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Summary
While traditionally conceived as tools to improve the task performance of model-based rein-
forcement learning agents, recent work has proposed world models as a way to build controlled
virtual environments where AI agents can be thoroughly evaluated before deployment. The
efficacy of these approaches, however, critically relies on the ability of world models to ac-
curately represent real environments, which can result on high computational costs that may
substantially restrict testing capabilities. Drawing inspiration from the ‘brain in a vat’ thought
experiment, here we investigate methods to simplify world models that remain agnostic to the
agent under evaluation. Our results reveal a fundamental trade-off inherent to the construction
of world models related to their efficiency and interpretability. Building on this trade-off, we
develop approaches that either minimise memory usage, establish the limits on what is learn-
able, or enable retrodictive analyses tracking the causes of undesirable outcomes. Overall,
these results sheds light on the fundamental constraints that shape the design space of world
modelling for agent sandboxing and interpretability.

Contribution(s)
1. This paper conceptualises and formalises a novel problem: building efficient world models

for an operator to sandbox, evaluate, and interpret AI agents before deployment.
Context: Prior work (e.g. (Ha & Schmidhuber, 2018; Hafner et al., 2020)) focuses on
world models from the perspective of the agent using for boosting performance, and has not
considered this safety-inspired perspective.

2. We introduce generalised transducers based on quasi-probabilities, leading to a more effi-
cient approach to compress world models at the expense of their interpretability.
Context: Generalised transducers are an extension of generalised hidden Markov models,
which have been thoroughly studied in previous works (Upper, 1997; Vidyasagar, 2011).

3. We provide a unifying framework to investigate and reason about world models of beliefs,
and show that all models that can be calculated by an agent in real time can be bisimulated
into a canonical world model known as ϵ-transducer.
Context: The minimality of the ϵ-transducer among prescient rival partitions was proven
in (Barnett & Crutchfield, 2015), without investigating links with bisimulation or other con-
cepts from reinforcement learning. Relationships between bisimulation and other computa-
tional mechanics constructions were investigated by Zhang et al. (2019).

4. We introduce the notion of reverse interpretability, which is related to retrodictive analyses
that can identify the roots of undesirable outcomes.
Context: Standard interpretability approaches assess agents with respect to their capabili-
ties to predict and plan with respect to future events (Nanda et al., 2023; Gurnee & Tegmark,
2023; Shai et al., 2025).

5. We introduce the notion of reversible transducer, and identify necessary and sufficient con-
ditions for its construction. We also introduce and explore the notion of retrodictive beliefs.
Context: Retrodictive and reversible hidden Markov models have been investigated by El-
lison et al. (2009; 2011).
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Abstract
Recent work proposes to use world models as controlled virtual environments in which
AI agents can be tested before deployment to ensure their reliability and safety. How-
ever, accurate world models often have high computational demands that can severely
restrict the scope and depth of such assessments. Inspired by the classic ‘brain in a vat’
thought experiment, here we investigate ways of simplifying world models that remain
agnostic to the AI agent under evaluation. By following principles from computational
mechanics, our approach reveals a fundamental trade-off in world model construction
between efficiency and interpretability, demonstrating that no single world model can
optimise all desirable characteristics. Building on this trade-off, we identify procedures
to build world models that either minimise memory requirements, delineate the bound-
aries of what is learnable, or allow tracking causes of undesirable outcomes. In doing
so, this work establishes fundamental limits in world modelling, leading to actionable
guidelines that inform core design choices related to effective agent evaluation.

1 Introduction

Advances in deep reinforcement learning are progressively enabling AI agents capable of mastering
complex tasks across a wide array of domains (Arulkumaran et al., 2017; Wang et al., 2022), and a
new generation of agents leveraging large language models (Wang et al., 2024) and large multimodal
models (Yin et al., 2024) is expected to drive a new wave of technological innovation with the
potential to benefit all sectors of the global economy (Larsen et al., 2024). Alongside these benefits,
the proliferation of increasingly advanced autonomous AI systems will also bring important new
risks regarding their safety, controllability, and alignment with human values (Bengio et al., 2024;
Tang et al., 2024). Given these far-reaching prospects, it is imperative to develop frameworks and
methodologies to guarantee the safe and beneficial integration of these technologies to our societies.

One path to pursue AI safety and alignment is to use synthetic world models as sandbox envi-
ronments to evaluate AI agents without real-world consequences (Dalrymple et al., 2024; Díaz-
Rodríguez et al., 2023). These simulated environments are ideal for observing how AI agents handle
edge cases and respond to novel situations, potentially revealing safety issues or alignment failures
before deployment (He et al., 2024). The efficacy of this approach, however, critically relies on the
world model accurately representing relevant aspects of real environments, which is key for guar-
anteeing that the agent’s behaviour in simulation may transfer to real-world settings. Thus, a key
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challenge lies in dealing with the computational demands of high-fidelity simulations, whose costs
can impose heavy restrictions on the breadth and depth of safety and reliability assessments.

Here we address these issues by investigating the fundamental limits that shape the design of world
models. By bridging concepts from reinforcement learning, control theory, and computational me-
chanics, we identify a fundamental trade-off between the computational efficiency of a world model
and its interpretability. This approach also leads to the distinction between forward and reverse in-
terpretability approaches, where the former characterises the predictive capabilities of agents, and
the latter enables retrodictive analyses of the origins of undesirable outcomes. Overall, this work
establishes foundational groundwork that leads to actionable guidelines for building world models
to study AI agents following different desiderata.

2 Scenario and approach

Representation and what is represented belong to two completely different worlds.

Hermann von Helmholtz, Handbuch der physiologischen Optik (1867)

Consider the design of a world model to sandbox and test an AI agent (Dalrymple et al., 2024). What
should this world model look like? What information should it encode? And for what purpose?

To ensure a reliable assessment of AI agent behaviour from simulations to a real-world setting, world
models must faithfully reflect the world’s structure and dynamics. This could be seen as suggest-
ing that designing reliable world models is critically bounded by a trade-off between accuracy and
computational tractability. Interestingly, this trade-off can be partially circumvented by recognising
that effective world models only need to incorporate variables that make a difference for the AI’s
actions, and these variables only require a granularity that is sufficient to simulate their dynamics.

To illustrate this idea, consider how one could choose to build a world model to sandbox a simple
robot. Although one could in principle design a simulation that includes the quantum dynamics of
the whole planet, such a simulation would not only be computationally unfeasible but also unneces-
sary to answer most questions of interest. Indeed, such a world model would likely be too spatially
extended (by including regions of the planet that are inaccessible to the robot) and have too much
resolution (by including quantum effects for a fundamentally classical robot). To avoid this, one
could instead design a more parsimonious world model that factors out indistinguishable properties
from the robot’s perspective, focusing on the agent’s ‘interface’ including, for instance, sensorimo-
tor contingencies (O’Regan & Noë, 2001; Baltieri & Buckley, 2017; 2019; Tschantz et al., 2020;
Mannella et al., 2021) or task-relevant information (Zhang et al., 2021).

Related questions have been extensively investigated in the philosophy of mind and cognitive
(neuro)science literature, and more recently in reinforcement learning. These works suggest an
important insight: while an agent’s actions turn into outcomes through the mediation of the external
world, the agent lacks direct access to the world’s ‘true nature’ and only interacts with it via its
inputs and outputs (Clark, 2013; Seth & Tsakiris, 2018). This notion is illustrated by the classical
‘brain in a vat’ thought experiment, which proposes that if an organism’s brain were to be placed
in a vat, and a computer used to read the brain’s output signals and generate plausible sensory sig-
nals, then the brain may not be able to tell it is in fact in a vat.1 This thought experiment suggests
that an ideal world model should depend only on three elements: the set of possible actions of the
agent A, the set of possible outcomes affecting the agent Y ,2 and the statistical relationship between
action sequences and outcomes. In fact, it should be possible — at least in principle — to build a
compressed representation of the ‘effective world’ of an AI agent that cannot be distinguished from
a full simulation, irrespectively of how smart or powerful it may be.

1The modern form of this thought experiment is due to Putnam (1981), but has roots in Descartes’ ‘evil demon’ (Descartes,
1641) and Plato’s cave allegory (Plato, 375 BC) while serving as inspiration for popular media such as The Matrix movies.

2The outcome may be a combination of a quantity observable by the agent and a reward signal, so that Y = O × R.
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These ideas can be operationalised using principles from computational mechanics (Crutchfield,
1994; 2012), which reveal how observable processes can be generated by multiple data-generating
procedures (see App. A for an example). Embracing this multiplicity leads to a perspective that we
playfully label as ‘AI in a vat’, which posits that designers should not focus on a single world model,
but instead should (i) consider the class of all world models that are indistinguishable from the AI
agent’s perspective, (ii) characterise their properties, and then (iii) choose one depending on specific
priorities. After setting some formal foundations in Sec. 3, the remainder of this paper discusses
design choices and procedures that allow the building of world models serving distinct goals related
to AI safety and alignment (see Figure 1):

• Computational efficiency (Sec. 4): sandboxing agents to evaluate their behaviour or provide formal
guarantees about their capabilities (Dalrymple et al., 2024) using a minimal amount of resources.

• Forward interpretability (Sec. 5): building models to study which features are learnable by agents,
and how representations are encoded inside them (Shai et al., 2025).

• Reverse interpretability (Sec. 6): deploying models that can be run backward in time to investigate
the origins and tipping points that lead to specific — desirable or undesirable — outcomes.

World
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transducer
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transducer
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Reverse belief
transducer
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Figure 1: Recommendations for building world optimal models, including implementations (boxes),
transformations (arrows), and design criteria (ellipses).

3 Generating interfaces via transducers

This section formalises the notions of ‘world model’ and ‘interface’. In the following, uppercase
letters (e.g. X,Y ) are used to denote random variables and lowercase (e.g. x, y) their realisations,
calligraphic letters (e.g. X ,Y) denote the sets over which they take values, and the symbol ∆ (as
in ∆(X ),∆(Y)) is used to denote the collection of all distributions over those sets. We use the
shorthand notation p(x|y) = Pr(X = x|Y = y) to express probabilities when there is no risk of
ambiguity, and assume that equalities of the form p(x|y, z) = p(x|y) hold for all realisations that can
take place with non-zero probability. N = {0, 1, 2, . . .} corresponds to zero-based numbering, and
we use the following abbreviations: xa:b = (xa, . . . , xb), x:b = x0:b, xa: = xa:∞, and x: = x0:∞.

3.1 World models

We operationalise interfaces as descriptions of how actions turn into outcomes for a particular agent.
Definition 1. An interface I(Y |A) is a collection of distributions {p(y:t|a:), t ∈ N} corresponding
to a stochastic process over outcome sequences y: ∈ YN conditioned on action sequences a: ∈ AN.
An interface is anticipation-free if p(y:t|a:) = p(y:t|a:t) for all t ∈ N.

Essentially, an interface describes a semi-infinite stochastic process (Kallenberg, 1997; Loomis &
Crutchfield, 2023) for each action sequence a: while being agnostic to the agent’s computational
capabilities, architecture, or internal functioning. Interfaces can be constructed from an underlying
world model that specifies how actions turn into outcomes. Next, we introduce a general notion of
a world model in terms of statistical sufficiency (App. B), and use ht = (at, yt) so that h:t denotes
the joint history of the interface up to time t.
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Definition 2. A world model for an interface I(Y |A) is a collection of distributions {p(s:t|h:), t ∈
N} corresponding to a stochastic process over state sequences s: := (s0, s1, . . . ) ∈ SN that satisfies

(1) p(yt|s:t,a:t,y:t−1) = p(yt|st, at) and (2) p(s:t|h:t−1,at:) = p(s:t|h:t−1) ∀t ∈ N. (1)

Thus, world models are candidate mechanisms for implementing the statistical relationships between
actions and outcomes, taking the form of auxiliary processes St that encapsulate relevant informa-
tion between past events and present outcomes (condition 1) while guaranteeing time’s arrow so
future actions cannot affect previous world states or outcomes (condition 2). We may informally
denote a world model simply by St when it is unambiguous from context. This definition includes
models of the ‘external world’ such as partially observed Markov decision processes (POMDPs), as
well as their ‘epistemic’ counterparts, belief MDPs (Kaelbling et al., 1998), as explained in Sec. 3.3.
The unifying property of all world models is presented next (proof in App. C).
Lemma 1. A process St is a world model for an anticipation-free interface I(Y |A) if and only if

p(y:t, s:t+1|a:) = p(s0)

t∏
τ=0

p(yτ |sτ , aτ )p(sτ+1|s:τ ,h:τ ), ∀t ∈ N. (2)

Thus, world models let us express interfaces in terms of probabilistic graphical models (Koller &
Friedman, 2009). Among other things, Eq. (2) can be used to generate outcomes for given sequences
a:t and s:t by sampling p(y:t|s:t,a:t) =

∏t
τ=0 p(yτ |sτ , aτ ). In this sense, we say that the world

model St generates the interface I(Y |A), and that the graphical model outlined in Eq. (2) estab-
lishes a presentation of the interface. These ideas are illustrated by an example in App. A.

