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Summary
Contextual bandits model sequential decision-making where an agent balances exploration

and exploitation to maximize long term cumulative rewards. Many real-world applications,
such as online advertising and inventory pricing, impose additional resource constraints while
in high-stakes settings like healthcare and finance, early-stage exploration can pose significant
risks. The Contextual Bandits with Knapsacks (CBwK) framework extends contextual bandits
to incorporate resource constraints while the Contextual Conservative Bandit (CCB) frame-
work ensures that performance remains above (1 + α) times the performance of a predefined
safe baseline. Although Upper Confidence Bound (UCB) based methods exist for both setups, a
Thompson Sampling (TS) based approach has not been explored. This gap in the literature mo-
tivates the need to study TS for constrained settings, further reinforced by the fact that Thomp-
son sampling often demonstrates superior empirical performance in the unconstrained setting.
In this work we consider linear CBwK and CCB setups and design Thompson sampling algo-
rithms LinCBwK9TS and LinCCB9TS respectively. We provide a Õ

(
(OPT

B +1)m
√
T
)

regret for
LinCBwK9TS where OPT is the optimal value and B is the total budget. Further, we show that
LinCCB9TS has a regret bounded by Õ

(√
T min{m3/2,m

√
logK} + ∆h/αrl(∆l + αrl)

)
and maintains the performance guarantee with high probability where ∆h and ∆l are the upper
and lower bounds on the baseline gap and rl is a lower bound on baseline reward.

Contribution(s)
1. We provide a Thompson Sampling Algorithm for Linear Contextual Bandits with Knap-

sacks and prove a high probability regret bound.
Context: Previous work looked at an Upper Confidence Bound (UCB) approach.

2. We provide a Thompson Sampling Algorithm for Linear Contextual Conservative Bandits
and prove a high probability regret bound along with showing that it satisfies a performance
constraint.
Context: Previous work looked at an Upper Confidence Bound (UCB) approach.
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Abstract

Contextual bandits model sequential decision-making where an agent balances ex-
ploration and exploitation to maximize long-term cumulative rewards. Many real-
world applications, such as online advertising and inventory pricing, impose addi-
tional resource constraints, while in high-stakes settings like healthcare and finance,
early-stage exploration can pose significant risks. The Contextual Bandit with Knap-
sack (CBwK) framework extends contextual bandits to incorporate resource constraints
while the Contextual Conservative Bandit (CCB) framework ensures that performance
of the learner remains above (1 − α) times the performance of a predefined safe base-
line. Although Upper Confidence Bound (UCB) based methods exist for both se-
tups, a Thompson Sampling (TS) based approach has not been explored. This gap
in the literature motivates the need to study TS for constrained settings, further re-
inforced by the fact that TS often demonstrates superior empirical performance in
the unconstrained setting. In this work, we consider linear CBwK and CCB set-
tings and design TS algorithms LinCBwK9TS and LinCCB9TS respectively. We pro-
vide a Õ

(
(OPT

B + 1)m
√
T
)

regret for LinCBwK9TS where OPT is the optimal value
and B is the total budget. Further, we show that LinCCB9TS has a regret bounded
by Õ

(√
T min{m3/2,m

√
logK}+m3∆h/αrl(∆l + αrl)

)
and maintains the perfor-

mance guarantee with high probability, where ∆h and ∆l are the upper and lower
bounds on the baseline gap and rl is a lower-bound on the baseline reward.

1 Introduction

Contextual bandit is a fundamental model in sequential decision-making wherein an agent must
balance the exploration of unknown actions with the exploitation of actions believed to be optimal
(Langford & Zhang, 2007; Lattimore & Szepesvári, 2020; Slivkins, 2022). At every round, the
learner observes K separate context vectors, each corresponding to a possible action (arm). Based
on the collected history, the learner then selects an action and receives a reward signal corrupted by
noise. The learner’s goal is to maximize the total reward accumulated over T rounds, or equivalently,
to minimize the regret when compared to the best action selection strategy in hindsight. In many real-
world applications, there are additional constraints on how actions can be selected while interacting
with the environment. For instance, the learner may have to manage limited resources or ensure that
performance does not fall below an existing baseline.

The Bandit with Knapsack (BwK) framework (Badanidiyuru et al., 2013; Agrawal & Devanur, 2016)
incorporates mechanisms to handle resource limitations within the contextual bandit setting. When
an action is selected, the learner observes a reward along with a consumption vector, and the ob-
jective is to maximize the cumulative rewards while ensuring that the cumulative consumptions are
below a given budget. This problem arises in various real-world applications. For example, in clin-
ical trials, researchers must balance the exploration of new treatments while adhering to constraints
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such as the availability of medical facilities, drugs, and patient participation. In online advertis-
ing, ad placements are not only influenced by user engagement but also by advertisers’ budgets,
which limit the number of times an ad can be displayed. Similarly, retailers conducting price ex-
perimentation must manage both consumer demand and inventory constraints to maximize revenue.
Additionally, complex AI systems, such as assistive robots and autonomous vehicles, require sub-
stantial computational resources, and their training is often limited by available processing power
and energy constraints.

Further in many real-world applications, exploring new strategies can often lead to substantial risks,
especially in high-stakes domains such as healthcare, finance, and online advertising. While stan-
dard bandit algorithms eventually converge to an optimal policy, their early performance can be
unpredictable and unsafe, making them impractical for deployment in many settings. To address
this, conservative bandits impose safety constraints that require the algorithm’s cumulative rewards
to remain within a controlled range of an existing baseline policy (Wu et al., 2016; Kazerouni et al.,
2017). The learner is then required to find a good policy while ensuring that cumulative reward at
every round is greater than the cumulative reward of the baseline by a (1− α) factor.

Thompson Sampling (TS) has demonstrated strong empirical performance across a wide range of
sequential decision-making problems. It was not studied in great depth for several decades af-
ter its introduction by Thompson (1933) until Chapelle & Li (2011) and Scott (2010) successfully
showed that it matches the state-of-the-art results, and in many cases significantly outperforms al-
ternative algorithms. Subsequently TS was applied to a wide variety of domains including website
optimization (Hill et al., 2017), recommendation systems (Kawale et al., 2015), and revenue man-
agement (Ferreira et al., 2018). Also see Russo et al. (2020) for a detailed tutorial on TS. In recent
times, TS has also been combined with neural networks to provide improved performance (Riquelme
et al., 2018; Zhang et al., 2021b). Although Upper Confidence Bound (UCB) based methods have
been developed for both Contextual Bandit with Knapsack (CBwK) (Agrawal & Devanur, 2016)
and Contextual Conservative Bandit (CCB) frameworks (Kazerouni et al., 2017; Garcelon et al.,
2020), a Thompson Sampling (TS) based approach remains unexplored. Further, given that TS often
demonstrates superior empirical performance in the unconstrained setting, it is natural to investigate
whether it can be effectively extended to constrained decision-making problems. This motivates our
study, where we design and analyze TS-based algorithms for CBwK and CCB frameworks.

We outline our main contributions below.

1. Linear CBwK: We consider the linear CBwK problem and design a TS-based primal-dual
algorithm LinCBwK9TS (see Algorithm 1). We prove that LinCBwK9TS enjoys a regret bound
of O

((OPT
B + 1

)
m
√
T log(dT/δ) log(TK)

)
with high probability (see Theorem 3.1) where

OPT is the optimal value and B is the total budget (see Section 3 for details).

2. Linear CCB: We consider the linear CCB problem and design a TS-based algorithm with
a safety condition, LinCCB9TS (see Algorithm 2). Subsequently we prove that LinCCB9TS
simultaneously satisfies the performance guarantee in high probability with respect to the ex-
isting baseline (cf. Theorem 4.2) and enjoys a regret bound of Õ

(√
T min{m3/2,m

√
logK}+

m3∆h/αrl(∆l + αrl)
)
.

