn(s)− ηT

∑
Vn

)
I{s ∈ Yn},

(B.20)

where η
T
= ηr − ηf

, c
T
= cr − cf , and R̂n(s,An(s))

.
= brRn(s,An(s)) + c

T
.
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Equation (B.20) is now in the same form as Equation (B.37) (i.e., General Differential TD) from
Wan et al. (2021), who showed that the equation converges a.s. Vn to v∞ as n → ∞. Moreover,
from this result, Wan et al. (2021) showed that R̄n converges a.s. to r̄π as n → ∞. Given that
General RED TD adheres to all the assumptions listed for General Differential TD in Wan et al.
(2021), these convergence results apply to General RED TD.

Convergence of the subtask estimates:

Consider Equation (B.20). We can rewrite this equation, ∀s ∈ S, as follows:

Vn+1(s) = Vn(s) + . . .

αν(n,s)ρn(s)
(
brRn(s,An(s)) + η

f

∑
Vn + c

T
− η

r

∑
Vn + Vn(S

′
n(s,An(s)))− Vn(s)

)
I{s ∈ Yn}

Vn+1(s) = Vn(s) + . . .

αν(n,s)ρn(s)
(
R̂n(s,An(s)) + c

T
− η

r

∑
Vn + Vn(S

′
n(s,An(s)))− Vn(s)

)
I{s ∈ Yn},

(B.21)

where,

R̂n(s,An(s))
.
= brRn(s,An(s)) + η

f

∑
Vn (B.22)

= brRn(s,An(s)) + b1(η1

∑
Vn) + . . .+ bk(ηk

∑
Vn) (B.23)

.
= brRn(s,An(s)) + b1Ẑ1,n + . . .+ bkẐk,n. (B.24)

Now consider an MDP, M̂, which has rewards, R̂, as defined in Equation (B.22), has the same state
and action spaces as the MDP M̃, and has the transition probabilities defined as:

p̂(s′, r̂ | s, a) .= p(s′, r | s, a) (B.25)
= p̃(s′, r̃ | s, a) (by Definition 5.1), (B.26)

such that M̂ .
= ⟨S,A, R̂, p̂⟩. It is easy to check that the unichain assumption holds for the MDP,

M̂. Moreover, given Equation (B.21) and Assumptions B.7 and B.8, the average-reward induced by
following policy π for the MDP, M̂, ˆ̄rπ , can be written as follows:

ˆ̄rπ = r̄π − cT . (B.27)

Now, because

v∞(s) =
∑
a

π(a | s)
∑
s′,r̃

p̃(s′, r̃ | s, a)(r̃ − r̄π + v∞(s′)) (from (B.11))

=
∑
a

π(a | s)
∑
s′,r̃

p̃(s′, r̃ | s, a)(r̃ − (ˆ̄rπ + c
T
) + v∞(s′)) (from (B.27))

=
∑
a

π(a | s)
∑
s′,r̃

p̃(s′, r̃ | s, a)(r̃ − c
T
− ˆ̄rπ + v∞(s′))

=
∑
a

π(a | s)
∑
s′,r̃

p̃(s′, r̃ | s, a)(r̂ − ˆ̄rπ + v∞(s′)) (from (B.21))

=
∑
a

π(a | s)
∑
s′,r̂

p̂(s′, r̂ | s, a)(r̂ − ˆ̄rπ + v∞(s′)) (from (B.26)),

we can see that v∞ is a solution of not just the state-value Bellman equation for the MDP, M̃, but
also the state-value Bellman equation for the MDP, M̂.
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Next, consider an arbitrary ith subtask. As per Equations (B.23) and (B.24), we can write the subtask
value induced by following policy π for the MDP, M̂, ẑi,π , as follows:

ẑi,π = zi,π + ci. (B.28)

We can then combine Equations (B.13), (B.16), and (B.28), which yields:

ẑi,π = η
i

∑
v∞. (B.29)

Next, we can combine Equation (B.16) with the result from Wan et al. (2021) which shows that
Vn → v∞, which yields:

Zi,n → η
i

∑
v∞ − ci. (B.30)

Moreover, because η
i

∑
v∞ = ẑi,π (Equation (B.29)), we have:

Zi,n → ẑi,π − ci. (B.31)

Finally, because ẑi,π = zi,π + ci (Equation (B.28)), we have:

Zi,n → zi,π a.s. as n→∞. (B.32)

B.1.2 Proof of Theorem B.1.1 (for Piecewise Linear Subtask Functions)

We now provide the proof for piecewise linear subtask functions, where the reward-extended TD
error can be expressed as follows:

βi,n(s) =


(−1/b1i )

(
R̃1,n(s,An(s))− R̄n − δn(s)

)
, r0 ≤ Rn(s,An(s)) < r1

...

(−1/bmi )
(
R̃m,n(s,An(s))− R̄n − δn(s)

)
, rm−1 ≤ Rn(s,An(s)) ≤ rm

,

where ru ∈ R ∀u = 0, 1, . . . ,m, and r0 ≤ r1 ≤ . . . ≤ rm, such that r0, rm represent the lower
and upper bounds of the observed per-step reward, Rn(s,An(s)), respectively. Our general strategy
in this case is to use a multiple-timescales argument, such that we leverage Theorem 2 in Section 6
of Borkar (2009), along with the results from Theorem B.3 of Wan et al. (2021).

To begin, let us consider Assumption B.10, which enables the formulation of a multiple-timescales
argument. In particular, the αz1,n/αn → 0, αz1,n/αr̄,n → 0, and {αzi,n/αzi−1,n → 0}ki=2 con-
ditions imply that the subtask step sizes, {αzi,n}∞n=0 ∀zi ∈ Z , decrease to 0 at faster rates than the
value function and average-reward step sizes, {αn}∞n=0 and {αr̄,n}∞n=0, respectively. This implies
that the subtask updates move on slower timescales compared to the value function and average-
reward updates. Hence, as argued in Section 6 of Borkar (2009), the (faster) value function and
average-reward updates, (B.1) and (B.2), view the (slower) subtask updates, (B.3), as quasi-static,
while the (slower) subtask updates view the (faster) value function and average-reward updates as
nearly equilibrated (as we will show below, the results from Wan et al. (2021) imply the existence
of such an equilibrium point). Similarly, the {αzi,n/αzi−1,n → 0}ki=2 condition implies that each
subtask update views the other subtask updates as either quasi-static or nearly-equilibrated.

As such, having established the multiple-timescales argument, we now proceed to show the conver-
gence of the value function, average-reward, and subtask estimates:
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Convergence of the value function and average-reward estimates:

Given the multiple-timescales argument, such that the subtask estimates are viewed as quasi-static
(i.e., constant), Equation (B.1) can be viewed as being of the same form as Equation (B.30) (i.e.,
General Differential TD) from Wan et al. (2021), who showed (via Theorem B.3) that the equation
converges, almost surely, Vn to v∞ as n → ∞. Moreover, from this result, Wan et al. (2021)
showed that R̄n converges, almost surely, to r̄π as n → ∞. Given that General RED TD adheres
to all the assumptions listed for General Differential TD in Wan et al. (2021), these convergence
results apply to General RED TD.

Convergence of the subtask estimates:

Let us consider the asynchronous subtask updates (B.3). Each update in (B.3) is of the same form as
Equation 7.1.2 of Borkar (2009). Accordingly, to show the convergence of the subtask estimates, we
can apply the result in Section 7.4 of Borkar (2009), which shows the convergence of asynchronous
updates that are of the same form as Equation 7.1.2. To apply this result, given Assumptions B.4
and B.5, we only need to show the convergence of the synchronous version of the subtask updates:

Zi,n+1 = Zi,n + αzi,n

(
gi(Zi,n) +Mzi

n+1

)
∀zi ∈ Z, (B.33)

where,

gi(Zi,n)(s)
.
=

∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)ϕi,n(s)− Zi,n,

ϕi,n(s)
.
=



− 1
b1i

(
b1rRn(s,An(s)) + . . .+ b1i−1Zi−1,n + b1i+1Zi+1,n + . . .+ b1kZk,n − R̄n − δn(s)

)
, . . .

. . . , r0 ≤ Rn(s,An(s)) < r1,
...
− 1

bmi

(
bmr Rn(s,An(s)) + . . .+ bmi−1Zi−1,n + bmi+1Zi+1,n + . . .+ bmk Zk,n − R̄n − δn(s)

)
, . . .

. . . , rm−1 ≤ Rn(s,An(s)) ≤ rm,

,

Mzi
n+1(s)

.
= ρn(s) (ϕi,n(s)− Zi,n)− gi(Zi,n)(s).

To show the convergence of the synchronous update (B.33) under the multiple-timescales argument,
we can apply the result of Theorem 2 in Section 6 of Borkar (2009) to show thatZi,n → zi,π∀zi ∈ Z
a.s. as n → ∞. This theorem requires that 3 assumptions be satisfied. As such, we will now show,
via Lemmas B.1 - B.3, that these 3 assumptions are indeed satisfied:

Lemma B.1. The value function update, Vn+1 = Vn + αn(h(Vn) +Mn+1), where

h(Vn)(s)
.
=

∑
a

π(a | s)
∑
s′,r̃

p̃(s′, r̃ | s, a)(r̃ − R̄n + Vn(s
′)− Vn(s)),

=
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)(f(r, Z1,n, Z2,n, . . . , Zk,n)− ψ(Vn) + Vn(s
′)− Vn(s)),

Mn+1(s)
.
= ρn(s)

(
R̃n(s,An(s))− ψ(Vn) + Vn(S

′
n(s,An(s)))− Vn(s)

)
− h(Vn)(s),

ψ(Vn) = R̄n is a ‘reference function’ as defined in Wan et al. (2021), and

Z1,n, Z2,n, ..., Zk,n are quasi-static under the multiple-timescales argument,

has a globally asymptotically stable equilibrium, v∞(Z1,n, Z2,n, . . . , Zk,n), where v∞ is a Lipschitz
map.