3.2 Transducers

Sampling sequences of world model’s states can be highly non-trivial if their dynamics are non-
Markovian. This issue can be avoided by restricting ourselves to building world models using trans-
ducers (Barnett & Crutchfield, 2015), a computational structure that is introduced next.
Definition 3. A transducer is a tuple

(
S,A,Y, κ, p

)
, where S is a set of memory states, A and

Y are sets of inputs and outputs, κ : A × S × N → ∆(Y × S) is a Markov kernel of the form
{κτ (y, s̃|a, s) : s, s̃ ∈ S, y ∈ Y, a ∈ A, τ ∈ N}, and p ∈ ∆(S) is an initial distribution over states.

If a transducer’s memory can only take |S| = n different states, then their transitions can be de-
scribed via substochastic matrices T (y|a)

τ of the form

T (y|a)
τ :=

n∑
i=1

n∑
j=1

κτ (y, si|a, sj)eie⊺j , (3)

where ek is a binary vector with a 1 at the k-th position and zeros elsewhere. These transducers
are also known as stochastic automata (Claus, 1971; Cakir et al., 2021), generalising deterministic
automata (Minsky, 1967) by using stochastic transitions to generate outputs and update their state.
Running a transducer generates an interface I(Y |A) given by its inputs and outputs according to

p(y:ts:t+1|a:) = p(s0)

t∏
τ=0

κτ (yτ , sτ+1|aτ , st), (4)

providing a graphical model that can be used to simulate the interface (see Figure 2). Comparing
Eq. (4) with Lemma 1 let us to formalise this fact as follows.
Lemma 2. Transducers correspond to world models of anticipation-free interfaces whose dynamics
satisfy the Markov condition p(sτ+1|s:τ ,h:τ ) = p(sτ+1|sτ , hτ ) for all τ ∈ N.

We may denote a transducer informally as (St, At, Yt) when it is unambiguous from the context, and
describe its memory state St as a world model when appropriate. Complementary characterisations
of transducers in terms of sufficient statistics and information properties are provided in App. D.
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S0 S1 S2 S3

A0 A1 A2 A3

Y0 Y1 Y2 Y3

A0, A1, A2, A3, . . .

Y0, Y1, Y2, Y3, . . .

Figure 2: Illustration of an interface (left) and a possible unravelling of it via a presentation with a world
model built from the memory states of a transducer (right), as given by Eq. (4).

Transducers can be seen as reflecting the memory structure of interfaces. In particular, an interface
I(Y |A) is said to be memoryless if St = 0 is a valid transducer, and is fully observable if St = Yt

yields a valid transducer — including Markov decision processes (MDPs) as a main example. We
next characterise the statistics of such interfaces, which clarifies that elaborate world models are
required by interfaces with non-Markovian dynamics (proof in App. E).

Lemma 3. An interface is fully observable if and only if p(yt+1|y:t,a:) = p(yt+1|yt, at), and is
memoryless if and only if p(y:t|a:) =

∏t
τ=0 p(yτ |aτ ).

Note that if p(y:t|a:) = p(y:t), corresponding to ‘contemplative’ or passive agents that do not act
but only sense, then transducers reduce to hidden Markov models (Ephraim & Merhav, 2002).

3.3 General classes of transducers

Transducers use their kernels κτ to generate (st+1, yt) jointly from (st, at), corresponding to what
has been described as a ‘Mealy’ machines (Virgo, 2023; Bonchi et al., 2024). Simpler computational
structures can be obtained by imposing constraints in the kernel as follows:

• Input-Moore transducers generate outputs ignoring the current input, corresponding to kernels of
the form κτ (y, s̃|a, s) = µτ (y|s)ντ (s̃|y, a, s).

• Output-Moore transducers update their state without considering the current output, correspond-
ing to kernels of the form κ(y, s̃|a, s) = µτ (y|a, s)ντ (s̃|a, s).

• I-O Moore transducers satisfy both previous conditions, corresponding to kernels of the form
κ(y, s̃|a, s) = µτ (y|s)ντ (s̃|a, s).

Based on ideas from automata theory (Lee & Seshia, 2017), input-Moore transducers serve as mod-
els for interfaces that satisfy the stronger anticipation-free condition p(y:t|a:) = p(y:t|a:t−1), corre-
sponding to scenarios where Yt takes place before At, thus reflecting a time-indexing convention. In
contrast, output-Moore transducers build on the hidden Markov models literature (Riechers, 2016),
and are used to represent (non-quantum) physical processes whose evolution is not affected by the
observations made by the agent — as opposed to epistemic processes such as belief MPDs, in which
the opposite happens (see Sec. 5). POMDPs can be shown to be examples of either output-Moore
or I-O Moore transducers depending on the specific definition, as explained in App. F.

4 Minimal world models

After setting the formal foundations of world models, and establishing transducers as a natural way
to construct them, we now investigate how to build minimal world models.

4.1 Reducing world models

We begin by showing that all interfaces have at least one transducer presentation, and hence one can
focus on transducers without loss of generality (see the proof in App. G).

Lemma 4. The world model St = H:t−1 yields a transducer that generates the interface I(Y |A).
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This world model is far from parsimonious, resembling Borges’ character Funes the memorious in
its inability to forget. This suggests the importance of ‘reducing’ world models. To formalise this,
we extend the notion of MDP homomorphism (Ravindran & Barto, 2003) to transducers as follows.

Definition 4. A homomorphism between transducers (St, At, Yt) and (S′
t, A

′
t, Y

′
t ) is given by the

mappings ⟨ϕ : S → S ′, f : Y → Y ′, g : A → A′⟩ satisfying two compatibility conditions:

(i) Pr
(
Y ′
t = y′|S′

t = ϕ(s), A′
t = g(a)

)
=
∑

y∈f−1(y′) Pr
(
Yt = y|St = s,At = a

)
.

(ii) Pr
(
S′
t+1 = s′|S′

t = ϕ(s), H ′
t = (f(y), g(a))

)
=
∑

s∈ϕ−1(s′) Pr
(
St+1= s|St = s̃, Ht = (y, a)

)
and Pr

(
S′
0 = s′

)
=
∑

s∈ϕ−1(s′) Pr
(
S0 = s

)
.

A reduction of a world model St into a world model S′
t is a homomorphism ⟨ϕ, f, g⟩ between the

transducers (St, At, Yt) and (S′
t, At, Yt), where f : Y → Y and g : A → A are identity mappings

and ϕ is a surjective map ϕ : St → S′
t. Two transducers are isomorphic if they are reductions of

each other, and a transducer is minimal if all its reductions are isomorphic to itself.

A world reduction can be informally described as a coarse-graining ϕ between the memory states of
two transducers of the same interface. Condition (i) above ensures that outcomes are generated with
the same statistics, and (ii) that the resulting world model is still Markovian — as can be confirmed
by relating it with the notion of ‘lumpability’ of Markov chains (Tian & Kannan, 2006). These
properties guarantee that reductions do not distort the corresponding interface (proof in App. H).

Lemma 5. A world model reduction yields a transducer presentation of the original transducer.

The next two sections study different approaches to look for minimal world models.3

4.2 Reduction via bisimulation

A natural way to reduce a world model is via the notion of bisimulation, which is a way of merging
states that behave equivalently (Givan et al., 2003). Here we leverage previous work on bisimulations
for hidden Markov models (Jansen et al., 2012) to define bisimulations of transducers.

Definition 5. For a given transducer with world model St and kernel κt, a bisimulation is an
equivalence relation Bt ⊆ S × S such that s, s′ ∈ S are equivalent if they satisfy two conditions:

(i) pt(y|s, a) = pt(y|s′, a), where pt(y|s, a) =
∑

s′′∈S κt(y, s
′′|s, a).

(ii) pt(C|s, a) = pt(C|s′, a) for all equivalence classes C ⊆ S, where pt(C|s, a) =∑
y∈Y

∑
s′′∈C κt(y, s

′′|s, a).

There is a direct correspondence between world model reductions (Def. 4) and bisimulations, as
shown next by adapting (Taylor et al., 2008, Theorem 3) to our setup (proof in App. I).

Proposition 1. ϕ : St → S′
t is a reduction of world models if and only if the equivalence relation it

induces, with equivalence classes given by ϕ−1(s′) = {s ∈ S : ϕ(s) = s′}, is a bisimulation.

Together with Lemma 5, this result confirms that the bisimulation of a transducer yields another
transducer presentation for the same interface. This has a simple and yet powerful implication: a
full reduction of a given transducer can be attained by coarse-graining all bisimilar states.

There may be cases where bisimulations do not produce the most efficient world model that gen-
erates a given interface, since reducing a particular transducer usually does not lead to a global
minimum. To investigate this claim, we consider a world model with |S| = n states and build
vectors w(h:t) ∈ Rn containing the probabilities of generating y:t given a:t when starting from
different world states, so that its k-th coordinate is [w(h:t)]k = Pr(Y:t = y:t|A:t = a:t, S0 = sk).
Intuitively, if vectors w(h:t) for different h:t are linearly dependent, some of their dimensions (and,
hence, the corresponding world states) are still in some sense redundant. Crucially, the coarse-
grainings associated to bisimulation can only lump states that have identical components, but cannot

3Minimality can also be studied via the entropy of the world’s dynamics. Interestingly, minimal entropy models may not
coincide with the models with fewer states — although the two coincide for predictive models (Loomis & Crutchfield, 2019).
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Figure 3: Illustration of the minimisation of world models. Purple boxes represent reducible models and
orange boxes represent minimal ones, and arrows correspond to reductions. Red boxes are generalised models

following quasi-probabilities, which (if allowed) establish global minima.

reduce linear dependencies between states more generally. Relaxing the criteria for merging states
(e.g. via bisimulation metrics (Ferns & Precup, 2014)) does not solve this issue, as this introduces
distortion in the interface due to the imprecisions allowed in the state merging procedure.

These ideas can be made concrete by studying the canonical dimension of a transducer T , given by4

d(T ) := lim
m→∞

dim(Um), where Um = Span{w(h:t) : t ≤ m} ⊆ Rn. (5)

The canonical dimension is an important indicator of the compressibility of a transducer as shown
next, whose proof can be found in (Cakir et al., 2021, Cor. 4.9) — also see (Ito et al., 1992; Bala-
subramanian, 1993) for related results in hidden Markov models.

Theorem 1. If T is a transducer with |S| = n ∈ N, then d(T ) = n implies that there are no
transducers with fewer memory states that can generate the same interface.

The minimal bisimulation of a transducer T̂ with world states in Ŝ could still exhibit d(T̂ ) < |Ŝ|.
In fact, there are interfaces for which no transducer reaches d(T ) = |S|. Even if there exists a
transducer with d(T̂ ) = |S|, we are not aware of any general algorithm that can directly build it.5

4.3 Reduction via pseudo-probabilities and generalised transducers

This section focuses on the reduction of world models with a finite number of states |S| = n but
d(T ) < n. As discussed in Sec. 3.2, the probabilities of y:t given a:t can then be calculated as

p(y:t|a:t) = 1⊺ ·
( t∏

τ=0

T (yτ |aτ )
τ

)
· p, (6)

where 1⊺ is a transposed vector with n ones as components. Normally, the substochastic matrices
T

(y|a)
t and the initial distribution p are assumed to contain only non-negative terms. However,

a more general class of transducers can be explored by removing this constraint and considering
quasi-distributions v ∈ Rn, which may have negative components but still satisfy

∑n
i=1 vi = 1, and

quasi-stochastic matrices whose columns are quasi-distributions (Balasubramanian, 1993; Upper,
1997). This leads to the following generalisation of a transducer.

Definition 6. A generalised transducer for an interface I(Y |A) is a tuple (S,A,Y, {A(y|a)},v,u)
with u,v ∈ Rn and A(y|a) ∈ Rn×n that satisfy

p(y:t|a:t) = u⊺ ·
( t∏

τ=0

A(yτ |aτ )
τ

)
· v ∀y:t ∈ Yt+1,a:t ∈ At+1. (7)

Generalised transducers are useful because, in contrast to standard transducers (or POMDPs), they
can always be reduced to find representations with a minimal number of states, as shown next.

4If a transducer has |S| = n memory states, then limm→∞ dim(Um) = dim(Un−1) (Cakir et al., 2021, Prop. 4.3).
5In fact, the relatively simpler case of reducing hidden Markov models is still not fully solved (Vidyasagar, 2011), although

algorithms that can address some cases have been developed (Huang et al., 2015; Ohta, 2021).
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Theorem 2. A generalised transducer T̃ with d(T̃ ) < n can always be reduced via a linear trans-
formation into another transducer that generates the same interface using fewer states.

