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Summary
Fairness is important in multi-objective reinforcement learning (MORL), where policies

must balance optimality and equity across objectives. While single-policy MORL methods can
learn fair policies for fixed user preferences using welfare, they fail to generalize for differ-
ent user preferences. To address this limitation, we propose a novel framework for fairness
in multi-policy MORL, which learns a set of fair policies. Our theoretical analysis establishes
that for concave and piecewise-linear welfare functions, fair policies remain in the convex
coverage set (CCS). Additionally, we demonstrate that non-stationary and stochastic policies
improve fairness over stationary and deterministic policies. Building on our theoretical analy-
sis, we introduce three scalable methods: an extension of Envelope for fair stationary policies,
a non-stationary counterpart using state-augmented accrued rewards, and a novel extension for
learning stochastic policies. We validate our methods through extensive experiments across
three domains and show that our methods fairer solutions as compared to MORL baselines.

Contribution(s)
1. We introduce a novel framework for fairness in multi-policy MORL, which enables learning

a set of fair policies for varying user preferences.
Context: Prior work on fairness in MORL has mainly focused on a single policy for pre-
defined preference weights via some welfare functions. Our framework generalizes fairness
across multiple policies, which allow end users to select any policy provided by their pref-
erence weights.

2. We provide theoretical analysis demonstrating that for concave, piecewise-linear welfare
functions, fair policies remain in the convex coverage set (CCS). Additionally, we establish
that non-stationary and stochastic policies can enhance fairness over stationary and deter-
ministic policies, respectively.
Context: Existing work has explored fairness in RL for predefined preference weights
but has not theoretically analyzed how non-stationary and stochastic policies can improve
fairness for varying preference weights.

3. We propose three scalable methods for learning fair policies in MORL using a single pa-
rameterized network: (i) an extension of Envelope (Yang et al., 2019) for learning fair
policies, (ii) a non-stationary extension that incorporates state-augmented accrued rewards
to adaptively improve fairness, and (iii) a novel stochastic policy learning method that fur-
ther enhances fairness.
Context: Unlike prior work on MORL, which typically learns Pareto optimal policies, our
methods efficiently learn a set of fair policies while maintaining scalability.
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Abstract

Fairness is an important aspect of decision-making in multi-objective reinforcement
learning (MORL), where policies must ensure both optimality and equity across mul-
tiple, potentially conflicting objectives. While single-policy MORL methods can learn
fair policies for fixed user preferences using welfare functions such as the generalized
Gini welfare function (GGF), they fail to provide the diverse set of policies necessary for
dynamic or unknown user preferences. To address this limitation, we formalize the fair
optimization problem in multi-policy MORL, where the goal is to learn a set of Pareto-
optimal policies that ensure fairness across all possible user preferences. Our key tech-
nical contributions are threefold: (1) We show that for concave, piecewise-linear wel-
fare functions (e.g., GGF), fair policies remain in the convex coverage set (CCS), which
is an approximated Pareto front for linear scalarization. (2) We demonstrate that non-
stationary policies, augmented with accrued reward histories, and stochastic policies
improve fairness by dynamically adapting to historical inequities. (3) We propose three
novel algorithms, which include integrating GGF with multi-policy multi-objective Q-
Learning (MOQL), state-augmented multi-policy MOQL for learning non-statoinary
policies, and its novel extension for learning stochastic policies. We evaluate our al-
gorithms across various domains and compare our methods against the state-of-the-art
MORL baselines. The empirical results show that our methods learn a set of fair poli-
cies that accommodate different user preferences.

1 Introduction

Multi-objective reinforcement learning (MORL) is an important topic in the area of reinforcement
learning (RL) that focuses on designing control policies to optimize multiple objectives simultane-
ously. While traditional MORL methods focus on learning Pareto optimal solutions—ensuring no
objective can be improved without sacrificing another—they often neglect fairness, which requires
equitable treatment of all objectives or users in our context. For example, in healthcare, a policy
may aim to maximize overall patient outcomes (optimality) while ensuring equal treatment across
different demographic groups (fairness). A common approach to solving fairness in MORL is to use
utilitarian welfare functions, where user utilities are aggregated, typically via weighted sum, into
a scalarized objective. Despite its simplicity, this approach struggles with fairness, as some users’
utilities may be significantly reduced to achieve overall efficiency. An alternative approach is to
employ an egalitarian welfare function, which prioritizes the least advantaged user by maximizing
the minimum utility. While this approach improves fairness, it often leads to inefficient solutions
overall, as it optimizes only the lowest utility without ensuring fairness across all objectives.
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Several works have explored fairness in the single-policy RL setting (Weng, 2019; Siddique et al.,
2020; Zimmer et al., 2021; Chen & Hooker, 2021; Do & Usunier, 2022; Fan et al., 2022; Yu et al.,
2023b; Nashed et al., 2023), where a single fair policy is learned. For instance, Siddique et al.
(2020) enforces fairness using the GGF as a scalarized function and assigning appropriate weights to
different objectives to ensure their equitable treatment. Extensions have been explored in multi-agent
RL (Zimmer et al., 2021; Siddique et al., 2024b) and preferential treatment under known preference
weights (Yu et al., 2023b). Recently, fairness has been studied in multi-policy MORL (Cimpeana
et al., 2023; Michailidis et al., 2024) where Cimpeana et al. (2023) defined several fairness notions,
while (Michailidis et al., 2024) proposed the Lorenz Condition Network (LCN), an extension of the
Pareto Conditioned Network (PCN), which trains a policy network in a supervised manner to map
states to desired returns. Despite these works, the investigation of fairness in RL still poses some
limitations, including (1) learning a single fair policy, (2) required knowledge of the welfare function
(e.g., scalarized function) with preference weights a prior, and (3) training a conditioning network
on specific return targets, limiting their ability to generalize to unseen preferences. Hence, existing
methods operate under fixed preferences and cannot be generalized for all possible preferences.