2 Related Work

Contextual Bandits. Research on bandit algorithms, particularly in the contextual setting, has
progressed in several directions. Early work on linear bandits focused on developing exploration
strategies with theoretical regret bounds. Abe et al. (2003), Chu et al. (2011), and Abbasi-Yadkori
et al. (2011) explored methods based on linear models, leading to algorithms that performed well
in different settings. Agrawal & Goyal (2012) analyzed regret guarantees for Thompson Sampling
in the multi-armed case, later extending these results to the linear setting with formal guarantees
(Agrawal & Goyal, 2013). Following these developments, researchers examined extensions to non-
linear models. Generalized linear bandits (GLBs) were introduced by Filippi et al. (2010) and Li



Thompson Sampling for Constrained Bandits

et al. (2017), incorporating non-linearity through a link function while retaining a linear dependence
on contextual information.

The use of deep learning in contextual bandits has also been explored. Some approaches relied
on deep neural networks (DNNs) for feature extraction, with a linear model trained on top of the
last hidden layer of the network (Lu & Van Roy, 2017; Zahavy & Mannor, 2020; Riquelme et al.,
2018). While these methods showed promising empirical performance, they lacked theoretical regret
guarantees. To address this, Zhou et al. (2020) introduced NeuralUCB, which used neural networks
along with UCB-based exploration and provided regret bounds. Zhang et al. (2021a) extended this
approach to Thompson Sampling, incorporating ideas from neural tangent kernels (NTKs) (Jacot
et al., 2018; Allen-Zhu et al., 2019) and the effective dimension d̃.

Foster & Rakhlin (2020) introduced SquareCB, which connects contextual bandit regret to online
regression with square loss. Foster & Krishnamurthy (2021) later proposed FastCB, which modifies
SquareCB using KL loss to achieve a data-dependent regret bound. Additionally, Simchi-Levi & Xu
(2020) showed that in the stochastic setting, an offline regression oracle can achieve optimal regret
with significantly fewer calls than online regression-based approaches. A recent work by Deb et al.
(2024a) extended both SquareCB and FastCB using neural networks and also demonstrated regret
bounds by Zhou et al. (2020) and Zhang et al. (2021a) are Ω(T ) in the worst case, even against an
oblivious adversary.

Constrained Bandits. Bandits with constraints require an agent to optimize rewards while adhering
to operational limits, and come in several variants. Bandits with Knapsacks (BwK) was introduced
by (Badanidiyuru et al., 2013) for the multi-armed bandit (MAB) setting. In BwK, pulling an arm
yields both a reward and a consumption, with the goal of maximizing cumulative reward before
depleting a limited budget. This formulation was later extended to the linear contextual bandits
(Agrawal & Devanur, 2016), concave rewards and convex constraints (Agrawal & Devanur, 2014a),
adversarial bandits (Immorlica et al., 2022b; Sivakumar et al., 2022) and dueling bandits (Deb et al.,
2024b). For general reward and consumption functions, (Slivkins et al., 2023; Han et al., 2023) pro-
vided sub-linear regret bounds using inverse gap weighting techniques (Abe & Long, 1999; Foster &
Rakhlin, 2020; Foster & Krishnamurthy, 2021). The online optimization with knapsacks problem is
another closely related problem, where feedback is available for all actions after a decision is made.
This problem has been studied through online linear and convex programming techniques (Agrawal
& Devanur, 2014b; Mahdavi et al., 2012).

Another related setting is conservative bandits, where the agent must ensure that its reward at each
round does not fall below a predefined fraction of a baseline policy and was introduced in (Wu
et al., 2016). Existing methods primarily rely on Upper Confidence Bound (UCB)-based approaches
(Wu et al., 2016; Kazerouni et al., 2017; Garcelon et al., 2020) and a recent paper studied the
inverse gap weighted version Deb et al. (2025). A different constrained bandit model involves
stage-wise constraints, where the expected reward of an action must not exceed a given threshold at
each round. Unlike BwK, which enforces constraints cumulatively, this formulation imposes per-
step limitations. (Amani et al., 2019; Moradipari et al., 2019) studied this setting for linear bandits,
proposing explore-exploit and Thompson Sampling-based algorithms, respectively.

3 Contextual Bandits with Knapsacks

There are K actions labeled by [K] = {1, . . . ,K} and a budget B ∈ R+. In each round t, a context
vector xt(a) ∈ [0, 1]m is observed for each action a ∈ [K], and the learner chooses an action at (or
a “no-op” option). Subsequently, a reward rt(at) ∈ [0, 1] and a d-dimensional consumption vector
vt(at) ∈ [0, 1]d are observed, both drawn independently from the past history Ft. The d elements
of the vector vt(at) are the consumptions associated with d different types of resources.

Assumption 3.1. There exist unknown parameters µ∗ ∈ [0, 1]m and W∗ ∈ [0, 1]m×d such that for
each action a, the conditional expectation of the reward and consumption are given by

E[rt(a) | xt(a),Ft−1] = µ⊤
∗ xt(a), E[vt(a) | xt(a), Ht−1] = W⊤

∗ xt(a) .



Reinforcement Learning Journal 2025

Algorithm 1 : LinCBwK9TS (Linear Contextual Bandits with Knapsacks - Thompson Sampling)

1: Initialize θ1 according to the OCO algorithm and Z such that OPT
B ≤ Z ≤ O

(OPT
B + 1

)
2: for t = 1, . . . , T do
3: Observe xt(a),∀a ∈ [K], and compute the parameter estimates according to (1)
4: Sample µ̃(t) ∼ N

(
µ̂(t), v2t Σ̂(t)

)
and w̃(t) ∼ N

(
Ŵ (t)⊤θt, v

2
t Σ̂(t)

)
5: Play arm

at := argmax
a∈[K]

{
xt(a)

⊤(µ̃(t) − Z w̃(t)
)}

6: Observe rt(at) and vt(at).
7: If there exists a j ∈ [d] such that

∑t
t′=1 vt′

(
at′
)
· ej ≥ B, then exit

8: Use xt(at), rt(at), and vt(at) to obtain µ̂(t+ 1) and Ŵ (t+ 1) using (1).
9: Update θt+1 via the OCO algorithm with

gt(θt) := θt ·
(
vt(at) − B

T 1

)
10: end for

The objective of the agent is to design a policy that maximizes the T -step total reward
∑T

t=1 rt(at)
subject to the following budget constraint: the cumulative consumption must not exceed the budget
any dimension, i.e.,

∑T
t=1 vt(at) ≤ B1. Consider a policy π that is context dependent but non-

adaptive. When the realized context is X ∈ X , the policy π assigns a probability distribution
π(X) ∈ ∆K+1 over the K arms plus a “no-op.” We define the expected reward and the expected
consumption of π as

r(π) := EX∼D
[
µ⊤
∗ X π(X)

]
, v(π) := EX∼D

[
W⊤

∗ X π(X)
]
.

and the optimal static policy as π∗ := argmaxπ T r(π) subject to T v(π) ≤ B 1.

Regret: Suppose OPT = Tr(π∗). We define the regret of an algorithm that plays the actions
{at}t∈[T ] as

RegBwK(T ) := OPT −
τ∑

t=1

rt(at).