This result follows directly from the proofs provided in (Balasubramanian, 1993, Ch. 3) and related
results found in (Upper, 1997; Vidyasagar, 2011), in which reductions correspond to linear projec-
tions. These proofs lead to practical algorithms that can be used to effectively reduce transducers
with d(T̃ ) < n (Huang et al., 2015). In this way, generalised transducers achieve a minimal com-
putational complexity at the cost of introducing world models whose trajectories cannot be sampled
(due to the quasi-probabilities), resulting in a substantial lack of interpretability.

5 Forward interpretability via epistemic world models

The previous section shows how computational efficiency can be achieved by either compressing
memory state spaces with bisimulations or by allowing memory states of transducers to be encoded
by quasi-probabilities. While the latter generally yields higher efficiency, this comes at the cost of
making those reduced world models highly uninterpretable due to the possible presence of negative
probabilities. This section takes a different route by investigating specific types of world models that
focus on interpretability, bringing insights about what agents can learn.

5.1 Beliefs as world models

Let us start by reviewing properties of certain classes of world models that make them learnable by
agents in real time. A world model St is predictive if it contains only past information, which in
information-theoretic terms corresponds to I(St;Yt:|H:t−1,At:) = 0. A world model is observable
if St+1 = ft(H:t), i.e. if it can be estimated from action-output history via mappings ft. Finally,
a world model is unifilar if St+1 = f̂t(St, At, Yt), so its state can be deterministically updated
given inputs and outputs. Thus, observable models are always predictive, and unifilar models are
observable if there is no randomness in the world’s initial condition. Moreover, unifilar models
correspond to transducer whose kernels have the form κτ (y, s̃|a, s) = δs̃

f̂τ (y,a,s)
µτ (y|a, s).

The literature contains several procedures for building observable world models from non-
observable ones (see (Subramanian et al., 2022; Ni et al., 2024) for general reviews and (Virgo
et al., 2021; Biehl & Virgo, 2022; Virgo, 2023) for a categorical formulation). These approaches
suggest to expand the phase space of world models from elements in S to distributions over those
∆(S), henceforth called belief states. This idea has been extensively studied for POMDPs via the
notion of belief MDP (Kaelbling et al., 1998). We extend these ideas to more general transducers.

Definition 7. A belief transducer over a transducer (S,A,Y, κ, p) is another transducer(
B,A,Y, κ̂, δb0

)
where B ⊆ ∆(S) is a set of belief states, κ̂ : A × B × N → ∆(Y × B) is a

Markov kernel of the form {κ̂τ (y, b
′|a, b) : b, b′ ∈ B, a ∈ A, y ∈ Y, τ ∈ N} such that κ̂ = F{κ}

for some functional F , and b0 ∈ B is an initial belief. A belief transducer is said to be faithful if it
generates the same interface as the original transducer.

A natural way to define beliefs about an underlying world model St is via predictive Bayesian beliefs
corresponding to the posterior distribution bt(st) := Pr(St = st|H:t−1 = h:t−1). The dynamics
of the updates of such beliefs are described by Bayesian prediction (Jazwinski, 1970; Särkkä &
Svensson, 2023), and their properties have been further studied under the name of ‘mixed-states’ in
computational mechanics (Riechers & Crutchfield, 2018; Jurgens & Crutchfield, 2021b). Building
on this literature, we show that the predictive Bayesian beliefs of the memory states of transducers
are unifilar and can be used to generate the same interface (proof in App. J).

Proposition 2. If (St, At, Yt) is a transducer and Bt is the predictive Bayesian belief of St, then
(Bt, At, Yt) is a unifilar belief transducer whose state dynamics are given by

bt+1(st+1) =
1

Z

∑
st

p(yt, st+1|at, st)bt(st), (8)
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with Z a normalisation constant. Moreover, (Bt, At, Yt) is faithful if b0 = p(s0).

Interestingly, I-O Moore transducers (Sec. 3.3) also allow for postdictive Bayesian beliefs6 of the
form dt(st) := Pr(St = st|G:t = g:t) with gt = (yt, at−1), in which Yt is used to infer St. Our
next result explains how predictive and postdictive Bayesian beliefs and MSPs relate, and how they
set the bases for Bayesian and Kalman filtering (proof in App. K).

Proposition 3. If (St, At, Yt) is a I-O Moore transducer and Dt is the postdictive Bayesian belief
of St, then (Dt, At, Yt) is a belief transducer whose state dynamics are given by

dt+1(st+1) =
p(yt+1|st+1)

Z ′
∑
st

p(st+1|st, at)dt(st), (9)

with Z ′ a normalisation constant. Moreover, (Dt, At, Yt) is faithful if d0 = p(s0).

Corollary 1. Their predictive and postdictive Bayesian beliefs of I-O Moore transducers can be

updated as bt−1
predict−−−→ dt

update−−−→ bt following the ‘predict-update’ process from Bayesian filtering.

A faithful belief transducers can be said to provide a mixed-state presentation (MSP) of the under-
lying transducer, extending previous work on MSPs of hidden Markov models (Jurgens & Crutch-
field, 2021a;b). MSPs are generally not minimal, as they tend to have different mixed-states that are
bisimilar. The reduction of these is studied in the next section.

5.2 Minimal predictive world models

Following Barnett & Crutchfield (2015), we now present a method to build an observable world
model directly from an interface I(Y |A) without the need to bootstrap from another world model.
For this, consider an equivalence relation between histories in which h:t−1 ∼ϵ h

′
:t−1 when

p(yt:t+T |h:t−1,at:t+T ) = p(yt:t+T |h′
:t−1,at:t+T ), ∀yt:t+L,at:t+L, L ∈ N. (10)

Let’s denote by ϵt the coarse-graining mapping that assigns each history to its corresponding equiv-
alence class ϵt(h:t−1) = [h:t−1]∼ϵ , and define Mt = ϵt(H:t−1). This construction is known
as predictive state representations (Littman & Sutton, 2001; Singh et al., 2004) and instrumental
states (Kosoy, 2019), and is based on older ideas for stochastic processes (without inputs/actions)
from computational mechanics (Crutchfield & Young, 1989). Interestingly, the equivalence classes
induced by ϵ are the minimal bisimulation of the world model St = H:t−1 (Lemma 4), and therefore
serve as memory states of a transducer that generates the original interface (first shown in (Barnett
& Crutchfield, 2015, Prop 2), alternative proof in App. L).

Proposition 4. (Mt, At, Yt) with Mt = ϵt(H:t−1) is a transducer presentation for I(Y |A).

The transducer with memory states given by Mt = ϵt(H:t−1) resulting from Prop. 4 is known as the
ϵ-transducer of the interface I(Y |A), and is unique up to isomorphism. The link between com-
putational mechanics and other approaches such as predictive state representations was first noticed
by Zhang et al. (2019), which explored it using a different computational structure instead of trans-
ducers. A salient feature of these approaches is that they can provide observable world models over
fewer states than other methods (Littman & Sutton, 2001). Our next result strengthens this intuition
by proving that the ϵ-transducer yields the most efficient predictive world model possible (proof
in App. M), which takes inspiration from and extends (Barnett & Crutchfield, 2015, Lemma 1).

Theorem 3. If Rt is a predictive world model of a transducer, then its minimal bisimulation is
isomorphic to the ϵ-transducer.

Corollary 2. The ϵ-transducer is the minimal predictive model that generates a given interface.

These findings complement previous studies considering the relationship between bisimulation and
predictive state representations (Castro, 2011, Sec. 3). These results imply, for instance, that the

6In general, postdictive world models St satisfy I(St;Yt+1:|H:t,At+1:) = 0.
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bisimulation of predictive beliefs about the states of a world model necessarily converge into the
memory states of the corresponding ϵ-transducer. In effect, while bisimulations of arbitrary trans-
ducers may not fully reduce world models (Sec. 4.2), bisimulations of predictive transducers nec-
essarily do so (see App. N). An analogous result can be derived for postdictive beliefs, which are
reduced into a ‘time-shifted’ ϵ-transducer. This will be developed in a future publication.

6 Reverse interpretability via retrodictive world models

The results of the last section show that the ϵ-transducer is a universal construction that distils the
information that is relevant for predicting future events, which can be used to evaluate the extent to
which agents can learn through a given interface. However, prediction alone does not exhaust the
possible knowledge-driven activities that can involve an agent. This section investigates reversible
and retrodictive world models, exploring new opportunities for agent interpretability.

6.1 Reversible transducers

The kernel of a transducer is usually used to update a world model St from sτ to sτ+1. Interestingly,
some transducers can be used to run things ‘backwards’, so that the world state can be updated from
sτ+1 to sτ while generating the same interface. This is formalised by the next definition.7

Definition 8. A reversible transducer is a transducer
(
S,A,Y, κ, p

)
together with an additional

Markov kernel κR of the form {κR
t (y, s

′|a, s) : a ∈ A, y ∈ Y, s, s′ ∈ S, t ∈ N} such that

p(y:t, s:t+1|a:) = p(s0)

t∏
τ=0

κτ (yτ , sτ+1|sτ , at) = p(st+1|a:t)

t∏
τ=0

κR
τ (yτ , sτ |aτ , sτ+1). (11)

A reversible transducer can be run in reverse to produce the same interface. This can be used to
analyse prior events that resulted in an undesirable world state s∗t+1 after an agent executed actions
a:t. This can be investigated via the distribution

p(s:t,y:t|a:t, s
∗
t+1) =

p(y:t, s:t, s
∗
t |a:)

p(s∗t+1|a:t)
= κR

τ (yt, st|at, s∗t+1)

t−1∏
τ=0

κR
τ (yτ , sτ |aτ , sτ+1), (12)

which allows to study how outputs lead to actions and identify tipping points in the world dynamics.

Unfortunately, not all transducers are reversible, as swapping past and future could break the condi-
tion of anticipation-free — which is needed for a world model to yield a transducer (see App. O). A
necessary and sufficient condition for transducers to be reversed is provided next (proof in App. P).

Theorem 4. A transducer is reversible for τ ≤ T if and only if the dynamics of its memory state
satisfy p(sτ |sτ+1,a:T ) = p(sτ |sτ+1, aτ ) for all τ ∈ {0, . . . , T}, with a reverse kernel given by

κR
τ (y, s|a, s̃) =

Pr(Sτ = s|Aτ = a)

Pr(Sτ+1 = s̃|Aτ = a)
κτ (y, s̃|a, s). (13)

Although Eq. (13) always leads to a valid kernel due to Bayes rule, this may not generate the same in-
terface — in fact, Eq. (11) only holds when the conditions in Theorem 4 are met. Interestingly, those
conditions can be attained in a variety of ways. For example, memoryless transducers (see Lemma 3)
are always reversible as p(st|st+1,a:t) = p(st|st+1, at) = p(st). Also, consistent with results
by Ellison et al. (2011), action-agnostic transducers (i.e. hidden Markov models) can be shown to
be always reversible (see App. P). Finally, if the transducer is action-counifilar (i.e. if there exists
f such that St = f(St+1, At) can be deterministically updated)8 is also sufficient for reversibility,
as such transducer satisfies p(sτ |sτ+1,a:T ) = δsτf(sτ+1,aτ )

= p(sτ |sτ+1, aτ ). Examples of these
conditions are illustrated in Figure 4.

7This definition differs importantly from thermodynamically reversible transducers (Jurgens & Crutchfield, 2020).
8This is a special case of counifilar transducers, in which St = ft(St+1, At, Yt) holds.
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Reversible Transducers
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Figure 4: Three examples of reversible transducers. Circles represent world states, and arrows represent
transitions and their labels describe the associated actions and outputs. For instance, the label 1|0:0.5 on the

edge from s0 to s1 indicates that Pr(St+1 = s1, Yt = 1|At = 0, St = s0) = 0.5.

6.2 Retrodictive beliefs

The previous subsection showed how there are substantial restrictions on the reversibility of trans-
ducers. Even if an interface cannot be generated via a reversible transducer, there are still ‘retrod-
ictive’ constructions that can be used to investigate their dynamics. Retrodiction uses the future
to learn about the past in the same way that prediction uses the past to learn about the future.
Formal treatments of retrodiction include classic work in physics (Watanabe, 1955) and filtering
theory (Jazwinski, 1970), and in more recent years have been formalised in computational mechan-
ics (Ellison et al., 2009) and category theory (Parzygnat & Buscemi, 2023; Parzygnat, 2024).