Proof. This was shown in Theorem B.3 of Wan et al. (2021).
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Lemma B.2. The subtask update rules (B.33) each have a globally asymptotically stable equilib-
rium, zi,π .

Proof. Let us begin by considering the ‘fastest’ subtask, Z1,n, under the multiple-timescales argu-
ment, such that all other subtasks, Z2,n, . . . , Zk,n, operate on slower timescales and can be con-
sidered quasi-static. Applying the results of Theorem B.3 of Wan et al. (2021) under the multiple-
timescales argument, we have that: h(Vn)→ 0 and R̄n → r̄π as Vn → v∞. Importantly, as argued
in Section 5, h(Vn) → 0 implies that δn(s) → λj ∈ R for each jth piecewise segment in ϕi,n(s).
As such, we can interpret Z1,n as being the only ‘moving’ variable in g1(Z1,n), such that all other
parameters in the update are static, quasi-static, or nearly-equilibrated.

Let us now consider the ODE associated with g1(Z1,n),

ẋt = g1(xt). (B.34)

To show that the update rule for Z1,n has a globally asymptotically stable equilibrium, z1,π , it
suffices to show that there exists a Lyapunov function for the associated ODE (B.34).

To this end, we first note, given the discussion in Section 5, that z1,π is an equilibrium point for the
update rule associated with Z1,n. Moreover, given Assumptions B.1 and B.9, we know that z1,π is
the unique equilibrium point.

We now show the existence of a Lyapunov function with respect to the aforementioned equilibrium
point, z1,π . In particular, we consider the function, L, defined by:

L(Z1) =
1

2
(Z1 − z1,π)2.

To establish that L is a Lyapunov function, we must show that:

1. L is continuous,

2. L(Z1) = 0 if Z1 = z1,π ,

3. L(Z1) > 0 if Z1 ̸= z1,π , and

4. For any solution {xt}t≥0 of the associated ODE (B.34) and 0 ≤ s < t, we have L(xt) < L(xs)
for all xs ̸= z1,π .

It directly follows from the definition of L that the first three conditions are satisfied.

We now show that fourth condition is also satisfied:

Let {xt}t≥0 be a solution to the associated ODE (B.34), and let 0 ≤ s < t. By the chain rule, we
have that:

d

dt
L(xt) =

∂L

∂xt
· dxt
dt

= (xt−z1,π) ·g1(xt) = (xt−z1,π) ·(Eπ[ϕ1]−xt) = (xt−z1,π) ·(z1,π−xt).
(B.35)

We will now analyze the sign of the term (xt − z1,π) · (z1,π − xt) when xt ̸= z1,π . There are two
cases to consider:

Case 1: xt > z1,π: We have that (xt− z1,π) > 0 and (z1,π −xt) < 0. Hence, we can conclude that
(xt − z1,π) · (z1,π − xt) < 0.

Case 2: xt < z1,π: We have that (xt− z1,π) < 0 and (z1,π −xt) > 0. Hence, we can conclude that
(xt − z1,π) · (z1,π − xt) < 0.

As such, in both cases we can conclude that (xt − z1,π) · (z1,π − xt) < 0, which implies that
L(xt) < L(xs) for all xs ̸= z1,π and 0 ≤ s < t.
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As such, we have now verified the four conditions, and can therefore conclude that L is a valid
Lyapunov function. Consequently, we can conclude, under the multiple-timescales argument, that
Z1,n has a globally asymptotically stable equilibrium, z1,π .

Critically, we can leverage the above result to show, using the same techniques as above, that Z2,n

has a globally asymptotically stable equilibrium, z2,π , where Vn, R̄n, and Z1,n are considered to be
nearly equilibrated, and all remaining subtasks are considered quasi-static. The process can then be
repeated for Z3,n and so forth, thereby showing that the subtask update rules (B.33) each have a
globally asymptotically stable equilibrium, zi,π . This completes the proof.

Lemma B.3. supn(||Vn||+ ||Z1,n||) + ||Z2,n||+ . . .+ ||Zk,n||) <∞ a.s.

Proof. It was shown in Theorem B.3 of Wan et al. (2021) that supn(||Vn||) < ∞ a.s. Hence, we
only need to show that supn(||Zi,n||) < ∞ ∀zi ∈ Z a.s. To this end, we can apply Theorem 7 in
Section 3 of Borkar (2009). This theorem requires 4 assumptions for each zi ∈ Z:

• (A1) The function gi is Lipschitz. That is, ||gi(x)− gi(y)|| ≤ Ui||x− y|| for some 0 < Ui <∞.

• (A2) The sequence {αzi,n}∞n=0 satisfies αzi,n > 0 ∀n ≥ 0,
∑
αzi,n =∞, and

∑
α2
zi,n <∞.

• (A3) {Mzi
n }∞n=0 is a martingale difference sequence that is square-integrable.

• (A4) The functions gi(x)d
.
= gi(dx)/d, d ≥ 1, x ∈ R, satisfy gi(x)d → gi(x)∞ as d → ∞,

uniformly on compacts for some gi∞ ∈ C(R). Furthermore, the ODE ẋt = gi(xt)∞ has the
origin as its unique globally asymptotically stable equilibrium.

Consider an arbitrary ith subtask. We note that Assumption (A1) is satisfied given that all operators
in gi are Lipschitz. Moreover, we note that Assumption B.3 satisfies Assumption (A2).

We now show that {Mzi
n }∞n=0 is indeed a martingale difference sequence that is square-integrable,

such that EB [M
zi
n+1 | Fn] = 0 a.s., n ≥ 0, and EB [(M

zi
n+1)

2 | Fn] < ∞ a.s., n ≥ 0, where B is
the behaviour policy (and π is the target policy). To this end, let Fn

.
= σ(Zi,u,M

zi
u , u ≤ n), n ≥ 0

denote an increasing family of σ-fields. We have that, for any s ∈ S:

EB [M
zi
n+1(s) | Fn] = EB [ρn(s) (ϕi,n(s)− Zi,n)− gi(Zi,n)(s) | Fn]

= Eπ [ϕi,n(s)− Zi,n]− gi(Zi,n)(s)

= 0.

Moreover, since all components of {Mzi
n }∞n=0 involve bounded quantities, it directly follows that

EB [||Mzi
n+1||2 | Fn] ≤ K for some finite constant K > 0. Hence, Assumption (A3) is verified.

We now verify Assumption (A4). Under the multiple-timescales argument, we have that:

gi(x)∞ = lim
d→∞

gi(x)d = lim
d→∞

Eπ [ϕi]− dx
d

= 0− x = −x. (B.36)

Clearly, gi(x)∞ is continuous in every x ∈ R. As such, we have that gi(x)∞ ∈ C(R). Now consider
the ODE ẋ = gi(x)∞. This ODE has the origin as an equilibrium since gi(0)∞ = 0. Furthermore,
given Lemma B.2, we can conclude that this equilibrium must be the unique globally asymptotically
stable equilibrium, thereby satisfying Assumption (A4).

Assumptions (A1) - (A4) are hence verified, meaning that we can apply the results of Theorem 7 in
Section 3 of Borkar (2009) to conclude that supn(||Zi,n||) <∞ ∀zi ∈ Z , almost surely, and hence,
that supn(||Vn||+ ||Z1,n||) + ||Z2,n||+ . . .+ ||Zk,n||) <∞, almost surely.

As such, we have now verified the 3 assumptions required by Theorem 2 in Section 6 of
Borkar (2009), which means that we can apply the result of the theorem to conclude that
Zi,n → zi,π ∀zi ∈ Z , almost surely, as n→∞.

This completes the proof of Theorem B.1.1.
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B.2 Convergence Proof for the Tabular RED Q-learning Algorithm

In this section, we present the proof for the convergence of the value function, average-reward,
and subtask estimates of the RED Q-learning algorithm. Similar to what was done in Wan et al.
(2021), we will begin by considering a general algorithm, called General RED Q. We will first define
General RED Q, then show how the RED Q-learning algorithm is a special case of this algorithm.
We will then provide the necessary assumptions, state the convergence theorem of General RED Q,
and then provide a proof for the theorem, where we show that the value function, average-reward,
and subtask estimates converge, thereby showing that the RED Q-learning algorithm converges. We
begin by introducing the General RED Q algorithm:

Consider an MDPM .
= ⟨S,A,R, p⟩. Given a state s ∈ S , action a ∈ A, and discrete step n ≥ 0,

let Rn(s, a) ∈ R denote a sample of the resulting reward, and let S′
n(s, a) ∼ p(·, · | s, a) denote a

sample of the resulting state. Let {Yn} be a set-valued process taking values in the set of nonempty
subsets of S × A, such that: Yn = {(s, a) : (s, a) component of the |S × A|-sized table of state-
action value estimates, Q, that was updated at step n}. Let ν(n, s, a) .

=
∑n

j=0 I{(s, a) ∈ Yj},
where I is the indicator function, such that ν(n, s, a) represents the number of times that the (s, a)
component of Q was updated up until step n.

Now, let f be a valid subtask function (see Definition 5.1), such that R̃n(s, a)
.
=

f(Rn(s, a), Z1,n, Z2,n, . . . , Zk,n) for k subtasks ∈ Z , where R̃n(s, a) is the extended reward, Z
is the set of subtasks, and Zi,n denotes the estimate of subtask zi ∈ Z at step n. Consider an MDP
with the extended reward: M̃ .

