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Summary
Information-directed sampling (IDS) is a powerful framework for solving bandit problems

which has shown strong results in both Bayesian and frequentist settings. However, frequentist
IDS, like many other bandit algorithms, requires that one have prior knowledge of a (relatively)
tight upper bound on the norm of the true parameter vector governing the reward model in order
to achieve good performance. Unfortunately, this requirement is rarely satisfied in practice. As
we demonstrate, using a poorly calibrated bound can lead to significant regret accumulation.
To address this issue, we introduce a novel frequentist IDS algorithm that iteratively refines a
high-probability upper bound on the true parameter norm using accumulating data. We focus
on the linear bandit setting with heteroskedastic subgaussian noise. Our method leverages a
mixture of relevant information gain criteria to balance exploration aimed at tightening the
estimated parameter norm bound and directly searching for the optimal action. We establish
regret bounds for our algorithm that do not depend on an initially assumed parameter norm
bound and demonstrate that our method outperforms state-of-the-art IDS and UCB algorithms.

Contribution(s)
1. This paper introduces a novel frequentist information-directed sampling (IDS) algorithm that

does not require prior knowledge of a tight upper bound of the true parameter norm to achieve
good performance. Our method uses accumulating data to generate a sequence of high-
probability upper bounds on the parameter norm and accounts for potential heteroskedasticity
of the rewards.
Context: The performance of many frequentist bandit algorithms, including various IDS
(Kirschner & Krause, 2018; Kirschner et al., 2021) and UCB methods (Auer, 2002; Abbasi-
Yadkori et al., 2011), relies heavily on a (at least relatively) tight upper bound on the true
parameter norm being available to the algorithm. This is almost never the case in practice
which can lead to significant regret accumulation. Recently, some norm-agnostic bandit
algorithms have been proposed to address this issue (Gales et al., 2022), however, they do
not account for potential heteroskedasticity of the rewards.

2. We introduce a new composite information gain criterion that balances improving the
requisite upper bound on the parameter norm and direct search for the optimal action.
Context: To the best of our knowledge, no other IDS algorithm uses a mixture of information
gain criteria to balance acquiring information about different aspects of the environment’s
dynamics. We are also not aware of any existing method that uses an information gain
criterion aimed at improving the upper bound on the parameter norm.

3. We establish anytime sublinear regret bounds for our algorithm which eventually do not
depend on the initially assumed parameter norm bound.
Context: Previously proposed norm-agnostic bandits (Gales et al., 2022) rely on an initial
burn-in during which regret accumulation is not controlled, e.g., it need not be sublinear.
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Abstract

Information-directed sampling (IDS) is a powerful framework for solving bandit prob-
lems which has shown strong results in both Bayesian and frequentist settings. How-
ever, frequentist IDS, like many other bandit algorithms, requires that one have prior
knowledge of a (relatively) tight upper bound on the norm of the true parameter vector
governing the reward model in order to achieve good performance. Unfortunately, this
requirement is rarely satisfied in practice. As we demonstrate, using a poorly calibrated
bound can lead to significant regret accumulation. To address this issue, we introduce a
novel frequentist IDS algorithm that iteratively refines a high-probability upper bound on
the true parameter norm using accumulating data. We focus on the linear bandit setting
with heteroskedastic subgaussian noise. Our method leverages a mixture of relevant
information gain criteria to balance exploration aimed at tightening the estimated parame-
ter norm bound and directly searching for the optimal action. We establish regret bounds
for our algorithm that do not depend on an initially assumed parameter norm bound and
demonstrate that our method outperforms state-of-the-art IDS and UCB algorithms.

1 Introduction

We consider linear stochastic bandits (Lattimore & Szepesvári, 2020) with heteroskedastic noise
(see Weltz et al., 2023, for applications of such models in marketing and other areas). In this setting,
information-directed sampling (IDS) algorithms have been shown to be highly effective (Kirschner &
Krause, 2018; Kirschner et al., 2021). Unlike other bandit strategies, such as upper confidence bound
(UCB) (Auer, 2002; Garivier & Cappé, 2011; Cappé et al., 2013; Zhou et al., 2020) or Thompson
sampling (TS) (Thompson, 1933; Agrawal & Goyal, 2013; Phan et al., 2019), which encourage
exploration indirectly by leveraging uncertainty about the optimal arm, IDS explicitly balances
exploration and exploitation. It selects actions that minimize estimated instantaneous regret while
maximizing expected information gain about model parameters. As shown by Russo & Van Roy
(2014) and Kirschner & Krause (2018), this approach allows IDS to avoid pitfalls inherent in UCB
and TS-based algorithms, particularly in scenarios where certain suboptimal actions provide valuable
information about the environment’s dynamics. In such cases, UCB and TS tend to overlook these
actions, whereas IDS plays them early on, enabling faster learning of the optimal policy and ultimately
achieving superior long-term performance.

However, just like many UCB and TS methods, IDS algorithms often require strong prior information
that can be used to formulate a high-quality upper bound on the Euclidean norm of the parameter
vector indexing the reward model. The choice of this bound is critical to the algorithm’s performance.
If the bound is too large, the algorithm risks incurring excess regret due to unnecessary exploration,
and if the bound is too small, the algorithm may fail to identify the optimal arm for an extended
period of time and only achieve sublinear regret over a very long horizon.
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To reduce sensitivity on a user-specified bound, we propose a novel version of frequentist IDS that
uses accumulating data to generate a sequence of high-probability upper bounds on the norm of the
reward model parameters. A key component of our method is a new information gain criterion that
balances improving the requisite upper bound and direct regret minimization. Because improving
the bound is critical to avoid over-exploration in early rounds of the bandit process, we develop a
two-phase procedure that uses our new information gain criterion in the first phase and then defaults
to a more standard IDS information gain criterion in the second phase.

To the best of our knowledge, no previous work has considered either the strategy of iteratively
refining and utilizing a high-probability upper bound on the parameter norm in the heteroskedastic
subgaussian linear bandit setting we work with here, or the use of the information gain criterion
for tightening the bound on the parameter norm we introduce. We are also not aware of any work
utilizing a mixture of information gain criteria to encourage simultaneously obtaining different types
of information about the dynamics of the environment. We note that while we introduce this idea in
the form of an IDS algorithm, the approach of iteratively refining and utilizing a high-probability
upper bound of the true parameter norm can be regarded as a more general design principle beyond
its IDS implementation in this setting.

The remainder of this paper is structured as follows. The next section provides a brief review of
related work. Section 3 introduces the problem setup and notation used throughout the paper. In
Section 4, we present the necessary background on IDS and in Section 5 we demonstrate the influence
of the parameter norm bound on regret incurred by bandit algorithms. Section 6 introduces the novel
empirical bound information-directed sampling (EBIDS) algorithm, which eliminates the need for a
tight parameter norm bound to be known a priori. Section 7 establishes regret bound guarantees for
EBIDS, and finally, Section 8 evaluates its empirical performance against competitor algorithms in a
simulation study. 1

2 Related works

IDS was first introduced for Bayesian bandits by Russo & Van Roy (2014) and later adapted to the
frequentist setting by Kirschner & Krause (2018). Beyond the standard bandit setting, IDS has been
applied to problems such as linear partial monitoring (Kirschner et al., 2020) — a generalization of
bandits where the observed signal on the environment model parameters is not necessarily the same
as the reward to be optimized — as well as reinforcement learning (Nikolov et al., 2019; Lindner
et al., 2021; Hao & Lattimore, 2022), where the actions taken by the agent influence the state of the
environment and the reward dynamics.

The assumption that the norm of the parameter indexing the reward model is known or that one has
a (relatively) tight upper bound on this quantity is prevalent in the IDS and UCB literature (Auer,
2002; Abbasi-Yadkori et al., 2011; Kirschner & Krause, 2018; Hung et al., 2021); it has also been
used in Thompson sampling (Xu et al., 2023). This assumption commonly arises through the use of
self-normalized martingale bounds and related concentration results (Abbasi-Yadkori et al., 2011).
Consequently, algorithms constructed through these concentration results require a user-specified
upper bound on the norm of the true parameter vector. Critically, as noted previously, the performance
of these algorithms can be highly sensitive to the choice of these bounds. Despite this, only a handful
of papers have attempted to alleviate this sensitivity.

Gales et al. (2022) propose norm-agnostic linear bandits which construct a series of confidence
ellipsoids for the true parameter vector along with a projection interval to construct a UCB-type
algorithm. However, their algorithms rely on an initial burn-in during which regret accumulation is
not controlled, e.g., it need not be sublinear. In our simulation experiments, we find that the impact of
this initial exploration on accumulated regret is not negligible. Furthermore, as UCB algorithms, their
methods do not explicitly make use of heteroskedasticity in the reward distributions across arms.

1Code for reproducing all the experiments in this paper is available at https://github.com/pmsuder/EBIDS.

https://github.com/pmsuder/EBIDS
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The algorithm proposed by Ghosh et al. (2021) shares some underlying ideas with our method in the
sense that they use multi-phase exploration to iteratively update the bound on the unknown parameter
norm. However, their algorithm is limited to the specialized setting of stochastic linear bandits
introduced by Chatterji et al. (2020) with restrictive assumptions on the structure of the rewards which
make their methods generally not applicable to the settings we consider here. Similarly, Dani et al.
(2008), Orabona & Cesa-Bianchi (2011), and Gentile & Orabona (2014) do not assume that one has a
high-quality (i.e., relatively tight) bound on the norm of the parameter; however, they require bounded
rewards for all arms. Combes et al. (2017) develop an instance-dependent approach for a wide class
of bandit problems that does not require an upper bound on the parameter norm but applies only
when the number of arms is finite. Other attempts to alleviate the assumption of known parameter
norm bound have been made in spectral bandits (Kocák et al., 2020), and deep active learning (Wang
et al., 2021). However, it is not clear how to port these methods to the setup we consider here.

3 Setup and notation

We denote the inner product of two vectors of the same dimension as ⟨·, ·⟩ so that the squared
Euclidean norm of vector v is ||v||22 = ⟨v,v⟩. For a symmetric positive definite or semi-definite
matrix A ∈ Rd×d, we denote the associated matrix norm (or semi-norm) of a vector v ∈ Rd as
∥v∥2A = ⟨v,Av⟩. We let λmax(A) and λmin(A) denote, respectively, the largest and the smallest
eigenvalues of A. Throughout, Id denotes the d-dimensional identity matrix and log(x) stands for
the natural logarithm of x ∈ R+.

At each time step t ∈ {1, . . . , T}, the agent selects an action At ∈ A and observes the outcome
Yt ∈ R which is generated from the linear model

Yt(At) = ⟨ϕ(At),θ
∗⟩+ ηt, (1)

where θ∗ ∈ Rd is a vector of unknown parameters and ϕ : A → Rd is a (known) feature mapping
such that for any a ∈ A we have ∥ϕ(a)∥2 ∈ [L,U ] for some positive constants L ≤ U . The noise
term ηt is assumed to be subgaussian and conditionally mean zero, i.e., we assume that every c ∈ R
we have

E [exp (cηt) | At = a] ≤ exp
[
c2ρ (a)

2
/2
]
, (2)

where 0 < ρmin ≤ ρ(a) ≤ ρmax < ∞ for all a ∈ A and E (ηt | A1, . . . , At, η1, . . . , ηt−1) = 0.
Define B∗ := ∥θ∗∥2. In some of our theoretical results, we assume that one has access to a
conservative upper bound B such that B∗ ≤ B but that this bound may be quite conservative, i.e., it
may be that B∗ ≪ B.