To address these limitations, we propose a novel framework for addressing fairness in multi-policy
MORL, rather than the traditional single-policy MORL that is the focus of existing work. Our
methods are highly scalable as they leverage a single parameterized network to learn an undominated
set of policies, specifically a convex coverage set (CCS), by sampling the entire preference space in
MORL. In particular, to address fairness, we apply the welfare function (e.g., GGF) during learning
for each sampled preference weight to ensure that each learned policy treats its objectives fairly.
We further introduce non-stationary action selection using the state-augmented accrued rewards to
enhance fairness by effectively utilizing historical information. We further demonstrate the benefits
of learning stochastic policies for fairness. Motivated by hindsight experience replay (Andrychowicz
et al., 2017), we incorporate resampling of random preference weights across different preference
conditions to improve sample efficiency in MORL, as it is done in (Yang et al., 2019).

The main contributions of this paper are as follows:

1. We introduce a novel framework for fairness in multi-policy MORL, enabling users to select any
fair policy based on their specific preferences, thereby enhancing user satisfaction( Section 3.2).

2. We provide theoretical analysis establishing that for concave, piecewise-linear welfare functions
(e.g., GGF), fair policies remain in CCS. Additionally, we demonstrate that non-stationary poli-
cies can improve fairness by adapting to historical disparities and that stochastic policies further
improve fairness over deterministic policies( Section 4).

3. Building on our theoretical insights, we propose three scalable methods for learning fair poli-
cies in MORL using a single parameterized network: (i) an extension to Envelope (Yang et al.,
2019) for learning fair stationary policies, (ii) a non-stationary counterpart that incorporates state-
augmented accrued rewards to improve fairness over time adaptively, and (iii) a novel extension
for learning stochastic policies, which further enhances fairness( Section 5).

4. We experimentally validate our methods and demonstrate their effectiveness compared to state-
of-the-art MORL and fairness methods across three different domains( Section 6).

2 Related Work

Fairness in machine learning (ML) has become a significant research direction (Dwork et al., 2012;
Zafar et al., 2017; Sharifi-Malvajerdi et al., 2019; Singh & Joachims, 2019; Chierichetti et al., 2017;
Busa-Fekete et al., 2017; Agarwal et al., 2018; Nabi et al., 2019; Zhang & Liu, 2021). Several
studied have addressed fairness in model predictions (Speicher et al., 2018), recommender sys-
tems (Leonhardt et al., 2018), classification (Dwork et al., 2012; Zafar et al., 2017; Agarwal et al.,
2018; Kim et al., 2019), and ranking (Singh & Joachims, 2019). While much of the literature fo-
cuses on the principle of “equal treatment of equals”, other aspects, such as proportionality (Bei
et al., 2022) or envy-freeness (Chevaleyre et al., 2006) and its multiple variants (e.g., (Beynier et al.,
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2019; Chakraborty et al., 2021)), have been considered in ML. In contrast, our work is grounded in
distributive justice (Rawls, 1971; Brams & Taylor, 1996; Moulin, 2004), with a focus on optimiz-
ing a welfare function for fairness considerations. This principled approach has also been recently
advocated in several papers (Heidari et al., 2018; Speicher et al., 2018; Cousins, 2021).

Recently, fairness in RL has gained significant attention with the work by (Jabbari et al., 2017),
which ensures fairness in state visitation using scalar rewards. The work of (Jiang & Lu, 2019) pro-
posed FEN, a hierarchical decentralized approach using gossip algorithms to ensure fairness among
agents. Similarly, Chen et al. (2021) proposed to incorporate fairness into actor-critic RL algo-
rithms, optimizing general fairness utility functions for real-world network optimization problems.
Considering the multi-objective nature of many RL problems, the study of fairness in MORL has
been widely studied. In particular, Siddique et al. (2020) proposed multiple adaptations to deep RL
algorithms that optimize the GGF. Zimmer et al. (2021); Siddique et al. (2024a) extended this to the
decentralized cooperative MARL. Fan et al. (2022) proposed to optimize the Nash welfare func-
tion using scalarized expected return criterion, while Do & Usunier (2022) proposed to optimize
GGF in rankings. Yu et al. (2023b); Qian et al. (2025) proposed methods that learn a fair policy
providing preferential treatment to some users while ensuring equal treatment of all others under
the assumption that these preferential weights are known in advance. Siddique et al. (2023) pro-
posed FPbRL, which learns fair preference-based policies without true rewards. Recently, fairness
has been considered in multi-policy MORL with Michailidis et al. (2024) propose learning Lorenz
Condition networks, which ensures fairness through Lorenz domination and adds an extra parameter
λ, however, we use the welfare function to learn a set of fair optimal policies.