Following these ideas, one can build retrodictive Bayesian beliefs (or mixed states) of a world
model St as distributions over S given by rt(s0) := Pr(S0 = s0|H:t = h:t). These beliefs provide
an analogue of the backward pass of Bayesian smoothing (Jazwinski, 1970), in the same way that
the predictive and postdictive beliefs of input-Moore transducers correspond to different steps of
Bayesian filtering (Prop. 3). However, in contrast with predictive Bayesian beliefs which can always
be faithfull (Prop. 2), retrodictive beliefs may not be able to generate the same interface.

In order to study the dynamics of retrodictive beliefs, we introduce the bi-directional mixed-state
matrix (BDMSM) of an action-outcome sequence ρ(y0:t,a0:t) as the |S| × |S| matrix given by

ρ(y0:t,a0:t) :=
∑

s0,st+1∈S
p(s0, st+1|y0:t,a0:t)est+1

e⊺s0 . (14)

The BDMSM allows to calculate retrodictive beliefs and their dynamics (proof in App. Q).

Theorem 5. Given a world model St, its BDMSM, predictive Bayesian beliefs bτ and retrodictive
Bayesian beliefs rτ can be calculated as

ρ(y0:τ ,a0:τ ) =
T (y0:τ |a0:τ )ρ0

1⊺ · T (y0:τ |a0:τ )ρ0 · 1
, bτ = ρ(y0:τ ,a0:τ ) · 1, and rτ = ρ(y0:τ ,a0:τ )

⊺ · 1,

where T (yτ:τ′ |aτ:τ′ ) =
∏

j=τ T
(yj |aj)
j and ρt =

∑
st
p(st)este

⊺
st is a diagonal matrix.

Corollary 3. The forward-time update of the BDMSM is given by

ρ(y0:τ+1,a0:τ+1) =
T (yτ+1|aτ+1)

1⊺ · T (yτ+1|aτ+1)ρ(y0:τ ,a0:τ ) · 1
· ρ(y0:τ ,a0:τ ), (15)

while the reverse-time update is

ρ(y−1:τ ,a−1:τ ) = ρ(y0:τ ,a0:τ ) ·
ρ−1
0 T (y−1|a−1)ρ−1

1⊺ · ρ(y0:τ ,a0:τ )ρ
−1
0 T (y−1|a−1)ρ−1 · 1

. (16)

Retrodictive beliefs can be used to infer the most likely past states of the world given a sequence
of future actions and outcomes. This could lead, for instance, to identifying the origins of specific
behavioural patterns exhibited by an AI agent, which can in turn be used to characterise favourable
or dangerous initial conditions via counterfactual reasoning (Karimi et al., 2021).
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7 Conclusion

This paper investigated the fundamental limits that shape the usage of world models as tools to eval-
uate AI agents. This follows recent proposals to use world models not as tools for the agent (as in
standard model-based reinforcement learning), but as tools for the scientist in charge of evaluating its
safety and reliability (Dalrymple et al., 2024). By formalising these ideas via principles from compu-
tational mechanics, this approach led to a series of proposals for how to assess AI agents that require
no assumptions about an agent’s policy, architecture, or capabilities, being broadly applicable to
systems regardless of how they were designed or trained. This framework revealed fundamental
limits, challenges, and opportunities inherent to world modelling, leading to actionable guidelines
that can inform core design choices instrumental for effective agent evaluation (see Figure 1).

Our framework revealed a fundamental trade-off between the efficiency and interpretability of world
models. Generalised transducers were found to generate the most efficient implementations, but
these come at the cost of inducing quasi-probabilities — yielding opaque world models that cannot
be sampled.9 Our results also revealed that the ϵ-transducer, a generalisation of the geometric belief
structure recently found in the residual stream of transformers (Shai et al., 2025), yields the unique
minimal world model that could be calculated by an agent in real time. The uniqueness of the ϵ-
transducer implies that the refinement of the beliefs of any optimal predictive agent must eventually
reach this model, regardless of the world model the agent uses. Thus, the ϵ-transducer can be seen as
encapsulating all the predictive information that is available for agents, and hence establishes what
is learnable about an environments through a particular interface.

We also introduced retrodictive world models as tools to investigate the origins of undesirable events
or behaviours. These models allow retrospective analyses that could, for instance, identify ‘danger
zones’ that are likely to lead to undesirable future outcomes. This view complements standard
interpretability approaches, which typically assess agents via their capabilities to predict and plan
with respect to future events (Nanda et al., 2023; Gurnee & Tegmark, 2023; Shai et al., 2025).

While this work focused on the fundamental limits of world modelling under the dictum of per-
fect reconstruction, future work may relax this constraint by employing notions such as approxi-
mate homomorphisms (Taylor et al., 2008) or bisimulation (Girard & Pappas, 2011), rate-distortion
trade-offs (Marzen & Crutchfield, 2016), or other approaches (Subramanian et al., 2022). Another
promising direction to enable efficient modelling is to exploit the compositional structure of the
world (Lake & Baroni, 2023; Elmoznino et al., 2024; Baek et al., 2025; Fu et al., 2025).

The approach taken here complements the substantial body of work that employs world models
to improve the performance of agents in model-based reinforcement learning (Ha & Schmidhuber,
2018; Hafner et al., 2020; 2023; Hansen et al., 2024), and also on representations from the point of
view of the agent (see (Ni et al., 2024) and references within). In fact, the formalism presented here
provides a unified framework for reasoning about both (i) models that represent physical processes
external to the agent and (ii) models that describe knowledge-gathering processes internal to the
agent (Kaelbling et al., 1998; Biehl & Virgo, 2022; Virgo, 2023). Furthermore, the relationship
found between predictive and postdictive machines in I-O Moore transducers and Bayesian and
Kalman filtering sheds new light into the mechanisms supporting these well-established procedures.
Moreover, the formalism of belief transducers opens several interesting avenues for future work,
including the investigation of more general belief update dynamics on, for example, curved statistical
manifolds (Morales & Rosas, 2021; Aguilera et al., 2024).

Overall, the ideas put forward here establish new bridges between related subjects in reinforcement
learning, control theory, and computational mechanics, which we hope may serve as a Rosetta stone
for navigating across these literatures. These new insights also have interesting implications for
cognitive and computational neuroscience (Matsuo et al., 2022), particularly pertaining the formal
characterisation of the internal world (‘umwelt’) of an agent (Von Uexküll, 1909; Ay & Löhr, 2015;
Baltieri et al., 2025), which will be explored in future work.

9This is reminiscent of the notion of Kantian noumena, which suggests that things-in-themselves are beyond knowledge.
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A Example of an interface and multiple world models

Let us present an example to illustrate the notions of interface and world models. This example
showcases how a single interface can be generated by various world models with different properties.

Consider a robot manipulating a deck of cards. The state of the deck can be described via a world
model that can adopt |S| = 13! ≈ 6 × 1010 possible states. At every time point, the robot can take
two possible actions: either it puts the front card in the back (α1), or it shuffles the deck (α2). Thus,
the set of actions available to the robot is A = {α1, α2}. Additionally, at every time point the robot
observes the card that is on top of the deck. However, we will assume that the sensory apparatus of
the robot is not capable of reading the number or the suit of the card, but only its colour. Hence, the
possible outcomes of this scenario for the robot are Y = {black,red}.

In this scenario, the interface of the robot is constituted by a collection of probability distributions
of the form p(y:t|a:t) relating sequences of actions with sequences of colours. Furthermore, if one
tracks the state of the deck at time t via the variable St, this results in a transformer (St, At, Yt) (see
Def. 3). However, if we wanted to implement this transducer on a computer, specifying its kernel
would require a substantial amount of memory due to the large number of possible world states.

Following the considerations made in Sec. 2, one could instead forget about the fact that there is an
underlying deck of cards and focus just on the sequences of colours that the agent records. By doing
this, one may notice that, given a sequence of actions and outcomes (a:t,y:t), the only information
that is relevant to predict the next outcome yt+1 is the number of red and black cards observed since
the last time the agent took action α2 (shuffling the deck). If one tracks this information at time
t via the variable Mt, then Prop. 4 guarantees that (Mt, At, Yt) provides an alternative transducer
presentation of the original interface. Note that this is an ‘epistemic’ world model that reflects the
agent’s state of knowledge (as described in Sec. 5), contrasting with St which reflects an objective
physical process taking place ‘out there’. Interestingly, Mt uses only roughly 132 states instead of
13! states, requiring substantially fewer memory resources. Furthermore, Mt reflects all the relevant
information that an agent with this particular interface (i.e. limited to recognising colours) could
ever want to take into account in order to make informed actions in this scenario. Therefore, this
new world model is not only more memory efficient, but also reveals what information an agent of
this kind could and should learn.

Before concluding, let us add some considerations related to the ideas explored in the latest part
of the manuscript. Sec. 6 studies world models that ‘run backwards’ — i.e. can be updated in
reverse time. The interface chosen in this example does not allow for such a reversible presentation,
as the combinations of shuffling (α2) and card flipping (α1) lead to world dynamics that violate the
conditions outlined in Theorem 4. One could attain a reversible interface if we considered a different
set of actions, for example A′ = {α1, α3} with α3 corresponding to the robot taking the card in the
back and putting that on top of the deck. Indeed, the world dynamics resulting from such a set of
actions do satisfy the sufficient condition for reversibility discussed at the end of Sec. 6.1.

B Sufficient statistics

Given the importance of the notion of sufficient statistics in this work, we use this appendix to
provide an account of its origins and significance.

Consider a random vector X = (X1, . . . , Xn) ∈ Xn that follows a distribution with parameter
θ ∈ Θ, and a ‘statistic’ T (·) (that is, a mapping T : Xn → R). Following Fisher (1922), Y = T (X)
is a classical/frequentist sufficient statistic for X w.r.t. θ if the value of Prθ(X = x|Y = y) is the
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same ∀θ ∈ Θ (Casella & Berger, 2002). This means that the information given by X that is not in
Y is irrelevant to estimating the value of θ.

Another approach to statistical sufficiency due to Kolmogorov (1942), which can be called strong
bayesian statistical sufficiency, states that Y is sufficient for X w.r.t. θ if X is statistically indepen-
dent of θ given Y for any prior distribution over θ. Strong Bayesian sufficiency can be shown to
imply classical sufficiency, but the converse does not necessarily hold (Blackwell et al., 1982).

A useful generalisation of the above condition, which we simply call (weak) Bayesian statistical
sufficiency, follows Kolmogorov’s condition just for a given distribution of θ (Cover & Thomas,
2012). In particular, given two random variables X and Y , a statistic T = f(X) is said to be a
Bayesian sufficient statistic for X w.r.t. Y if X is statistically independent of Y given T . In terms
of Shannon’s mutual information, this corresponds to the condition Pr(X = x|Y = y, T = t) =
Pr(X = x|T = t). This is equivalent to the information-theoretic condition I(X;Y |T ) = 0, which
states that X and Y share no information that is not given by T (Cover & Thomas, 2012). This is
the definition of sufficient statistics that we use in this work.

Another way to think about sufficient statistics is to notice that if T = f(X) for some mapping f
then T − X − Y is a Markov chain. Then, thanks to the data processing inequality, I(Y ;X) ≥
I(Y ;T ) as ‘processing’ X into T cannot increase its information about Y (Cover & Thomas, 2012).
Interestingly, the equality I(Y ;X) = I(Y ;T ) is attained if an only if X − T − Y is also a Markov
chain, which corresponds to when T is a sufficient statistic. In summary, sufficient statistics are
related to optimal (i.e. lossless) data processing (Kullback, 1997).

Sufficient statistics always exist — in particular, X is always sufficient for itself. The search for
optimal but also efficient statistics leads to the idea of minimal sufficiency: a sufficient statistic S is
minimal if for all other sufficient statistic T exists a function f(·) such that S = f(T ) (Lehmann
& Scheffé, 2012), or equivalently, the following Markov chain holds: S − T − X − Y . From an
information-theoretic point of view, a minimal sufficient statistic is the sufficient statistic of minimal
entropy, hence providing the most parsimonious representation of the relevant information. Mini-
mal sufficient statistics exist for a wide range of settings (Lehmann & Casella, 2006, Sec. 1.6),
and are unique up to isomorphisms (i.e. re-labelling). Moreover, the minimal sufficient statistics
of X w.r.t. Y can be built explicitly, built as the partition induced by the following equivalence
relation (Asoodeh et al., 2014, Def. 2):

x ∼ x′ iff ∀y ∈ Y : p(y|x) = p(y|x′). (17)

Note the similarities between this way of building minimal sufficient statistics, bisimulation (Def. 5),
and the construction of the ϵ-transducer via the equivalence relation in Eq. (10).