The available history to inform action selection at time t is Ht = {(A1, Y1), . . . , (At−1, Yt−1)} of
past actions and rewards. A bandit algorithm is thus formalized as a map from histories to distributions
over actions πt(a|ht) = P(At = a|Ht = ht). Let

∆(At) = ⟨ϕ(a∗),θ∗⟩ − ⟨ϕ(At),θ
∗⟩

be the gap between the action At and the optimal action a∗ = arg maxa∈A⟨ϕ(a),θ
∗⟩. Our goal is

to design an algorithm πt(· | ht) which maximizes the cumulative expected reward E
[∑T

t=1 Yt

]
, or

equivalently, minimizes the regret, defined asRT = E
[∑T

t=1 ∆(At)
]
. While regret is a standard

performance metric for bandit algorithms, it involves taking expectation over both the randomness in
the policy and the noise in the rewards so it may be a poor indicator of the risk associated with the
policy (Lattimore & Szepesvári, 2020). For this reason, in this paper we also study the probabilistic
bounds on the pseudo-regret defined as PRT =

∑T
t=1 ∆(At).

4 Information-directed sampling

In this section, we provide the necessary background on information-directed sampling (IDS), an
algorithm design principle introduced by Russo & Van Roy (2014) that balances minimizing the gap
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of an action with its potential for information gain. Let P(A) denote the space of distributions over
A. For any µ ∈ P(A) let ∆̂t(µ) be an estimator of the expected gap EA∼µ∆(A) constructed from
the history Ht. Similarly, let It(µ) be a measure of information gain, for instance, the reduction of
entropy in the posterior or confidence distribution of the parameter indexing the mean reward model
(see below for additional details). The IDS distribution is defined as

µIDS
t = arg min

µ∈P(A)

∆̂2
t (µ)

It(µ)
. (3)

The quantity Ψt(µ) := ∆̂2
t (µ)/It(µ) being minimized is known as the information ratio. An IDS

algorithm samples the action At ∼ µIDS
t at each time step t. Note that this results in a randomized

algorithm, which, as shown by Russo & Van Roy (2014) and Kirschner & Krause (2018), always
has at most two actions in its support. However, it is also possible to restrict the optimization in
(3) to Dirac delta functions on the individual actions, thus obtaining what is often referred to as
deterministic IDS (Kirschner & Krause, 2018)

ADIDS
t = arg min

a∈A

∆̂2
t (a)

It(a)
, (4)

where for any function f : P(A) → R, if the argument is a point mass at a single action, e.g.,
where µ is the Dirac delta δa, we write f(a) rather than f(δa). Deterministic IDS is typically
computationally cheaper, retains the same theoretical regret bounds as its randomized counterpart,
and in simulation experiments was shown to be competitive with or superior to randomized IDS
(Kirschner & Krause, 2018; Kirschner, 2021). Furthermore, deterministic IDS may be appealing in
settings where randomized policies are unpalatable, such as public health (Weltz et al., 2022) and site
selection (Ahmadi-Javid et al., 2017).

The information ratio provides a natural way of bounding regret within a Bayesian setting (Russo
& Van Roy, 2014). Notably, the information ratio can also be used to bound the regret under a
frequentist paradigm (Kirschner & Krause, 2018), as illustrated by the following result based on
the work of Kirschner (2021), the proof of which we delegate to Section 11.1 of the Supplementary
Materials.

Theorem 1 (Kirschner). For any T let G be a fixed subset of {1, . . . , T} and let {At}Tt=1 be an
Ht-adapted sequence in A. Then

E

[∑
t∈G

∆̂t (At)

]
≤

√√√√E

[∑
t∈G

Ψt (At)

]
E

[∑
t∈G

It (At)

]
,

and if ∆̂t(At) ≥ ∆(At) for all t ∈ G then with probability 1 we have

∑
t∈G

∆(At) ≤

√√√√[∑
t∈G

Ψt(At)

][∑
t∈G

It(At)

]
.

Kirschner & Krause (2018) used weighted ridge regression to estimate θ∗ at each time step t via

θ̂
wls

t = W−1
t

t−1∑
s=1

1

ρ(As)2
ϕ(As)Ys, where W t =

t−1∑
s=1

1

ρ(As)2
ϕ(As)ϕ(As)

⊤ + γId, (5)

and γ > 0 is a constant chosen by the user. The following result, proposed by Abbasi-Yadkori et al.
(2011) and extended by Kirschner & Krause (2018), provides a means to perform inference using
this estimator.
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Theorem 2. Suppose that the generative model follows the linear bandit model Yt = ⟨ϕ(At),θ
∗⟩+ηt

given in (1), where the actions At are Ht-adapted and the errors ηt have conditional mean of zero
and satisfy the subgaussian condition in (2). Let B ≥ ||θ∗||2 be a (potentially conservative) bound
on the norm of the parameters indexing the reward model and define

Ewls
t,δ :=

{
θ ∈ Rd :

∥∥∥θ − θ̂
wls

t

∥∥∥2
W t

≤ βt,δ(B)

}
,

where

βt,δ(B) =

(√
2 log

1

δ
+ log

(
det (W t)

det (W 1)

)
+
√
γB

)2

. (6)

Then

P

( ∞⋂
t=1

{
θ∗ ∈ Ewls

t,δ

})
≥ 1− δ,

i.e., Ewls
t,δ is a (1− δ)× 100% confidence ellipsoid for θ∗.

Kirschner & Krause (2018) use Theorem 2 to formulate a weighted UCB algorithm which at each
time step t takes the action

A
UCB(δt)
t = arg max

a∈A

〈
ϕ(a), θ̂

wls

t

〉
+ β

1/2
t,δt

(B)∥ϕ(a)∥W−1
t
, (7)

maximizing the (1− δt)× 100% upper confidence bound on the expected reward based on the Ewls
t,δt

confidence set. Then they use

∆̌t,δt(a) :=
〈
ϕ
(
A

UCB(δt)
t

)
− ϕ(a), θ̂

wls

t

〉
+ β

1/2
t,δt

(B)

(∥∥∥ϕ(AUCB(δt)
t

)∥∥∥
W−1

t

+ ∥ϕ(a)∥W−1
t

)
as the gap estimate. This ensures that ∆(a) ≤ ∆̌t,δt(a) for all a ∈ A whenever θ∗ ∈ Ewls

t,δt
holds.

The choice of the information gain criterion is crucial when designing an IDS algorithm. Kirschner &
Krause (2018) introduce the following criterion

I
UCB(δt)
t (a) =

1

2
log


∥∥ϕ (atUCB(δt)

)∥∥2
W−1

t∥∥∥ϕ(aUCB(δt)
t

)∥∥∥2
(W t+ρ(a)−2ϕ(a)ϕ(a)⊤)−1

 ,

for any a ∈ A. We present the resulting procedure in Algorithm 1, which we hereafter refer to as
IDS-UCB. It can be shown that if one chooses δt = 1/t2, the regret of IDS-UCB satisfies

RT ≤ O
(
max{U/√γ, ρmax}

√
γdB
√
T log T

)
, (8)

while the pseudo-regret PRT of IDS-UCB with fixed δt = δ satisfies with probability at least 1− δ

PRT ≤ O
(
max{U/√γ, ρmax}

√
γdB
√
T log(T/δ)

)
. (9)

See (Kirschner, 2021) for a formal statement of the preceding results and additional discussion.

5 Influence of the parameter norm bound on regret

In this section we demonstrate the importance of having access to a high-quality parameter norm
bound. Note that both regret bounds (8) and (9) scale directly with the assumed bound B on the
Euclidean norm of the true parameter. We now show via a simple simulation experiment that the
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Algorithm 1 IDS-UCB
Input: Action set A, penalty parameter γ > 0, noise function ρ : A → R+, feature function
ϕ : A → R, sequence of confidence levels {δt}t≥1 ⊂ (0, 1), assumed true parameter norm bound B.

For t = 1, 2, . . . , T :

Compute W t and θ̂
wls

t using (5)

A
UCB(δt)
t ← arg maxa∈A

{〈
ϕ(a), θ̂

wls

t

〉
+ β

1/2
t,δt

(B)∥ϕ(a)∥W−1
t

}
I

UCB(δt)
t (a)← 1

2 log

(∥∥∥ϕ(AUCB(δt)
t

)∥∥∥2
W−1

t

)
− 1

2 log

(∥∥∥ϕ(AUCB(δt)
t

)∥∥∥2
(W t+ρ(a)−2ϕ(a)ϕ(a)⊤)−1

)
∆̌t,δt(a)←

〈
ϕ
(
A

UCB(δt)
t

)
− ϕ(a), θ̂

wls

t

〉
+ β

1/2
t,δt

(B)

(∥∥∥ϕ(AUCB(δt)
t

)∥∥∥
W−1

t

+ ∥ϕ(a)∥W−1
t

)
µt ← arg minµ∈P(A) ∆̌

2
t,δt

(µ)/I
UCB(δt)
t (µ)

Sample At ∼ µt

Play At, observe Yt = ⟨ϕ(At),θ
∗⟩+ ηt

choice ofB can have a significant impact on the finite time performance of IDS-UCB. Large values of
B relative to B∗ lead to excess exploration and large regret in early rounds of the algorithm, whereas
small values of B can prevent the algorithm from identifying the optimal arm for an extended period,
leading to a nearly linear regret over a substantial time horizon.

In this experiment we also include the weighted UCB policy given by (7). We evaluate versions of
IDS-UCB and UCB that use a conservative value ofB > B∗, and those which use an anti-conservative
value B < B∗. The parameters indexing the generative model are θ∗ = [−5, 1, 1, 1.5, 2]⊤ so that
B∗ = ∥θ∗∥2 ≈ 5.77. We take B = 100 for the conservative bound, and B = 1 for the anti-
conservative bound. For reference, we also include oracle versions of IDS-UCB and UCB that have
access to the true value of B∗. However, we emphasize that these procedures are not generally
possible to implement in practice.

We consider a setting with ten arms. Features for each arm are sampled from Unif[−1/
√
5, 1/
√
5].

The reward noise for the first five arms follows a standard normal distribution, while for the remaining
five it has mean zero and standard deviation 0.2. Figure 1 shows the mean regret averaged over 200
repeated experiments with T = 500 steps along with 95% normal pointwise confidence bands. As
anticipated, using a conservative bound of B = 100 achieves a clearly sublinear regret but pays a
significant initial cost due to excess exploration. Algorithms that use the anti-conservative bound of
B = 1 fail to identify the optimal arm for an extended period and sustain a nearly linear regret over a
substantial time horizon.

6 Empirical bound information-directed sampling

To overcome this challenge, we propose the empirical bound information-directed sampling (EBIDS)
algorithm, which, like existing frequentist IDS algorithms, relies on a conservative upper bound
B, but, unlike existing algorithms, it refines this value with accruing data to obtain a tighter high-
probability bound on B∗. Our algorithm proceeds in two phases. Throughout the first TB steps,
which we will refer to as the bound exploration phase, the goal is to gather initial information on the
optimal action, as well as to improve the bound on B∗. At each time step t in this first phase, we use

B̂t = min
{
B,
∥∥∥θ̂wls

t

∥∥∥
2
+ β

1/2
t,ζt(δ)

(B)λmin(W t)
−1/2

}
(10)

as the upper bound on B∗. The term βt,ζt(δ)(B) is defined in (6) and ζt(δ) = min{δ, 1/t2}, where
δ > 0 is a user-specified parameter that determines the confidence level for the upper bound on B∗.
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Figure 1: Regret incurred by IDS-UCB and UCB with: (a) conservative B = 100; (b) anti-
conservative B = 1. In both plots we include the oracle versions of IDS-UCB, and UCB using
B = B∗ for reference. However, note that it is not feasible to implement them in most practical
settings. The solid and dashed lines represent the regret averaged over 200 repeated experiments,
while the shaded bounds are 95% normal pointwise confidence bands.