3.1 Algorithm

We will use a primal-dual approach as in Agrawal & Devanur (2016); Sivakumar et al. (2022);
Immorlica et al. (2022a). After observing the rewards and consumption vectors until time t, the
algorithm constructs a least-squares estimate of the reward parameter µ∗ and each row of the con-
sumption parameter matrix W∗ as follows:

µ̂(t) = Σ̂(t)−1

(
t−1∑
τ=1

xτ (aτ )r(aτ )

)
, Ŵ (t)j = Σ̂(t)−1

(
t−1∑
τ=1

xτ (aτ )v(aτ )j

)
, ∀j ∈ [d]

where Σ̂(t) = I +

t−1∑
τ=1

xτ (aτ )xτ (aτ )
⊤. (1)

Our algorithm LinCBwK9TS summarized in Algorithm 1 proceeds as follows. In each round t, it
begins by initializing the dual variable θt using an Online Convex Optimization (OCO) algorithm
and sets the scaling factor Z. Upon observing the context vectors xt(a),∀a ∈ [K], it computes
estimates for reward and consumption using Bayesian linear regression. Specifically, it samples
µ̃(t) ∼ N

(
µ̂(t), v2t Σ̂(t)

)
and w̃(t) ∼ N

(
Ŵ (t)⊤θt, v

2
t Σ̂(t)

)
. Note that for the consumption, we

do not generate d different Gaussians corresponding to the d different columns of W∗. Instead,
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we use the current dual variable θt and generate one single Gaussian with mean Ŵ (t)⊤θt. This is
computationally more efficient and as we will show in the proof, it allows us to derive a regret bound
that does not scale exponentially with the number of consumptions d.

Using these estimates, the algorithm selects an action at that maximizes the adjusted reward func-
tion, incorporating the estimated reward and scaled consumption (line 5). After playing the selected
arm, the algorithm observes the actual reward and consumption values (line 6). If at any point the
accumulated resource consumption exceeds the allocated budget along any dimension, the algo-
rithm terminates early (line 7). Otherwise, the observed values are used to update the reward and
consumption estimates (line 8). The online convex optimization (OCO) algorithm is then advanced
by updating θt. The OCO algorithm chooses a sequence (θt)t∈[T ] that minimizes the OCO regret on
gt(θt) : Ω → R defined as

R(T ) := max
θ∈Ω

T∑
t=1

gt(θ)−
T∑

t=1

gt(θt),

where Ω = {θ : θ ≥ 0, ∥θ∥1 ≤ 1}. Subsequently we will refer to R(T ) as the dual regret since it
measures the regret on the dual variable θt. We make the following assumption on the dual regret.
Note that several OCO algorithms, e.g., Online Mirror Descent (OMD), satisfy this assumption (see
Hazan 2021).

Assumption 3.2 (Dual Regret). Suppose gt(θt) := θt ·
(
vt(at) − B

T 1

)
. Then we assume that

the sequence (θt)t∈[T ] in line 9 of Algorithm 1 has a dual regret that satisfies R(T ) ≤
√
T log d.

3.2 Regret Bound for LinCBwK9TS

In the next Theorem we provide a regret upper bound for our algorithm LinCBwK9TS and thereafter
provide a proof sketch. For the purposes of clarity the proof of the intermediate lemmas have been
pushed to Appendix A.

Theorem 3.1: Regret of LinCBwK9TS (Algorithm 1)

Suppose the rewards and consumptions satisfy Assumption 3.1. Then LinCBwK9TS (Algo-
rithm 1) achieves the following regret bound with probability at least 1− δ,

RegBwK(T ) ≤ O

((
OPT
B

+ 1

)
m
√
T log(dT/δ) log(TK)

)
.

Remark 3.1. The regret bound in Theorem 3.1 matches the regret bound of the UCB based algorithm
for the same setting in Agrawal & Devanur (2016) upto logarithmic factors in K.

Proof Sketch. We provide a proof sketch and refer the readers to Appendix A for a detailed proof.

We start by defining the Lagrangian at time t as ℓt(a) = xt(a)
⊤µ∗−Zθ⊤t

(
B
T 1−W⊤

∗ xt(a)
)

. Recall
that µ∗ and W∗ are the true reward and consumption parameters, and θt is the dual variable at time
t in Algorithm 1. Let τ ≤ T be the time-step when Algorithm 1 stops and (at)t∈[τ ] be the sequence
of actions selected. We consider the following term which measures the difference between the sum
of the Lagrangians (up to the stopping time τ ) for the optimal policy π∗ and the actions (at)t∈[τ ],
using the dual variables (θt)t∈[τ ] from Algorithm 1 as the Lagrange multipliers:

Lτ

(
(θt)t∈[τ ], (at)t∈[τ ]

)
=

τ∑
t=1

∑
a∈[K]

π⋆(a)ℓt(a)−
τ∑

t=1

ℓt(at).
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Our proof will proceed in three steps. In the first step we upper bound the above term.

1. Upper Bound on Lτ

(
(θt)t∈[τ ], (at)t∈[τ ]

)
.

We start by observing that

Lτ

(
(θt)t∈[τ ], (at)t∈[τ ]

)
=

τ∑
t=1

∑
a∈[K]

π⋆(a)ℓt(a)−
τ∑

t=1

ℓt(at)

(a)

≤
τ∑

t=1

∑
a∈[K]

π⋆(a)ℓt(a
⋆
t )−

τ∑
t=1

ℓt(at)
(b)

≤
τ∑

t=1

ℓt(a
⋆
t )−

τ∑
t=1

ℓt(at),

(2)

where in (a) and (b) we used a∗t = argmaxa∈[K] ℓt(a) and
∑

a∈[K] π
⋆(a) = 1, respectively.

The next lemma bounds the conditional expectation of the above term for any t ∈ [T ]. We define
the following good events:

Eµ
1 =

{
∀i ∈ [K], |xt(i)

⊤µ̂(t)− xt(i)
⊤µ∗| ≤

(√
m ln

( t3
δ

)
+ 1
)√

xt(a)⊤Σ(t)−1xt(a)

}
Eµ

2 =

{
∀i ∈ [K], |xt(i)

⊤µ̂(t)− xt(i)
⊤µ̃(t)|

≤ v2t min{
√
4m log t,

√
4 log(tK)}

√
xt(i)⊤Σ̂(t)−1xt(i)

}

Lemma 3.1. Let Assumption 3.1 holds and Ft be the history up to time t. Further suppose Eµ
1

and Eµ
2 hold. Then for all t > 0 and δ ∈ (0, 1), we have

E
[
ℓt(a

∗
t )− ℓt(at)

∣∣Ft−1

]
≤ C

(
min{

√
4m log(t),

√
4 log(tK)}vt + ℓt

)(
E
[√

xt(at)⊤Σ̂(t)−1xt(at)

]
+

1

t2

)
,

where ℓt =
√
m log(t3/δ) + 1 and vt =

√
m log(t/δ) .

Using Lemma 3.1 and the proof of Theorem 1 in Agrawal & Goyal (2013), we can conclude that
with probability at least 1− δ, the following inequality holds:

τ∑
t=1

ℓt(a
⋆
t )−

τ∑
t=1

ℓt(at) ≤ O
(
m
√
T
(
min

{√
m,
√
logKd

})√
log(T ) log(1/δ)

)
.

Combining with (2) we have the following high probability (w.p. at leat 1 − δ) upper-bound on
Lτ

(
(θt)t∈[τ ], (at)t∈[τ ]

)
:

Lτ

(
(θt)t∈[τ ], (at)t∈[τ ]

)
≤ O

(
m
√
T
(
min

{√
m,
√
logKd

})√
log(T ) log(1/δ)

)
. (3)

2. Lower bound on Lτ

(
(θt)t∈[τ ], (at)t∈[τ ]

)
: We now lower-bound the Lagrangian difference. To

do so, we separately consider the two terms for a fixed time-step t and write

Lτ

(
(θt)t∈[τ ], (at)t∈[τ ]

)
=

τ∑
t=1

∑
a∈[K]

π⋆(a)ℓt(a)︸ ︷︷ ︸
I

−
τ∑

t=1

xt(at)
⊤µ∗ + Zθt

(
B

T
1−W⊤

∗ xt(at)

)
︸ ︷︷ ︸

II

.
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Our objective is to relate term I to the optimal value OPT and term II to the observed cost
vectors v(at). The latter would be subsequently bounded via the dual regret in step 3. This is
true since the OCO update in line 9 of Algorithm 1 uses the observed consumption vectors v(at).
We show that both these terms can be bounded by constructing appropriate martingale sequences
and using Azuma Hoeffding. The following lemma formalizes this claim.