= ⟨S,A, R̃, p̃⟩, such that R̃n(s, a) ∈ R̃. The update rules of General
RED Q for this MDP are as follows, ∀n ≥ 0:

Qn+1(s, a)
.
= Qn(s, a) + αν(n,s,a)δn(s, a)I{(s, a) ∈ Yn}, ∀s ∈ S, a ∈ A, (B.37)

R̄n+1
.
= R̄n +

∑
s,a

αr̄,ν(n,s,a)δn(s, a)I{(s, a) ∈ Yn}, (B.38)

Zi,n+1
.
= Zi,n +

∑
s,a

αzi,ν(n,s,a)βi,n(s, a)I{(s, a) ∈ Yn}, ∀zi ∈ Z (B.39)

where,

δn(s, a)
.
= R̃n(s, a)− R̄n +max

a′
Qn(S

′
n(s, a), a

′)−Qn(s, a)

= f(Rn(s, a), Z1,n, Z2,n, . . . , Zk,n)− R̄n +max
a′

Qn(S
′
n(s, a), a

′)−Qn(s, a),
(B.40)

and,

βi,n(s, a)
.
= ϕi,n(s, a)− Zi,n, ∀zi ∈ Z. (B.41)

Here, R̄n denotes the estimate of the average-reward (see Equation (2)), δn(s, a) denotes the TD
error, ϕi,n(s, a) denotes the (potentially-piecewise) subtask target, as defined in Section 5.1, and
αν(n,s,a), αr̄,ν(n,s,a), and αzi,ν(n,s,a) denote the step sizes at time step n for state-action pair (s, a).

We now show that the RED Q-learning algorithm is a special case of the General RED Q algorithm.
Consider a sequence of experience from our MDP, M̃: St, At, R̃t+1, St+1, . . . . Now recall the
set-valued process {Yn}. If we let n = time step t, we have:

Yt(s, a) =

{
1, s = St and a = At,

0, otherwise,

as well as S′
n(St, At) = St+1, Rn(St, At) = Rt+1, and R̃n(St, At) = R̃t+1.
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Hence, update rules (B.37), (B.38), (B.39), (B.40), and (B.41) become:

Qt+1(St, At)
.
= Qt(St, At) + αν(t,St,At)δt; Qt+1(s, a)

.
= Qt(s, a),∀s ̸= St, a ̸= At, (B.42)

R̄t+1
.
= R̄t + αr̄,ν(t,St,At)δt, (B.43)

Zi,t+1
.
= Zi,t + αzi,ν(t,St,At)βi,t, ∀zi ∈ Z, (B.44)

δt
.
= R̃t+1 − R̄t +max

a′
Qt(St+1, a

′)−Qt(St, At),

= f(Rt+1, Z1,t, Z2,t, . . . , Zk,t)− R̄t +max
a′

Qt(St+1, a
′)−Qt(St, At),

(B.45)

βi,t
.
= ϕi,t − Zi,t, ∀zi ∈ Z, (B.46)

which are RED Q-learning’s update rules with αν(t,St,At), αr̄,ν(t,St,At), and αzi,ν(t,St,At) denoting
the step sizes at time t.

We now specify the assumptions specific to General RED Q that are needed to ensure convergence.
We refer the reader to Wan et al. (2021) for an in-depth discussion on these assumptions:

Assumption B.11 (Communicating Assumption). The MDP has a single communicating class.
That is, each state in the MDP is accessible from every other state under some deterministic
stationary policy.

Assumption B.12 (State-Action Value Function Uniqueness). There exists a unique solution of q
only up to a constant in the Bellman equation (4).

Assumption B.13 (Asynchronous Step Size Assumption 3). There exists ∆ > 0 such that

lim inf
n→∞

ν(n, s, a)

n+ 1
≥ ∆,

a.s., for all s ∈ S, a ∈ A.

Furthermore, for all x > 0, and

N(n, x) = min

{
m > n :

m∑
i=n+1

αi ≥ x

}
,

the limit

lim
n→∞

∑ν(N(n,x),s,a)
i=ν(n,s,a) αi∑ν(N(n,x),s′,a′)
i=ν(n,s′,a′) αi

exists a.s. for all s, s′, a, a′.

Having stated the necessary assumptions, we next point out that it is easy to verify that under As-
sumption B.11, the following system of equations:

q∗(s, a) =
∑
s′,r̃

p̃(s′, r̃ | s, a)(r̃ − r̄∗ +max
a′

q∗(s, a)), ∀s ∈ S, a ∈ A

=
∑
s′,r

p(s′, r | s, a)(f(r, z1∗ , z2∗ , . . . , zk∗)− r̄∗ +max
a′

q∗(s, a)), ∀s ∈ S, a ∈ A,

(B.47)
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and,

r̄∗ − R̄0 = ηr

(∑
q∗ −

∑
Q0

)
, (B.48)

zi∗ − Zi,0 = ηi

(∑
q∗ −

∑
Q0

)
, ∀zi ∈ Z, (B.49)

has a unique solution for q∗, where r̄∗ denotes the optimal average-reward, and zi∗ denotes the
corresponding optimal subtask value for subtask zi ∈ Z . Denote this unique solution solution of q∗
as q∞.

We are now ready to state the convergence theorem:

Theorem B.2.1 (Convergence of General RED Q). If Assumptions B.3, B.4, B.6, B.7, B.8, B.9, B.10,
B.11, B.12, and B.13 hold, then the General RED Q algorithm (Equations B.37–B.41) converges a.s.
R̄n to r̄∗, Zi,n to zi∗ ∀zi ∈ Z , r̄πt to r̄∗, zi,πt to zi∗ ∀zi ∈ Z , and Qn to q∞, where πt is any greedy
policy with respect to Qt, and zi,πt

denotes the subtask value induced by following policy πt.

We prove this theorem in Sections B.2.1 and B.2.2. To do so, we first show that General RED Q is of
the same form as General Differential Q from Wan et al. (2021), thereby allowing us to apply their
convergence results for the value function and average-reward estimates of General Differential Q
to General RED Q. We then build upon these results, using similar techniques as Wan et al. (2021),
to show that the subtask estimates converge as well.

B.2.1 Proof of Theorem B.2.1 (for Linear Subtask Functions)

We first provide the proof for linear subtask functions, where the reward-extended TD error
can be expressed as a constant, subtask-specific fraction of the regular TD error, such that
βi,n(s, a) = (−1/bi)δn(s, a). We consider the piecewise linear case in Section B.2.2.

Convergence of the value function and average-reward estimates:

Consider the increment to R̄n at each step. Given Assumption B.6, we can see from Equation (B.38)
that the increment is η

r
times the increment to Qn. As such, as was done in Wan et al. (2021), we

can write the cumulative increment as follows:

R̄n − R̄0 = ηr

n−1∑
j=0

∑
s,a

αν(j,s,a)δj(s, a)I{(s, a) ∈ Yj}

= η
r

(∑
Qn −

∑
Q0

)

=⇒ R̄n = η
r

∑
Qn − ηr

∑
Q0 + R̄0 = η

r

∑
Qn − cr, (B.50)

where cr
.
= ηr

∑
Q0 − R̄0. (B.51)

Similarly, consider the increment to Zi,n (for an arbitrary subtask zi ∈ Z) at each step. As per
Remark 5.1, and given Assumption B.6, we can write the increment in Equation (B.39) as some
constant, subtask-specific fraction of the increment to Qn. Consequently, we can write the cumula-
tive increment as follows:
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Zi,n − Zi,0 = ηzi

n−1∑
j=0

∑
s,a

αν(j,s,a)βi,j(s, a)I{(s, a) ∈ Yj}

= ηzi

n−1∑
j=0

∑
s,a

αν(j,s,a)(−1/bi)δj(s, a)I{(s, a) ∈ Yj}

= η
i

(∑
Qn −

∑
Q0

)

=⇒ Zi,n = η
i

∑
Qn − ηi

∑
Q0 + Zi,0 = η

i

∑
Qn − ci, (B.52)

where,

ci
.
= η

i

∑
Q0 − Zi,0, and (B.53)

η
i

.
= (−1/bi)ηzi . (B.54)

Now consider the subtask function, f . At any given time step, the subtask function can be written
as: fn = R̃n(s, a) = brRn(s, a) + b0 + b1Z1,n + . . .+ bkZk,n, where br, b0 ∈ R and bi ∈ R \ {0}.
Given Equation (B.52), we can write the subtask function as follows:

fn = brRn(s, a) + b0 + b1(η1

∑
Qn − c1) + . . .+ bk(ηk

∑
Qn − ck)

= brRn(s, a) + η
f

∑
Qn − cf , (B.55)

where, η
f
=

∑k
j=1 bjηj

and cf =
∑k

j=1 bjcj − b0.

As such, we can substitute R̄n and Zi,n ∀zi ∈ Z in (B.37) with (B.50) and (B.55), respectively,
∀s ∈ S, a ∈ A, which yields:

Qn+1(s, a) = Qn(s, a) + . . .

αν(n,s,a)

(
brRn(s, a) + max

a′
Qn(S

′
n(s, a), a

′)−Qn(s, a)− ηr

∑
Qn + cr + η

f

∑
Qn − cf

)
I{(s, a) ∈ Yn}

Qn+1(s, a) = Qn(s, a) + . . .

αν(n,s,a)

(
brRn(s, a) + max

a′
Qn(S

′
n(s, a), a

′)−Qn(s, a)− ηT

∑
Qn + c

T

)
I{(s, a) ∈ Yn}

Qn+1(s, a) = Qn(s, a) + . . .

αν(n,s,a)

(
R̂n(s, a) + max

a′
Qn(S

′
n(s, a), a

′)−Qn(s, a)− ηT

∑
Qn

)
I{(s, a) ∈ Yn},

(B.56)

where η
T
= η

r
− η

f
, c

T
= cr − cf , and R̂n(s, a)

.
= brRn(s, a) + c

T
.
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Equation (B.56) is now in the same form as Equation (B.14) (i.e., General Differential Q) from Wan
et al. (2021), who showed that the equation converges a.s. Qn to q∞ as n → ∞. Moreover, from
this result, Wan et al. (2021) showed that R̄n converges a.s. to r̄∗ as n→∞, and that r̄πt

converges
a.s. to r̄∗, where πt is a greedy policy with respect to Qt. Given that General RED Q adheres to
all the assumptions listed for General Differential Q in Wan et al. (2021), these convergence results
apply to General RED Q.