The geometric motivation for this estimator stems from the fact that the confidence set Ewls
t,ζt(δ)

is

an ellipsoid centered at θ̂
wls

t with the longest semi-axis of length β1/2
t,ζt(δ)

(B)λmin(W t)
−1/2. Thus,

by adding it to
∥∥∥θ̂wls

t

∥∥∥
2
, from the triangle inequality, we obtain a conservative upper bound on the

distance between the origin and the point of Ewls
t,ζt(δ)

furthest from it. In the Supplementary Materials,
we prove that

P

( ∞⋂
t=1

{
B̂t ≥ B∗

})
≥ 1− δ.

Continuing our description of the bound exploration phase, for any t ≤ TB we use B̂t to obtain a
UCB algorithm, which we will refer to as empirical bound UCB (EB-UCB) via

A
EB-UCB(ζt(δ))
t = arg max

a∈A

〈
ϕ(a), θ̂

wls

t

〉
+ β

1/2
t,ζt(δ)

(B̂t)∥ϕ(a)∥W−1
t
. (11)

Subsequently, we use

∆̂t,ζt(δ)(a) =
〈
ϕ
(
A

EB-UCB(ζt(δ))
t

)
− ϕ(a), θ̂

wls

t

〉
+ β

1/2
t,ζt(δ)

(B̂t)

(∥∥∥ϕ(AEB-UCB(ζt(δ))
t

)∥∥∥
W−1

t

+ ∥ϕ(a)∥W−1
t

)
(12)

as the gap estimate for any a ∈ A. We define a new information gain criterion that combines model
improvement (classic information gain) with bound improvement. The first component of our new
information gain criterion is given by

I
EB-UCB(ζt(δ))
t (a) =

1

2
log


∥∥∥ϕ(AEB-UCB(ζt(δ))

t

)∥∥∥2
W−1

t∥∥∥ϕ(AEB-UCB(ζt(δ))
t

)∥∥∥2
(W t+ρ(a)−2ϕ(a)ϕ(a)⊤)−1

 , (13)

for any a ∈ A. It can be seen that this is analogous to the IDS-UCB information gain criterion
considered by Kirschner & Krause (2018). To ensure improvement in the bound on B∗ over time, we
introduce the second component of our information gain criterion IBt which is given by

IBt (a) =
1

2
log
(
∥vmin

t ∥2(W t+ρ(a)−2ϕ(a)ϕ(a)⊤)

)
− 1

2
log (λmin(W t)) ,



Reinforcement Learning Journal 2025

where vmin
t is the unit-length eigenvector of W t associated with the smallest eigenvalue λmin(W t).

The maximizer of IBt (a) corresponds to the feature vector ϕ(a) that generates the most (weighted)
information in the direction of the minimum eigenvector of the current information matrix. This
direction corresponds to the longest axis of the confidence ellipsoid defined by the inverse information
and is closely related to E-optimal experimental designs (Dette & Studden, 1993).

In order to balance exploration aimed at reducing the uncertainty about B∗ and directly searching for
the optimal arm in the initial phase, we use a mixture of information gain criteria, which we refer to
as the bound-action mixture (BAM) criterion:

I
BAM(ζt(δ))
t (a) = αIBt (a) + (1− α)IEB-UCB(ζt(δ))

t (a),

where α ∈ (0, 1) is a parameter chosen by the user. Note that, while we use the IEB-UCB(ζt(δ))
t

information gain criterion in this instance, we could use any information gain criterion of choice
instead. For notational convenience, we drop the ζt(δ) term and write IEB-UCB

t for IEB-UCB(ζt(δ))
t and

IBAM
t for IBAM(ζt(δ))

t , since we will use ζt(δ) = min{δ, 1/t2} in the remainder of this paper.

Given the advantages of deterministic IDS and its strong performance in various experimental settings,
we focus on this variant of IDS. Hence, we always select the action that minimizes the information
ratio on the set A, as given in (4). So, at each time step t ∈ {1, . . . , TB} of the bound exploration
phase we choose the action

ABAM
t = arg min

a∈A

{
ΨBAM

t (a) :=
∆̂2

t,ζt(δ)
(a)

IBAM
t (a)

}
.

Throughout the second phase, which we refer to as the bound exploitation phase, for any t ≥ TB + 1
we use

B̃t = min

{
B,min

τ≤t

{∥∥∥θ̂wls

τ

∥∥∥
2
+ β

1/2
τ,ζτ (δ)

(B̂τ )λmin(W τ )
−1/2

}}
as the upper bound on B∗, with B̂t defined in (10). During this phase, we drop the bound information
gain criterion IBt from the mixture and use only IEB-UCB

t . The quantity B̃t is used as the upper
bound for B∗ for both the gap estimate ∆̂t,ζt(δ) and the information gain criterion IEB-UCB

t , which are
defined in the same way as in equations (11), (12), and (13) with B̃t in place of B̂t. We summarize
this method in Algorithm 2. Note that in the second phase we could use any algorithm which requires
explicit use of an upper bound on B∗ by taking B = B̃t as that upper bound. Furthermore, we
formulate this procedure specifically in the context of IDS; however, the approach of estimating a
high-probability upper bound on the true parameter norm and using it to guide decision making can
be thought of as a more general technique, rather than something specific only to IDS.

7 Regret analysis of EBIDS algorithm

In this section, we present the regret and pseudo-regret bounds for both phases of the EBIDS algorithm.
We defer the proofs of these propositions and relevant lemmas to the Supplementary Materials. For
any t and ξt > 0, let Et,ξt be the event

Et,ξt =

{∥∥∥θ∗ − θ̂
wls

t

∥∥∥2
W t

≤ βt,ξt(B∗)

}
, (14)

and define Eδ =
⋂∞

t=1Et,δ. Note that, by Theorem 2, we have P(Eδ) ≥ 1 − δ. The following
proposition summarizes the regret and pseudo-regret bounds for EBIDS during the bound exploration
phase.
Proposition 1. For any 2 ≤ T ≤ TB the regretRT of Algorithm 2 is bounded above by

RT ≤ O

dmax{U/√γ, ρmax}√
1− α

√
T log T

√
log(1/δ) + log

(
1 +

ρ−2
minU

2

γ

)
+ γB2
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Algorithm 2 EBIDS
Input: Action set A, penalty parameter γ > 0, noise function ρ : A → R+, feature func-
tion ϕ : A → R, conservative true parameter norm bound B, number of bound exploration
steps TB , information gain mixture parameter α ∈ (0, 1), error tolerance parameter δ ∈ (0, 1).

For t = 1, 2, . . . , TB :

Compute W t and θ̂
wls

t using (5)

B̂t ← min
{
B,
∥∥∥θ̂wls

t

∥∥∥
2
+ β

1/2
t,ζt(δ)

(B)λmin(W t)
−1/2

}
AEB-UCB

t ← arg maxa∈A

〈
ϕ(a), θ̂

wls

t

〉
+ β

1/2
t,ζt(δ)

(B̂t)∥ϕ(a)∥W−1
t

IEB-UCB
t (a)← 1

2 log
(∥∥ϕ(AEB-UCB

t )
∥∥2
W−1

t

)
− 1

2 log
(∥∥ϕ(AEB-UCB

t )
∥∥2
(W t+ρ(a)−2ϕ(a)ϕ(a)⊤)−1

)
IBt (a)← 1

2 log
(
∥vmin

t ∥2(W t+ρ(a)−2ϕ(a)ϕ(a)⊤)

)
− 1

2 log (λmin(W t))

IBAM
t (a)← αIBt (a) + (1− α)IEB-UCB

t (a)

∆̂t,ζt(δ)(a)←
〈
ϕ(AEB-UCB

t )− ϕ(a), θ̂
wls

t

〉
+β

1/2
t,ζt(δ)

(B̂t)
(
∥ϕ(AEB-UCB

t )∥W−1
t

+ ∥ϕ(a)∥W−1
t

)
At ← arg mina∈A ∆̂2

t,ζt(δ)
(a)/IBAM

t (a)

Play At, observe Yt = ⟨ϕ(At),θ
∗⟩+ ηt

For t = TB + 1, TB + 2, . . . , T :

Compute W t and θ̂
wls

t using (5)

B̂t ← min
{
B,
∥∥∥θ̂wls

t

∥∥∥
2
+ β

1/2
t,ζt(δ)

(B)λmin(W t)
−1/2

}
B̃t ← min

{
B,minτ≤t

{∥∥∥θ̂wls

τ

∥∥∥
2
+ β

1/2
τ,ζτ (δ)

(B̂τ )λmin(W τ )
−1/2

}}
AEB-UCB

t ← arg maxa∈A

〈
ϕ(a), θ̂

wls

t

〉
+ β

1/2
t,ζt(δ)

(B̃t)∥ϕ(a)∥W−1
t

IEB-UCB
t (a)← 1

2 log
(∥∥ϕ(AEB-UCB

t )
∥∥2
W−1

t

)
− 1

2 log
(∥∥ϕ(AEB-UCB

t )
∥∥2
(W t+ρ(a)−2ϕ(a)ϕ(a)⊤)−1

)
∆̂t,ζt(δ)(a)←

〈
ϕ(AEB-UCB

t )− ϕ(a), θ̂
wls

t

〉
+β

1/2
t,ζt(δ)

(B̃t)
(
∥ϕ(AEB-UCB

t )∥W−1
t

+ ∥ϕ(a)∥W−1
t

)
At ← arg mina∈A ∆̂2

t,ζt(δ)
(a)/IEB-UCB

t (a)

Play At, observe Yt = ⟨ϕ(At),θ
∗⟩+ ηt

and whenever event Eδ holds, the pseudo-regret PRT is bounded above by the same rate.

We also provide guarantees on the estimated upper bound on B∗ after the bound exploration phase.
This, in turn, will allow us to obtain an improved bound for the regret and pseudo-regret in the
subsequent phase.

Proposition 2. For any constant g > 0, with sufficiently large TB and sufficiently large α, whenever
event Eδ holds, we have B∗ ≤ B̃t ≤ (1 + g)B∗ for any t ≥ TB + 1.

Please see Section 11.6 in the Supplementary Materials for the exact constants required as lower
bounds for TB and α depending on g. Finally, using the results of Proposition 2, we are able
to establish a regret bound for the second phase of EBIDS which is independent of the original
conservative bound B.
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Proposition 3. For any constant g > 0, with sufficiently large TB and sufficiently large α, with
probability at least 1− δ the regret and pseudo-regret of Algorithm 2 are both bounded above by

O
(
dUρmax(1 + g)B∗

√
T log T

)
,

for any T ≥ TB + 1.

Similarly, we give the exact constants required as lower bounds for TB and α in Supplementary
Materials, in Section 11.7. Thus, Propositions 1 and 3 together give us regret and pseudo-regret
guarantees for both bound exploration phase and the subsequent bound exploitation phase of EBIDS.
This is different from Gales et al. (2022) who do not control the regret in the initial stages of their
norm-agnostic algorithms.