Lemma 3.2. Suppose Assumption 3.1 holds. Then, with probability at least 1− δ, we have

(i)

τ∑
t=1

∑
a∈[K]

π∗(a)ℓt(a) ≥ τ
OPT
T

− (Z + 2)

√
T log

2

δ
,

(ii)

τ∑
t=1

ℓt(at) ≤
τ∑

t=1

[
xt(at)

⊤µ∗ + Zθ⊤t

(B
T
1− vt(at)

)]
+ 2Z

√
T log(1/δ) .

Combining Lemma 3.2 (i) and (ii) we obtain the following high probability lower-bound on the
Lagrangian difference:

Lτ

(
(θt)t∈[τ ], (at)t∈[τ ]

)
≥ τ

OPT
T

−
τ∑

t=1

[
xt(at)

⊤µ∗ + Zθ⊤t

(B
T
1− vt(at)

)]
− (Z + 2)

√
T log

2

δ
− 2Z

√
T log(1/δ) . (4)

3. Bounding Final Regret via Dual Regret: Combining the upper and lower bounds on
Lτ

(
(θt)t∈[τ ], (at)t∈[τ ]

)
from Steps 1 and 2 (i.e., (3) and (4)), we may write

τ
OPT
T

−
τ∑

t=1

[
xt(at)

⊤µ∗ + Zθ⊤t

(B
T
1− vt(at)

)]
≤ (Z + 2)

√
T log

2

δ
+ 2Z

√
T log(1/δ)

+O
(
m
√
T
(
min

{√
m,
√
logKd

})√
log(T ) log(1/δ)

)
.

The final step requires us to bound Zθ⊤t

(
B
T 1 − vt(at)

)
via the dual regret. Using Lemma 9

in Agrawal & Devanur (2016), we have

θ⊤t

(
vt(at)−

B

T
1

)
≥ B − τB

T
−
√
T log d .

Combining with the previous bound, we may write

τ
OPT
T

−
τ∑

t=1

xt(at)
⊤µ∗ +

(
ZB − Z

τB

T

)
≤ (Z + 2)

√
T log

2

δ
+ 2Z

√
T log(1/δ)

+O
(
m
√
T
(
min

{√
m,
√

logKd
})√

log(dT ) log(1/δ)

)
.

Using the fact that Z ≥ OPT
B , the following holds with probability at least 1− δ:

OPT −
τ∑

t=1

xt(at)
⊤µ∗ ≤ O

((
OPT
B

+ 1

)
m
√

T log(dKT/δ) log(T )

)
.
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4 Contextual Conservative Bandits

We consider a contextual bandit problem where a learner makes sequential decisions over T time-
steps. At each round t ∈ [T ], the learner observes a context vector xt(a) ∈ [0, 1]m for each a ∈ [K].
The learner selects an arm at ∈ [K] and observes the corresponding reward rt(at) ∈ [0, 1]. We make
the following assumption on the rewards.

Assumption 4.1. There exists an unknown parameter µ∗ ∈ [0, 1]m such that for each action a, the
conditional expectation of the reward is given by

r∗t (a) = E[rt(a) | xt(a),Ft−1] = µ⊤
∗ xt(a) .

Definition 4.1 (Regret). The objective of the learner is to minimize the regret, defined as

RegCCB(T ) = E

[
T∑

t=1

rt(a
∗
t )− rt(at)

]
=

T∑
t=1

µ⊤
∗ xt(a

∗
t )− µ⊤

∗ xt(at) , (5)

where a∗t = argmax
a∈[K]

µ⊤
∗ xt(a) is the optimal arm that maximizes the expected reward in round t.

We assume the presence of a baseline policy πb, which selects an action bt ∈ [K] at each round t
and obtains an expected reward of µ⊤

∗ xt(bt). This baseline policy represents the default or status
quo strategy used by the company, which is known to have a reasonable performance. While the
company aims to improve upon this policy, it seeks to limit excessive costs during the optimization
process. To enforce this, we introduce the following performance constraint:

Definition 4.2 (Performance Constraint). At every round t, the cumulative reward of the learner’s
policy should not be below the (1 − α)-fraction of the cumulative reward of the baseline policy for
some α > 0, i.e.,

t∑
i=1

µ⊤
∗ xi(ai) ≥ (1− α)

t∑
i=1

µ⊤
∗ xi(bi) , ∀t ∈ {1, . . . , T} . (6)

We assume that the expected rewards associated with actions taken by the baseline policy are known.
This assumption is reasonable, since this is the default policy of the company and can be further re-
laxed to the unknown baselines case using a similar analysis as in Kazerouni et al. (2017). Further we
make the following assumption on the baseline rewards following Kazerouni et al. (2017); Garcelon
et al. (2020).

Assumption 4.2 (Baseline Gap and Bounds). Let ∆t,bt := µ⊤
∗ xt(a

∗
t ) − µ⊤

∗ xt(bt) represent the
baseline gap at time t ∈ [T ]. We assume there exist constants 0 ≤ ∆l ≤ ∆h and 0 < rl < rh such
that for all t ∈ [T ], we have ∆l ≤ ∆t,bt ≤ ∆h and rl ≤ rt,bt ≤ y = rh.

4.1 Algorithm

We represent by St ⊆ [T ] the subset of time steps up to round t when the Thompson sampling
actions were chosen, while Sc

t ⊆ [T ] corresponds to the time steps when the baseline actions were
chosen. Further, the sizes of these sets are given by nt = |St| and nc

t = |Sc
t |, respectively. Our

algorithm LinCCB9TS is summarized in Algorithm 2 and proceeds as follows. At each time step t,
the learner receives the contexts xt(a) for every a ∈ [K], and computes the parameter estimate for
reward using Bayesian linear regression. Specifically, it samples µ̃(t) ∼ N (µ̂(t), v2t Σ̂(t)) (line 5).
Using these estimates, the algorithm selects an action ãt that maximizes the reward function (line
6). However, before committing to the selected action, it verifies a safety condition (see line 7) by
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Algorithm 2 : LinCCB9TS (Linear Contextual Conservative Bandits - Thompson Sampling)

1: Input: Performance parameter α > 0, µ̂(1) = 0, Σ̂(1) = Id×d, vt =
√

9m ln(t/δ) .
2: Initialize: S0 = ∅
3: for t = 1, 2, 3, . . . do
4: Receive contexts {xt(a)}a∈[K]

5: Sample µ̃(t) ∼ N
(
µ̂(t), vtΣ̂(t)

)
6: Compute ãt = argmaxa∈[K] µ̃(t)

⊤xt(at)
7: if the safety condition in (7) is satisfied then
8: Play at = ãt and observe reward rt(at).
9: Update St = St−1 ∪ {t}, Sc

t = Sc
t−1, and µ̂(t) using (8).

10: else
11: Play the baseline action at = bt and observe reward rt(bt).
12: Update St = St−1, Sc

t = Sc
t−1 ∪ {t}.