Convergence of the subtask estimates:

Consider Equation (B.56). We can rewrite this equation, ∀s ∈ S, a ∈ A, as follows:

Qn+1(s, a) = Qn(s, a) + . . .

αν(n,s,a)

(
brRn(s, a) + η

f

∑
Qn + c

T
− η

r

∑
Qn +max

a′
Qn(S

′
n(s, a), a

′)−Qn(s, a)
)
I{(s, a) ∈ Yn}

Qn+1(s, a) = Qn(s, a) + . . .

αν(n,s,a)

(
R̂n(s, a) + c

T
− η

r

∑
Qn +max

a′
Qn(S

′
n(s, a), a

′)−Qn(s, a)
)
I{(s, a) ∈ Yn},

(B.57)

where,

R̂n(s, a)
.
= brRn(s, a) + η

f

∑
Qn (B.58)

= brRn(s, a) + b1(η1

∑
Qn) + . . .+ bk(ηk

∑
Qn) (B.59)

.
= brRn(s, a) + b1Ẑ1,n + . . .+ bkẐk,n. (B.60)

Now consider an MDP, M̂, which has rewards, R̂, as defined in Equation (B.58), has the same state
and action spaces as M̃, and has the transition probabilities defined as:

p̂(s′, r̂ | s, a) .= p(s′, r | s, a) (B.61)
= p̃(s′, r̃ | s, a) (by Definition 5.1), (B.62)

such that M̂ .
= ⟨S,A, R̂, p̂⟩. It is easy to check that the communicating assumption holds for the

MDP, M̂. Moreover, given Equation (B.57) and Assumptions B.7 and B.8, the optimal average-
reward for the MDP, M̂, ˆ̄r∗, can be written as follows:

ˆ̄r∗ = r̄∗ − cT . (B.63)

Now, because

q∞(s, a) =
∑
s′,r̃

p̃(s′, r̃ | s, a)(r̃ − r̄∗ +max
a′

q∞(s′, a′)) (from (B.47))

=
∑
s′,r̃

p̃(s′, r̃ | s, a)(r̃ − (ˆ̄r∗ + c
T
) + max

a′
q∞(s′, a′)) (from (B.63))

=
∑
s′,r̃

p̃(s′, r̃ | s, a)(r̃ − c
T
− ˆ̄r∗ +max

a′
q∞(s′, a′))

=
∑
s′,r̃

p̃(s′, r̃ | s, a)(r̂ − ˆ̄r∗ +max
a′

q∞(s′, a′)) (from (B.57))

=
∑
s′,r̂

p̂(s′, r̂ | s, a)(r̂ − ˆ̄r∗ +max
a′

q∞(s′, a′)) (from (B.62)),
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we can see that q∞ is a solution of not just the state-action value Bellman optimality equation for
the MDP, M̃, but also the state-action value Bellman optimality equation for the MDP, M̂.

Next, consider an arbitrary ith subtask. As per Equations (B.59) and (B.60), we can write the optimal
subtask value for the MDP, M̂, ẑi∗ , as follows:

ẑi∗ = zi∗ + ci. (B.64)

We can then combine Equations (B.49), (B.52), and (B.64), which yields:

ẑi∗ = ηi

∑
q∞. (B.65)

Next, we can combine Equation (B.52) with the result from Wan et al. (2021) which shows that
Qn → q∞, which yields:

Zi,n → η
i

∑
q∞ − ci. (B.66)

Moreover, because η
i

∑
q∞ = ẑi∗ (Equation (B.65)), we have:

Zi,n → ẑi∗ − ci. (B.67)

Finally, because ẑi∗ = zi∗ + ci (Equation (B.64)), we have:

Zi,n → zi∗ a.s. as n→∞. (B.68)

We conclude by considering zi,πt ∀zi ∈ Z , where πt is a greedy policy with respect to Qt. Given
that Qt → q∞ and r̄πt → r̄∗, almost surely, it directly follows from Definition 5.1 that zi,πt →
zi∗ ∀zi ∈ Z , almost surely.

B.2.2 Proof of Theorem B.2.1 (for Piecewise Linear Subtask Functions)

We now provide the proof for piecewise linear subtask functions, where the reward-extended TD
error can be expressed as follows:

βi,n(s, a) =


(−1/b1i )

(
R̃1,n(s, a)− R̄n − δn(s, a)

)
, r0 ≤ Rn(s, a) < r1

...

(−1/bmi )
(
R̃m,n(s, a)− R̄n − δn(s, a)

)
, rm−1 ≤ Rn(s, a) ≤ rm

,

where ru ∈ R ∀u = 0, 1, . . . ,m, and r0 ≤ r1 ≤ . . . ≤ rm, such that r0, rm represent the lower
and upper bounds of the observed per-step reward, Rn(s, a), respectively. Our general strategy in
this case is to use a multiple-timescales argument, such that we leverage Theorem 2 in Section 6 of
Borkar (2009), along with the results from Theorems B.1 and B.2 of Wan et al. (2021).

To begin, let us consider Assumption B.10, which enables the formulation of a multiple-timescales
argument. In particular, the αz1,n/αn → 0, αz1,n/αr̄,n → 0, and {αzi,n/αzi−1,n → 0}ki=2 con-
ditions imply that the subtask step sizes, {αzi,n}∞n=0 ∀zi ∈ Z , decrease to 0 at faster rates than the
value function and average-reward step sizes, {αn}∞n=0 and {αr̄,n}∞n=0, respectively. This implies
that the subtask updates move on slower timescales compared to the value function and average-
reward updates. Hence, as argued in Section 6 of Borkar (2009), the (faster) value function and
average-reward updates, (B.37) and (B.38), view the (slower) subtask updates, (B.39), as quasi-
static, while the (slower) subtask updates view the (faster) value function and average-reward up-
dates as nearly equilibrated (as we will show below, the results from Wan et al. (2021) imply the
existence of such an equilibrium point). Similarly, the {αzi,n/αzi−1,n → 0}ki=2 condition implies
that each subtask update views the other subtask updates as either quasi-static or nearly-equilibrated.

As such, having established the multiple-timescales argument, we now proceed to show the conver-
gence of the value function, average-reward, and subtask estimates:
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Convergence of the value function and average-reward estimates:

Given the multiple-timescales argument, such that the subtask estimates are viewed as quasi-static
(i.e., constant), Equation (B.37) can be viewed as being of the same form as Equation (B.4) (i.e.,
General Differential Q) from Wan et al. (2021), who showed (via Theorem B.2) that the equation
converges a.s. Qn to q∞ as n → ∞. Moreover, from this result, Wan et al. (2021) showed that
R̄n converges a.s. to r̄∗ as n → ∞, and that r̄πt converges a.s. to r̄∗, where πt is a greedy policy
with respect to Qt. Given that General RED Q adheres to all the assumptions listed for General
Differential Q in Wan et al. (2021), these convergence results apply to General RED Q.

Convergence of the subtask estimates:

Let us consider the asynchronous subtask updates (B.39). Each update in (B.39) is of the same
form as Equation 7.1.2 of Borkar (2009). Accordingly, to show the convergence of the subtask
estimates, we can apply the result in Section 7.4 of Borkar (2009), which shows the convergence
of asynchronous updates that are of the same form as Equation 7.1.2. To apply this result, given
Assumptions B.4 and B.13, we only need to show the convergence of the synchronous version of
the subtask updates:

Zi,n+1 = Zi,n + αzi,n

(
gi(Zi,n) +Mzi

n+1

)
∀zi ∈ Z, (B.69)

where,

gi(Zi,n)(s, a)
.
=

∑
s′,r

p(s′, r | s, a)ϕi,n(s, a)− Zi,n,

ϕi,n(s, a)
.
=



− 1
b1i

(
b1rRn(s, a) + . . .+ b1i−1Zi−1,n + b1i+1Zi+1,n + . . .+ b1kZk,n − R̄n − δn(s, a)

)
, . . .

. . . , r0 ≤ Rn(s, a) < r1,
...
− 1

bmi

(
bmr Rn(s, a) + . . .+ bmi−1Zi−1,n + bmi+1Zi+1,n + . . .+ bmk Zk,n − R̄n − δn(s, a)

)
, . . .

. . . , rm−1 ≤ Rn(s, a) ≤ rm,

,

Mzi
n+1(s, a)

.
= (ϕi,n(s, a)− Zi,n)− gi(Zi,n)(s, a).

To show the convergence of the synchronous update (B.69) under the multiple-timescales argument,
we can apply the result of Theorem 2 in Section 6 of Borkar (2009) to show that Zi,n → zi∗∀zi ∈ Z
a.s. as n → ∞. This theorem requires that 3 assumptions be satisfied. As such, we will now show,
via Lemmas B.4 - B.6, that these 3 assumptions are indeed satisfied:

Lemma B.4. The value function update, Qn+1 = Qn + αn(h(Qn) +Mn+1), where

h(Qn)(s, a)
.
=

∑
s′,r̃

p̃(s′, r̃ | s, a)(r̃ − R̄n +max
a′

Qn(s
′, a′)−Qn(s, a)),

=
∑
s′,r

p(s′, r | s, a)(f(r, Z1,n, Z2,n, . . . , Zk,n)− ψ(Qn) + max
a′

Qn(s
′, a′)−Qn(s, a)),

Mn+1(s, a)
.
=

(
R̃n(s, a)− ψ(Qn) + max

a′
Qn(S

′
n(s, a), a

′)−Qn(s, a)
)
− h(Qn)(s, a),

ψ(Qn) = R̄n is a ‘reference function’ as defined in Wan et al. (2021), and

Z1,n, Z2,n, ..., Zk,n are quasi-static under the multiple-timescales argument,

has a globally asymptotically stable equilibrium, q∞(Z1,n, Z2,n, . . . , Zk,n), where q∞ is a Lipschitz
map.