8 Simulation study

We evaluate the performance of EBIDS using simulation studies and compare it with the norm-
agnostic competitor algorithms NAOFUL and OLSOFUL by Gales et al. (2022) which also aim
at alleviating the dependence on access to a high-quality bound on the true parameter norm. We
include the EB-UCB algorithm to demonstrate the advantage of using the IDS strategy in addition
to utilizing the empirical norm bound. We also compare against the oracle versions of EBIDS,
IDS-UCB and UCB with access to the true value of B∗. We use the same setting as in Section
5 with θ∗ = [−5, 1, 1, 1.5, 2]⊤ as the true parameter and ten arms with features sampled from
Unif[−1/

√
5, 1/
√
5]. The reward noise for the first five arms follows a standard normal distribution,

while for the remaining five it has mean zero and standard deviation 0.2. We take a conservative
B = 100 as the assumed upper bound on B∗. Both the oracle and non-oracle versions of EBIDS
use α = 0.5, giving equal weight to both components of the BAM criterion, and run the bound
exploration phase for TB = 50 steps.

Figure 2 shows the mean regret averaged over 200 repeated experiments with T = 500 steps along
with 95% normal pointwise confidence bands. As we can see, EB-UCB is competitive with NAOFUL
and OLSOFUL, while EBIDS performs best among all the algorithms that do not have access to the
true parameter norm. It achieves significantly lower regret than IDS-UCB and UCB. Meanwhile, the
performance of oracle EBIDS is better than that of oracle UCB and almost indistinguishable from the
one achieved by oracle IDS-UCB.
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Figure 2: Regret incurred by EBIDS, EB-UCB, NAOFUL, OLSOFUL, IDS-UCB and UCB with
conservativeB = 100. We include the oracle versions of EBIDS, IDS-UCB, and UCB usingB = B∗

for reference. The solid and dashed lines represent the regret averaged over 200 repeated experiments,
while the shaded bounds represent 95% normal pointwise confidence bands.

We also perform an ablation study to determine the sensitivity of EBIDS to the tuning param-
eter α and the length TB of the bound exploration phase. We consider all combinations of
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α ∈ {0.1, 0.3, 0.5, 0.7} and TB ∈ {50, 100}. We use the same setting as above and present the
results for T = 500 steps averaged over 200 repeated experiments in Figure 3. Using TB = 50
leads to somewhat better results than TB = 100 and α = 0.1 performs best for both values of
TB . However, the performance is similar for all considered combinations of the tuning parameters,
especially compared to the differences in performance of the competitor algorithms. This shows that
while EBIDS, like most other bandit algorithms, uses tuning parameters, its performance is not very
sensitive to their choice, with several considered combinations of α and TB achieving practically
indistinguishable regret.
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Figure 3: Regret incurred by EBIDS averaged over 200 repeated experiments with T = 500 steps
under different values of the tuning parameter α and the length TB of the bound exploration phase.

9 Discussion

Bandit algorithms often require access to a high-quality upper bound on the Euclidean norm of
the true parameter vector in order to achieve good performance. In practice, such information is
rarely available a priori, which can lead to significant regret accumulation. Despite its prevalence,
this problem has received relatively little attention in the bandit literature. We introduced the
empirical bound information-directed sampling (EBIDS) algorithm which addresses this challenge
by iteratively refining a high-probability upper bound on the true parameter norm. We developed
a novel information gain criterion that balances tightening the bound on the true parameter norm
and explicitly searching for the optimal arm. In simulation experiments, EBIDS showed improved
performance compared to the competing norm-agnostic algorithms. Furthermore, we proved regret
bounds that eventually do not depend on the initially assumed bound for the parameter norm, and
unlike prior regret guarantees for norm-agnostic bandits, our bounds are anytime in that they apply to
all phases of the algorithm.

Broader Impact Statement

This paper introduces novel methodology for frequentist IDS that does not require strong prior
information on the norm of the true parameter indexing the reward model. Our methodology, which
involves a novel information gain criterion and iterative refinement of a high-probability upper bound
on the parameter norm, can be viewed as a general approach to balancing bound improvement and
direct regret minimization that is applicable in a wide range of UCB and IDS bandit algorithms.
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Supplementary Materials
The following content was not necessarily subject to peer review.

In these supplementary materials we provide the proofs to the propositions we have stated in the
paper as well as some additional simulation studies results.

10 Notation and lemmas

We begin by introducing some notation and basic facts. For any unit vector v ∈ Rd and any a ∈ A,
let ψv(ϕ(a)), ψ

⊥
v (ϕ(a)) ∈ R denote the orthogonal decomposition of ϕ(a), i.e.,

ϕ(a) = ψv(ϕ(a))v + ψ⊥
v (ϕ(a))v

⊥,

where ∥v⊥∥2 = 1 and v⊥ ⊥ v. Let

κ = min
v∈Rd s.t. ∥v∥2=1

max
a∈A

{
ρ(a)−2ψv(ϕ(a))

2
}
. (15)

Note that κ > 0. Recall that by vmin
t we denote the unit-length eigenvector of W t associated with

the smallest eigenvalue λmin(W t). Let

ωt(a) = ρ(a)−2ψvmin
t

(ϕ(a))2. (16)

Also, note that for any a ∈ A we have

∥ϕ(a)∥2
W−1

t
=

d∑
i=1

ψvi
(ϕ(a))2λ−1

i ,

where {(λi,vi)}di=1 are the eigenvalue-eigenvector pairs of W t. Hence for every t ≥ 1 and a ∈ A
we have

∥ϕ(a)∥22λmax(W t)
−1 ≤ ∥ϕ(a)∥2

W−1
t
≤ ∥ϕ(a)∥22λmin(W t)

−1,

so
L2λmax(W t)

−1 ≤ ∥ϕ(a)∥2
W−1

t
≤ U2λmin(W t)

−1. (17)

Also from Cauchy-Schwarz inequality

〈
ϕ(a), θ̂

wls

t

〉2
≤ ∥ϕ(a)∥22

∥∥∥θ̂wls

t

∥∥∥2
2
≤ U2

∥∥∥θ̂wls

t

∥∥∥2
2
. (18)

From Weyl’s inequality (Franklin, 1968), for any positive semi-definite matrices A,B we have

λmax(A+B) ≤ λmax(A) + λmax(B).

Thus, for every t ≥ 1 we have

λmax(W t) ≤ λmax(γId) +

t−1∑
τ=1

λmax(ρ(aτ )
−2ϕ(aτ )ϕ(aτ )

⊤) ≤ γ + (t− 1)ρ−2
minU

2, (19)

so from (17), for any t ≥ 1 we have

∥ϕ(a)∥2
W−1

t
≥ L2

γ + (t− 1)ρ−2
minU

2
≥ L2

t(γ + ρ−2
minU

2)
. (20)
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Also from (19) for T ≥ 2 we have

log

(
det(W T )

det(W 1)

)
= log(det(W T ))− log(det(γId)) ≤ d log(γ + (T − 1)ρ−2

minU
2)− d log γ

=d log

[
1 + (T − 1)

ρ−2
minU

2

γ

]
≤ d log

[
(T − 1)

(
1 +

ρ−2
minU

2

γ

)]
=d log(T − 1) + d log

(
1 +

ρ−2
minU

2

γ

)
. (21)

Applying the data processing inequality (Cover & Thomas, 2012) in an analogous way as Kirschner
& Krause (2018), we obtain

IEB-UCB
t (a) ≤ 1

2
log

(
det(W t + ρ(a)−2ϕ(a)ϕ(a)⊤)

det(W t)

)
=

1

2
log
(
1 + ρ(a)−2∥ϕ(a)∥2

W−1
t

)
,

(22)

for any a ∈ A. So from (21) we get

T∑
t=1

IEB-UCB
t (at) ≤

1

2
log

(
det(W T+1)

det(W 1)

)
≤ 1

2
d log T +

1

2
d log

(
1 +

ρ−2
minU

2

γ

)
= O(d log T ),

(23)

for any sequence {at}Tt=1 ⊂ A.

We now state and prove some additional lemmas that will be useful throughout the proofs of
Propositions 1 - 3.

Lemma 1. Let ∆̂t : A → R+ be a gap estimate function and let IXt , I
Y
t : A → R+ be two

information gain criteria. Let IXY
t be the mixture information gain criterion given by

IXY
t (a) = αIXt (a) + (1− α)IYt (a)

for some α ∈ (0, 1). Consider now the deterministic IDS algorithm which at each time step t plays
action aXY

t given by

aXY
t = arg min

a∈A

∆̂2
t (a)

IXY
t (a)

Then at each time step t the information gain on to the first criterion IXt is lower-bounded by

IXt
(
aXY
t

)
≥

∆̂2
t

(
aXY
t

)
∆̂2

t

(
aI,Xt

)IXt (aI,Xt

)
− 1− α

α
IYt
(
aXY
t

)
,

where aI,Xt = arg maxa∈A I
X
t (a).

Lemma 2. Recall the definition ωt(a) = ρ(a)−2ψvmin
t

(ϕ(a))2 where vmin
t is the unit-length eigen-

vector of W t associated with the smallest eigenvalue λmin(W t). For any T ≥ 1 and any sequence
of actions {at}Tt=1 ⊂ A we have

λmin(W T+1) ≥ γ − ρ−2
minU

2 +
1

d

T∑
t=1

ωt(at).

Lemma 3. Let {xt}T+1
t=1 ⊂ [0, V ] be a bounded sequence for some constant V > 0. Then for any

constant c > 0 we have
T∑

t=1

xt+1

c+
∑t

τ=1 xτ
≤ log T +

V

c
+ 1.
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11 Proofs of theoretical results

In this section, we provide the proofs of Theorem 1, Lemmas 1 - 3, and Propositions 1 - 3.

11.1 Proof of Theorem 1

This proof closely follows that in (Kirschner, 2021). Recall that by Cauchy-Schwarz inequality, for
any random variables {Xt}t∈G, {Yt}t∈G with nonnegative support, with probability 1 we have

∑
t∈G

√
XtYt ≤

√√√√(∑
t∈G

Xt

)(∑
t∈G

Yt

)
,

and for any random variables X,Y with nonnegative support we have

E
[√

XY
]
≤
√

E[X]E[Y ].

Hence if ∆̂(At) ≥ ∆(At), for all t ∈ G, then with probability 1 we have

∑
t∈G

∆(At) ≤
∑
t∈G

∆̂t (At) =
∑
t∈G

√
Ψt(At)It(At) ≤

√√√√[∑
t∈G

Ψt(At)

][∑
t∈G

It(At)

]
.

Also

E

[∑
t∈G

∆̂t (At)

]
=E

[∑
t∈G

√
Ψt(At)It (At)

]
≤ E

√√√√[∑
t∈G

Ψt (At)

][∑
t∈G

It (At)

]
≤

√√√√E

[∑
t∈G

Ψt (At)

]
E

[∑
t∈G

It (At)

]
.