Despite the significant successes achieved in the field of deep RL and MORL, existing methods heav-
ily rely on scalarization functions to learn a single policy with fixed preference weights. However,
such single-policy methods do not work when preferences are unknown or user-specific solutions
are required. To address this limitation, several works have been proposed to accommodate user-
specific preferences, including but not limited to those proposed by (Barrett & Narayanan, 2008;
Van Moffaert et al., 2013; Moffaert & Nowé, 2014; Yang et al., 2019; Alegre et al., 2023; Reymond
et al., 2022). Notably, these methods aim to learn a set of policies that approximate the Pareto
frontier of optimal solutions. For instance, (Barrett & Narayanan, 2008) and (Moffaert & Nowé,
2014) proposed methods to compute policies on the Pareto front’s convex hull, while (Yang et al.,
2019) introduced envelope Q-learning, learning policies from the convex coverage set (CCS). These
approaches, however, do not address fairness, which is the focus of this paper.

3 Preliminaries

3.1 Multi-Objective Markov Decision Process

A multi-objective Markov Decision Process (MOMDP) extends the classical MDP framework to
scenarios where an agent must optimize multiple objectives simultaneously. An MDP (Puterman,
1994) is defined by the tuple, M = (S,A,P, r, γ), where S is the set of states, A is the set of
actions available to the agent, Pa,s,s′ ∈ [0, 1] is the probability of transition from state s to state
s′ after taking action a, i.e., P(s′|s, a) = P[St+1 = s′|St = s,At = a], r(s, a) : s × a 7→ r is
the immediate reward obtained by taking action a at state s, and γ ∈ [0, 1) is the discount factor.
An MOMDP can be represented by a tuple M = (S,A,P, r, γ,Ω, fΩ), in which the definitions
of S,A,P, and γ are the same as in MDP except that the reward r is now a vector, with each
component corresponding to an objective that the agent seeks to optimize. Here, the additional Ω
represents the entire space of preferences, and fΩ is the preference function which takes a linear
form, producing a single utility fω(r) = ωTr(s, a), where ω is a vector representing the preference
weights for different objectives. In MOMDPs, the objectives may be conflicting, and hence it is
often difficult to optimize all objectives simultaneously.

The goal of an agent in an MOMDP is to either learn a single policy that balances multiple objectives
or a set of policies that optimize different trade-offs among objectives. These approaches are referred
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to as single-policy MORL and multi-policy MORL, respectively. A policy π is a strategy that maps
states to actions, which can be deterministic (i.e., ∀s, π(s) ∈ A) or stochastic (i.e., ∀s, a, π(a|s)
denotes the probability of selecting a in s). In MOMDPs, policies are typically stationary (Marko-
vian), with action probabilities depending only on the current state, while a non-stationary (adaptive)
policy π(a|τ, s) may also depend on the history τ . Standard definitions in MDPs, such as the return
G(τ) and the value functions V or Q, extend naturally to MOMDPs, albeit represented as vectors
and matrices respectively. The vector return in an MOMDP is expressed as G(τ) =

∑∞
t=1 γ

t−1rt,
where τ is a trajectory comprising a sequence of states, actions, and rewards following the pol-
icy, and rt is a vector reward obtained at time step t. The state value function of a policy π in an
MOMDP is defined as V π(s) = [V π

i (s)] = Eτ∼π

[∑∞
t=1 γ

t−1rt | S0 = s
]
, where all operations

(addition, product) are applied component-wise.

In MOMDPs, value functions do not offer a complete ordering over the policy space. This means
it is possible to encounter scenarios wherein, e.g., V π

i (s) > V π′

i (s) for objective i, while V π
j (s) <

V π′

j (s) for objective j. Hence, value functions in MOMDPs induce only a partial ordering within the
policy space, necessitating additional information into objective prioritization for policy ordering.

Envelope Multi-Objective Q-Learning. The Envelope algorithm (Yang et al., 2019) learns a
convex coverage set (CCS) by sampling preference weights ω ∈ Ω and optimizing linearly
scalarized Q-values: Q(s, a,ω) = ωTQ(s, a), where Q(s, a) ∈ RN is the vector of Q-values
for N objectives. The Bellman optimality equation for Envelope algorithm is: Q∗(s, a,ω) =
r(s, a)+γmaxa′ ωTQ∗(s′, a′). A single neural network parameterizes Q(s, a,ω) by concatenating
ω to the state s, enabling efficient learning across all preferences. Despite its scalability, Envelope
lacks explicit fairness guarantees, as linear scalarization may prioritize dominant objectives.

3.2 Fairness Formulation

In MORL, fairness, rooted in distributive justice (Moulin, 2004), is crucial for ensuring equitable
distribution of rewards. Prior studies in fair optimization within MORL have primarily focused
on learning a single-policy, commonly referred to as an average policy (Siddique et al., 2020; Fan
et al., 2022; Yu et al., 2023a). In this paper, we adopt a more inclusive view of fairness, including
efficiency, equity, and impartiality to generate fair optimal solutions for user-specific preferences.
For discussion on fairness and welfare function, please refer to the Appendix.