Proof. This was shown in Theorem B.2 of Wan et al. (2021).
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Lemma B.5. The subtask update rules (B.69) each have a globally asymptotically stable equilib-
rium, zi∗ .

Proof. Let us begin by considering the ‘fastest’ subtask, Z1,n, under the multiple-timescales argu-
ment, such that all other subtasks, Z2,n, . . . , Zk,n, operate on slower timescales and can be con-
sidered quasi-static. Applying the results of Theorems B.1 and B.2 of Wan et al. (2021) under the
multiple-timescales argument, we have that: h(Qn) → 0 and R̄n → r̄∗ as Qn → q∞. Importantly,
as argued in Section 5, h(Qn)→ 0 implies that δn(s, a)→ λj ∈ R for each jth piecewise segment
in ϕi,n(s, a). As such, we can interpret Z1,n as being the only ‘moving’ variable in g1(Z1,n), such
that all other parameters in the update are static, quasi-static, or nearly-equilibrated.

Let us now consider the ODE associated with g1(Z1,n),

ẋt = g1(xt). (B.70)

To show that the update rule for Z1,n has a globally asymptotically stable equilibrium, z1∗ , it suffices
to show that there exists a Lyapunov function for the associated ODE (B.70).

To this end, we first note, given the discussion in Section 5, that z1∗ is an equilibrium point for the
update rule associated with Z1,n. Moreover, given Assumptions B.9, B.11, and B.12, we know that
z1∗ is the unique equilibrium point.

We now show the existence of a Lyapunov function with respect to the aforementioned equilibrium
point, z1∗ . In particular, we consider the function, L, defined by:

L(Z1) =
1

2
(Z1 − z1∗)2.

To establish that L is a Lyapunov function, we must show that:

1. L is continuous,

2. L(Z1) = 0 if Z1 = z1∗ ,

3. L(Z1) > 0 if Z1 ̸= z1∗ , and

4. For any solution {xt}t≥0 of the associated ODE (B.70) and 0 ≤ s < t, we have L(xt) < L(xs)
for all xs ̸= z1∗ .

It directly follows from the definition of L that the first three conditions are satisfied.

We now show that fourth condition is also satisfied:

Let {xt}t≥0 be a solution to the associated ODE (B.70), and let 0 ≤ s < t. By the chain rule, we
have that:

d

dt
L(xt) =

∂L

∂xt
· dxt
dt

= (xt− z1∗) · g1(xt) = (xt− z1∗) · (Eπ[ϕ1]−xt) = (xt− z1∗) · (z1∗ −xt).
(B.71)

We will now analyze the sign of the term (xt−z1∗) · (z1∗ −xt) when xt ̸= z1∗ . There are two cases
to consider:

Case 1: xt > z1∗ : We have that (xt − z1∗) > 0 and (z1∗ − xt) < 0. Hence, we can conclude that
(xt − z1∗) · (z1∗ − xt) < 0.

Case 2: xt < z1∗ : We have that (xt − z1∗) < 0 and (z1∗ − xt) > 0. Hence, we can conclude that
(xt − z1∗) · (z1∗ − xt) < 0.

As such, in both cases we can conclude that (xt − z1∗) · (z1∗ − xt) < 0, which implies that
L(xt) < L(xs) for all xs ̸= z1∗ and 0 ≤ s < t.
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As such, we have now verified the four conditions, and can therefore conclude that L is a valid
Lyapunov function. Consequently, we can conclude, under the multiple-timescales argument, that
Z1,n has a globally asymptotically stable equilibrium, z1∗ .

Critically, we can leverage the above result to show, using the same techniques as above, that Z2,n

has a globally asymptotically stable equilibrium, z2∗ , where Qn, R̄n, and Z1,n are considered to be
nearly equilibrated, and all remaining subtasks are considered quasi-static. The process can then be
repeated for Z3,n and so forth, thereby showing that the subtask update rules (B.69) each have a
globally asymptotically stable equilibrium, zi∗ . This completes the proof.

Lemma B.6. supn(||Qn||+ ||Z1,n||) + ||Z2,n||+ . . .+ ||Zk,n||) <∞ a.s.

Proof. It was shown in Theorem B.2 of Wan et al. (2021) that supn(||Qn||) < ∞ a.s. Hence, we
only need to show that supn(||Zi,n||) < ∞ ∀zi ∈ Z a.s. To this end, we can apply Theorem 7 in
Section 3 of Borkar (2009). This theorem requires 4 assumptions for each zi ∈ Z:

• (A1) The function gi is Lipschitz. That is, ||gi(x)− gi(y)|| ≤ Ui||x− y|| for some 0 < Ui <∞.

• (A2) The sequence {αzi,n}∞n=0 satisfies αzi,n > 0 ∀n ≥ 0,
∑
αzi,n =∞, and

∑
α2
zi,n <∞.

• (A3) {Mzi
n }∞n=0 is a martingale difference sequence that is square-integrable.

• (A4) The functions gi(x)d
.
= gi(dx)/d, d ≥ 1, x ∈ R, satisfy gi(x)d → gi(x)∞ as d → ∞,

uniformly on compacts for some gi∞ ∈ C(R). Furthermore, the ODE ẋt = gi(xt)∞ has the
origin as its unique globally asymptotically stable equilibrium.

Consider an arbitrary ith subtask. We note that Assumption (A1) is satisfied given that all operators
in gi are Lipschitz. Moreover, we note that Assumption B.3 satisfies Assumption (A2).

We now show that {Mzi
n }∞n=0 is indeed a martingale difference sequence that is square-integrable,

such that Eπ[M
zi
n+1 | Fn] = 0 a.s., n ≥ 0, and Eπ[(M

zi
n+1)

2 | Fn] < ∞ a.s., n ≥ 0. To this
end, let Fn

.
= σ(Zi,u,M

zi
u , u ≤ n), n ≥ 0 denote an increasing family of σ-fields. We have that,

for any s ∈ S and a ∈ A: Eπ[M
zi
n+1(s, a) | Fn] = Eπ [ϕi,n(s, a)− Zi,n] − gi(Zi,n)(s, a) = 0.

Moreover, since all components of {Mzi
n }∞n=0 involve bounded quantities, it directly follows that

E[||Mzi
n+1||2 | Fn] ≤ K for some finite constant K > 0. Hence, Assumption (A3) is verified.

We now verify Assumption (A4). Under the multiple-timescales argument, we have that:

gi(x)∞ = lim
d→∞

gi(x)d = lim
d→∞

Eπ [ϕi]− dx
d

= 0− x = −x. (B.72)

Clearly, gi(x)∞ is continuous in every x ∈ R. As such, we have that gi(x)∞ ∈ C(R). Now consider
the ODE ẋ = gi(x)∞. This ODE has the origin as an equilibrium since gi(0)∞ = 0. Furthermore,
given Lemma B.5, we can conclude that this equilibrium must be the unique globally asymptotically
stable equilibrium, thereby satisfying Assumption (A4).

Assumptions (A1) - (A4) are hence verified, meaning that we can apply the results of Theorem 7 in
Section 3 of Borkar (2009) to conclude that supn(||Zi,n||) <∞ ∀zi ∈ Z , almost surely, and hence,
that supn(||Qn||+ ||Z1,n||) + ||Z2,n||+ . . .+ ||Zk,n||) <∞, almost surely.

As such, we have now verified the 3 assumptions required by Theorem 2 in Section 6 of Borkar
(2009), which means that we can apply the result of the theorem to conclude that Zi,n → zi∗ ∀zi ∈
Z a.s. as n→∞.

Finally, as was done in the proof for linear subtask functions, we conclude the proof by considering
zi,πt

∀zi ∈ Z , where πt is a greedy policy with respect to Qt. Given that Qt → q∞ and r̄πt
→ r̄∗,

almost surely, it directly follows from Definition 5.1 that zi,πt
→ zi∗ ∀zi ∈ Z , almost surely.

This completes the proof of Theorem B.2.1.



Reinforcement Learning Journal 2025

C Leveraging the RED RL Framework for CVaR Optimization

This appendix contains details regarding the adaptation of the RED RL framework for CVaR opti-
mization. We first derive an appropriate subtask function, then use it to adapt the RED RL algorithms
(see Appendix A) for CVaR optimization. In doing so, we arrive at the RED CVaR algorithms, which
are presented in full at the end of this appendix. These RED CVaR algorithms allow us to optimize
CVaR (and VaR) without the use of an augmented state-space or an explicit bi-level optimization.
We also provide a convergence proof for the tabular RED CVaR Q-learning algorithm, which shows
that the VaR and CVaR estimates converge to the optimal long-run VaR and CVaR, respectively.

C.1 A Subtask-Driven Approach for CVaR Optimization

In this section, we use the RED RL framework to derive a subtask-driven approach for CVaR op-
timization that does not require an augmented state-space or an explicit bi-level optimization. To
begin, let us consider Equation (7), which is displayed below as Equation (C.1) for convenience:

CVaRτ (Rt) = sup
y∈R

E[y − 1

τ
(y −Rt)

+] (C.1a)

= E[VaRτ (Rt)−
1

τ
(VaRτ (Rt)−Rt)

+], (C.1b)

where τ ∈ (0, 1) denotes the CVaR parameter, and Rt denotes the observed per-step reward.

We can see from Equation (C.1) that CVaR can be interpreted as an expectation (or average) of
sorts, which suggests that it may be possible to leverage the average-reward MDP to optimize this
expectation, by treating the reward CVaR as the average-reward, r̄π , that we want to optimize.
However, this requires that we know the optimal value of the scalar, y, because the expectation in
Equation (C.1b) only holds for this optimal value (which corresponds to the per-step reward VaR).
Unfortunately, this optimal value is typically not known beforehand, so in order to optimize CVaR,
we also need to optimize y.