13: end if
14: end for

checking if the following inequality holds:∑
τ∈St−1

µ̃(τ)⊤xτ (aτ ) + µ̃(t)⊤xt(ãt) +
∑

τ∈Sc
t−1

r∗τ (bτ )

−
∑

t∈Sτ−1

(
min

{√
2m ln

t

δ
,

√
2 ln

tK

δ

}
+

√
m ln

t3

δ
+ 1

)
vt

√
xt(at)T Σ̂(t)xt(at)

≥ (1− α)

t∑
τ=1

r∗τ (bτ ) (7)

If the condition is satisfied, the selected action is played and the corresponding reward is observed
(line 8). Subsequently we update St and Sc

t and compute the least-squares estimate of the reward
parameter µ∗ as follows:

µ̂(t) = Σ̂(t)−1

(∑
τ∈St

xτ (aτ )rτ (aτ )

)
, Σ̂(t) = Id×d +

∑
τ∈St

xτ (aτ )xτ (aτ )
⊤. (8)

If the safety condition in (7) is not satisfied then the baseline action bt is played, the corresponding
reward rt(bt) is observed and the sets St and Sc

t are updated (line 11 and 12).

4.2 Regret Bound for LinCCB9TS

Theorem 4.1: Regret of LinCCB9TS (Algorithm 2)

Suppose the rewards satisfy Assumption 4.1 and suppose the baseline rewards satisfy Assump-
tion 3.2 holds. With probability at least 1 − δ, LinCCB9TS (see Algorithm 2) satisfies the per-
formance constraint in eq. (6) and has the following regret bound:

RegCCB(T )=O
(
m
√
T
(
min{

√
m,
√

log(K)}
)(

ln(T ) +
√

ln(T ) ln (4/δ)
)

︸ ︷︷ ︸
I

+
C∆h

αrl(αrl +∆l)

)
︸ ︷︷ ︸

II

where C = O

m2 min
{
m, logK

}(
log2 T + log T log(1/δ)

)
αrl(∆l + αyl)

 .
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Remark 4.1. Term I has an additional
√
m dependence when compared to its linear UCB counter-

part in Kazerouni et al. (2017). However this is not an artifact of the conservative analysis and is
inherited from the Thompson sampling analysis in the unconstrained setting. Similarly, term II has
an additional m dependence when compared with term II in Kazerouni et al. (2017). Additionally,
there is a log2 T dependence, and this appears because the extra buffer (the third term in the lhs) in
the safety condition in (7) has a t dependence for the Thompson sampling version.

Proof Sketch. We provide a proof sketch and refer the readers to Appendix B for a detailed proof.

1. Regret Decomposition: Following Kazerouni et al. (2017) we decompose the regret in (5) into
two parts using the following lemma.

Lemma 4.1. Let Assumptions 4.1 and 4.2 hold. Then, the regret in (5) can be bounded as

Reg(T ) ≤
∑
t∈ST

(
h(xt,at)− h(xt,a∗

t
)
)
+ nc

T∆h, (9)

where the set ST consists of the rounds until the horizon T when LinCCB9TS played the TS
action and nc

T = |Sc
T | is the number of times until T when a baseline action was played.

2. Upper Bound on nc
T : Next, we bound the number of times LinCCB9TS played the baseline

action. This is determined by our choice of the safety condition in (7). We use nt := |St| and
τ := max{1 ≤ t ≤ T : at = bt}, i.e., the last time step at which LinCCB9TS played a baseline
action. In the next Lemma we bound nc

T .

Lemma 4.2. Suppose Assumption 4.1 and 4.2 holds. Then, with probability 1− δ/4 the number
of times the baseline action is played by C9SquareCB is bounded as

nc
T ≤ O

m2 min
{
m, logK

}(
log2 T + log T log(1/δ)

)
αrl(∆l + αyl)

 . (10)

3. Final Regret Bound: The first term in (9) can be bounded using the TS analysis, Theorem 1
from (Agrawal & Goyal, 2013) giving the following lemma.

Lemma 4.3. Suppose Assumptions 4.1 holds. Then, for any δ > 0, with with probability 1 − δ,
LinCCB9TS guarantees∑
t∈ST

h(xt,at)− h(xt,a∗
t
) ≤ O

(
d
√
nT

(
min{

√
m,
√

log(K)}
)(

ln(T ) +
√

ln(T ) ln (4/δ)
))
(11)

Using nT ≤ T and combining (9), (10), (11), and taking a union bound over the high probability
events proves the regret bound in Theorem 4.1 holds with probability 1− δ.

4. Performance Constraint: Finally we show that the performance constraint in (6) is satisfied
using the safety condition in Line 7 of LinCCB9TS .

Lemma 4.4. Let Assumptions 4.1 and 4.2 hold. Then, for any δ > 0, with probability 1 − δ,
LinCCB9TS satisfies the performance constraint in (6).

Taking a union bound over all the high probability events, LinCCB9TS simultaneously satisfies
the performance constraint in (6) and the regret upper-bound in (11), which concludes the proof.



Thompson Sampling for Constrained Bandits

5 Conclusion

In this work, we introduced Thompson Sampling-based algorithms for two constrained contex-
tual bandit settings that have long been missing in the literature: Contextual Bandit with Knap-
sack (CBwK) and Contextual Conservative Bandit (CCB). We designed LinCBwK9TS, a primal-
dual TS algorithm for CBwK, and established a high-probability regret bound of Õ

(
(OPT

B +

1)m
√
T
)
. Similarly, we developed LinCCB9TS, a TS-based approach for CCB, proving that it

satisfies the required safety constraints with high probability while achieving a regret bound of
Õ
(√

T minm3/2,m
√
logK +∆h/αrl(∆l + αrl)

)
. Our results bridge the gap in the literature by

demonstrating that TS can be effectively applied to constrained bandit problems, offering an alterna-
tive to UCB-based methods. Future work could explore extensions to nonlinear settings, adversarial
constraints, and adaptive exploration strategies to further enhance the practical applicability of TS
in constrained decision-making scenarios.

Extending these TS algorithms to the more general reward (and consumption) setting using the
recently proposed Feel good Thompson Sampling (Zhang, 2021) is left for future work. Combining
these with modern deep networks along the lines of (Zhang et al., 2021b) is also left for future work.

Broader Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted
here.
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A Regret Bound for LinCBwK9TS

Lemma 3.1. Let Assumption 3.1 holds and Ft be the history up to time t. Further suppose Eµ
1 and

Eµ
2 hold. Then for all t > 0 and δ ∈ (0, 1), we have

E
[
ℓt(a

∗
t )− ℓt(at)

∣∣Ft−1

]
≤ C

(
min{

√
4m log(t),

√
4 log(tK)}vt + ℓt

)(
E
[√

xt(at)⊤Σ̂(t)−1xt(at)

]
+

1

t2

)
,

where ℓt =
√
m log(t3/δ) + 1 and vt =

√
m log(t/δ) .

Proof of Lemma 3.1. Before we proceed to the proof of Lemma 3.1, we present a lemma that bounds
probability of the following good events.

Eµ
1 =

{
∀i ∈ [K], |xt(i)

⊤µ̂(t)− xt(i)
⊤µ∗| ≤

(√
m ln

( t3
δ

)
+ 1
)√

xt(a)⊤Σ(t)−1xt(a)

}
Eµ

2 =

{
∀i ∈ [K], |xt(i)

⊤µ̂(t)− xt(i)
⊤µ̃(t)|

≤ v2t min{
√

4m log t,
√

4 log(tK)}
√

xt(i)⊤Σ̂(t)−1xt(i)

}
EW

1 =

{
∀i ∈ [K], |xi(t)

⊤Ŵ (t)⊤θt − xi(t)
⊤W∗θt| ≤

(√
m ln

( t3d
δ

)
+ 1
)√

xt(i)⊤Σ̂(t)−1xt(i)

}
EW

2 =
{
∀i ∈ [K], |xi(t)

⊤Ŵ (t)⊤θt − xi(t)
⊤w̃(t)|

≤ v2t min{
√

4m log dt,
√

4 log(tK)}
√

xt(i)⊤Σ̂(t)−1xt(i)

}
Lemma A.1. For all t, 0 < δ < 1 and any filtration Ft−1 we have

P (Eµ
1 ) ≥ 1− δ

t2
, P (Eµ

2 |Ft−1) ≥ 1− 1

t2

P (EW
1 ) ≥ 1− δ

t2
, P (EW

2 |Ft−1) ≥ 1− 1

t2

Proof of Lemma A.1. The claims P (Eµ
1 ) ≥ 1− δ

t2 and P (Eµ
2 |Ft−1) ≥ 1− 1

t2 follows from Lemma
1 in (Agrawal & Goyal, 2013).