C Proof of Lemma 1

Proof. Let us first prove that if St is a world model for the interface I(Y |A), then Eq. (2) holds.
Using property (2) of world models, together with the fact that the interface is anticipation-free, one
can show that

p(y:τ , s:τ+1|a:) = p(y:τ |a:)p(s:τ+1|y:τ ,a:)

= p(y:τ |a:τ )p(s:τ+1|y:τ ,a:τ )

= p(y:τ , s:τ+1|a:τ ), (18)
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which holds for all τ ∈ N. Then, one can use this equality recursively to derive the following:

p(y:t, s:t+1|a:) = p(y:t, s:t+1|a:t)

= p(y:t−1, s:t|a:t)p(yt, st+1|y:t−1, s:t,a:t)

= p(y:t−1, s:t|a:t−1)p(yt, st+1|y:t−1, s:t,a:t)

= p(y:t−2, s:t−1|a:t−1)

t∏
τ=t−1

p(yτ , sτ+1|y:τ−1, s:τ ,a:τ )

= . . .

= p(s0)

t∏
τ=0

p(yτ , sτ+1|y:τ−1, s:τ ,a:τ ). (19)

Note that, in the last step, p(s0|a0) = p(s0) follows by applying property (2) for t = 0. Now, using
property (1) one can show that

p(yτ , sτ+1|y:τ−1, s:τ ,a:τ ) = p(yτ |y:τ−1, s:τ ,a:τ )p(sτ+1|y:τ , s:τ ,a:τ )

= p(yτ |sτ , aτ )p(sτ+1|y:τ , s:τ ,a:τ ). (20)

The desired result follows from putting together Eq. (19) and Eq. (20).

For the converse, let’s show that if Eq. (2) holds, then St satisfies the two properties of world models
as given in Def. 2. The first property can be proven directly as follows:

p(yt|s:t,a:t,y:t−1) =

∑
st+1

p(y:t, s:t+1|a:t)∑
st+1,yt

p(y:t, s:t+1|a:t)

=

∑
st+1

p(s0)
∏t

τ= p(yτ |sτ , aτ )p(sτ+1|s:τ ,h:τ )∑
st+1,yt

p(s0)
∏t

τ=0 p(yτ |sτ , aτ )p(sτ+1|s:τ ,h:τ )

=

∑
st+1

p(yt|st, at)p(st+1|s:t,h:t)∑
st+1,yt

p(yt|sτ , at)p(st+1|s:t,h:t)

= p(yt|st, at). (21)

Similarly, the second property can be proven as follows:

p(s:t|h:t−1,at:) =
p(s:t,y:t−1|a:)

p(y:t−1|a:)

=
p(s0)

∏t−1
τ= p(yτ |sτ , aτ )p(sτ+1|s:τ ,h:τ )∑

s:t
p(s0)

∏t−1
τ= p(yτ |sτ , aτ )p(sτ+1|s:τ ,h:τ )

(a)
= p(s:t|h:t−1). (22)

Above, (a) follows from the fact that the variables at: do not appear in the previous expression.

D Alternative characterisations of a transducer

Lemma 2 characterises transducers as world models. However, this characterisation is not the most
useful when investigating if a given process St qualifies as the memory state of a transducer. Here
we provide two alternative characterisations of a transducer that are better suited to those tasks.

Lemma 6. The process St provides a memory state for a transducer presentation of an anticipation-
free interface I(Y |A) if and only if one of the following conditions hold:

1. p(s0|a:) = p(s0) and p(st+1, yt|s:t,h:t−1,at:) = p(st+1, yt|st, at) for all t ∈ N.
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2. I(Sti+1:t,Yti:t−1;At:|Ati:t−1, Sti) = I(St+1:,Yt:;Y:t−1,S:t−1,A:t−1|At:, St) = 0 for all
ti, t ∈ N with ti ≤ t.

Proof. We prove these equivalences in two steps.

Step 1: Equivalence between condition (1) and Lemma 2

Let’s first prove that Lemma 2 imply condition (1). By Lemma 1, if St is a world model then
p(st+1, yt|s:t,h:t−1,at:) = p(yt|st, at)p(st+1|s:t,h:t). Combining this with p(st+1|s:t,h:t) =
p(st+1|st, ht) (Lemma 2), it is clear that p(st+1, yt|s:t,h:t−1,at:) = p(st+1, yt|st, at).

To prove the converse, let us now show that condition (1) guarantees that St is a world model that
satisfies p(st+1|s:t,h:t) = p(st+1|st, ht). Property (1) of world models can be proven as follows:

p(yt|s:t,a:t,y:t−1) =
∑
st+1

p(st+1, yt|s:t,h:t−1, at)
(a)
=
∑
st+1

p(st+1, yt|st, at) = p(yt|st, at), (23)

where (a) uses condition (1). Property (2) follows from

p(s:t|h:t−1,at:) =
p(s:t,y:t−1|a:)

p(y:t−1|a:)

=

∏t−1
τ=0 p(sτ+1, yτ |s:τ ,y:τ−1,a:)

p(y:t−1|a:)

(b)
=

∏t−1
τ=0 p(sτ+1, yτ |s:τ ,y:τ−1,a:t−1)

p(y:t−1|a:t−1)

=
p(s:t,y:t−1|a:t−1)

p(y:t−1|a:t−1)

= p(s:t|h:t−1), (24)

where (b) is using condition (1) and the fact that the interface is anticipation free. Finally, the
Markovianity of state dynamics can be proven as follows:

p(st+1|s:t,h:t) =
p(st+1, yt|s:t, at,h:t−1)∑

st+1
p(st+1, yt|s:t, at,h:t−1)

=
p(st+1, yt|st, at)∑

st+1
p(st+1, yt|st, at)

= p(st+1|st, ht).

(25)

Part 2: Equivalence between conditions (1) and (2)

Let’s first show that condition (2) implies condition (1). For this, let’s first note that in general if
I(A;B|C) = 0 holds for some variables A,B, and C, then p(a|c) = p(a|b, c). Thus, the condition
I(Sti+1:t,Yti:t−1;At:|Ati:t−1, Sti) = 0 implies that

p(sti+1:τ ,yti:τ−1|ati:, sti) = p(sti+1:τ ,yti:τ−1|ati:τ−1, sti), (26)

holding for all τ ∈ N with ti ≤ τ ≤ t. Similarly, I(St+1:,Yt:;Y:t−1,S:t−1,A:t−1|At:, St) = 0
implies that

p(sτ+1:t+1,yτ :t|y:τ−1, s:τ ,a:) = p(sτ+1:t+1,yτ :t|aτ :, sτ ), (27)

holding for all τ ∈ N with ti ≤ τ ≤ t. Note that S0 is an element of the past S:t−1, so we can
multiply these together to obtain

p(sti+1:τ ,yti:τ−1|ati:τ−1, sti)p(sτ+1:t+1,yτ :t|aτ :, sτ )

= p(sti+1:τ ,yti:τ−1|ati:, sti)p(sτ+1:t+1,yτ :t|yti:τ−1, sti:τ ,ati:)

= p(sti+1:t+1,yti:t|ati:, sti). (28)
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Using this relation recursively, one can find that

p(s:t+1,y:t, |a:, s0)
(c)
= p(s:1, y0|a0, s0)p(s2:t+1,y1:t|a1:, s1)

(d)
= p(s1, y0|a0, s0)p(s2, y1|s1, a1)p(s3:t+1,y2:t|s2,a2:)

= . . .

=

t∏
τ=0

p(sτ+1, yτ |sτ , aτ ), (29)

where (c) is obtained by using ti = 0 and τ = 1, (d) by using ti = 1 and τ = 2, and so on. By
comparing with Lemma 2, this means that condition (2) implies condition (1).

Let us now show that condition (1) implies condition (2). Condition (1) implies that

p(sti+1:tf ,yti:tf−1, |ati:, sti) =

tf∏
τ=ti

p(st+1, yt|st, at)

=

 tf∏
j=t

p(sj+1, yj |sj , aj)

( t∏
k=ti

p(sk+1, yk|sk, ak)

)
= p(st+1:tf ,yt:tf−1|at:tf−1, st)p(sti+1:t,yti:t−1|ati:t−1, sti).

(30)

This can be used to show that

p(sti+1:t,yti:t−1|ati:t−1, sti) =
∑

st+1:tf
yt:tf−1

p(st+1:tf ,yt:tf−1|at:tf−1, st)p(sti+1:t,yti:t−1|ati:t−1, sti)

=
∑

st+1:tf
yt:tf−1

p(sti+1:tf ,yti:tf−1, |ati:, sti)

= p(sti+1:t,yti:t−1, |ati:, sti), (31)

which implies I(Sti+1:t,Yti:t−1;At:|Ati:t−1, Sti) = 0. To prove the second information equality,
one can divide both sides of Eq. (30) by p(sti+1:t,yti:t−1|ati:t−1, sti) to obtain

p(st+1:tf ,yt:tf−1|at:tf−1, st) =
p(sti+1:tf ,yti:tf−1, |ati:, sti)

p(sti+1:t,yti:t−1|ati:t−1, sti)

= p(st+1:tf ,yt:tf−1, |yti:t−1, sti:t, ati:). (32)

Given that ti and tf are arbitrary, this implies that I(St+1:,Yt:;Y:t−1,S:t,A:t−1|At:, St) = 0.

E Proof of Lemma 3

Lemma 7. An interface is fully observable if and only if p(yt+1|y:t,a:) = p(yt+1|yt, at), and is
memoryless if and only if p(y:t|a:) =

∏t
τ=0 p(yτ |aτ ).

Proof. To prove the first part of the lemma, one can use condition (1) in Lemma 6 which im-
plies that St = Yt yields a transducer if and only if p(yτ , yτ+1|y:τ ,a:τ ) = p(yτ , yτ+1|yτ , aτ ) =
p(yτ+1|yτ , aτ ). To prove the second part of the lemma, note that an interface satisfies p(y:t|a:) =∏t

τ=0 p(yτ |aτ ) if and only if St = 0 yields a factorisation of p(y:t|a:) as in Eq. (4). This shows that
St = 0 is the state of a transducer presentation of I(Y |A) if and only if the interface is memoryless.
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F Relationship between transducers and POMDPs

A POMDP is a tuple (S,A,O, τ, µ, ρ) in which S correspond to states of the world, A the action
space, O the observation space, and the probability kernels τ : S×A → ∆(S), µ : S → ∆(O), and
ρ : S × A → ∆(R) specify the world dynamics, observation map, and reward function (Kaelbling
et al., 1998). Under a POMDP, the joint dynamics satisfy Eq. (4), which — thanks to condition
(1) in Lemma 6 — is sufficient to show that the POMDP induces a transducer. This, together
with Lemma 2, implies that the process St in a POMDP is a world model, in the sense that it
satisfies the conditions in Def. 2.

Note also that the standard presentaiton of POMDPs correspond to a transducer whose kernel allows
the following factorisation:

p(st+1, yt|st, at) = τ(st+1|st, at)µ(ot|st)ρ(rt|st, at). (33)

This corresponds to a I-O Moore transducer, as defined in Sec. 3.3. The different types of transducers
are illustrated in Figure 5.

S0 S1 S2

A0 A1

Y0 Y1

a)

κτ (y, s̃|a, s)

S0 S1 S2

A0 A1

Y0 Y1

b)

κτ (y, s̃|a, s) = µτ (y|a, s)ντ (s̃|a, s)

S0 S1 S2

A0 A1

Y0 Y1

c)

κτ (y, s̃|a, s) = µτ (y|s)ντ (s̃|y, a, s)

S0 S1 S2

A0 A1

Y0 Y1

d)

κτ (y, s̃|a, s) = µτ (y|s)ντ (s̃|a, s)

Figure 5: Illustration of different types of transducers: Mealy transducers (a), output-Moore trans-
ducers (b), input-Moore transducer (c), and I-O Moore transducer.

G Proof of Lemma 4

Proof. Let consider St = Ht−1 and S0 = 0. To prove that St yields a transducer presentation of
I(Y |A), we will use condition (1) from Lemma 6. For this, note that

p(st+1, yt|s:t,h:t−1,at:) = p(st+1, yt|h:t−1,at:) = p(st+1|h:t,at+1:)p(yt|h:t−1,at:). (34)

Let us develop each of those terms separately. First, one can find that

p(st+1|h:t,at+1:) = p(st+1|st, ht,at+1:) = δ(st,ht)
st+1

= p(st+1|st, ht), (35)

where δba is the Kroneker delta. Similarly, the second term can be developed as follows:

p(yt|h:t−1,at:) =
p(y:t|a:)

p(y:t−1|a:)

(a)
=

p(y:t|a:t)

p(y:t−1|a:t)
= p(yt|y:t−1,a:t) = p(yt|st, at), (36)
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where (a) uses the fact that the interface is anticipation-free. Finally, by combining Eq. (34),
Eq. (35), and Eq. (36) one finds that

p(st+1, yt|s:t,h:t−1,at:) = p(st+1|st, ht)p(yt|st, at) = p(st+1, yt|st, at), (37)

which shows that condition (1) from Lemma 6 is satisfied.