Definition 3.1. Efficiency states that among two solutions, if one solution is (weakly or strictly)
preferred by all users, then it should be preferred to the other one, e.g., V ≻ V ′ ⇒ ϕ(V ) > ϕ(V ′),
where ϕ(V ) is the scalar utility function by using the ϕ that specifies the value of a solution.

The efficiency property specifies that given all else equal, one prefers to increase a user’s utility. In
the MORL setting, the efficiency property simply means Pareto dominance. More specifically, a
solution is considered efficient if it is not dominated by any other solution for all objectives.

Definition 3.2. For a given pair of solutions V ,V ′ ∈ RN , V weakly Pareto-dominates V ′ if
∀i, Vi ≥ V ′

i , ∀i ∈ {1, · · · , N}, where N is the total number of objectives. Besides, V Pareto-
dominates V ′ if Vi ≥ V ′

i ,∀i and ∃j, Vj > V ′
j . For brevity, we denote Pareto dominance as ≥ for

the weak form and > for the strict form.

Essentially, a solution V (weakly) Pareto-dominates another solution V ′ if the former’s value ϕ(V )
(weakly) Pareto-dominates that of the latter ϕ(V ′). A solution V ∗ is said to be Pareto-optimal
if no other solution V Pareto-dominates it. Pareto front (F) is defined as the set of Pareto-optimal
solutions, which may consist of infinitely many solutions, especially when policies can be stochastic.
A typical way to approximate (F) is to compute the convex coverage set (CCS), defined below.

Definition 3.3. A solution in CCS has a maximal scalarized value in a weighted sense if there exists
a weight vector ω ∈ Ω such that the scalarized utility ωTV is weakly preferred to the scalarized
utility ωTV ′ for all other solutions V ′ in the Pareto front. Formally speaking, V ∈ CCS ⇐⇒
∃ ω ∈ Ω s.t. ωTV ≥ ωTV ′,∀ V ′ ∈ F .
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Next, we discuss the significance of the equity property, a stronger property than efficiency and often
associated with distributive justice, as it refers to the fair distribution of resources or opportunities.
This property ensures that a fair solution follows the Pigou-Dalton principle (Moulin, 2004), which
states the transferring of rewards from more advantaged users to less advantaged users.

Definition 3.4. A solution satisfies the Pigou-Dalton principle if for all V , V ′ equal except for
Vi = V ′

i + δ and Vj = V ′
j − δ where V ′

i − V ′
j > δ > 0, ϕ(V ) > ϕ(V ′).

Finally, the impartiality property, which is rooted in the principle of “equal treatment of equals”
states that individuals sharing similar characteristics should be treated similarly.

Definition 3.5. In a system, individuals with similar characteristics should be treated similarly,
i.e., the solution should be independent of the order of its arguments ϕ(V ) = ϕ(Vσ), where σ is a
permutation and Vσ is the vector obtained from vector V permuted by σ.

To ensure fairness that satisfies the above three properties, we use a well-known generalized Gini
welfare function (GGF) (Weymark, 1981), which can be defined as:

ϕGGF(u) =
∑
i∈N

ωiu
↑
i , (1)

u ∈ RN represents the utility vector of a size N for N objectives, ω ∈ RN is a fixed weight vector
with positive components that strictly decrease (i.e., ω1 > . . . > ωN ) with

∑
i wi = 1, and u↑

denotes the vector by sorting the components of u in an increasing order (i.e., u↑
1 ≤ . . . ≤ u↑

N ). GGF
satisfies the aforementioned three fairness properties. As the weights are positive, it is monotonic
with respect to Pareto dominance, thus satisfying the efficiency property. Since the utility vector
is reordered, it is also symmetric and therefore satisfies the impartiality property. Furthermore, the
positive and decreasing weights ensure that GGF is Schur-concave, i.e., monotonic with respect to
Pigou-Dalton transfers, therefore satisfies the impartiality property.

GGF has been studied and used in MORL extensively (Siddique et al., 2020; Mandal & Gan, 2022;
Yu et al., 2023a; Qian et al., 2025), however, prior works have focused exclusively on the single-
policy setting. To our knowledge, we are the first to apply GGF in a multi-policy MORL context. In
multi-policy MORL, the standard approach is to identify all Pareto non-dominated solutions (Mukai
et al., 2012; Van Moffaert & Nowé, 2014); however, this is impractical for large-scale problems, as
the Pareto front grows exponentially. A more scalable alternative is to approximate the CCS, which
forms the convex envelope of optimal trade-offs

4 Fairness in MORL

Since we are in a multi-policy MORL setting, where an agent learns a set of Pareto optimal poli-
cies, fairness becomes more important as different stakeholders may have different preferences, and
during inference, any solution can be used from the Pareto non-dominated solutions given the stake-
holder preferences. We formalize this sophisticated multi-policy fair optimization problem as:

∀ω ∈ Ω, max
π∈Π

ϕGGF(J(π)), (2)

where Ω is the set of valid preference weights sorted in descending order, J(π) = Eπ[
∑∞

t=0 γ
trt] is

the expected discounted return, and ϕGGF(J) =
∑N

i=1 wiJ(i) with J(1) ≤ · · · ≤ J(n). The concavity
of GGF makes problem (2) as convex optimization problem, enabling efficient solutions within the
CCS. Below, we establish three foundational results, which show that it is always feasible to obtain
optimal solutions in the CCS corresponding to GGF fair optimization. Next, we demonstrate that
a non-stationary policy based on accrued rewards is beneficial in yielding improved fairness when
compared with its stationary counterpart. Here, a policy yields improved fairness or is fairer if a
higher welfare score, defined in (1), is achieved. Lastly, we show that a stochastic policy may yield
fairer solutions than a deterministic one.
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Figure 1: Examples of 2-objective MOMDP where GGF leads to fairer outcomes.