Next, we define ηt = Zθ⊤t

(
Ŵ (t)⊤xt(a)−W⊤

∗ xt(a)
)

, where recall that Ŵ (t)j =

Σ(t)−1
∑t−1

τ=1 xτ (aτ )vτ (aτ )j . Now note that

Zθt

(
Ŵ (t)−W∗

)⊤
xt(a) ≤ Z∥θt∥1∥(Ŵ (t)−W∗)

⊤xt(a)∥∞

≤ Zmax
j∈[d]

∣∣∣ (Ŵ (t)j −W∗j

)⊤
xt(a)

∣∣∣
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Fix j ∈ [d] and consider the inner product

(
Ŵ (t)j −W∗j

)⊤
xt(a) =

(
Σ(t)−1

t−1∑
τ=1

xτ (aτ )vτ (aτ )j −W∗j

)⊤

xt(a)

=

(
Σ(t)−1

t−1∑
τ=1

xτ (aτ )vτ (aτ )j −W∗j

)⊤

xt(a) +

(
Σ(t)−1

t−1∑
τ=1

xτ (aτ )ητ,j

)⊤

xt(a)

≤

(∥∥∥ t−1∑
τ=1

xτ (a)ητ,j

∥∥∥
Σ(t)−1

+ 1

)
∥xt(a)∥Σ(t)−1

Now using Theorem 1 of (Abbasi-Yadkori et al., 2011) we have with probability 1− δ∥∥∥ t−1∑
τ=1

xτ (a)ητ,j

∥∥∥
Σ(t)−1

≤ 2

√
m ln

t

δ

Taking a union bound over all j ∈ [d], a ∈ [K], we have with probability 1− δ
t2 for all a ∈ [K] and

j ∈ [d]:

∥∥∥ t−1∑
τ=1

xτ (a)ητ,j

∥∥∥
Σ(t)−1

≤

√
m ln

(
t2dK

δ

)
+ 1

Therefore, with probability 1− δ
t2 for all a ∈ [K], j ∈ [d],

(
Ŵ (t)j −W∗j

)⊤
xt(a) ≤ ∥xt(a)∥Σ(t)−1

(√
m ln

(
t3dK

δ

)
+ 1

)

=

(√
m ln

(
t3dK

δ

)
+ 1

)√
xt(a)⊤Σ(t)−1xt(a)

Next observe that∣∣∣w̃(t)⊤xt(a)− θ⊤t Ŵ (t)⊤xt(a)
∣∣∣ = ∣∣∣w̃(t)⊤xt(a)−

(
Ŵ (t)θt

)⊤
xt(a)

∣∣∣
=
∣∣∣xt(a)

⊤Σ
−1/2
W (t)

(
w̃(t)− Ŵ (t)θt

)∣∣∣
≤ v2t

√
xt(a)⊤Σ(t)−1xt(a)

∥∥∥∥ 1

v2t
ΣW (t)1/2

(
w̃(t)− Ŵ (t)θt

)∥∥∥∥
2

≤ v2t

√
xt(a)⊤Σ(t)−1xt(a)

√
4m ln t

with probability 1− 1
t2 . Taking a union bound over all i ∈ [d], we have with probability 1− 1

t2
for

all j ∈ [d], a ∈ [K]∣∣∣w̃(t)⊤xt(a)− θ⊤t Ŵ (t)⊤xt(a)
∣∣∣ ≤ v2t

√
xt(a)⊤Σ(t)−1xt(a)

√
4m log dt

Further, using Lemma 6 from (Agrawal & Goyal, 2013), taking a union bound over j ∈ [d], we have
with probability 1− 1

t2 for all j ∈ [d], a ∈ [K]:∣∣∣θ⊤t W̃ (t)(t)⊤j xt(a)− θ⊤t Ŵt(t)jxt(a)
∣∣∣ ≤√4 log(tKd) v2t

√
xt(a)⊤Σ(t)−1xt(a)

Combining with the previous bound completes the proof.
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Now we define the set of saturated actions at time t as

C(t) =
{
a ∈ [K] : ℓt(a

∗
t )− ℓt(a) > gt

√
xt(a)⊤Σ̂(t)−1xt(a)

}
.

Let ât denote the unsaturated arm with smallest
√
xt(at)⊤Σ̂(t)−1xt(at) in C(t) i.e.,

ât = argmin
a∈C(t)

√
xt(a)⊤Σ̂(t)−1xt(a).

Using this we have,

ℓ(a∗t )− ℓ(at) = xt(a
∗
t )

⊤µ∗ − Zθ⊤t

(
B

T
1−W⊤

∗ xt(a
∗
t )

)
− xt(at)

⊤µ∗ + Zθ⊤t

(
B

T
1−W⊤

∗ xt(at)

)
= xt(a

∗
t )

⊤µ∗ − xt(at)
⊤µ∗ + Zθ⊤t

(
W⊤

∗ xt(a
∗
t )−W⊤

∗ xt(at)

)
= xt(a

∗
t )

⊤µ∗ − xt(at)
⊤µ∗ + Zθ⊤t

(
W⊤

∗ xt(a
∗
t )−W⊤

∗ xt(at)

)
= xt(a

∗
t )

⊤µ∗ − xt(ât)
⊤µ∗ + xt(ât)

⊤µ∗ − xt(at)
⊤µ∗

+ Zθ⊤t

(
W⊤

∗ xt(a
∗
t )−W⊤

∗ xt(ât) +W⊤
∗ xt(ât)−W⊤

∗ xt(at)

)
Therefore with gt = v2t min

{√
4m log dt,

√
4 log(tK)

}√
xt(i)⊤Σ̂(t)−1xt(i) we have

ℓ(a∗t )− ℓ(at)
(a)

≤ xt(a
∗
t )

⊤µ∗ − xt(ât)
⊤µ∗ + xt(ât)

⊤µ̃(t)− xt(at)
⊤µ̃(t)

+ gt

√
xt(ât)⊤Σ̂(t)−1xt(ât) + gt

√
xt(at)⊤Σ̂(t)−1xt(at)

+ Zθ⊤t

(
W⊤

∗ xt(a
∗
t )−W⊤

∗ xt(ât)

)
+ Zw̃(t)⊤xt(ât)− Zw̃(t)⊤xt(at)

+ gt

√
xt(ât)⊤Σ̂(t)−1xt(ât) + gt

√
xt(at)⊤Σ̂(t)−1xt(at)

where (a) follows if we assume that Eµ
1 , Eµ

2 , EW
1 and EW

2 hold true. By our choice of action at in
line 6 of Algorithm 1 we have

(xt(ât)
⊤µ̃(t) + Zw̃(t)⊤xt(ât))− (xt(at)

⊤µ̃(t) + Zw̃(t)⊤xt(at)) ≤ 0.

Further observe that

Zθ⊤t

(
W⊤

∗ xt(a
∗
t )−W⊤

∗ xt(ât)

)
≤ Z∥θt∥1∥W⊤

∗ xt(a
∗
t )−W⊤

∗ xt(ât)∥∞

≤ Zgt

√
xt(ât)⊤Σ̂(t)−1xt(ât).