11.2 Proof of Lemma 1

By the definition of aXY
t we have

∆̂2
t (a

XY
t )

αIXt (aXY
t ) + (1− α)IYt (aXY

t )
≤ ∆̂2

t (a
I,X
t )

αIXt (aI,Xt ) + (1− α)IYt (aI,Xt )
,

hence

αIXt (aXY
t ) + (1− α)IYt (aXY

t ) ≥ ∆̂2
t (a

XY
t )

∆̂2
t (a

I-X
t )

[
αIXt (aI,Xt ) + (1− α)IYt (aI,Xt )

]
,

and thus

IXt (aXY
t ) ≥∆̂2

t (a
XY
t )

∆̂2
t (a

I,X
t )

IXt (aI,Xt ) +
(1− α)
α

· ∆̂
2
t (a

XY
t )

∆̂2
t (a

I,X
t )

IYt (aI,Xt )− 1− α
α

IYt (aXY
t )

≥∆̂2
t (a

XY
t )

∆̂2
t (a

I,X
t )

IXt (aI,Xt )− 1− α
α

IYt (aXY
t ).

11.3 Proof of Lemma 2

Define λ(t)1 , . . . , λ
(t)
d as the (not necessarily ordered) eigenvalues of W t. Let

i∗(t) = arg min
1≤i≤d

λ
(t)
i .
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By Weyl’s inequality (Franklin, 1968), for any symmetric positive semi-definite matrices A,B ∈
Rm×m we have

λ(i)(A+B) ≥ λ(i)(A), (24)

where λ(i)(A) is the i-th largest eigenvalue of A for any 1 ≤ i ≤ m. Recall that we defined vmin
t

to be the unit-length eigenvector corresponding to the smallest eigenvalue of W t. Then for any
1 ≤ i ≤ d we have

λ(i)(W t+1) =λ(i)
(
W t + ρ(at)

−2ϕ(at)ϕ(at)
⊤)

=λ(i)

(
W t + ρ(at)

−2ψvmin
t

(ϕ(a))vmin
t (vmin

t )⊤

+ ρ(at)
−2ψ⊥

vmin⊥
t

(ϕ(a))vmin⊥
t (vmin⊥

t )⊤
)

≥λ(i)
(
W t + ρ(at)

−2ψvmin
t

(ϕ(a))vmin
t (vmin

t )⊤
)

=λ(i)
(
W t + ωt(at)v

min
t (vmin

t )⊤
)
.

Note that the matrix W t + ωt(at)v
min
t (vmin

t )⊤ has the same eigenvectors as W t and the smallest
eigenvalue of W t, i.e., the one corresponding to vmin

t is increased by ωt(at). So for any t we can
order the eigenvalues λ(t+1)

1 , . . . , λ
(t+1)
d of W t+1 in such way that λ(t+1)

i ≥ λ(t)i and

λ
(t+1)
i∗(t) ≥ λ

(t)
i∗(t) + ωt(at).

Since we have d eigenvalues and at each time step t we add at least ωt(at) to the smallest eigenvalue
at that time step without reducing the other ones we have

λ
(T )
i∗(T ) − λ

(1)
i∗(1) + ωT (aT ) ≥

1

d

T∑
t=1

ωt(at).

Note that λ(1)1 = . . . = λ
(1)
d = γ and ωT (aT ) ≤ ρ−2

minU
2, so

λmin(W T+1) = λ
(T+1)
i∗(T+1) ≥ λ

(T )
i∗(T ) ≥ γ − ρ

−2
minU

2 +
1

d

T∑
t=1

ωt(at).

11.4 Proof of Lemma 3

Let

f(x1, . . . , xT+1) =

T∑
t=1

xt+1

c+
∑t

τ=1 xτ
.

We use induction to show that f achieves maximum at x1 = 0 and x2 = x3 = . . . = xT+1 = V.
Note that for any x̃1, . . . , x̃T ∈ [0, V ] we have

arg max
xT+1∈[0,V ]

f(x̃1, . . . , x̃T , xT+1) = V.

Suppose that for any t ≥ 2 it holds that for any t ≤ k ≤ T and any x̃1, . . . , x̃k ∈ [0, V ] we have

(x∗k+1, . . . , x
∗
T+1) := arg max

xk+1,...,xT+1∈[0,V ]

f(x̃1, . . . , x̃k, xk+1, . . . , xT+1) = (V, . . . , V ) ∈ RT−k+1.

(25)

Take any x̃1, . . . , x̃t−1 ∈ [0, V ]. Then by taking k = t+ 1 the above statement gives us

max
xt,xt+1,...,xT+1∈[0,V ]

f(x̃1, . . . , x̃t−1, xt, xt+1, . . . , xT+1) = max
xt,xt+1∈[0,V ]

f(x̃1, . . . , x̃t−1, xt, xt+1, V, . . . , V ).
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Let

(x̌t, x̌t+1) = arg max
xt,xt+1∈[0,V ]

f(x̃1, . . . , x̃t−1, xt, xt+1, V, . . . , V ).

Note that x̌t+1 = x∗t+1 = V by taking the induction statement with k = t. For notational convenience
let b = c+

∑t−1
τ=1 x̃τ . Then

(x̌t, x̌t+1) = arg max
xt,xt+1∈[0,V ]

{
xt
b

+
xt+1

b+ xt
+

T−t−1∑
τ=0

V

b+ xt + xt+1 + τV

}
.

Let

gt(xt, xt+1) =
xt
b

+
xt+1

b+ xt
+

T−t−1∑
τ=0

V

b+ xt + xt+1 + τV
.

Suppose that x̌t = x for some 0 ≤ x < V . Note that

gt(V, x)− gt(x, V ) =

(
V

b
+

x

b+ V

)
−
(
x

b
+

V

b+ x

)
=

V x(V − x)
b(b+ V )(b+ x)

> 0.

So gt(V, x) > gt(x, V ) = gt(x̌t, x̌t+1) which is a contradiction, since (x̌t, x̌t+1) is the maximizer
of gt(xt, xt+1). So x̌t = V . Thus, we have shown that for any x̃1, . . . , x̃t−1 ∈ [0, V ] we have

(x∗t , . . . , x
∗
T+1) = arg max

xt,...,xT+1∈[0,V ]

f(x̃1, . . . , x̃t−1, xt, . . . , xT+1) = (V, . . . , V ) ∈ RT−t+2.

Hence by induction we get that for any x̃1 ∈ [0, V ] we have

arg max
x2,...,xT+1∈[0,V ]

f(x̃1, x2, . . . , xT+1) = (V, . . . , V ) ∈ RT .

Clearly
arg max
x1∈[0,V ]

f(x1, V, . . . , V ) = 0,

so

max
x1,...,xT+1∈[0,V ]

f(x1, . . . , xT+1) =f(0, V, . . . , V ) =

T∑
t=1

V

c+ (t− 1)V

≤V
c
+

T∑
t=2

1

t− 1
< log T +

V

c
+ 1.

11.5 Proof of Proposition 1

From Theorem 1, for any T ≤ TB we have

E

[
T∑

t=1

∆̂t,ζt(δ)(A
BAM
t )

]
≤

√√√√E

[
T∑

t=1

ΨBAM
t

(
ABAM

t

)]
E

[
T∑

t=1

IBAM
t

(
ABAM

t

)]

≤

√√√√E

[
T∑

t=1

∆̂2
t,ζt(δ)

(
ABAM

t

)
IBAM
t

(
ABAM

t

) ]E[ T∑
t=1

IBAM
t

(
ABAM

t

)]

=

√√√√E

[
T∑

t=1

∆̂2
t,ζt(δ)

(
ABAM

t

)
αIBt

(
ABAM

t

)
+ (1− α)IEB-UCB

t

(
ABAM

t

)]

×

√√√√αE

[
T∑

t=1

IBt
(
ABAM

t

)]
+ (1− α)E

[
T∑

t=1

IEB-UCB
t

(
ABAM

t

)]
.
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By the definition of ABAM
t we have

E

[
T∑

t=1

∆̂2
t,ζt(δ)

(
ABAM

t

)
αIBt

(
ABAM

t

)
+ (1− α)IEB-UCB

t

(
ABAM

t

)] ≤E[ T∑
t=1

∆̂2
t,ζt(δ)

(
AEB-UCB

t

)
αIEB-UCB

t

(
AEB-UCB

t

)
+ (1− α)IBt

(
AEB-UCB

t

)]

≤ 1

1− α
E

[
T∑

t=1

∆̂2
t,ζt(δ)

(
AEB-UCB

t

)
IEB-UCB
t

(
AEB-UCB

t

)] . (26)

The next couple of steps are similar to the analysis by Kirschner (2021). Let aEB-UCB
t be the realization

of AEB-UCB
t . From the Sherman-Morrison formula, we obtain[

W t + ρ(aEB-UCB
t )−2ϕ(aEB-UCB

t )ϕ(aEB-UCB
t )⊤

]−1
= W−1

t

−ρ(a
EB-UCB
t )−2W−1

t ϕ(aEB-UCB
t )ϕ(aEB-UCB

t )⊤W−1
t

1 + ρ(aEB-UCB
t )−2ϕ(aEB-UCB

t )⊤W−1
t ϕ(aEB-UCB

t )
,

so ∥∥ϕ(aEB-UCB
t )

∥∥2
(W t+ρ(aEB-UCB

t )−2ϕ(aEB-UCB
t )ϕ(aEB-UCB

t )⊤)
−1 =

∥∥ϕ(aEB-UCB
t )

∥∥2
W−1

t

−
ρ(aEB-UCB

t )−2
∥∥ϕ(aEB-UCB

t )
∥∥4
W−1

t

1 + ρ(aEB-UCB
t )−2

∥∥ϕ(aEB-UCB
t )

∥∥2
W−1

t

.

Thus
IEB-UCB
t

(
aEB-UCB
t

)
=

1

2
log
(
1 + ρ(aEB-UCB

t )−2
∥∥ϕ(aEB-UCB

t )
∥∥2
W−1

t

)
.

From (17), we have
∥∥ϕ(aEB-UCB

t )
∥∥
W−1

t
≤ U2γ−1. Thus, using the fact that log(1 + x) ≥ x

2q for any
q ≥ 1 and x ∈ [0, q] we get

IEB-UCB
t

(
aEB-UCB
t

)
≥ 1

4
min{U−2γ, ρ(aEB-UCB

t )−2}
∥∥ϕ(aEB-UCB

t )
∥∥2
W−1

t
.