Importantly, we can utilize RED RL framework to turn the optimization of y into a subtask, such
that CVaR is the primary control objective (i.e., the r̄π that we want to optimize), and VaR (y in
Equation (C.1)), is the (single) subtask. This is in contrast to existing MDP-based methods, which
typically leverage Equation (C.1) when optimizing for CVaR by augmenting the state-space with a
state that corresponds (either directly or indirectly) to an estimate of VaRτ (Rt) (in this case, y), and
solving the bi-level optimization shown in Equation (8), thereby increasing computational costs.

To utilize the RED RL framework, we first need to derive a valid subtask function for CVaR that
satisfies the requirements of Definition 5.1. To this end, let us consider Equation (C.1). In particular,
we can see that if we treat the expression inside the expectation in Equation (C.1) as our subtask
function, f (see Definition 5.1), then we have a piecewise linear subtask function that is invertible
with respect to each input given all other inputs, where the subtask, VaR, is independent of the
observed per-step reward. Hence, we can adapt Equation (C.1) as our subtask function (given that is
satisfies Definition 5.1), as follows:

R̃t = VaR− 1

τ
(VaR−Rt)

+, (C.2)

where Rt is the observed per-step reward, R̃t is the extended per-step reward, VaR is the value-
at-risk of the observed per-step reward, and τ is the CVaR parameter. Importantly, this is a valid
subtask function with the following properties: the average (or expected value) of the extended
reward corresponds to the CVaR of the observed reward, and the optimal average of the extended
reward corresponds to the optimal CVaR of the observed reward. This is formalized as Corollaries
C.1 - C.4 below:
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Corollary C.1. The function presented in Equation (C.2) is a valid subtask function.

Proof. The function presented in Equation (C.2) is clearly a piecewise linear function that is invert-
ible with respect to each input given all other inputs. Moreover, the subtask, VaR, is independent of
the observed per-step reward. Hence, this function satisfies Definition 5.1 for the subtask, VaR.

Corollary C.2. If the subtask, VaR (from Equation (C.2)) is estimated, and such an estimate is
equal to the long-run VaR of the observed per-step reward, then the average (or expected value) of
the extended reward, R̃t, from Equation (C.2) is equal to the long-run CVaR of the observed per-step
reward.

Proof. This follows directly from Equation (C.1b).

Corollary C.3. If the subtask, VaR (from Equation (C.2)) is estimated, and the resulting average
of the extended reward from Equation (C.2) is equal to the long-run CVaR of the observed per-step
reward, then the VaR estimate is equal to the long-run VaR of the observed per-step reward.

Proof. This follows directly from Equation (C.1b).

Corollary C.4. A policy that yields an optimal long-run average of the extended reward, R̃t, from
Equation (C.2) is a CVaR-optimal policy. In other words, the optimal long-run average of the
extended reward corresponds to the optimal long-run CVaR of the observed reward.

Proof. For a given policy, we know from Equation (C.1a) that, across a range of VaR estimates, the
best possible long-run average of the extended reward for that policy corresponds to the long-run
CVaR of the observed reward for that same policy. Hence, the best possible long-run average of the
extended reward that can be achieved across various policies and VaR estimates, corresponds to the
optimal long-run CVaR of the observed reward.

As such, we now have a subtask function with a single subtask, VaR, and an extended reward whose
average, when optimized, corresponds to the optimal CVaR of the observed reward. We are now
ready to apply the RED RL framework. First, we can derive the reward-extended TD error update
for our subtask, VaR, using the methodology outlined in Section 5.1, where, in this case, we have a
piecewise linear subtask function with two segments. To this end, if we assume that the CDF of the
per-step reward distribution is continuous at VaRτ (Rt+1), the resulting subtask update is as follows:

VaRt+1 =

{
VaRt + αVaR,t (δt + CVaRt − VaRt) , Rt+1 ≥ VaRt

VaRt + αVaR,t

((
τ

τ−1

)
δt + CVaRt − VaRt

)
, Rt+1 < VaRt

, (C.3)

where δt is the regular TD error, and αVaR,t is the step size.

Note that to derive the update (C.3), we used the fact that when Rt+1 < VaRτ (Rt+1) and the CDF
of the per-step reward distribution is continuous at VaRτ (Rt+1), we have that

E[VaRτ (Rt+1)−
1

τ
(VaRτ (Rt+1)−Rt+1) | Rt+1 < VaRτ (Rt+1)] (C.4a)

= VaRτ (Rt+1)−
1

τ
(VaRτ (Rt+1)− E[Rt+1 | Rt+1 < VaRτ (Rt+1)]) (C.4b)

= VaRτ (Rt+1)−
1

τ
(VaRτ (Rt+1)− CVaRτ (Rt+1)). (C.4c)

With this update, we now have all the components needed to utilize the RED algorithms in Appendix
A to optimize CVaR (where CVaR corresponds to the r̄π that we want to optimize). We call these
CVaR-specific algorithms, the RED CVaR algorithms. The full algorithms are included at the end of
this appendix.
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We now present the tabular RED CVaR Q-learning algorithm, along with a corresponding theorem
and convergence proof which shows that the VaR and CVaR estimates converge to the optimal long-
run VaR and CVaR of the observed reward, respectively:

RED CVaR Q-learning algorithm (tabular): We update a table of estimates, Qt : S × A → R
as follows:

R̃t+1 = VaRt −
1

τ
(VaRt −Rt+1)

+ (C.5a)

δt = R̃t+1 − CVaRt +max
a

Qt(St+1, a)−Qt(St, At) (C.5b)

Qt+1(St, At) = Qt(St, At) + αtδt (C.5c)
Qt+1(s, a) = Qt(s, a), ∀s, a ̸= St, At (C.5d)
CVaRt+1 = CVaRt + αCVaR,tδt (C.5e)

VaRt+1 =

{
VaRt + αVaR,t (δt + CVaRt − VaRt) , Rt+1 ≥ VaRt

VaRt + αVaR,t

((
τ

τ−1

)
δt + CVaRt − VaRt

)
, Rt+1 < VaRt

, (C.5f)

where Rt denotes the observed reward, VaRt denotes the VaR estimate, CVaRt denotes the CVaR
estimate, δt denotes the TD error, and αt, αCVaR,t, and αVaR,t denote the step sizes.

Theorem C.1.1. The RED CVaR Q-learning algorithm (C.5) converges, almost surely, CVaRt to
CVaR∗, VaRt to VaR∗, CVaRπt

to CVaR∗, VaRπt
to VaR∗, and Qt to a solution of q in the Bellman

Equation (4), up to an additive constant, c, where πt is any greedy policy with respect to Qt, if the
following assumptions hold: 1) the MDP is communicating, 2) the solution of q in (4) is unique up
to a constant, 3) the step sizes are in accordance with Assumptions B.3, B.4, B.6, B.10, and B.13, 4)
Qt is updated an infinite number of times for all state-action pairs, such that the ratio of the update
frequency of the most-updated state–action pair to the least-updated state–action pair is finite, 5) the
subtask function outlined in Equation (C.2) is in accordance with Definition 5.1, 6) there is a unique
solution to the CVaR optimization (C.1), and 7) the CDF of the limiting per-step reward distribution
is continuous at VaRτ (Rt+1).

Proof. By definition, the RED CVaR Q-learning algorithm (C.5) is of the form of the generic RED
Q-learning algorithm (16), where CVaRt corresponds to R̄t and VaRt corresponds toZi,t for a single
subtask. We also know from Corollary C.1 that the subtask function used is valid. Hence, Theorem
5.3 applies, such that:

i) CVaRt and CVaRπt converge a.s. to the optimal long-run average, r̄∗, of the extended reward
from the subtask function (i.e., the optimal long-run average of R̃t),

ii) VaRt and VaRπt
converge a.s. to the corresponding optimal subtask value, z∗, and

iii) Qt converges to a solution of q in the Bellman Equation (4),

all up to an additive constant, c.

Hence, to complete the proof, we need to show that r̄∗ = CVaR∗ and z∗ = VaR∗:

From Corollary C.4 we know that the optimal long-run average of the extended reward corresponds
to the optimal long-run CVaR of the observed reward, hence we can conclude that r̄∗ = CVaR∗.
Finally, from Corollary C.3 we can deduce that since CVaRt converges a.s. to CVaR∗, then z∗ must
correspond to VaR∗. This completes the proof.

As such, with the RED CVaR Q-learning algorithm, we now have a way to optimize the long-run
CVaR (and VaR) of the observed reward without the use of an augmented state-space, or an explicit
bi-level optimization. See Section 6 and Appendix D for empirical results obtained when using the
RED CVaR algorithms.
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C.2 Additional Commentary

We now provide additional commentary on the subtask-driven approach for CVaR optimization:

Remark C.1. In the above analysis, we made the assumption that the CDF of the limiting per-step
reward distribution is continuous at VaRτ (Rt+1), thereby yielding a simpler update (i.e., Equation
(C.3)) for the subtask, VaR. We note that this assumption was made for simplicity and convenience,
and that an equivalent analysis could be conducted for a more generic VaR update (that does not
make the aforementioned assumption) to yield the same theoretical conclusion as Theorem C.1.1.
Moreover, as shown empirically in Section 6 and Appendix D, we found that using the simplified
version of the VaR update (C.3) yielded strong performance.

Remark C.2. A natural question to ask could be whether we can extend the above convergence
results to the prediction case. In other words, can we show that a tabular RED CVaR TD-learning
algorithm will converge to the long-run VaR and CVaR of the observed reward induced by following
a given policy? It turns out that, because we are not optimizing the expectation in Equation (C.1a)
when doing prediction (we are only learning it), we cannot guarantee that we will eventually find the
optimal VaR estimate, which implies that we may not recover the CVaR value (since Equation (C.1b)
only holds to the optimal VaR value). However, this is not to say that a RED CVaR TD-learning
algorithm has no use; in fact, we do use such an algorithm as part of an actor-critic architec-
ture for optimizing CVaR in the inverted pendulum experiment (see Appendix D). Empirically, as
discussed in Section 6, we find that this actor-critic approach is able to find the optimal CVaR policy.