Therefore we have

ℓ(a∗t )− ℓ(at) ≤ 2gt

√
xt(ât)⊤Σ̂(t)−1xt(ât) + gt

√
xt(at)⊤Σ̂(t)−1xt(at)

+ (Z + 1)gt

√
xt(ât)⊤Σ̂(t)−1xt(ât) + gt

√
xt(at)⊤Σ̂(t)−1xt(at),

which implies

E[ℓ(a∗t )− ℓ(at)|Ft−1] ≤ E
[
2gt

√
xt(ât)⊤Σ̂(t)−1xt(ât) + gt

√
xt(at)⊤Σ̂(t)−1xt(at)|Ft−1

]
+ P

(
{Eµ

2 }c
)
+ (Z + 1)gtE

[√
xt(ât)⊤Σ̂(t)−1xt(ât) +

√
xt(at)⊤Σ̂(t)−1xt(at)|Ft−1

]
+ P

(
{EW

2 }c
)
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Using Lemma 4 from Agrawal & Goyal (2013) we have

E
[√

xt(ât)⊤Σ̂(t)−1xt(ât)|Ft−1

]
≤ 1

(p− 1/t2)
E
[√

xt(at)⊤Σ̂(t)−1xt(at)|Ft−1

]
.

Therefore

E[ℓ(a∗t )− ℓ(at)|Ft−1] ≤
(Z + 4)gt
(p− 1/t2)

E
[√

xt(at)⊤Σ̂(t)−1xt(at)|Ft−1

]
+

4gt
pt2

Lemma 3.2. Suppose Assumption 3.1 holds. Then, with probability at least 1− δ, we have

(i)

τ∑
t=1

∑
a∈[K]

π∗(a)ℓt(a) ≥ τ
OPT
T

− (Z + 2)

√
T log

2

δ
,

(ii)

τ∑
t=1

ℓt(at) ≤
τ∑

t=1

[
xt(at)

⊤µ∗ + Zθ⊤t

(B
T
1− vt(at)

)]
+ 2Z

√
T log(1/δ) .

Proof. Consider the lagrangian

ℓt(at) = xt(at)
⊤µ∗ + Zθt

(
B

T
1−W⊤

∗ xt(at)

)
.

Using Assumption 3.1, we have E[vt(at)|xt(at),Ht−1] = W⊤
∗ xt(at) and therefore

Mt = Zθ⊤t

(
vt(at)−W⊤

∗ xt(at)

)
is a martingale difference sequence with respect to the filtration Ft. Further

|Mt| ≤ Z∥θt∥1∥W⊤
∗ xt(at)∥∞ + Z∥θt∥1∥vt(at)∥∞

≤ 2Z

Using Azuma Hoeffding we have

P

(
τ∑

t=1

Mt > ϵ

)
≤ exp

(
−ϵ2

4τZ2

)
,

and therefore with probability 1− δ

τ∑
t=1

ℓt(at) ≤
τ∑

t=1

[
xt(at)

⊤µ∗ + Zθ⊤t

(B
T
1− vt(at)

)]
+ 2Z

√
T log(1/δ), (12)

which completes the proof of part (ii).

Next, note that

∑
a∈[K]

π∗(a) ℓt(a) =
∑

a∈[K]

π∗(a) xt(a)
⊤µ∗ + Zθ⊤t

B

T
1−

∑
a∈[K]

π∗(a)W⊤
∗ xt(a)

 .

From our definition of the optimal policy, we have that

OPT
T

= EX∼D µ⊤
∗ Xπ∗ + Zθ⊤∗

(
B

T
1− EX∼DW

⊤
∗ Xπ∗

)
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where θ∗ is the optimal Lagrange multiplier. We define

Gt =
∑

a∈[K]

π∗(a)xt(a)
⊤µ∗ + Zθ⊤t

B

T
1−

∑
a∈[K]

π∗(a)W⊤
∗ xt(a)


− EX∼Dµ

⊤
∗ Xπ∗ + Zθ⊤∗

(
B

T
1− EX∼DW

⊤
∗ Xπ∗

)

Then we have E(Gt|Ft−1) ≥ 0 and |Gt| ≤ 1 + Z +
OPT
T

≤ Z + 2. Using Azuma-Hoeffding,
with probability 1− δ, we have

⊤∑
t=1

Gt ≥ −(z + 2)

√
T log

2

δ
,

which implies, with probability 1− δ,

τ∑
t=1

∑
a∈[K]

π∗(a)lt(a) ≥ τ
OPT
T

− (Z + 2)

√
T log

2

δ
,

thus completing the proof of part (i).

B Regret Bound for LinCCB9TS

Lemma 4.1. Let Assumptions 4.1 and 4.2 hold. Then, the regret in (5) can be bounded as

Reg(T ) ≤
∑
t∈ST

(
h(xt,at

)− h(xt,a∗
t
)
)
+ nc

T∆h, (9)

where the set ST consists of the rounds until the horizon T when LinCCB9TS played the TS action
and nc

T = |Sc
T | is the number of times until T when a baseline action was played.

Proof. The decomposition follows the same approach as Proposition 2 in (Kazerouni et al., 2017),
and we present the proof here for completeness. Recall that ST = {t ∈ [T ] : at = bt} represents
the time steps when the baseline action was selected, while Sc

T = {t ∈ [T ] : at = ãt} denotes the
time steps when the TS action was chosen. Using the fact that ST ∪ Sc

T = [T ] we have:

Reg(T ) =

T∑
t=1

h(xt,at
)−

T∑
t=1

h(xt,a∗
t
)

=
∑
t∈ST

(
h(xt,at)− h(xt,a∗

t
)
)
+
∑
t∈Sc

T

(
h(xt,bt)− h(xt,a∗

t
)
)

Using the definition of ∆t
bt

= h(xt,bt)− h(xt,a∗
t
) and Assumption 4.2 we get

Reg(T ) =
∑
t∈ST

(
h(xt,at)− h(xt,a∗

t
)
)
+
∑
t∈Sc

T

∆t
bt

≤
∑
t∈ST

(
h(xt,at

)− h(xt,a∗
t
)
)
+ nc

T∆h,
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Lemma 4.2. Suppose Assumption 4.1 and 4.2 holds. Then, with probability 1− δ/4 the number of
times the baseline action is played by C9SquareCB is bounded as

nc
T ≤ O

m2 min
{
m, logK

}(
log2 T + log T log(1/δ)

)
αrl(∆l + αyl)

 . (10)

Proof. We define τ = max{1 ≤ t ≤ T | at = bt} to be the last time step when the baseline action
was played. From line 6 of Algorithm-2 we have

α

τ∑
t=1

r∗t (bt) =
∑

t∈Sτ−1

r∗t (bt)− ⟨µ̃(τ),xτ (aτ )⟩ −
∑

t∈Sτ−1

⟨µ̃(t),xt(at)⟩

+
∑

t∈Sτ−1

(
min

{√
2m ln

t

δ
,

√
2 ln

tK

δ

}
+

√
m ln

t3

δ
+ 1

)
vt

√
xt(at)T Σ̂(t)xt(at)︸ ︷︷ ︸

(A)

=
∑

t∈Sτ−1

(
r∗t (bt)− µ∗

⊤xt(at)
)
+ rtbτ − µ∗

⊤xτ (aτ )︸ ︷︷ ︸
I

+
∑

t∈Sτ−1

(
µ∗ − µ̃(t)

)⊤
xt(at) +

(
µ∗ − µ̃(t)

)⊤
xτ (aτ )︸ ︷︷ ︸

II

+ (A)

Consider term I:

∑
t∈Sτ−1

(
r∗t (bt)− µ∗

⊤xt(at)
)
+ rtbτ − µ∗

⊤xτ (aτ )