H Proof of Lemma 5

Proof. Consider S′
t = ϕ(St) a reduction of the memory state St of a transducer. Then

p(y:ts
′
:t+1|a:) =

t∑
τ=0

∑
sτ∈S

ϕ(sτ )=s′τ

p(y:ts:t+1|a:)

(a)
=

t∑
τ=0

∑
sτ∈S

ϕ(sτ )=s′τ

p(s0)

t∏
τ=0

p(yτ |sτ , aτ )p(sτ+1|sτ , hτ )

(b)
=

t∑
τ=0

∑
sτ∈S

ϕ(sτ )=s′τ

p(s0)

t∏
τ=0

p(yτ |s′τ , aτ )p(sτ+1|sτ , hτ )

=

t−1∑
τ=0

∑
sτ∈S

ϕ(sτ )=s′τ

p(s0)

t−1∏
τ=0

p(yτ |s′τ , aτ )p(sτ+1|sτ , hτ )p(yt|s′t, at)
∑

st+1∈S
ϕ(st+1)=s′t+1

p(st+1|st, hτ )

(c)
=

t−1∑
τ=0

∑
sτ∈S

ϕ(sτ )=s′τ

p(s0)

t−1∏
τ=0

p(yτ |s′τ , aτ )p(sτ+1|sτ , hτ )p(yt|s′t, at)p(s′t+1|s′t, hτ )

(d)
= . . .

=

[ ∑
s0∈S

ϕ(s0)=s′0

p(s0)

]
t∏

τ=0

p(yτ |s′τ , aτ )p(s′τ+1|s′τ , hτ )

(e)
= p(s′0)

t∏
τ=0

p(yτ |s′τ , aτ )p(s′τ+1|s′τ , hτ ). (38)

Above, (a) uses that St is the memory state of a transducer, (b) uses property (i) of homomorphisms
(see Def. 4), (c) and (e) uses property (ii) of homomorphisms, and (d) denotes that the same steps
of previous equations are done iteratively. Finally, Eq. (38) together with Lemma 1 confirm that S′

t

yields a valid transducer for the same interface.

I Proof of Prop. 1

Proof. Let’s first assume that the mapping ϕ induces a reduction of the world model St into S′
t, and

define the equivalence relation B such that s ∼ s′ when ϕ(s) = ϕ(s′). In this setting, let’s prove
that B is a bisimulation. For this, one can note that if s ∼ s′ then one can use the first property of
homomorphims to find that

Pr(Yt = y|St = s,At = a) = Pr(Yt = y|S′
t = ϕ(s), At = a)

= Pr(Yt = y|S′
t = ϕ(s′), At = a)

= Pr(Yt = y|St = s′, At = a). (39)
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Additionally, using the second property one finds that∑
s′′∈[s̃]

Pr
(
St+1 = s′′|St = s,Ht = (y, a)

)
= Pr

(
S′
t+1 = s̃|S′

t = ϕ(s), Ht = (y, a)
)

= Pr
(
S′
t+1 = s̃|S′

t = ϕ(s′), Ht = (y, a)
)

=
∑

s′′∈[s̃]

Pr
(
St+1 = s′′|St = s′, Ht = (y, a)

)
, (40)

where [s̃] = {s ∈ S : ϕ(s) = s̃}. Together, these two results show that B is a bisimulation in the
sense of Def. 5.

For proving the converse statement, let’s assume that B ⊆ S × S is a bisimulation, and define
ϕ(s) = [s] as a function that maps each state s ∈ S into its equivalence class according to B.

Let’s prove that St
ϕ−→ ϕ(St) = [St] is a reduction. First, for B being a bisimulation implies that

Pr
(
Yt = y|St = s,At = a

)
= Pr

(
Yt = y|St = s′, At = a

)
for any (s, s′) ∈ B, which in turn

implies that

Pr
(
Yt = y|ϕ(St) = [s], At = a

)
= Pr

(
Yt = y|St = s,At = a

)
, (41)

showing that ϕ satisfies the first property of homomorphisms. Furthermore, if (s, s′) ∈ B then

Pr
(
ϕ(St+1) = [s̃]|St = s,Ht = (y, a)

)
=
∑

s′′∈[s̃]

Pr
(
St+1 = s′′|St = s,Ht = (y, a)

)
=
∑

s′′∈[s̃]

Pr
(
St+1 = s′′|St = s′, Ht = (y, a)

)
= Pr

(
ϕ(St+1) = [s̃]|St = s′, Ht = (y, a)

)
, (42)

which implies that

Pr
(
ϕ(St+1) = [s̃]|St = s,Ht = (y, a)

)
= Pr

(
ϕ(St+1) = [s̃]|ϕ(St) = [s], Ht = (y, a)

)
. (43)

Using this, one can finally show that

Pr
(
ϕ(St+1) = [s̃]|ϕ(St) = [s], Ht = (y, a)

)
=
∑

s′′∈[s̃]

Pr
(
St+1 = s′′|ϕ(St) = [s], Ht = (y, a)

)
=
∑

s′′∈[s]

Pr
(
St+1 = s̃|St = s,Ht = (y, a)

)
(44)

J Proof of Prop. 2

Proof. To prove the first part of the proposition, let’s consider the Bayesian beliefs of the mem-
ory state St of a transducer (St, Yt, At) as given by bt(st) = p(st|h:t−1). Let’s also define the
postdictive beliefs as dt = p(st|h:t). Then, their update can be calculated as follows:

bt+1(st+1) =
∑
st

p(st+1|st,h:t)p(st|h:t)
(i)
=
∑
st

p(st+1|st, ht)dt(st), (45)

where (i) uses the Markovianity of the memory states following Lemma 2. In a similar way, one can
find that

dt(st) =
p(st,h:t−1, at, yt)

p(h:t−1, at, yt)
=

p(yt|st,h:t−1, at)p(st|h:t−1, at)

p(yt|h:t−1, at)

(ii)
=

p(yt|st, at)
Z ′ bt(st) (46)
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with Z ′ a normalising constant. Above, (ii) uses that St is a world model together with the fact that
that

p(st|h:t−1, at) =
p(st,h:t−1, at)

p(h:t−1, at)
=

p(at|st,h:t−1)p(st|h:t−1)

p(at|h:t−1)
= p(st|h:t−1), (47)

where the last equality holds due to the fact that actions depend on histories and not on states, and
hence p(at|st,h:t−1) = p(at|h:t−1). Then, combining Eq. (45) and Eq. (46) one can find that

bt+1(st+1) = f̂(bt, yt, at) :=
1

Z ′
∑
st

p(st+1|st, ht)p(yt|st, at)bt(st), (48)

proving the first part of the proposition.

To prove the second part of the proposition, first note that Eq. (48) combined with condition (1) in
Lemma 6 imply that (Bt, At, Yt) is a belief transducer with unifilar kernel given by

κ̂τ (y, b̃|a, b) = δ
f̂τ (b,y,a)
b̃

∑
s̃,s∈S

κτ (y, s̃|a, s)b(s) = δ
f̂τ (b,y,a)
b̃

(
1⊺ · T (y|a)

τ · b
)
, (49)

where T
(y|a)
τ is the linear operator defined as in Eq. (3), and the second term corresponds to the

probability of emitting y given b, i.e.

1⊺ · T (yτ |aτ )
τ · bτ =

∑
sτ∈S

p(yτ |sτ , aτ )bτ (sτ ). (50)

Now, let’s consider a transducer (St, At, Yt) and the belief transducer of predictive Bayesian beliefs
(Bt, At, Yt). Given that (St, At, Yt) is a transducer, then the update rule given by Eq. (48) can be
re-written as

f̂τ (b, y, a) =
T

(y|a)
τ · b

1⊺ · T (y|a)
τ · b

. (51)

Moreover, for a given sequences y:τ ,a:τ and beliefs b0, . . . , bτ following this updating rule, this
can be applied recursively yielding

f̂τ (bτ , yτ , aτ ) =
T

(yτ |aτ )
τ · bτ

1⊺ · T (yτ |aτ )
τ · bτ

=
T

(yτ−1:τ |aτ−1:τ )
τ−1 · bτ−1

1⊺ · T (yτ−1:τ |aτ−1:τ )
τ−1 · bτ−1

= . . .

=
T

(y:τ |a:τ )
0 · b0

1⊺ · T (y:τ |a:τ )
0 · b0

, (52)

where we are using T
(yt:t′ |at:t′ )
t :=

∏t′

τ=t T
(yτ |aτ )
τ as a shorthand notation. Note that, similarly as

Eq. (49), the denominator in Eq. (52) corresponds to

1⊺ · T (y:τ |a:τ )
0 · b0 = p(y:τ |a:τ , s0)b0(s0). (53)
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Finally, combining all these expressions one can directly calculate what is the result of successive
applications of the kernel of a predictive Bayesian belief transducer:

∑
b:t+1

t∏
τ=0

κ̂τ (yτ , bτ+1|aτ , bτ )
(a)
=
∑
b:t+1

t∏
τ=0

δ
f̂(bτ ,yτ ,aτ )
bτ+1

(
1⊺ · T (yτ |aτ )

τ · bτ
)

(b)
=

t∏
τ=0

1⊺ · T (yτ |aτ )
τ · T

(y:τ−1|a:τ−1)
0 · b0

1⊺ · T (y:τ−1|a:τ−1)
0 · b0

=1⊺ · T (y:t|a:t)
0 · b0

(c)
=
∑
s0

p(y:τ |a:τ , s0)b0(s0). (54)

Above, (a) uses Eq. (49), (b) resolves the Dirac delta with the summation and uses Eq. (52), and
(c) uses Eq. (53). To conclude, one can notice that if b0(s0 = Pr(S0 = s0), then this shows that
(St, At, Yt) and (Bt, At, Yt) generate the same interface.

K Proof of Prop. 3

Before the proof, let us note that the kernel of I-O Moore transducers can be re-organised as

p(y:t, s:t+1|a:t) = p(s0)

t∏
τ=0

κτ (yτ , sτ+1|sτ , aτ )

= p(s0)

t∏
τ=0

µτ (yτ |sτ )ντ (sτ+1|sτ , aτ )

= p(s0)

t∏
τ=0

κS
τ (yτ , sτ |sτ−1, aτ−1), (55)

where κS
τ (yt+1, st+1|st, at) is a ‘time-shifted’ kernel defined as

κS
τ (y, s̃|s, a) :=

{
µτ (y|s̃)ντ−1(s̃|s, a) if τ ≥ 1,

µ0(y|s) if τ = 0.

This means that I-O Moore transducers yield two associated kernels: the standard one κ and the
time-shifted one κS , and — crucially — both generate the interface. Following Eq. (3), let’s defined
the time-shifted linear operators

T
′(y|a)
τ :=

n∑
i=1

n∑
j=1

κS
τ (y, si|a, sj)eie

⊺
j , (56)

with the understanding that for τ = 0 then

T
′(y|a)
0 :=

n∑
i=1

n∑
j=1

µ0(y|sj)eie⊺j . (57)

Proof. To derive the update rule of postdictive beliefs, one can combine Eq. (45) and Eq. (46) to
find that

dt+1(st+1) =
p(yt+1|st+1, at+1)

Z ′
∑
st

p(st+1|st, ht)dt(st). (58)
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Furthermore, if the transformer is I-O Moore, then

p(yt+1|st+1, at+1) = p(yt+1|st+1) and p(st+1|st, ht) = p(st+1|st, at). (59)

Using these relationships in Eq. (58) directly yields the desired update rule.

To prove the second part of the proposition, let us first note for I-O Moore transducers then
p(yt+1|st+1) = µt+1(yt+1|st+1) and p(st+1|st, at) = νt(st+1|st, at). Using this, the update rule
can be re-written as dτ = f ′

τ (yτ , aτ−1, dτ−1) with f ′ given by[
f ′
τ (y, a, d)

]
(s) :=

µτ (y|s)
Z ′

∑
s′

ντ−1(s|s′, a)d(s′) =
1

Z ′
∑
s′

κS
τ (y, s|a, s′)d(s′). (60)

Moreover, comparing this with Eq. (48), one can find that

f ′
τ (y, a, d) =

T
′(y|a)
τ · d

1⊺ · T
′(y|a)
τ · d

, (61)

and following a similar derivation one finds that for sequences y:τ ,a:τ and beliefs d0, . . . , dτ

f ′
τ (yτ , aτ−1, dτ−1) =

T
′(yτ |aτ−1)
τ · dτ−1

1⊺ · T
′(yτ |aτ−1)
τ · dτ−1

= . . .