Remark C.3. It should be noted that in the risk measure literature, risk measures are typically
classified into two categories: static or dynamic. This classification is based on the time consistency
of the risk measure that one aims to optimize (Boda and Filar, 2006). Curiously, in our case,
the CVaR risk measure that we aim to optimize does not seem to fit into either category perfectly.
In particular, one could make the argument that the CVaR that we aim to optimize most closely
resembles the static category, given that there is some time inconsistency before t→∞. Conversely,
one could make a different argument that the CVaR that we aim to optimize most closely resembles
the dynamic category, given that, as per Theorem 1 of Xia et al. (2023), an optimal deterministic
stationary policy exists (unlike the static case; see Bäuerle and Ott (2011)). We note that this does
not affect the significance of our results, but rather suggests that a third category of risk measures
may be needed to capture such nuances that occur in the average-reward setting.
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C.3 RED CVaR Algorithms

Below is the pseudocode for the RED CVaR algorithms.

Algorithm 5 RED CVaR Q-Learning (Tabular)

Input: the policy π to be used (e.g., ε-greedy)
Algorithm parameters: step size parameters α, αCVaR , αVaR ; CVaR parameter τ
Initialize Q(s, a) ∀s, a (e.g. to zero)
Initialize CVaR arbitrarily (e.g. to zero)
Initialize VaR arbitrarily (e.g. to zero)
Obtain initial S
while still time to train do
A← action given by π for S
Take action A, observe R,S′

R̃ = VaR− 1
τ max{VaR−R, 0}

δ = R̃− CVaR +maxaQ(S′, a)−Q(S,A)
Q(S,A) = Q(S,A) + αδ
CVaR = CVaR + αCVaRδ
if R ≥ VaR then

VaR = VaR + αVaR(δ + CVaR− VaR)
else

VaR = VaR + αVaR

((
τ

τ−1

)
δ + CVaR− VaR

)
end if
S = S′

end while
return Q

Algorithm 6 RED CVaR Actor-Critic

Input: a differentiable state-value function parameterization v̂(s,w); a differentiable policy pa-
rameterization π(a | s,θ)
Algorithm parameters: step size parameters α, απ , αCVaR , αVaR ; CVaR parameter τ
Initialize state-value weights w ∈ Rd and policy weights θ ∈ Rd′

(e.g. to 0)
Initialize CVaR arbitrarily (e.g. to zero)
Initialize VaR arbitrarily (e.g. to zero)
Obtain initial S
while still time to train do
A ∼ π(· | S,θ)
Take action A, observe R,S′

R̃ = VaR− 1
τ max{VaR−R, 0}

δ = R̃− CVaR + v̂(S′,w)− v̂(S,w)
w = w + αδ∇v̂(S,w)
θ = θ + απδ∇lnπ(A | S,θ)
CVaR = CVaR + αCVaRδ
if R ≥ VaR then

VaR = VaR + αVaR(δ + CVaR− VaR)
else

VaR = VaR + αVaR

((
τ

τ−1

)
δ + CVaR− VaR

)
end if
S = S′

end while
return w, θ
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D Numerical Experiments

This appendix contains details regarding the numerical experiments performed as part of this work.
We discuss the experiments performed in the red-pill blue-pill environment (see Appendix E for
more details on the red-pill blue-pill environment), as well as the experiments performed in the
well-known inverted pendulum environment.

Figure D.1: An illustration of the a) red-pill blue-pill, and b) inverted pendulum environments.

The aim of the experiments was to contrast and compare the RED CVaR algorithms (see Appendix
C) with the Differential algorithms from Wan et al. (2021) in the context of risk-aware decision-
making. In particular, we aimed to show how the RED CVaR algorithms could be utilized to op-
timize for CVaR (without the use of an augmented state-space or an explicit bi-level optimization
scheme), and contrast the results to those of the Differential algorithms, which served as a sort
of ‘baseline’ to illustrate how our risk-aware approach contrasts a risk-neutral approach. In other
words, we aimed to show whether our algorithms could successfully enable a learning agent to act
in a risk-aware manner instead of the usual risk-neutral manner.

In terms of the algorithms used, we used the RED CVaR Q-learning algorithm (Algorithm 5) in
the red-pill blue-pill experiment, and the RED CVaR Actor-Critic algorithm (Algorithm 6) in the
inverted pendulum experiment. In terms of the (risk-neutral) Differential algorithms used for com-
parison (see Appendix D.3 for the full algorithms), we used the Differential Q-learning algorithm
(Algorithm 7) in the red-pill blue-pill experiment, and the Differential Actor-Critic algorithm (Al-
gorithm 8) in the inverted pendulum experiment.

D.1 Red-Pill Blue-Pill Experiment

In the first experiment, we consider a two-state environment that we created for the purposes of
testing our algorithms. It is called the red-pill blue-pill environment (see Appendix D), where at
every time step an agent can take either a ‘red pill’, which takes them to the ‘red world’ state, or a
‘blue pill’, which takes them to the ‘blue world’ state. Each state has its own characteristic per-step
reward distribution, and in this case, for a sufficiently low CVaR parameter, τ , the red world state
has a per-step reward distribution with a lower (worse) mean but a higher (better) CVaR compared to
the blue world state. As such, this task allows us to answer the following question: can a RED CVaR
algorithm successfully enable the agent to learn a policy that prioritizes optimizing the reward CVaR
over the average-reward? In particular, we would expect that the RED CVaR Q-learning algorithm
enables the agent to learn a policy that prefers to stay in the red world, and that the (risk-neutral)
Differential Q-learning algorithm (from Wan et al. (2021)) enables the agent to learn a policy that
prefers to stay in the blue world. This task is illustrated in Figure D.1a).
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For this experiment, we ran both algorithms using various combinations of step sizes for each algo-
rithm. We used an ε-greedy policy with a fixed epsilon of 0.1, and a CVaR parameter, τ , of 0.25.
We set all initial guesses to zero. We ran the algorithms for 100k time steps.

For the Differential Q-learning algorithm, we tested every combination of the value function step
size, α ∈ {1/n, 2e-4, 2e-3, 2e-2, 2e-1} (where 1/n refers to a step size sequence that decreases
the step size according to the time step, n), with the average-reward step size, ηα, where η ∈
{1e-4, 1e-3, 1e-2, 1e-1, 1.0, 2.0}, for a total of 30 unique combinations. Each combination was run
50 times using different random seeds, and the results were averaged across the runs. The resulting
(averaged) average-reward over the last 1,000 time steps is displayed in Figure D.2. As shown in
the figure, a value function step size of 2e-4 and an average-reward η of 1.0 resulted in the highest
average-reward in the final 1,000 time steps in the red-pill blue-pill task. These are the parameters
used to generate the results displayed in Figure 3a).

Figure D.2: Step size tuning results for the red-pill blue-pill task when using the Differential Q-
learning algorithm. The average-reward in the final 1,000 steps is displayed for various combinations
of value function and average-reward step sizes.

For the RED CVaR Q-learning algorithm, we tested every combination of the value function step
size, α ∈ {1/n, 2e-4, 2e-3, 2e-2, 2e-1}, with the average-reward (in this case CVaR) step size,
αCVaR

.
= ηCVaRα, where ηCVaR ∈ {1e-4, 1e-3, 1e-2, 1e-1, 1.0, 2.0}, and the VaR step size, αVaR

.
= ηVaRα,

where ηVaR ∈ {1e-4, 1e-3, 1e-2, 1e-1, 1.0, 2.0}, for a total of 180 unique combinations. Each
combination was run 50 times using different random seeds, and the results were averaged across
the runs. A value function step size of 2e-2, an average-reward (CVaR) η of 1e-1, and a VaR η
of 1e-1 yielded the best results and were used to generate the results displayed in Figures 3a) and 4a).

Follow-up Experiment: Varying the CVaR Parameter

Given the results shown in Figure 3a), we can see that, with proper hyperparameter tuning, the
tabular RED CVaR Q-learning algorithm is able to reliably find the optimal CVaR policy for a CVaR
parameter, τ , of 0.25. In the context of the red-pill blue-pill environment, this means that the agent
learns to stay in the red world state because the state has a characteristic reward distribution with
a better (higher) CVaR compared to the blue world state. By contrast, the risk-neutral Differential
Q-learning algorithm yields an average-reward optimal policy that keeps the agent in the blue world
state because the state has a better (higher) average-reward compared to the red world state.

Now consider what would happen if we used the RED CVaR Q-learning algorithm with a τ of 0.99.
By definition, a CVaR corresponding to a τ ≈ 1.0 is equivalent to the average-reward. Hence, with
a τ of 0.99, we would expect that the optimal CVaR policy corresponds to staying in the blue world
state (since it has the better average-reward). This means that for some τ between 0.25 and 0.99,
there is a critical point where the CVaR-optimal policy changes from staying in the red world (let us
call this the red policy) to staying in the blue world state (let us call this the blue policy).
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Importantly, we can estimate this critical point using simple Monte Carlo (MC). We are able to
use MC in this case because both policies effectively stay in a single state (the red or blue world
state), such that the CVaR of the policies can be estimated by sampling the characteristic reward
distribution of each state, while accounting for the exploration ε. Figure D.3 shows the MC estimate
of the CVaR of the red and blue policies for a range of CVaR parameters, assuming an exploration
ε of 0.1. Note that we used the same distribution parameters listed in Appendix E for the red-pill
blue-pill environment. As shown in Figure D.3, this critical point occurs somewhere around τ ≈ 0.8.

Figure D.3: Monte Carlo estimates of the CVaR of the red and blue policies for a range of CVaR
parameters in the red-pill blue-pill environment.