=
∑

t∈Sτ−1

(
r∗t (bt)− µ∗

⊤xt(a
∗
t ) + µ∗

⊤xt(a
∗
t )− µ∗

⊤xt(at)
)

+ rtbτ − µ∗
⊤xτ (a

∗
τ ) + µ∗

⊤xτ (a
∗
τ )− µ∗

⊤xτ (aτ )

≤ −(nτ + 1)∆ℓ +
∑

t∈Sτ−1

µ∗
⊤xt(a

∗
t )− µ∗

⊤xt(at) + µ∗
⊤xτ (a

∗
τ )− µ∗

⊤xτ (aτ )

Using proof of Theorem 1 from Agrawal & Goyal (2013) we have with probability 1− δ∑
t∈Sτ−1

µ∗
⊤xt(a

∗
t )− µ∗

⊤xt(at) + µ∗
⊤xτ (a

∗
τ )− µ∗

⊤xτ (aτ )

≤ Cm
√

(nτ−1 + 1)min
{√

m,
√
logK

}(
log(nτ + 1) +

√
log(nτ + 1) log(1/δ)

)
for some constant C > 0. Therefore term I can be bounded with probability 1− δ as follows∑

t∈Sτ−1

(
r∗t (bt)− µ∗

⊤xt(at)
)
+ rtbτ − µ∗

⊤xτ (aτ )

≤ Cm
√
(nτ−1 + 1)min

{√
m,
√
logK

}
log(nτ + 1) +

√
log(nτ + 1) log(1/δ)

for some constant C > 0.
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Next consider term II and observe that using Lemma 1 from Agrawal & Goyal (2013) we have with
probability 1− δ∑

t∈Sτ−1

(
µ∗ − µ̃(t)

)⊤
xt(at) +

(
µ∗ − µ̃(t)

)⊤
xτ (aτ )

≤
∑

t∈Sτ−1

(√
m ln

1

δ
+ 1 +min

{√
4m ln(

1

δ
),

√
4 ln(

K

δ
)
}
vt

)√
xt(at)T Σ̂(t)xt(at)

Combining the bounds on all the terms we get with probability 1− δ

α

τ∑
t=1

r∗t (bt) ≤ −(nτ + 1)∆ℓ

+ Cm
√

(nτ−1 + 1)min
{√

m,
√
logK

}
log(nτ + 1) +

√
log(nτ + 1) log(1/δ) + 2 · (A)

for some constant C > 0. To bound term (A) defined as

(A) =
∑

t∈Sτ−1

(
min

{√
2m ln

t

δ
,

√
2 ln

tK

δ

}
+

√
m ln

t3

δ
+ 1

)
vt

√
xt(at)T Σ̂(t)xt(at) ,

first note that

∑
t∈Sτ−1

(
min

{√
2m ln

t

δ
,

√
2 ln

tK

δ

}
+

√
m ln

t3

δ
+ 1

)
vt

√
xt(at)T Σ̂(t)xt(at)

≤

(
min

{√
2m ln

T

δ
,

√
2 ln

TK

δ

}
+

√
m ln

T 3

δ
+ 1

)
vT

∑
t∈Sτ−1

√
xt(at)T Σ̂(t)xt(at).

Using Lemma 3 from Chu et al. (2011) for t ∈ Sτ−1 we have

∑
t∈Sτ−1

√
xt(at)T Σ̂(t)xt(at) ≤ 5

√
m nτ ln(nτ ).

Therefore with probability 1− δ for some constant C > 0.

α

τ∑
t=1

r∗t (bt) ≤ −(nτ + 1)∆ℓ

+ Cm
√
(nτ−1 + 1)min

{√
m,
√

logK
}(

log(T + 1) +
√
log(T + 1) log(1/δ)

)
Now, using the fact that nτ−1+nc

τ−1+1 = τ , and Assumption 4.2, we have rl ≤ r∗i (bi) ≤ rh,∀i ∈
[T ]. Therefore,

α

τ∑
i=1

r∗t (bt) ≥ α (nτ−1 + nc
τ−1 + 1) rl.

Therefore, with probability 1− δ, we obtain

αnc
τ−1rl ≤ −(nτ−1 + 1)(∆l + αrl)

+ Cm
√

(nτ−1 + 1)min
{√

m,
√
logK

}(
log(T + 1) +

√
log(T + 1) log(1/δ)

)
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Using nc
T = nτ−1 + 1, with probability 1− δ, we have

nc
T ≤ 1

αrl

{
− (nτ−1 + 1)(∆l + αrl)

+ Cm
√
(nτ−1 + 1)min

{√
m,
√

logK
}(

log(T + 1) +
√
log(T + 1) log(1/δ)

)}
.

Following Deb et al. (2025) we define the following function

Q(nτ−1) =
{
− (nτ−1 + 1)(∆l + αrl)

+ Cm
√
(nτ−1 + 1)min

{√
m,
√
logK

}(
log(T + 1) +

√
log(T + 1) log(1/δ)

)}
.

Note that Q(nτ−1) ≤ −c1n+ c2
√
n := f(n), where

c1 = ∆l + αrl ≥ 0,

c2 = Cm min
{√

m,
√
logK

}(
log(T + 1) +

√
log(T + 1) log(1/δ)

)
,

n = nτ−1 + 1.

Setting f ′(n) = 0, and solving we get n∗ =
c22
4c21

. Therefore,

Q(mτ−1) ≤ − c22
4c1

+
c22
2c1

=
c22
4c1

≤ O

m2 min
{
m, logK

}(
log2 T + log T log(1/δ)

)
∆l + αyl

 .

Combining with the upper bound for nc
T we get with probability 1− δ

nc
T ≤ O

m2 min
{
m, logK

}(
log2 T + log T log(1/δ)

)
αrl(∆l + αyl)

 .

Lemma 4.4. Let Assumptions 4.1 and 4.2 hold. Then, for any δ > 0, with probability 1 − δ,
LinCCB9TS satisfies the performance constraint in (6).

Proof. Note that for any t ∈ [T ] the safety condition ensures that∑
τ∈St−1

µ̃(τ)⊤xτ (aτ ) + µ̃(t)⊤xt(ãt) +
∑

τ∈Sc
t−1

r∗τ (bτ )

−
∑

t∈Sτ−1

(
min

{√
2m ln

t

δ
,

√
2 ln

tK

δ

}
+

√
m ln

t3

δ
+ 1

)
vt

√
xt(at)T Σ̂(t)xt(at)

≥ (1− α)

t∑
τ=1

r∗τ (bτ )
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Now using Lemma 1 from Agrawal & Goyal (2013) we have that with probability 1 − δ for any
a ∈ [K]

|µ̃(τ)⊤xτ (aτ )− µ∗(τ)⊤xτ (aτ )|

≤
(√

m ln
t

δ
+ 1 +min

{√
4m ln(

t

δ
),

√
4 ln(

Kt

δ
)
}
vt

)√
xt(at)⊤Σ̂(t)xt(at)

and therefore we have with probability 1− δ∑
t∈Sτ−1

|µ̃(τ)⊤xτ (aτ )− µ∗(τ)⊤xτ (aτ )|

≤
∑

t∈Sτ−1

(√
m ln

t3

δ
+ 1 +min

{√
4m ln

( t
δ

)
,

√
4 ln

(Kt

δ

)}
vt

)√
xt(at)⊤Σ̂(t)xt(at)

Combining with the safety condition we have with probability 1− δ∑
τ∈St−1

µ∗(τ)⊤xτ (aτ ) + µ∗(t)⊤xt(ãt) +
∑

τ∈Sc
t−1

r∗τ (bτ )

≥ (1− α)

t∑
τ=1

r∗τ (bτ )

which implies

t∑
τ=1

r∗τ (aτ ) ≥ (1− α)

t∑
τ=1

r∗τ (bτ )

thus completing the proof.