Sufficiency of Optimal Solutions in the CCS. The first question relates to the learning of fair
policies in a multi-policy MORL setting is which subset of policies may be optimal among the set
of all (possibly non-stationary) policies. Indeed, for linear scalarization function, CCS contains the
set of Pareto front solutions. Below, we formally state it:

Lemma 4.1. For any MOMDP with linear preferences over objectives, the CCS contains an optimal
policy for any linear combination of the objectives.

While GGF introduces non-linear fairness objectives, its piecewise linearity and concavity allow it
to be expressed as a maximum over linear functions, which ensures that optimal solutions lie within
the CCS. The following proposition establishes the sufficiency of the CCS in representing optimal
policies for ϕGGF preference weights.

Proposition 4.1. For any s ∈ S in an MOMDP and a piecewise-linear concave welfare function
ϕGGF (e.g., GGF) that can be represented as, ϕGGF(V

π(s)) = minσ∈SN
{
ω⊤

σ V
π(s)

}
, there exists

a policy π∗ ∈ CCS such that ϕGGF(V
π∗
(s)) ≥ ϕGGF(V

π(s)), ∀π ∈ Π.

Example 4.1 To illustrate how the GGF function ensures fairness in MORL, consider a two-
objective MOMDP with objective values V1 = (3, 1) and V2 = (2, 3) and weights (1, 2).
For V1, two weighted combinations are possible: A) (3, 1) · (2, 1) = (6, 1) with scalar sum
6 + 1 = 7, B) (3, 1) · (1, 2) = (3, 2) with scalar sum 3 + 2 = 5. Since the GGF is defined as
ϕGGF(V

π(s)) = minσ∈SN
{
ω⊤

σ V
π(s)

}
, it selects the lower scalar value, preferring point B over A

(see left figure of Figure 1). Similarly, for V2: C) (2, 3) · (1, 2) = (2, 6) with scalar sum 2 + 6 = 8,
D) (2, 3) · (2, 1) = (4, 3) with scalar sum 4+3 = 7. Here, point D is preferred over C. This mecha-
nism directs the solutions toward the fairer region (grey dotted area in the right figure of Figure 1),
demonstrating that maximizing the GGF leads to fair Pareto-optimal solutions.

Fairness of Non-Stationary Policies. In fair MORL, learning non-stationary policies can be ben-
eficial, as they use historical information to make more informed decisions and adapt over time.

Proposition 4.2. Let the reward r be nonnegative, and ΠS and ΠNS be the sets of stationary and
non-stationary policies, respectively. For any s ∈ S in an MOMDP and a given ϕGGF, there exists a
non-stationary policy πNS ∈ ΠNS that achieves a higher welfare score than any stationary policy
πS ∈ ΠS , i.e., ∃πNS ∈ ΠNS : ϕGGF(V

πNS(s)) ≥ maxπS∈ΠS ϕGGF(V
πS(s)).

Example 4.2 To illustrate the value of learning a non-stationary policy, consider a 2-objective
MOMDP, shown in Fig. 2. At timestep t > 0, the agent has accrued a vector reward racc = (10, 0)
for two objectives. The preference weights, encapsulated within the welfare function ϕ, denote
decreasing weights, such as (0.8, 0.2). With two potential actions, each leading to a final state,
action a1 yields a reward of (0, 10), while action a2 yields (5, 5). Since st is the absorbing state,
we can set the discount factor γ = 1. Under the given welfare function ϕ defined in 1, executing
a1 yields a welfare score of 2, whereas executing a2 yields a score of 5 if only future rewards are
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Figure 2: Example of MOMDP where ac-
tions lead to different rewards.

considered. However, considering historical data,
i.e., racc, a1 yields a higher accrued episodic re-
turn of (10, 10) and a welfare score of 10. Sim-
ilarly, a2 yields (15, 5) and 7 episodic return and
welfare scores, respectively. Note that action a1 is
a fairer choice in this case since it balances the two
objectives, unlike action a2, which fails to achieve a
more equitable outcome. Hence, employing histor-
ical data, namely, accrued rewards in this case, is
critical to enable fair policy learning.

Optimality of Stochastic Policies for Fairness Unlike single-objective RL, in MORL, a deter-
ministic policy may not be optimal. A fairer solution can often be achieved through randomization.

Proposition 4.3. Let ΠST be the set of stochastic policies and ΠD be the set of deterministic policies.
For an MOMDP M and a concave welfare function such as ϕGGF, there exists a stochastic policy
πST ∈ ΠST such that ϕGGF(V

πST) ≥ maxπD∈ΠD ϕGGF(V
πD).
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Figure 3: Left Figure: Point A Pareto-dominates B and is preferred to C by the Pigou–Dalton
transfer(fairer solution). Depending on GGF weights, D and E may be dominated or non-dominated
by A (w.r.t. GGF); for weights (0.3, 0.7), A is preferred to E but not D. Right: Black points denote
deterministic policies in the CCS; mixing these yields stochastic policies (dotted points), which can
achieve fairer solutions unattainable by any single deterministic policy.