As such, one way that we can further validate the tabular RED CVaR Q-learning algorithm is by
re-running the red-pill blue-pill experiment for different CVaR parameters, and seeing if the optimal
CVaR policy indeed changes at a τ ≈ 0.8. Importantly, this allows us to empirically validate whether
the algorithm actually optimizes at the desired risk level. When running this experiment, we used
the same hyperparameters used to generate the results in Figure 3a). We ran the experiment for
τ ∈ {0.1, 0.25, 0.5, 0.75, 0.85, 0.9}. For each τ , we performed 50 runs using different random
seeds, and the results were averaged across the runs.

Figure D.4: Rolling percent of time that the agent stays in the blue world state as learning progresses
when using the RED CVaR Q-learning algorithm in the red-pill blue-pill environment for a range of
CVaR parameters. A solid line denotes the mean percent of time spent in the blue world state, and
the corresponding shaded region denotes a 95% confidence interval over 50 runs.
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Figure D.4 shows the results of this experiment. In particular, the figure shows a rolling percent
of time that the agent stays in the blue world state as learning progresses (note that we used an
exploration ε of 0.1). From the figure, we can see that for τ ∈ {0.1, 0.25, 0.5, 0.75}, the agent
learns to stay in the red world state, and for τ ∈ {0.85, 0.9}, the agent learns to stay in the blue
world state. This is consistent with what we would expect, given that the critical point is τ ≈ 0.8.
Hence, these results further validate that our algorithm is able to optimize at the desired risk level.

D.2 Inverted Pendulum Experiment

In the second experiment, we consider the well-known inverted pendulum environment, where an
agent is tasked with learning how to optimally balance an inverted pendulum. We chose this task
because it provides us with the opportunity to test our algorithms in an environment where: 1)
we must use function approximation (given the high-dimensional state-space), and 2) where the
optimal CVaR policy and the optimal average-reward policy are the same policy (i.e., the policy that
best balances the pendulum will yield a limiting reward distribution with both the optimal average-
reward and reward CVaR). This hence allows us to directly compare the performance of our RED
CVaR algorithms to that of the regular Differential algorithms, as well as to gauge how function
approximation affects the performance of our algorithms. For this task, we utilized a simple actor-
critic architecture (Barto et al., 1983; Sutton and Barto, 2018) as this allowed us to compare the
performance of a (non-tabular) RED CVaR TD-learning algorithm with a (non-tabular) Differential
TD-learning algorithm. This task is illustrated in Figure D.1b).

For this experiment, we ran both algorithms using various combinations of step sizes for each algo-
rithm. We used a fixed CVaR parameter, τ , of 0.1. We set all initial guesses to zero. We ran the
algorithms for 100k time steps. For simplicity, we used tile coding (Sutton and Barto, 2018) for both
the value function and policy parameterizations, where we parameterized a softmax policy. For each
parameterization, we used 32 tilings, each with 8 X 8 tiles.

By using a linear function approximator (i.e., tile coding), the gradients for the value function and
policy parameterizations can be simplified as follows:

∇v̂(s,w) = x(s), (D.1)

∇lnπ(a | s,θ) = xh(s, a)−
∑
u∈A

π(u | s,θ)xh(s, u), (D.2)

where s ∈ S, a ∈ A, x(s) is the state feature vector, and xh(s, a) is the softmax preference vector.

For the Differential Actor-Critic algorithm, we tested every combination of the value function step
size, α ∈ {1/n, 2e-4, 2e-3, 2e-2} (where 1/n refers to a step size sequence that decreases the step
size according to the time step, n), with η’s for the average-reward and policy step sizes, ηα, where
η ∈ {1e-3, 1e-2, 1e-1, 1.0, 2.0}, for a total of 100 unique combinations. Each combination was
run 10 times using different random seeds, and the results were averaged across the runs. A value
function step size of 2e-3, a policy η of 2.0, and an average-reward η of 1e-2 yielded the best results
and were used to generate the results displayed in Figure 3b).

For the RED CVaR Actor-Critic algorithm, we tested every combination of the value function step
size, α ∈ {1/n, 2e-4, 2e-3, 2e-2}, with η’s for the average-reward (CVaR), VaR, and policy step
sizes, ηα, where η ∈ {1e-3, 1e-2, 1e-1, 1.0, 2.0}, for a total of 500 unique combinations. Each
combination was run 10 times using different random seeds, and the results were averaged across
the runs. A value function step size of 2e-3, a policy η of 1.0, an average-reward (CVaR) η of 1e-2,
and a VaR η of 1e-3 were used to generate the results displayed in Figures 3b) and 4b).
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D.3 Risk-Neutral Differential Algorithms

This section contains the pseudocode for the risk-neutral Differential algorithms used for comparison
in our experiments.

Algorithm 7 Differential Q-Learning (Tabular)

Input: the policy π to be used (e.g., ε-greedy)
Algorithm parameters: step size parameters α, η
Initialize Q(s, a) ∀s, a (e.g. to zero)
Initialize R̄ arbitrarily (e.g. to zero)
Obtain initial S
while still time to train do
A← action given by π for S
Take action A, observe R,S′

δ = R− R̄+maxaQ(S′, a)−Q(S,A)
Q(S,A) = Q(S,A) + αδ
R̄ = R̄+ ηαδ
S = S′

end while
return Q

Algorithm 8 Differential Actor-Critic

Input: a differentiable state-value function parameterization v̂(s,w); a differentiable policy pa-
rameterization π(a | s,θ)
Algorithm parameters: step size parameters α, ηπ , η

R̄

Initialize state-value weights w ∈ Rd and policy weights θ ∈ Rd′
(e.g. to 0)

Initialize R̄ arbitrarily (e.g. to zero)
Obtain initial S
while still time to train do
A ∼ π(· | S,θ)
Take action A, observe R,S′

δ = R− R̄+ v̂(S′,w)− v̂(S,w)
w = w + αδ∇v̂(S,w)
θ = θ + ηπαδ∇lnπ(A | S,θ)
R̄ = R̄+ η

R̄
αδ

S = S′

end while
return w, θ
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E Red-Pill Blue-Pill Environment

This appendix contains a Python implementation of the red-pill blue-pill environment introduced in
this work. The environment consists of a two-state MDP, where at every time step an agent can take
either a ‘red pill’, which takes them to the ‘red world’ state, or a ‘blue pill’, which takes them to the
‘blue world’ state. Each state has its own characteristic per-step reward distribution, and in this case,
for a sufficiently low CVaR parameter, τ , the red world state has a per-step reward distribution with
a lower (worse) mean but higher (better) CVaR compared to the blue world state. More specifically,
the red world state reward distribution is characterized as a gaussian distribution with a mean of -0.7
and a standard deviation of 0.05. Conversely, the blue world state is characterized by a mixture of
two gaussian distributions with means of -1.0 and -0.2, and standard deviations of 0.05. We assume
all rewards are non-positive. The Python implementation of the environment is provided below:

import pandas as pd
import numpy as np

c l a s s E n v i r o n m e n t R e d P i l l B l u e P i l l :
def _ _ i n i t _ _ ( s e l f , d i s t _ 2 _ m i x _ c o e f f i c i e n t = 0 . 5 ) :

# s e t d i s t r i b u t i o n p a r a m e t e r s
s e l f . d i s t _ 1 = { ’ mean ’ : −0 .7 , ’ s t d e v ’ : 0 . 0 5 }
s e l f . d i s t _ 2 a = { ’ mean ’ : −1 .0 , ’ s t d e v ’ : 0 . 0 5 }
s e l f . d i s t _ 2 b = { ’ mean ’ : −0 .2 , ’ s t d e v ’ : 0 . 0 5 }
s e l f . d i s t _ 2 _ m i x _ c o e f f i c i e n t = d i s t _ 2 _ m i x _ c o e f f i c i e n t

# s t a r t s t a t e
s e l f . s t a r t _ s t a t e = np . random . c h o i c e ( [ ’ r e d w o r l d ’ , ’ b l u e w o r l d ’ ] )

def e n v _ s t a r t ( s e l f , s t a r t _ s t a t e =None ) :
# r e t u r n i n i t i a l s t a t e
i f pd . i s n u l l ( s t a r t _ s t a t e ) :

re turn s e l f . s t a r t _ s t a t e
e l s e :

re turn s t a r t _ s t a t e

def e n v _ s t e p ( s e l f , s t a t e , a c t i o n , t e r m i n a l = F a l s e ) :
i f a c t i o n == ’ r e d _ p i l l ’ :

n e x t _ s t a t e = ’ r e d w o r l d ’
e l i f a c t i o n == ’ b l u e _ p i l l ’ :

n e x t _ s t a t e = ’ b l u e w o r l d ’

i f s t a t e == ’ r e d w o r l d ’ :
r eward = np . random . normal ( l o c = s e l f . d i s t _ 1 [ ’ mean ’ ] ,

s c a l e = s e l f . d i s t _ 1 [ ’ s t d e v ’ ] )
e l i f s t a t e == ’ b l u e w o r l d ’ :

d i s t = np . random . c h o i c e ( [ ’ d i s t 2 a ’ , ’ d i s t 2 b ’ ] ,
p =[ s e l f . d i s t _ 2 _ m i x _ c o e f f i c i e n t ,

1 − s e l f . d i s t _ 2 _ m i x _ c o e f f i c i e n t ] )
i f d i s t == ’ d i s t 2 a ’ :

r eward = np . random . normal ( l o c = s e l f . d i s t _ 2 a [ ’ mean ’ ] ,
s c a l e = s e l f . d i s t _ 2 a [ ’ s t d e v ’ ] )

e l i f d i s t == ’ d i s t 2 b ’ :
r eward = np . random . normal ( l o c = s e l f . d i s t _ 2 b [ ’ mean ’ ] ,

s c a l e = s e l f . d i s t _ 2 b [ ’ s t d e v ’ ] )

re turn min ( 0 , r eward ) , n e x t _ s t a t e , t e r m i n a l