So for any t ≤ T we get

∆̂2
t,ζt(δ)

(
aEB-UCB
t

)
IEB-UCB
t

(
aEB-UCB
t

) ≤ 4βt,ζt(δ)(B̂t)
∥∥ϕ(aEB-UCB

t )
∥∥2
W−1

t

1
4 min{U−2γ, ρ(aEB-UCB

t )−2}
∥∥ϕ(aEB-UCB

t )
∥∥2
W−1

t

=16βt,ζt(δ)(B̂t)max{U2γ−1, ρ(aEB-UCB
t )2}

≤16βt,ζt(δ)(B)max{U2γ−1, ρ(aEB-UCB
t )2}

≤16βT,ζT (δ)(B)max{U2γ−1, ρ2max}. (27)

So

E

[
T∑

t=1

∆̂2
t,ζt(δ)

(
AEB-UCB

t

)
IEB-UCB
t

(
AEB-UCB

t

)] ≤ 16TβT,ζT (δ)(B)max{U2γ−1, ρ2max}. (28)

Since 1/ζT (δ) = max{1/δ, T 2}, from (21) we have

βT,ζT (δ)(B) =

(√
2 log (1/ζt(δ)) + log

(
det (W t)

det (W 1)

)
+
√
γB

)2

≤2max{2 log T, log(1/δ)}+ 2 log

(
det(W T )

det(W 1)

)
+ 2γB2

≤2max{2 log T, log(1/δ)}+ 2d log(T − 1) + 2d log

(
1 +

ρ−2
minU

2

γ

)
+ 2γB2

<(2d+ 4) log T + 2 log(1/δ) + 2d log

(
1 +

ρ−2
minU

2

γ

)
+ 2γB2. (29)
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So from (26), (28), and (29) we have

E

[
T∑

t=1

∆̂2
t,ζt(δ)

(
ABAM

t

)
αIBt

(
ABAM

t

)
+ (1− α)IEB-UCB

t

(
ABAM

t

)] ≤ 16

1− α
max{U2γ−1, ρ2max}T

×
[
(2d+ 4) log T + 2 log(1/δ) + 2d log

(
1 +

ρ−2
minU

2

γ

)
+ 2γB2

]
. (30)

Also, for any sequence {at}Tt=1 ⊂ A we have

IBt (at) =
1

2
log
(
∥vmin

t ∥2(W t+ρ(a)−2ϕ(a)ϕ(a)⊤)

)
− 1

2
log (λmin(W t))

=
1

2
log

(
(vmin

t )⊤
(
W t + ρ(at)

−2ϕ(at)ϕ(at)
⊤)vmin

t

λmin(W t)

)

=
1

2
log

(
λmin(W t) + ρ(at)

−2vmin
t ϕ(at)ϕ(at)

⊤vmin
t

λmin(W t)

)
=
1

2
log

(
1 +

ρ(at)
−2ψvmin

t
(ϕ(at))

2

λmin(W t)

)
=

1

2
log

(
1 +

ωt(at)

λmin(W t)

)
. (31)

Let

T0 = max

{
t :

t∑
τ=1

ωτ (aτ ) ≤ d(ρ−2
minU

2 − γ)

}
.

Without loss of generality, assume that T0 ≤ T . Then using Lemma 2 we get
T∑

t=1

IBt (at) =

T∑
t=1

log

(
1 +

ωt(at)

λmin(W t)

)

=

T0∑
t=1

log

(
1 +

ωt(at)

λmin(W t)

)
+

T∑
t=T0+1

log

(
1 +

ωt(at)

λmin(W t)

)

≤
T0∑
t=1

ωt(at)

λmin(W t)
+

T∑
t=T0+1

log

(
1 +

ωt(at)

γ − ρ−2
minU

2 + 1
d

∑t−1
τ=1 ωτ (aτ )

)

≤ 1

γ

T0∑
t=1

ωt(at) +

T∑
t=T0+1

log

(
1 +

dωt(at)

d(γ − ρ−2
minU

2) +
∑t−1

τ=1 ωτ (aτ )

)

≤d(ρ
−2
minU

2 − γ)
γ

+

T∑
t=T0+1

dωt(at)

d(γ − ρ−2
minU

2) +
∑T0

τ=1 ωτ (aτ ) +
∑t−1

τ=T0+1 ωτ (aτ )
.

Let

c = d(γ − ρ−2
minU

2) +

T0∑
τ=1

ωτ (aτ )

and
xt = ωT0+t(aT0+t).

Then from Lemma 3, since c > 0 and xt ∈ [0, ρ−2
minU

2] for all t we have

T∑
t=1

IBt (at) ≤
d(ρ−2

minU
2 − γ)

γ
+

T∑
t=T0+1

dωt(at)

c+
∑t−1

τ=T0+1 ωτ (aτ )

=
d(ρ−2

minU
2 − γ)

γ
+ d

T−T0∑
t=1

xt

c+
∑t−1

τ=1 xτ

≤O(d log(T − T0)) ≤ O(d log T ). (32)
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Thus, from (23) we have

αE

[
T∑

t=1

IBt
(
ABAM

t

)]
+ (1− α)E

[
T∑

t=1

IEB-UCB
t

(
ABAM

t

)]
≤ O(d log T ).

So from Theorem 1 and (30) we have

E

[
T∑

t=1

∆̂t,ζt(δ)(A
BAM
t )

]
≤O

(√
d

16

1− α
max{U2γ−1, ρ2max}T log T

×

√
(4 + 2d) log T + 2 log(1/δ) + 2d log

(
1 +

ρ−2
minU

2

γ

)
+ 2γB2


≤O

(
dmax{U/√γ, ρmax}√

1− α
√
T log T

×

√
log(1/δ) + log

(
1 +

ρ−2
minU

2

γ

)
+ γB2

 . (33)

Take any t ≥ 1 and suppose that the event Et,ζt(δ), as defined in (14), holds. Note that the set{
θ ∈ R :

∥∥∥θ − θ̂
wls

t

∥∥∥2
W t

≤ βt,ζt(δ)(B
∗)

}

is an ellipsoid in Rd centered at θ̂
wls

t with the longest semi-axis of length β1/2
t,ζt(δ)

(B∗)λmin(W t)
−1/2,

so ∥∥∥θ̂wls

t − θ∗
∥∥∥
2
≤ β1/2

t,ζt(δ)
(B∗)λmin(W t)

−1/2. (34)

Since B ≥ B∗ we have βt,ζt(δ)(B) ≥ βt,ζt(δ)(B∗), so by the triangle inequality we get

B∗ = ∥θ∗∥2 ≤
∥∥∥θ̂wls

t

∥∥∥
2
+β

1/2
t,ζt(δ)

(B∗)λmin(W t)
−1/2 ≤

∥∥∥θ̂wls

t

∥∥∥
2
+β

1/2
t,ζt(δ)

(B)λmin(W t)
−1/2 = B̂t.

(35)
So B∗ ≤ B̂t for all t ≥ 1 and thus βt,ζt(δ)(B̂t) ≥ βt,ζt(δ)(B∗), and thus

θ∗ ∈
{
θ ∈ R :

∥∥∥θ − θ̂
wls

t

∥∥∥2
W t

≤ βt,ζt(δ)(B
∗)

}
⊆
{
θ ∈ R :

∥∥∥θ − θ̂
wls

t

∥∥∥2
W t

≤ βt,ζt(δ)(B̂t)

}
.

Hence ∆(a) ≤ ∆̂t,ζt(δ)(a) for all a ∈ A. So for any a ∈ A we have

P
(
∆(a) > ∆̂t,ζt(δ)(a)

)
≤ 1− P(Et,ζt(δ)) ≤ ζt(δ) ≤ 1/t2.

Thus, letting ∆max = maxa∈A ∆(a), for any sequence {at}Tt=1 ⊂ A we have

E

[
T∑

t=1

∆(at)− ∆̂t,ζt(δ)(at)

]
≤ ∆max

T∑
t=1

P
(
∆(at) > ∆̂t,1/t2(at)

)
≤ ∆max

T∑
t=1

1

t2
≤ O(∆max).

(36)
So from (33), for T ≤ TB the regret of EBIDS is bounded above by

RT ≤ O

dmax{U/√γ, ρmax}√
1− α

√
T log T

√
log(1/δ) + log

(
1 +

ρ−2
minU

2

γ

)
+ γB2

 .
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From (23) and (32) with probability 1 we have

T∑
t=1

IBAM
t (ABAM

t ) ≤ O(d log T ). (37)

Following the same steps as in (26), using (27) and (30) we have

T∑
t=1

ΨBAM
t

(
ABAM

t

)
=

T∑
t=1

∆̂2
t,ζt(δ)

(
ABAM

t

)
IBAM
t

(
ABAM

t

) ≤ T∑
t=1

∆̂2
t,ζt(δ)

(
ABAM

t

)
αIBt

(
ABAM

t

)
+ (1− α)IEB-UCB

t

(
ABAM

t

)
≤

T∑
t=1

∆̂2
t,ζt(δ)

(
AEB-UCB

t

)
αIEB-UCB

t

(
AEB-UCB

t

)
+ (1− α)IBt

(
AEB-UCB

t

)
≤ 1

1− α

T∑
t=1

∆̂2
t,ζt(δ)

(
AEB-UCB

t

)
IEB-UCB
t

(
AEB-UCB

t

)
≤ 16

1− α

T∑
t=1

βT,ζT (δ)(B)max{U2γ−1, ρ2max}

≤ 16

1− α
max{U2γ−1, ρ2max}T

×
[
(4 + 2d) log T + 2 log(1/δ) + 2d log

(
1 +

ρ−2
minU

2

γ

)
+ 2γB2

]
. (38)

Following analogous steps as above, since 1/ζt(δ) ≥ 1/δ we have

βt,ζt(δ)(B) ≥ βt,δ(B) ≥ βt,δ(B∗).

So for any t ≥ 1, whenever event Et,δ holds, the inequality B∗ ≤ B̂t holds as well and thus
∆(a) ≤ ∆̂t,ζt(δ)(a), for all a ∈ A. So if Eδ =

⋂∞
t=1Et,δ holds, then ∆(a) ≤ ∆̂t,ζt(δ)(a), for all

a ∈ A and for all t ≥ 1. So from (37) and (38), by Theorem 1 we have

PRT ≤ O

dmax{U/√γ, ρmax}√
1− α

√
T log T

√
log(1/δ) + log

(
1 +

ρ−2
minU

2

γ

)
+ γB2

 .

11.6 Proof of Proposition 2

In order to precisely state the conditions on TB and α, i.e., how large each of them needs to be for
B∗ ≤ B̃t ≤ (1+ g)B∗ to hold for all t ≥ TB +1, we will first define several constants for notational
convenience.

Let

c0 = L2

[
U2(γ + ρ−2

minU
2)

(
1

κ
+

1

γ

)]−1

(39)

and

h0 = 8 log(5/4) + 4 log(1/δ) + 2d log

(
1 +

ρ−2
minU

2

γ

)
+ 2γB2. (40)
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Then let

u0 =
c0

6 + 16g−2
log 2 +

1− α
α

d log

(
1 +

ρ−2
minU

2

γ

)
, (41)

u1 =
c0

12 + 32g−2
− 1− α

2α
d, (42)

w0 =
c0

6 + 16g−2
+

1− α
α

d log

(
1 +

ρ−2
minU

2

γ

)
, (43)

w1 =
c0

12 + 32g−2
− 1− α

α
d, (44)

and finally let

b0 =
1

d

[
w0

(γ
d
u0 − γ + ρ−2

minU
2
)
− γu0

]
+ γ − ρ−2

minU
2, (45)

b1 =
1

d

(
γu1 −

γ

d
u1w0 −

γ

d
u0w1 + γw1 − ρ−2

minU
2w1

)
, (46)

b2 =
γ

d2
u1w1. (47)

We make the following assumptions.
Assumption 1. B ≥ B∗.

Assumption 2.

TB ≥ max

{
4, exp

[
h0 + 2d+ 8

b2

(
4g−2B∗−2 +

|b1|
2d+ 8

+
|b0|

h0 + 2d+ 8

)]}
.

Assumption 3.

α >
d

d+ c0
12+32g−2

.

We will now show that if Assumptions 1-3 are satisfied and event Eδ holds then

B∗ ≤ B̃t ≤ (1 + g)B∗,

for all t ≥ TB + 1.

Proof. Suppose that event Eδ holds. For any t let

s(t) = arg min
τ≤t

β
1/2
τ,ζτ (δ)

(B̂τ )λmin(W τ )
−1/2. (48)

From (34) in the proof of Proposition 1, using the triangle inequality we get∥∥∥θ̂wls

t

∥∥∥
2
≤∥θ∗∥2 + β

1/2
t,ζt(δ)

(B∗)λmin(W t)
−1/2 = B∗ + β

1/2
t,ζt(δ)

(B∗)λmin(W t)
−1/2. (49)

From (35) in the proof of Proposition 1, for any t we have B̂t ≥ B∗, so∥∥∥θ̂wls

t

∥∥∥
2
≤ B∗ + β

1/2
t,ζt(δ)

(B̂t)λmin(W t)
−1/2.