Proofs of the above lemma and propositions are provided in Section 8. The left figure of Figure 3
illustrates GGF in a two-objective task. The optimality of stochastic policies implies that restricting
the search to deterministic policies is insufficient, and stochastic policies expand the solution space
and can better capture trade-offs, thus improving overall fairness, as shown in Figure 3.

5 Proposed Algorithms

In this section, we introduce three novel algorithms that incorporate fairness into MORL based on
the technical analysis in the previous section. These algorithms optimize the GGF function (1) to
ensure fairness across N fixed users with varying preferences. These methods are scalable and
sample-efficient as they utilize a single parameterized network to estimate Q-values for all objec-
tives while maintaining a diverse set of Pareto-optimal policies. Specifically, we introduce Fair
Multi-Objective Deep Q-Learning (F-MDQ), its non-stationary extension (FN-MDQ), and a novel
extension incorporating stochastic policies (FNS-MDQ). This progression from stationary to non-
stationary to stochastic and non-stationary policies demonstrates our systematic approach to enhanc-
ing fairness in MORL algorithms, with each method building upon the previous one.

F-MDQ. F-MDQ builds on the Envelope algorithm (Yang et al., 2019) by replacing the linear
scalarization function with the GGF welfare function ϕ. This ensures fairness while learning policies
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across all preferences ω ∈ Ω. The Bellman optimality equation for F-MDQ is given by:

Q∗(s, a,ω) = E[r(s, a) + γQ∗(s′, sup
a′∈A

ϕGGF(r(s, a) +Q∗(s′, a′,ω),ω) | s, a],

where Qπ(s, a,ω) represents the expected return vector for policy π, conditioned on preference
ω. As the MO Q-function is parameterized, it can be learned by minimizing the loss function
L = E(s,a,r,s′,ω)∼D

[
∥y −Q(s, a,ω)∥22

]
, where the expectation is taken over experiences sampled

from the replay buffer D. Given that the loss function includes an expectation over ω, the preference
weights are sampled randomly and are decoupled from the transitions, allowing increased sample ef-
ficiency through a resampling scheme similar to Hindsight Experience Replay (HER) (Andrychow-
icz et al., 2017). The target y is F-MDQ is computed as

y = r(s, a) + γQ′(s′, sup
a′∈A

ϕGGF(r(s, a) + γQ(s′, a′,ω)),ω),

where Q′ represents the target multi-objective Q-function, and the supremum is applied over the
GGF welfare function ϕGGF instead of a linear weighted sum. This ensures that actions are selected
based on higher welfare scores rather than simply maximizing Q-values.

FN-MDQ. FN-MDQ extends F-MDQ by incorporating accrued rewards into the state to learn
non-stationary policies, as discussed in Proposition 8.2. It augments the state with accrued rewards,
allowing the agent to balance reward distribution across users (as demonstrated in Example 2). The
augmented state is defined as st = (st, racc), where racc =

∑t−1
i=1 γ

i−1ri is the discounted reward
received in the current trajectory. The regression target for FN-MDQ is given by

r(st, at) + γQ′(st+1, sup
a′∈A

ϕGGF(Q(st+1, a
′,ω)),ω).

Here, the immediate reward r(st, at) is excluded from the optimal action since this is already in-
cluded in the augmented state as part of the discounted total reward. This extension enables the
agent to identify and prioritize users who have received insufficient rewards within a trajectory.

FNS-MDQ. Given that stochastic policies can outperform deterministic ones (as established
in Proposition 8.3), the performance of FN-MDQ can be enhanced by incorporating stochastic poli-
cies. We now explain how stochastic policies can be integrated into the FN-MDQ algorithm.

Under the stochastic policies, the target Q-value is adjusted to account for the expected Q-values,
which reformulates the update as

r(st, at) + γQ′(st+1,
∑
a′∈A

ϕGGF(π(a
′ | st+1)Q(st+1, a

′,ω)),ω),

where π(a′ | st+1) is the probability of taking action a′ given the augmented state st+1. This
reformulation considers the distribution of possible actions rather than selecting a single best deter-
ministic action, aligning with our theoretical insights.

Unlike F-MDQ and FN-MDQ, which rely on deterministic action selection, FNS-MDQ samples
actions from a probability distribution over Q-values. This stochastic action selection improves
fairness by enabling more balanced policy exploration and reducing biases that arise from always
selecting the highest Q-value action. Note that, during the training phase, all algorithms employ
an ϵ-greedy policy during training, however, FNS-MDQ differs in its action-selection strategy by
using the best learned stochastic policy rather than a deterministic greedy approach. This increased
flexibility and randomness can lead to more equitable solutions.

6 Experiments

To evaluate the proposed methods, we conduct experiments across three domains—each character-
ized by varying levels of complexity in terms of the number of objectives. These domains, rang-
ing from low to high in terms of the number of objectives, include species conservation, resource
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gathering, and multi-product web advertising. Each environment presents unique challenges where
fairness plays a critical role. We first briefly describe each environment (details are available in
Appendix B) and then present our experimental results.