=
T

(y:τ |a:τ−1)
0 · d0

1⊺ · T (y:τ |a:τ−1)
0 · d0

, (62)

where we use T
′(yt:t′ |at−1:t′−1)
t :=

∏t′

τ=t T
′(yτ |aτ−1)
τ as a shorthand notation.

With these tools at hand, let’s note that Eq. (9) combined with condition (1) in Lemma 6 imply that
(Dt, At, Yt) is a belief transducer with unifilar kernel given by

κ̂S
τ (y, d̃|a, d) = δ

f ′
τ (y,a,d)

d̃

∑
s∈S

κS
τ (y, s̃|a, s)d(s) = δ

f ′
τ (y,a,d)

d̃

(
1⊺ · T

′(y|a)
τ · d

)
, (63)

being analogous to the result found in Eq. (49). Then, combining all these expressions one can
directly calculate what is the result of successive applications of the kernel of a predictive Bayesian
belief transducer:∑

d:t

t∏
τ=0

κ̂S
τ (yτ , dτ |aτ−1, dτ−1)

(a)
=
∑
d:t

t∏
τ=0

δ
f ′(yτ ,aτ−1,dτ−1)
dτ

(
1⊺ · T

′(yτ |aτ−1)
τ · dτ−1

)
(b)
=

t∏
τ=0

1⊺ · T (yτ |aτ−1)
τ · T

(y:τ−1|a:τ−2)
0 · d0

1⊺ · T (y:τ−1|a:τ−2)
0 · d0

=1⊺ · T (y:t|a:t−1)
0 · d0

=
∑
s0

p(y:τ |a:τ−1, s0)d0(s0). (64)

Above, (a) uses Eq. (63), (b) resolves the Dirac delta with the summation and uses Eq. (62). To
conclude, note that this shows that (St, At, Yt) and (Dt, At, Yt) generate the same interface when
d0(s0) = Pr(S0 = s0).

Before finishing, note that Cor. 1 follows directly from recognising Eq. (45) and Eq. (46) as the equa-
tions related to ‘predict’ and ‘update’ steps in Kalman and Bayesian filtering (Särkkä & Svensson,
2023) corresponding to

bt−1 = p(st−1|h:t−1)
predict−−−→ dt = p(st|h:t−1)

update−−−→ bt = p(st|h:t). (65)
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L Proof of Prop. 4

This result was originally proven in (Barnett & Crutchfield, 2015, Prop. 2). Here we provide an
alternative proof that leverages the link established between transducer homomorphisms and bisim-
ulations.

Proof. We first show that the equivalence class defined by Eq. (10) is a bisimulation of the world
model St = H:t−1. For this, we first show that the coarse-graining defined by Eq. (10) is a bisimu-
lation — i.e., it it satisfies the two properties outlined in Def. 5. Condition (i) follows from Eq. (10)
directly, since it only considers futures of length L = 1. A proof that Condition (ii) follows from
the fact that the dynamics of the equivalence classes are conditionally Markovian given the actions,
which has been shown in (Barnett & Crutchfield, 2015, Prop. 6).

With this, the desired result follows directly from noting that St = H:t−1 is always a valid trans-
ducer of I(Y |A) (Lemma 4), and that the bisimulation of a transducer always yields a valid trans-
ducer (Prop. 1) that generates the same interface (Lemma 5).

M Proof of Theorem 3

This proof is a direct extension of (Barnett & Crutchfield, 2015, Lemma 1), which focuses on ‘rival
partitions’ rather than predictive transducers. The core idea of the proof is that, for a given predictive
transducer with memory Rt ∈ R, one can build an equivalence relation in R × R induced by a
coarse-graining map ϵ defined as

ϵ′t(r) = ϵ′t(r
′) iff Pr(Yt:t′ |At:t′ , Rt = r) = Pr(Yt:t′ |At:t′ , Rt = r′) ∀t′ ≥ t. (66)

Then, one can show that if Rt is a predictive world model, then ϵ′t(Rt) is isomorphic to the memory
states of the ϵ-transducer. The full proof of this is given next, after presenting the following lemma.
Lemma 8. A predictive transducer (St, At, Yt) satisfies

p(yt:t′ |at:t′ , st) = p(yt:t′ |at:t′ , st,h:t−1) = p(yt:t′ |at:t′ ,h:t−1) ∀t′ ≥ t. (67)

Proof. By definition (see Sec. 5.1) a predictive transducer has memory states St that satisfy the
condition I(Yt:, St|H:t−1,At:) = 0, which implies that for all t′ ≥ t

p(yt:t′ |at:t′ , st,h:t−1)
(i)
= p(yt:t′ |at:, st,h:t−1)

= p(yt:t′ |at:,h:t−1)

(ii)
= p(yt:t′ |at:t′ ,h:t−1), (68)

holding whenever p(yt:t′ , st|at:t′ ,h:t−1) ̸= 0, which means that these events are compatible.
Above, (i) and (ii) use the fact that the interface and world models are non anticipatory. Addi-
tionally, using the properties of transducers one can show that

p(yt:t′ |at:t′ , st,h:t−1) =
∑

st+1:t′+1

p(yt:t′ , st+1:t′+1|at:t′ , st,h:t−1)

=
∑

st+1:t′+1

t′∏
τ=t

p(yτ , sτ+1|at:t′ , st:τ ,yt:τ−1,h:t−1)

(iii)
=

∑
st+1:t′+1

t′∏
τ=t

p(yτ , sτ+1|at:t′ , st:τ ,yt:τ−1)

=
∑

st+1:t′+1

p(yt:t′ , st+1:t′+1|at:t′ , st)

= p(yt:t′ |st,at:t′) (69)
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for all t′ > t, where (iii) uses condition (1) from Lemma 6. Finally, combining Eq. (68) and Eq. (69)
gives the desired result.

Proof of Theorem 3. Consider St the memory state of a transducer. Let us first note that

p(yt:t′ |at:t′ ,h:t−1) =
∑
j∈J

αjp(yt:t′ |at:t′ , st,h:t−1) (70)

where αj = p(st|h:t−1,at:t′) = p(st|h:t−1), where the second equality holds because St is a world
model (property (2) in Def. 2). Above, we are using a suitable set of indices J corresponding to the
possible values of st, which satisfy

∑
j∈J αj =

∑
st∈S p(st|h:t−1) = 1. Given that the Shannon

entropy is concave, Eq. (70) implies

H
[
p(yt:t′ |at:t′ , st)

]
≥
∑
j∈J

αjH
[
p(yt:t′ |at:t′ , st,h:t−1)

]
, (71)

where H[p] is a shorthand notation for the entropy of a variable with distribution p. Moreover, given
that H is strictly concave, Eq. (71) turns into an equality if and only if all αj’s are either 0 or 1 for
all j ∈ J .

Now, consider St the memory state of a predictive transducer and Mt = ϵ(H:t−1) the memory state
of the ϵ-transducer, as determined by the coarse-graining mapping defined in Eq. (10). Note that
(Mt, At, Yt) is a predictive transducer, and hence Lemma 8 can be used yielding

p
(
yt:t′ |at:t′ , ϵ(h:t−1)

)
= p(yt:t′ |at:t′ , ϵ(h:t−1),h:t−1) = p(yt:t′ |at:t′ ,h:t−1) (72)

for all t′ > t. Then, using Lemma 8 this time on (St, At, Yt), one can find that

Pr
(
Yt:t′ |At:t′ ,Mt−1 = ϵ(h:t−1)

)
= Pr(Yt:t′ |At:t′ ,H:t−1 = h:t−1)

= Pr(Yt:t′ |At:t′ , St = st,H:t−1 = h:t−1)

= Pr(Yt:t′ |At:t′ , St = st). (73)

This implies that for each equivalence class ϵt(h:t−1) = [h:t−1]∼ϵ there exists at least one st ∈ S
such that Pr

(
Yt:t′ |At:t′ ,Mt−1 = ϵ(h:t−1)

)
= Pr(Yt:t′ |At:t′ , St = st). Moreover, the previous

equalities imply that if St is a predictive transducer, then Eq. (71) necessarily becomes an equality.
This, in turn, implies that αj = p(st|h:t−1) is 1 for all st ∈ S for which

Pr(Yt:t′ |At:t′ , St = st) = Pr(Yt:t′ |At:t′ , St = st,H:t−1 = h:t−1)

= Pr(Yt:t′ |At:t′ ,H:t−1 = h:t−1) (74)

holds, or 0 otherwise. This implies that the mapping ϵ′ given by

ϵ′(st) = ϵ′(s′t) ⇔ Pr(Yt:t′ |At:t′ , St = st) = Pr(Yt:t′ |At:t′ , St = s′t) ∀t′ ≥ t (75)

satisfies ϵ′t(St) = ϵt(H:t−1) = Mt.

N Comparing the reduction of general vs predictive transducers

Let us explain why reducing a predictive transducer is different from reducing an arbitrary trans-
ducer. For this, leveraging the discussion about the canonical dimension of a transducer (see Eq. (5)),
let us consider on transducers with finite memory states (i.e. |S| = n), and consider the matrix W
whose columns given by the vectors w(h:t) ∈ Rn of probabilities of generating y:t given a:t when
starting from different world states, so that its k-th coordinate is [w(h:t)]k = Pr(Y:t = y:t|A:t =
a:t, S0 = sk) for all possible sequences when t = n− 1 (see (Cakir et al., 2021, Prop. 4.3)). Then,
the coarse-graining ϵ defined by Eq. (10) correspond to merging together all rows of Wt that are
equal. In contrast, the canonical dimension d(T ) defined in Eq. (5) corresponds to the number of
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linearly independent rows. The crucial point is that, if a transducer with memory states St is predic-
tive, then any coarse-graining ϵ(St) will also be predictive. However, reductions via more general
procedures to trim linearly dependent components may not be attainable via coarse-grainings. In
particular, the matrix Wt of an ϵ-transducer may have linearly dependent rows, and reducing those
would — due to Cor. 2 — necessary make the transducer to stop being predictive.

It is interesting to note that the predictive beliefs of the ϵ-transducer are isomorphic to the states
of the ϵ-transducer. However, the ϵ-transducer is not the only machine whose MSP produces the
ϵ-transducer — in fact, the MSP of any transducer without redundant states will produce the same.

Finally, it is worth noting that a non-predictive finite world model may have an associate ϵ-transducer
that has infinite states filling the simplex of belief states with intricate fractal patterns (Jurgens &
Crutchfield, 2021a). This fact makes techniques to study transducers at various degrees of resolu-
tion (e.g., via approximate homomorphisms (Taylor et al., 2008) or bisimulation (Girard & Pappas,
2011), or using rate-distortion trade-offs (Marzen & Crutchfield, 2016)) particularly important.

O Example of a non-reversible transducer

Let us provide an example of how reversing a transducer can lead to a violation of the anticipation
free condition. Let’s consider the so-called delay channel, for which the output Yt+1 is equal to the
previous action At (Barnett & Crutchfield, 2015). This channel displays acausal behaviour when
time reversed: somehow the action At determines the outcome at the previous time step Yt−1,
meaning that

I(Y:t−1;At:|At−1:) = I(Yt−1;At|At−1:) = H(At|At−1:), (76)

which is nonzero if the entropy rate of the actions is nonzero. This leads to an interface that does
not satisfy anticipation free, violating the conditions of Def. 1.

P Reversing processes and proof of Theorem 4

Here we present an extended exposition of the conditions for reversing various types of stochastic
processes.

P.1 Reversing Markov processes

Let’s start by considering a Markov process Xt, so that p(xt|x:t−1) = p(xt|xt−1) for all t ∈ N.
Then the reverse process (given by Xt, Xt−1, . . . ) is also Markov, as

p(xt|xt+1:t′) =
p(xt:t′)

p(xt+1:t′)
=

p(xt)
∏t′

k=t+1 p(xk|xt:k−1)

p(xt+1)
∏t′

j=t+2 p(xj |xt+1:j−1)

=
p(xt)

∏t′

k=t+1 p(xk|xk−1)

p(xt+1)
∏t′

j=t+2 p(xj |xj−1)
=

p(xt)p(xt+1|xt)

p(xt+1)
= p(xt|xt+1). (77)

P.2 Reversing hidden Markov models

Let’s now consider a general (i.e. Mealy (Riechers, 2016)) hidden Markov model, in which
p(st+1, yt|s:t,y:t−1) = p(st+1, yt|st) holds for all t ∈ N. As for Markov chains, one can show
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that the reverse process is also an hidden Markov model, as

p(st, yt|st+1:t′+1,yt+1:t′) =
p(st:t′+1,yt:t′)

p(st+1:t′+1,yt+1:t′)

=
p(st, yt, st+1)

∏t′

k=t+1 p(sk+1, yk|st:k,yt:k−1)

p(st+1, yt+1, st+2)
∏t′

j=t+2 p(sj+1, yj |st:j ,yt:j−1)

=
p(st, yt, st+1)

∏t′

k=t+1 p(sk+1, yk|sk)
p(st+1, yt+1, st+2)

∏t′

j=t+2 p(sj+1, yj |sj)

=
p(st)

∏t′

k=t p(sk+1, yk|sk)
p(st+1)

∏t′

j=t+1 p(sj+1, yj |sj)

=
p(st)p(st+1, yt|st)

p(st+1)

= p(st, yt|st+1). (78)

Note that in this case the structure is not perfectly time-symmetric, but could be described as ‘co-
Mealy’ structure — as the time indices of the world are shifted.