Hence

B̃t =min
τ≤t

{∥∥∥θ̂wls

τ

∥∥∥
2
+ β

1/2
τ,ζτ (δ)

(B̂τ )λmin(W τ )
−1/2

}
≤
∥∥∥θ̂wls

s(t)

∥∥∥
2
+ β

1/2
s(t),ζs(t)(δ)

(B̂s(t))λmin(W s(t))
−1/2

≤B∗ + 2β
1/2
s(t),ζs(t)(δ)

(B̂s(t))λmin(W s(t))
−1/2. (50)



Reinforcement Learning Journal 2025

Also, analogously as in (35), using (34) and the triangle inequality, for any t ≥ 1 we have

B∗ = ∥θ∗∥2 ≤
∥∥∥θ̂wls

t

∥∥∥
2
+ β

1/2
t,ζt(δ)

(B∗)λmin(W t)
−1/2 ≤

∥∥∥θ̂wls

t

∥∥∥
2
+ β

1/2
t,ζt(δ)

(B̂t)λmin(W t)
−1/2.

So
B∗ ≤ B̃t (51)

for any t ≥ 1.

From Lemma 1, for any t ≤ TB we have

IBt (aBAM
t ) ≥

∆̂2
t,ζt(δ)

(aBAM
t )

∆̂2
t,ζt(δ)

(
aI,Bt

)IBt (aI,Bt

)
− 1− α

α
IEB-UCB
t

(
aBAM
t

)
, (52)

where aI,Bt = arg maxa∈A I
B
t (a). For any t ≤ TB we have

∆̂t,ζt(δ)

(
aBAM
t

)
=max

a∈A

{〈
ϕ(a), θ̂

wls

t

〉
+ β

1/2
t,ζt(δ)

(B̂t)∥ϕ(a)∥W−1
t

}
−
(〈

ϕ
(
aBAM
t

)
, θ̂

wls

t

〉
− β1/2

t,ζt(δ)
(B̂t)

∥∥ϕ (aBAM
t

)∥∥
W−1

t

)
=max

a∈A

{〈
ϕ(a), θ̂

wls

t

〉
+ β

1/2
t,ζt(δ)

(B̂t)∥ϕ(a)∥W−1
t

}
−
(〈

ϕ
(
aBAM
t

)
, θ̂

wls

t

〉
+ β

1/2
t,ζt(δ)

(B̂t)
∥∥ϕ (aBAM

t

)∥∥
W−1

t

)
+ 2β

1/2
t,ζt(δ)

(B̂t)
∥∥ϕ (aBAM

t

)∥∥
W−1

t

≥2β1/2
t,ζt(δ)

(B̂t)
∥∥ϕ (aBAM

t

)∥∥
W−1

t
.

So from (20)

∆̂2
t,ζt(δ)

(
aBAM
t

)
≥ 4βt,ζt(δ)(B̂t)

∥∥ϕ (aBAM
t

)∥∥2
W−1

t
≥ 4βt,ζt(δ)(B̂t)

L2

t(γ + ρ−2
minU

2)
. (53)

Also

∆̂t,ζt(δ)

(
aI,Bt

)
=β

1/2
t,ζt(δ)

(B̂t)

(∥∥ϕ(aEB-UCB
t )

∥∥
W−1

t
+
∥∥∥ϕ(aI,Bt )

∥∥∥
W−1

t

)
+
〈
ϕ(aEB-UCB

t ), θ̂
wls

t

〉
−
〈
ϕ(aI,Bt ), θ̂

wls

t

〉
,

so

∆̂2
t,ζt(δ)

(
aI,Bt

)
≤4βt,ζt(δ)(B̂t)

(∥∥ϕ(aEB-UCB
t )

∥∥2
W−1

t
+
∥∥∥ϕ(aI,Bt )

∥∥∥2
W−1

t

)
+ 4

〈
ϕ(aEB-UCB

t ), θ̂
wls

t

〉2
+ 4

〈
ϕ(aI,Bt ), θ̂

wls

t

〉2
.

Since Eδ holds, from (18) and (49) for any t and any a ∈ A we have〈
ϕ(a), θ̂

wls

t

〉2
≤ 2U2

[
B∗2 + βt,ζt(δ)(B

∗)λmin(W t)
−1
]
,

so from (17) we have

∆̂2
t,ζt(δ)

(
aI,Bt

)
≤ 8βt,ζt(δ)(B̂t)U

2λmin(W t)
−1 + 16U2

[
B∗2 + βt,ζt(δ)(B

∗)λmin(W t)
−1
]
.

(54)
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From (31) in the proof of Proposition 1, for any a ∈ A we have

IBt (a) =
1

2
log

(
1 +

ρ(a)−2ψvmin
t

(ϕ(a))
2

λmin(W t)

)
, (55)

so

IBt

(
aI,Bt

)
=max

a∈A
IBt (a) = max

a∈A

{
1

2
log

(
1 +

ρ(a)−2ψvmin
t

(ϕ(a))
2

λmin(W t)

)}

≥1

2
log

(
1 +

κ

λmin(W t)

)
.

Thus, since log x ≥ 1− 1
x for all x > 0, we have

IBt

(
aI,Bt

)
≥ κ

2[λmin(W t) + κ]
=

[
2λmin(W t)

(
1

κ
+

1

λmin(W t)

)]−1

≥
[
2λmin(W t)

(
1

κ
+

1

γ

)]−1

. (56)

So combining (52), (53), (54), and (56), for any t ≤ TB we have

IBt (aBAM
t ) ≥

L2λmin(W t)
−1
[
2t(γ + ρ−2

minU
2)
(

1
κ + 1

γ

)]−1

2U2λmin(W t)−1 + 4U2βt,ζt(δ)(B̂t)−1 [B∗2 + βt,δ(B∗)λmin(W t)−1]

− 1− α
α

IEB-UCB
t

(
aBAM
t

)
=

=
1

t
L2

[
U2(γ + ρ−2

minU
2)

(
1

κ
+

1

γ

)(
4 + 8B∗2 λmin(W t)

βt,ζt(δ)(B̂t)
+ 8

βt,δ(B
∗)

βt,ζt(δ)(B̂t)

)]−1

− 1− α
α

IEB-UCB
t (aBAM

t ) ≥

≥1

t
L2

[
U2(γ + ρ−2

minU
2)

(
1

κ
+

1

γ

)(
12 + 8B∗2 λmin(W t)

βt,ζt(δ)(B̂t)

)]−1

− 1− α
α

IEB-UCB
t (aBAM

t ),

where the last inequality follows from the fact that B̂t ≥ B∗ and 1/ζt(δ) ≥ 1/δ which gives us

βt,δ(B
∗)

βt,ζt(δ)(B̂t)
≤ 1.

So from (39) we have

IBt (aBAM
t ) ≥ 1

t
c0

(
12 + 8B∗2 λmin(W t)

βt,ζt(δ)(B̂t)

)−1

− 1− α
α

IEB-UCB
t (aBAM

t ). (57)

From (55) we have

IBt (aBAM
t ) =

1

2
log

(
1 +

ωt(a
BAM
t )

λmin(W t)

)
≤ ωt(a

BAM
t )

2λmin(W t)
.

So

ωt(a
BAM
t ) ≥ 2λmin(W t)I

B
t (aBAM

t ). (58)
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If
β
1/2
t,ζt(δ)

(B̂t)λmin(W t)
−1/2 ≤ 1

2
gB∗ (59)

for some t ≤ TB + 1 then

β
1/2
s(t),ζs(t)(δ)

(B̂s(t))λmin(W s(t))
−1/2 ≤ 1

2
gB∗,

so from (50) and (51), since event Eδ holds, for any t ≥ TB + 1 we have

B∗ ≤ B̃t ≤ B∗ + 2β
1/2
s(t),ζs(t)(δ)

(B̂s(t))λmin(W s(t))
−1/2 ≤ (1 + g)B∗, (60)

which is what we want to show. We will prove by contradiction that since Eδ holds, (59) holds as well
for some t ≤ TB + 1. Suppose that for all t ≤ TB + 1 (59) does not hold. Then for all t ≤ TB + 1
we have

λmin(W t)

βt,ζt(δ)(B̂t)
< 4g−2B∗−2, (61)

so from (57) we have

IBt (aBAM
t ) ≥1

t
c0

(
12 + 8B∗2 λmin(W t)

βt,ζt(δ)(B̂t)

)−1

− 1− α
α

IEB-UCB
t (aBAM

t )

>
1

t
· c0
12 + 32g−2

− 1− α
α

IEB-UCB
t (aBAM

t ).

Hence, from (58) for any t ≤ TB we have

ωt(a
BAM
t ) ≥ λmin(W t)

(
1

t
· c0
6 + 16g−2

− 2
1− α
α

IEB-UCB
t (aBAM

t )

)
.

Let ⌊x⌋ denote the largest integer smaller than or equal to x for any x ∈ R. From Weyl’s inequality
(Franklin, 1968) we have

λmin(W t+1) ≥ λmin(W t) ≥ γ (62)

for any t. Also note that ωt(a) ≥ 0 for any t and any a ∈ A. So

⌊
√
TB⌋∑

t=1

ωt(a
BAM
t ) ≥ γ

 c0
6 + 16g−2

⌊
√
TB⌋∑

t=1

1

t
− 2

1− α
α

⌊
√
TB⌋∑

t=1

IEB-UCB
t (aBAM

t )

 .

From (23) we have

⌊
√
TB⌋∑

t=1

IEB-UCB
t (aBAM

t ) ≤1

2
d log⌊

√
TB⌋+

1

2
d log

(
1 +

ρ−2
minU

2

γ

)
≤1

4
d log TB +

1

2
d log

(
1 +

ρ−2
minU

2

γ

)
.

Also since TB ≥ 4 we have ⌊
√
TB⌋ ≥

√
TB − 1 ≥

√
TB/2, so

⌊
√
TB⌋∑

t=1

1

t
> log⌊

√
TB⌋ ≥ log

(
1

2

√
TB

)
=

1

2
log TB − log 2.

So

⌊
√
TB⌋∑

t=1

ωt(a
BAM
t ) ≥γ

(
c0

6 + 16g−2

[
1

2
log TB − log 2

]
− 1− α

α
d

[
1

2
log TB + log

(
1 +

ρ−2
minU

2

γ

)])
=γ(u1 log TB − u0), (63)
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where the constants u0 and u1 were defined in (41) and (42), respectively. Similarly from (62) we
have

TB∑
t=⌊

√
TB⌋+1

ωt(a
BAM
t ) ≥λmin(W ⌊

√
TB⌋+1)

×

 c0
6 + 16g−2

TB∑
t=⌊

√
TB⌋+1

1

t
− 2

1− α
α

TB∑
t=⌊

√
TB⌋+1

IEB-UCB
t (aBAM

t )

 .

Note hat

TB∑
t=⌊

√
TB⌋+1

IEB-UCB
t (aBAM

t ) ≤
TB∑
t=1

IEB-UCB
t (aBAM

t ) ≤ 1

2
d log TB +

1

2
d log

(
1 +

ρ−2
minU

2

γ

)

and

TB∑
t=⌊

√
TB⌋+1

1

t
=

TB∑
t=1

1

t
−

⌊
√
TB⌋∑

t=1

1

t
> log TB −

(
log
√
TB + 1

)
=

1

2
log TB − 1.