6.1 Environments

Our first domain is a species conservation (SC) environment, which addresses a critical ecological
challenge: balancing the populations of two highly interacting endangered species, the sea otter and
the northern abalone. Both species are at risk of extinction, requiring sophisticated management
strategies to ensure their survival. We adopt the model proposed by (Chadès et al., 2012), which
simulates the predation relationship between the species, where sea otters prey on abalones. This
dynamic presents a unique preservation challenge, as the survival of one species could potentially
drive the other to extinction if not properly managed. The state space is composed of the current pop-
ulation sizes of sea otters and northern abalones. The action space includes introducing sea otters,
enforcing anti-poaching measures, controlling sea otter populations, implementing a combination
of half-antipoaching and half-controlled sea otters, or taking no action. Each action has significant
ecological implications. For instance, introducing sea otters may help balance the abalone popula-
tion, but if mismanaged, could lead to abalone extinction. The reward function is defined by the
population densities of both species, i.e., N = 2. Fairness in this context is interpreted as achieving
a balanced distribution of species densities to ensure their preservation.

Our second environment is a resource-gathering (RG) problem, which is a 5 × 5 grid world that
contains three types of resources: gold, gems, and stones. These resources are randomly positioned
on the grid and regenerate randomly upon consumption. The main challenge here is to collect these
resources, where each resource has a different value: gold and gems are valued at 1, while stones
have a lower value of 0.4. This creates an intentionally uneven resource distribution, with two stones,
one gold, and one gem. In this environment, the state is defined by the agent’s current location on
the grid and the cumulative count of each resource collected during its trajectory. The agent can take
four actions: up, down, left, and right. The reward is a vector representing the resources collected for
each type. In this environment, fairness is defined as the equitable collection of resources, despite
their differing values. Note that this problem is particularly important for validating whether the
proposed methods can achieve fairer solutions while still reaching Pareto optimal solutions.

Our third domain is a multi-product web advertising (MWP) problem that involves an online store
offering N = 7 distinct products. Here, the agent decides which advertisement to display: a product-
specific advertisement for one of the products i ∈ [0, ..., N−1], or a general advertisement that is not
tailored to any specific product. In this environment, the state space includes the number of products
available in the store, as well as the number of visits, purchases, and exits. The action space is
N+1, where actions 0 through N−1 correspond to displaying advertisements for specific products,
and action N involves showing a general advertisement. This additional action adds complexity,
requiring the agent to decide the optimal moment to transition between states. The reward function
is designed so that the agent receives a reward of 1 in the ith dimension of the reward vector if
a product of the type i is sold after displaying its advertisement. In this environment, fairness is
defined as balancing the frequency of advertisements shown for each product, ensuring no single
product is overly prioritized. The challenge lies in increasing overall rewards while maintaining a
fair distribution of advertisement exposure across all products.

6.2 Baselines

We compare our proposed methods against several multi-policy MORL baselines. Generalized Pol-
icy Improvement Linear Support (GPI-LS) (Alegre et al., 2023) employs GPI (Barreto et al., 2017)
to combine policies within its learned CCS and prioritize the weight vectors on which agents should
train at each moment. The Envelope (Yang et al., 2019) uses a single neural network conditioned
on a weight vector to approximate the CCS. PCN (Reymond et al., 2022) utilizes a neural network
conditioned on a desired return per objective and is trained via supervised learning to predict actions
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Figure 4: Performances of multi-policy MORL baselines and our methods in species conservation.
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Figure 5: Individual densities of Envelope, and our proposed methods during testing with unseen
preferences in species conservation.

that yield the desired return. Hyperparameters for each method were optimized, and experiments
were run for five different seeds, with average results reported. Further details on experimental
configurations and hyperparameters are provided in Appendix C.

6.3 Results

In this section, we present the experimental results across the three environments presented above.
The primary objective of these experiments is to assess the effectiveness of our proposed methods
by addressing the following key research questions: (A) How effective are our methods in learning
fairer solutions compared to multi-policy MORL baselines? (B) Can our methods generate fair
solutions across different preference settings during inference? (C) To what extent can our proposed
algorithms achieve comparable performance in terms of hypervolume and cardinality relative to
multi-policy MORL approaches? (D) What is the impact of our approach on the diversity and quality
of non-dominated solutions that satisfy fairness criteria? (E) Does the incorporation of stochastic
policies in MO Q-learning based algorithms contribute to improved fairness or overall performance?

Question (A) To evaluate how effective our methods are in learning fair solutions, we conducted
experiments in the SC, RG, and MWP domains, as shown in Figures 4a, 6a and 7a. We compare our
proposed methods (F-MDQ, FN-MDQ, and FMS-MDQ) with multi-policy MORL baselines such as
PCN, GPI, and Envelope during the training phase. We choose these baselines as they are the current
state-of-the-art MORL baselines. The Key evaluation metrics used include total rewards, Coefficient
of Variation (CV) indicating the variations in different objectives’ utilities, and the minimum and
maximum objective utilities. Moreover, GGF welfare scores were computed to quantify fairness.
As we are in a multi-policy MORL, an agent learns a set of Pareto optimal policies during learning.
To show the results, we computed these metrics over the last 50 trajectories for all the Pareto optimal
policies and reported their normalized scores. Note that, during the last 50 trajectories, all the agents
are converged so it ensures a fair comparison for multi-policy MORL methods.