If the hidden Markov model is Moore (Riechers, 2016), so that p(st+1, yt|s:t,y:t−1) =
p(st+1|st)p(yt|st), then a similar calculation leads to

p(st, yt|st+1:t′+1,yt+1:t′) =
p(st)p(st+1, yt|st)

p(st+1)
=

p(st)p(st+1|st)p(yt|st)
p(st+1)

= p(st|st+1)p(yt|st),

(79)
yielding another Moore hidden Markov model.

P.3 Reversing transducers

Using the previous calculations as a foundation, let’s now explore the reverse properties of a trans-
ducer, where p(st+1, yt|s:t,y:t−1,a:) = p(st+1, yt|st, at) holds (see App. D). Using this property,
it is direct to see that

p(y:t, s:t+1|a:) = p(s0)

t∏
τ=0

p(yτ , sτ+1|y:τ−1, s:τ ,a:)

= p(s0)

t∏
τ=0

p(yτ , sτ+1|sτ ,a:t)

= p(y:t, s:t+1|a:t), (80)

showing that transducers naturally impose some arrow of time over actions.10 Now, let’s consider
expressing p(y:t, s:t+1|a:) factor backwards as follows:

p(y:t, s:t+1|a:) = p(y:t, s:t+1|a:t) = p(st+1|a:t)

t∏
τ=0

p(yτ , sτ |yτ+1:t, sτ+1:t+1,a:t). (81)

10Note that the derivation uses the fact that p(s0|a:) = p(s0), and it wouldn’t work for other initial point where this does
not hold.
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This shows that we need to looks for ways of simplifying expressions of the form
p(yτ , sτ |yτ+1:t, sτ+1:t+1,a:t). Using the properties of transducers, one can show that

p(sτ , yτ |sτ+1:t+1,yτ+1:t,a:t) =
p(sτ :t+1,yτ :t,a:t)

p(sτ+1:t+1,yτ+1:t,a:t)

=
p(sτ , yτ , sτ+1,a:t)

∏t
k=τ+1 p(sk+1, yk|sτ :k,yτ :k−1,a:t)

p(sτ+1, yτ+1, sτ+2,a:t)
∏t

j=τ+2 p(sj+1, yj |sτ :j ,yτ :j−1,a:t)

=
p(sτ , yτ , sτ+1,a:t)

∏t
k=τ+1 p(sk+1, yk|sk, ak)

p(sτ+1, yτ+1, sτ+2,a:t)
∏t

j=τ+2 p(sj+1, yj |sj , aj)

=
p(sτ ,a:t)

∏t
k=τ p(sk+1, yk|sk, ak)

p(sτ+1,a:t)
∏t

j=τ+1 p(sj+1, yj |sj , aj)

=
p(sτ |a:t)p(sτ+1, yτ |sτ , aτ )

p(sτ+1|a:t)

=
p(sτ |a:t)p(sτ+1|sτ , aτ )

p(sτ+1|a:t)
p(yτ |sτ+1, sτ , aτ )

= p(sτ |sτ+1,a:t)p(yτ |sτ , sτ+1, aτ ). (82)

This shows that, for any transducer (St, At, Yt), we can always ‘run it back’ using the whole se-
quence of actions to reproduce the interface, as shown by the factorisation

p(y:t, s:t+1|a:) = p(st+1|a:t)

t∏
τ=0

p(sτ |sτ+1,a:t)p(yτ |, sτ , sτ+1, aτ ). (83)

If the transducer satisfies the additional condition p(sτ |sτ+1,a:t) = p(sτ |sτ+1, aτ ), or equivalently
the information relation I(Sτ ;A0:τ−1Aτ+1:t|Sτ+1, Aτ ) = 0, then one obtains a reverse factorisa-
tion of the form

p(y:t, s:t+1|a:) = p(st+1|a:t)

t∏
τ=0

p(yτ , sτ |sτ+1, at). (84)

The reverse kernel κR can be expressed in terms of the forward one via the following derivation:

κR
τ (yτ , sτ |aτ , sτ+1) = p(yτ , sτ |a:τ , sτ+1) =

p(sτ |aτ )
p(sτ+1|aτ )

p(yτ , sτ+1|a:τ , sτ ), (85)

which implies that for reversible transducers then

κR
τ (y, s|a, s̃) =

Pr(Sτ = s|Aτ = a)

Pr(Sτ+1 = s̃|Aτ = a)
κτ (y, s̃|a, s). (86)

It is interesting to note that that replacing Eq. (86) in Eq. (84) could give the impression of not
recovering Eq. (4); however, under the assumption of transducer reversibility it does. To confirm
this, let us first check that

p(sτ |sτ+1,a:t) =
p(sτ , sτ+1|a:t)

p(sτ+1|a:t)
=

p(sτ |a:t)p(sτ+1|sτ ,a:t)

p(sτ+1|a:t)
, (87)

and similarly

p(sτ |sτ+1, aτ ) =
p(sτ , sτ+1|aτ )
p(sτ+1|aτ )

=
p(sτ |aτ )p(sτ+1|sτ , aτ )

p(sτ+1|aτ )
. (88)
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Now, as sτ is the memory state of a transducer then p(sτ+1|sτ ,a:t) = p(sτ+1|sτ , at). Putting all
together, the condition p(st|st+1,a:t) = p(st|st+1, at) can be seen to imply the following:

p(sτ |a:t)

p(sτ+1|a:t)
=

p(sτ |aτ )
p(sτ+1|aτ )

. (89)

This equality allows us to confirm that replacing Eq. (13) in Eq. (84) indeed recovers Eq. (4).

In conclusion, if p(sτ |sτ+1,a:t) = p(sτ |sτ+1, aτ ) holds then one can generate the interface via the
following procedure:

1. Initialise the state of the world at time t+ 1 by sampling p(st+1|a:t). Alternatively, for counter-
factual analyses pick an arbitrary world state s ∈ S and set St+1 = s .

2. Run the transducer backwards using the kernel κR(yτ , sτ |aτ , sτ+1) = p(yτ , sτ |sτ+1, at).

P.4 Effect of action-unifiliarity

A transducer is action-unifilar if p(sτ+1|sτ , aτ ) = δ
f(sτ ,aτ )
sτ+1 with Sτ+1 = f(Sτ , Aτ ) a function. If

the dynamics of the transducer is action-counifilar, meaning that p(sτ |sτ+1, aτ ) = δ
r(sτ+1,aτ )
sτ where

Sτ = r(Sτ+1, Aτ ), then we necessarily safisfy the condition of being reversible p(sτ |sτ+1, a:τ ) =
p(sτ |sτ+1, aτ ). However, this is much more restrictive if than action-unifilarity if we insist that
every world-state can accept every action

∑
sτ+1

p(sτ+1|sτ , aτ ) = 1. Using Bayes rule

p(sτ+1|sτ , aτ ) = p(sτ |sτ+1, aτ )
p(sτ+1|aτ )
p(sτ |aτ )

= δr(sτ+1,aτ )
sτ

p(sτ+1|aτ )
p(sτ |aτ )

, (90)

we see that there is one nonzero transition for every combination of state sτ+1 and action aτ . We can
think of each transition as an edge betweens states labeled with the action, like a driven transition.
This means that there are |A| transitions per state sτ . The condition that every world-state can accept
every action means that every state has at least one outgoing edge for every action. If this were a non-
unifilar model, this would mean that there an action that had two or more outgoing edges. However,
that would mean that the total number of edges in the automata is larger than |A||S|, which is a
contradiction. Thus, each state sτ has exactly one outgoing edge for each action aτ , meaning that
the next state is a function of these states

Sτ+1 = f(Sτ , Aτ ). (91)

Therefore, every action-counifilar transducer is also action-unifilar, meaning that it obeys a type of
reversibility.

Q Proof of Theorem 5

For convenience, in this proof we use Dirac’s notation, which uses bras like ⟨v| and kets like |v⟩ to
express row and column vectors respectively. If we are describing vectors and matrices over states
S, then we can use an orthonormal basis ({|s⟩}s∈S such that ⟨s|s′⟩ = δs,s′ ) in the Hilbert space HS
to express the vector

|v⟩ =
∑
s

v(s)|s⟩. (92)

Here, v(s) represents the sth element of the vector. Similarly, for a linear operator in this Hilbert
space, we can think of

⟨s′|M |s⟩, (93)
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as the element in the sth row and s′th column, and we can translate a matrix A with elements Ass′

into a linear operator in this space by using the outer-product

A =
∑
ss′

|s′⟩Ass′⟨s|. (94)

Using this notation, we can consider a vector space R|S| using the orthonormal basis of states
{|s⟩}s∈S such that ⟨s|s′⟩ = δs,s′ . Then, the predictive Bayesian belief can be described as

|ρP (y:t,a:t)⟩ =
∑
st+1

|st+1⟩p(st+1|h:t) , (95)

and the retrodictive Bayesian belief as

⟨ρR(y:t,a:t)| =
∑
s0

p(s0|h:t)⟨s0| . (96)

Similarly, the matrix corresponding a sequence of actions a:t and outputs y:t can be described as

T (y:t|a:t) =

t∏
τ=0

T (yτ |aτ ) =
∑

s0,sτ+1

|sτ+1⟩p(sτ+1,y:τ |a:τ , s0)⟨s0|, (97)

If we define the initial diagonal operator ρt ≡
∑

st
|st⟩p(st)⟨st|, then we can calculate the proba-

bility of joint start and end state as follows

T (y:τ |a:τ )ρ0 =
∑

s0,sτ+1

|sτ+1⟩p(sτ+1, s0,y:τ |a:τ )⟨s0|. (98)

With this, one can calculate the interface via expressions of the form

p(y:τ |a:τ ) = ⟨1|T (y:τ |a:τ )ρ0|1⟩, (99)

where |1⟩ ≡
∑

s |s⟩.

Proof of Theorem 5. Using this notation, the BMSM (Sec. 6.2) can be expressed as

ρ(y:τ ,a:τ ) =
∑

s0,sτ+1

|sτ+1⟩p(sτ+1, s0|y:τ ,a:τ )⟨s0| . (100)

Moreover, by using Eq. (98) and Eq. (99) one can find that

ρ(y:τ ,a:τ ) =
∑

s0,sτ+1

|sτ+1⟩p(sτ+1, s0,y:τ |a:τ )⟨s0|
p(y:τ |a:τ )

=
∑

s0,sτ+1

|sτ+1⟩T (y:τ |a:τ )ρ0⟨s0|
⟨1|T (y:τ |a:τ )ρ0|1⟩

, (101)

which proves the first part of the theorem. Additionally, by comparing this with Eq. (95) and Eq. (96)
one finds that

ρ(y:τ ,a:τ )|1⟩ = |ρP (y:t,a:t)⟩ and ⟨1|ρ(y:τ ,a:τ ) = ⟨ρR(y:t,a:t)| , (102)

which proves the second part of the theorem.

The corollary can be proven by noticing that

ρ(y:τ+1,a:τ+1) =
T (yτ+1|aτ+1)ρ(y:τ ,a:τ )

⟨1|T (yτ+1|aτ+1)ρ(y:τ ,a:τ )|1⟩
, (103)



AI in a vat

where the denominator is a normalisation term. By contrast, the reverse-time update requires apply-
ing a modified version of the transducer operator ρ−1

0 T (y|a)ρ0 and normalizing:

ρ(y−1:τ ,a−1:τ ) =
ρ(y:τ ,a:τ )ρ

−1
0 T (y−1|a−1)ρ−1

⟨1|ρ(y:τ ,a:τ )ρ
−1
0 T (y−1|a−1)ρ−1|1⟩

. (104)

Reflecting the fact that not every transducer is reversible, the operation of ρ−1
0 T (y|a)ρ0 cannot nec-

essarily be interpreted as the action of a transducer. However, it is nevertheless a valid method for
retrodicting the state distribution of the world.

It is important to note that, since not every transducer is reversible, the operation ρ−1
t T (y|a)ρt−1

generally does not yield the action of a transducer. This operation is, nevertheless, a valid method
for retrodicting the state distribution of a world model if its initial state is assumed to be uncorrelated
with future action sequences.