So

TB∑
t=⌊

√
TB⌋+1

ωt(a
BAM
t ) ≥ λmin(W ⌊

√
TB⌋+1)

×
(

c0
6 + 16g−2

[
1

2
log TB − 1

]
− 1− α

α
d

[
log TB + log

(
1 +

ρ−2
minU

2

γ

)])
= λmin(W ⌊

√
TB⌋+1)

×
([

c0
12 + 32g−2

− 1− α
α

d

]
log TB −

[
c0

6 + 16g−2
+

1− α
α

d log

(
1 +

ρ−2
minU

2

γ

)])
= λmin(W ⌊

√
TB⌋+1)(w1 log TB + w0),

where the constants w0 and w1 were defined in (43) and (44), respectively.

From Lemma 2 and (63) we have

λmin(W ⌊
√
TB⌋+1) ≥ γ − ρ

−2
minU

2 +
1

d

⌊
√
TB⌋∑

t=1

ωt(a
BAM
t ) ≥ γ

d
(u1 log TB − u0) + γ − ρ−2

minU
2.

So

TB∑
t=1

ωt(a
BAM
t ) =

⌊
√
TB⌋∑

t=1

ωt(a
BAM
t ) +

TB∑
t=⌊

√
TB⌋+1

ωt(a
BAM
t )

≥γ(u1 log TB − u0) +
[γ
d
(u1 log TB − u0) + γ − ρ−2

minU
2
]
(w1 log TB − w0)

=
γ

d
u1w1(log TB)

2 +
(
γu1 −

γ

d
u1w0 −

γ

d
u0w1 + γw1 − ρ−2

minU
2w1

)
log TB

+ w0

(γ
d
u0 − γ + ρ−2

minU
2
)
− γu0

=db2(log TB)
2 + db1 log TB + d(b0 − γ + ρ−2

minU
2),

where the constants b0, b1 and b2 were defined in (45), (46), and (47), respectively.
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Then, applying Lemma 2 again we get

λmin(W TB+1) ≥ γ − ρ−2
minU

2 +
1

d

TB∑
t=1

ωt(a
BAM
t ) ≥ b2(log TB)2 + b1 log TB + b0. (64)

Note that by Assumption 3, we have u1 > 0 and w1 > 0, so b2 > 0.

From (21) we have

βTB+1,ζTB+1(δ)(B̂TB+1) =

(√
2 log(1/ζTB+1(δ)) + log

(
det(W TB+1)

det(W 1)

)
+
√
γB̂TB+1

)2

≤

≤4 log(1/ζTB+1(δ)) + 2 log

(
det(W TB+1)

det(W 1)

)
+ 2γB̂2

TB+1 ≤

≤4max{log(1/δ), 2 log(TB + 1)}+ 2d log TB

+ 2d log

(
1 +

ρ−2
minU

2

γ

)
+ 2γB2.

Since TB ≥ 4 we have

log(TB + 1) ≤ log

(
5

4
TB

)
= log TB + log(5/4),

so

βTB+1,ζTB+1(δ)(B̂TB+1) ≤(2d+ 8) log TB + 8 log(5/4) + 4 log(1/δ)

+ 2d log

(
1 +

ρ−2
minU

2

γ

)
+ 2γB2

=(2d+ 8) log TB + h0, (65)

with h0 defined in (40). Note that h0 > 0. Also, since TB ≥ 4 we have log TB > 1 so from (64),
(65) and the fact that b2 > 0 we get

λmin(W TB+1)

βTB+1,ζTB+1(δ)(B̂TB+1)
≥b2(log TB)

2 + b1 log TB + b0
(2d+ 8) log TB + h0

=
b2

2d+ 8 + h0

log TB

log TB +
b1

2d+ 8 + h0

log TB

+
b0

(2d+ 8) log TB + h0

≥ b2
h0 + 2d+ 8

log TB −
|b1|

2d+ 8
− |b0|
h0 + 2d+ 8

.

Note that by Assumption 2 we have

TB ≥ exp

[
h0 + 2d+ 8

b2

(
4g−2B∗−2 +

|b1|
2d+ 8

+
|b0|

h0 + 2d+ 8

)]
so

λmin(W TB+1)

βTB+1,ζTB+1(δ)(B̂TB+1)
≥ 4g−2B∗−2

which is the required contradiction to (61). So there exists t ≤ TB + 1 such that

λmin(W t)

βt,ζt(δ)(B̂t)
≥ 4g−2B∗−2

and thus, since Eδ holds, from (60) for any t ≥ TB + 1 we have

B∗ ≤ B̃t ≤ (1 + g)B∗.



Empirical Bound Information-Directed Sampling for Norm-Agnostic Bandits

11.7 Proof of Proposition 3

The exact assumptions made by Propositions 3 are as follows. We assume that TB and α are
sufficiently large so Assumptions 1 - 3 hold and (TB + 1)2 ≥ 1/δ. We can now proceed to the proof.

Proof. Suppose that event Eδ holds. Let AEBIDS
t be the action taken by EBIDS at time step t.

From (23) with probability 1 we have

T∑
t=TB+1

IEB-UCB
t (At) ≤ O(d log T ). (66)

Let aEBIDS
t be the realization of AEBIDS

t . Since event Eδ holds and Assumptions 1 - 3 hold, from
Proposition 2 we have B∗ ≤ B̃t ≤ (1 + g)B∗ for all t ≥ TB + 1. Also from the assumptions of this
proposition, 2 log T ≥ log(1/δ), so analogously as in (27) and (29), for any TB + 1 ≤ t ≤ T we
have

∆̂2
t,ζt(δ)

(
aEBIDS
t

)
IEB-UCB
t

(
aEBIDS
t

) ≤16βT,ζT (δ)(B̃T )max{U2γ−1, ρ2max}

≤16max{U2γ−1, ρ2max}

×
[
2max{2 log T, log(1/δ)}+ 2d log(T − 1) + 2d log

(
1 +

ρ−2
minU

2

γ

)
+ 2γB̃2

T

]
≤16max{U2γ−1, ρ2max}

×
[
(2d+ 4) log T + 2d log

(
1 +

ρ−2
minU

2

γ

)
+ 2γB̃2

T

]
≤16max{U2γ−1, ρ2max}

×
[
(2d+ 4) log T + 2d log

(
1 +

ρ−2
minU

2

γ

)
+ 2γ ((1 + g)B∗)

2

]
.

Hence from Theorem 1 and (66) we have

E

[
T∑

t=TB+1

∆̂t,ζt(δ)(A
EBIDS
t )

]
≤O

(
dmax{U/√γ, ρmax}

√
T log T

×

√
log

(
1 +

ρ−2
minU

2

γ

)
+ γ ((1 + g)B∗)

2


≤O

(
dUρmax(1 + g)B∗

√
T log T

)
,

and thus from (36) we get that

E

[
T∑

t=TB+1

∆(AEBIDS
t )

]
≤ O

(
dUρmax(1 + g)B∗

√
T log T

)
.

and similarly with probability 1 we have

T∑
t=TB+1

∆(AEBIDS
t ) ≤ O

(
dUρmax(1 + g)B∗

√
T log T

)
.

Thus, since TB is fixed with respect to T with probability at least P(Eδ) ≥ 1− δ we have

RT ≤ O
(
dUρmax(1 + g)B∗

√
T log T

)
and

PRT ≤ O
(
dUρmax(1 + g)B∗

√
T log T

)
.
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12 Additional simulation studies

In this section, we provide the results of additional simulation studies we ran. Similarly as above,
we assume that the random noise terms ηt are drawn from mean-zero normal distributions and
θ∗ = [−5, 1, 1, 1.5, 2]⊤ is the true parameter vector. We use a conservative B = 100 as the upper
bound for ∥θ∗∥2. We consider the following scenarios:

(a) Ten arms, where for each experiment the arm features are drawn independently from
Unif[−1/

√
5, 1/
√
5] and the standard deviations for these arms are drawn independently from

Unif[0.1, 1].

(b) The same setup as (a), but with twenty arms instead of ten.

(c) Twenty arms where for each experiment the arm features are drawn independently from
Unif[−1/

√
5, 1/
√
5]. The reward noise for the first ten arms follows a standard normal distribu-

tion, while for the remaining ten it has mean zero and standard deviation 0.2.

(d) A continuum of actions A = [0, 1] where for each experiment the k-th coordinate [ϕ(·)]k
is drawn independently from the space of cubic B-splines with ten equally spaced knots, for
any k ∈ {1, . . . , 5}. The standard deviation of each arm a ∈ A is given by exp(0.5 − 3a). To
implement this simulation we use a discretization of A = [0, 1] into 1000 equally spaced points.

We present the results for simulation settings (a)-(d) in Figure 4 with regret averaged over 200 repeated
experiments of T = 500 steps, along with 95% normal pointwise confidence bands. As we can see,
across all the considered cases, EBIDS remains the best-performing algorithm among the methods
that do not have access to the true value of ∥θ∗∥2. In setting (a), where the standard deviations
for the ten arms are drawn from Unif[0.1, 1] across experiments, EB-UCB becomes competitive
with EBIDS. In general, the optimistic algorithms (UCB, EB-UCB, NAOFUL, OLSOFUL) perform
comparatively better in this setting than they do in simulations where arm variances are fixed across
the experiments. This is likely because, on average, the experiments in setting (a) involve fewer arms
with very low variances, which reduces the advantage of IDS algorithms stemming from utilizing
those highly informative arms. For the same reason, settings with larger numbers of arms tend to
favor the IDS algorithms, as they provide more low-variance arms to exploit for information gain.
This is evident from the improved performance of both EBIDS and IDS-UCB relative to the other
algorithms in settings with twenty arms and the continuous action space, with EBIDS performance
approaching even that of the oracle version of UCB in the former case.

For each simulation setting (a)-(d), we additionally run an ablation study analogous to the one
in Section 8 to determine the sensitivity of EBIDS to the tuning parameter α and the length TB
of the bound exploration phase. Similarly as in Section 8, we consider all combinations of α ∈
{0.1, 0.3, 0.7, 0.9} and TB ∈ {50, 100}. The results are shown in Figure 5. With the exception
of setting (c), TB = 50 appears to perform slightly better across all values of α, while α = 0.1
and α = 0.3 tend to outperform other tuning parameter values, obtaining nearly indistinguishable
performance in most cases. As we can see, in all the settings (a)-(d), just like in the experiment in
Section 8, the performance of EBIDS remains robust to the choice of hyperparameters.
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(a) 10 arms with randomized variances
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(b) 20 arms with randomized variances
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(c) 20 arms with fixed variances
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(d) Continuous action space

Figure 4: Regret incurred by EBIDS, EB-UCB, NAOFUL, OLSOFUL, IDS-UCB and UCB using
conservative B = 100 for simulation settings (a)-(d) outlined above. We include the oracle versions
of EBIDS, IDS-UCB, and UCB using B = B∗ for reference. The solid and dashed lines represent the
regret averaged over 200 repeated experiments, while the shaded bounds are 95% normal pointwise
confidence bands.
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(a) 10 arms with randomized variances
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(b) 20 arms with randomized variances
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(c) 20 arms with fixed variances
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(d) Continuous action space

Figure 5: Regret incurred by EBIDS averaged over 200 repeated experiments with T = 500 steps
under different values of the tuning parameter α and the length TB of the bound exploration phase
for simulation settings (a)-(d) outlined above.