As shown in Figure 4a, PCN performs the worst. GPI outperforms PCN, likely due to its TD3-
based (Fujimoto et al., 2018) architecture and efficient prioritization scheme in learning the Pareto
front F . The Envelope algorithm performs better than PCN and GPI as it achieves higher total den-
sity and, interestingly, lower CV. However, our proposed algorithms outperform all other methods
by achieving the lowest CV and highest welfare scores Figure 4b, with FN-MDQ outperforming
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Figure 6: Performances of multi-policy MORL baselines and our methods in resource gathering.
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Figure 7: Performances of multi-policy MORL baselines and our proposed methods in the MPW.

F-MDQ, underscoring the value of non-stationary policies. Furthermore, FNS-MDQ outperforms
both F-MDQ and FN-MDQ as it maximizes the minimum objective utility and demonstrates better
fairness through optimizing the welfare function ϕGGF. Similar results are observed in RG Fig-
ure 6a, where PCN performs the worst as it collects the least resources, likely due to its limitations
in deterministic environments (Reymond et al., 2022). Although GPI performs better than PCN,
both exhibit low CV alongside poor overall performance and GGF welfare utility Figure 6b. The
Envelope algorithm achieves better performance in terms of rewards but suffers from the highest
CV and lower GGF utility scores. In contrast, our proposed methods attain a lower CV compared to
all baselines, and they achieve the highest GGF scores, highlighting their effectiveness in identify-
ing fair policies through welfare function optimization. Interestingly, FNS-MDQ exhibits a higher
CV due to its higher maximum objective and the total resources collected. Nevertheless, it also
achieves the highest welfare scores. Consistent with our previous results, our proposed methods in
MVP environment Figure 7a achieve the highest welfare scores, indicating their capacity to ensure
an equitable distribution of rewards across all objectives. Moreover, they maintain the lowest CV,
highlighting their robustness in learning fair policies, even in highly stochastic environments with
a higher number of objectives. Once again, PCN, and GPI perform the worst, further underscoring
the efficacy of our methods in this context.

Question (B) To check whether our methods can generate fair solutions across different preference
settings, we evaluated our algorithms with unseen preferences during testing in the SC environment.
As shown in Figure 5, which presents the individual species densities (sea otters and abalones) for
preference configurations (0.1, 0.9), (0.5, 0.5), (0.9, 0.1), the Envelope algorithm fails to produce
fair solutions, suggesting its limitation in generating fair optimal policies across varying preferences.
In contrast, F-MDQ generates more balanced solutions, while FN-MDQ and FNS-MDQ achieve
even fairer outcomes, further validating our earlier findings.

Question (C) To answer this question, we evaluate algorithms in terms of MORL metrics, such
as cardinality and hypervolume (HV). A higher cardinality indicates greater policy diversity within
F , while HV measures both the convergence rate and policy diversity (Laumanns et al., 2002).
Recall that, HV is defined as for any given F ′ an approximation of F and a reference point (the
worst-possible return), it measures the volume of the hypercube spanned by the reference point and
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Table 1: Hypervolume (HV) and Cardinality (CD) of various MORL methods on SC, RC, and MWP.

Methods SC RC MWP

HV (104)↑ CD↑ HV (105) CD HV (109) CD

PCN 1.81± 0.14 19.67± 2.99 11.69± 0.90 6.0± 1.27 10.17± 0.22 43.5± 1.06
GPI 2.82± 0.03 12.0± 2.05 7.33± 0.19 43.0± 2.62 10.44± 0.86 41.0± 2.83
Envelope 2.35± 0.18 5.6± 1.04 17.51± 3.73 19.75± 6.79 10.55± 1.96 51.5± 1.06
F-MDQ 2.22± 0.19 6.6± 1.31 16.92± 1.63 31.33± 7.84 10.45± 2.40 48.0± 2.12
FN-MDQ 2.34± 0.07 11.68± 1.05 20.38± 1.49 33.54± 8.29 10.51± 2.42 52.2± 2.44
FNS-MDQ 2.91± 0.20 15.38± 1.10 24.40± 2.22 36.11± 8.96 10.62± 2.45 51.05± 2.30

estimated return in a trajectory. Table 1 presents the HV and cardinality in all environments. These
results show that our proposed methods perform on par with the considered baselines.

Question (D) The results discussed in previous questions suggest that our methods can generate
a range of Pareto optimal solutions across varied preference configurations, which indicates better
coverage of the objective space, thus leading to improved performance across multiple objectives.
For quality, our proposed algorithms consistently achieve the lowest CV and highest GGF welfare
scores across SC, RG, and MVP domains, indicating that our solutions exhibit more equitable dis-
tribution of objective utilities while maintaining Pareto optimality compared to baseline methods
(PCN, GPI, and Envelope). These outcomes align with our theoretical justifications (see Section 4).

Question (E) Finally, to assess the impact of incorporating stochastic policies in MO Q-learning
algorithms, we refer to the results in Figures 4a, 6a and 7a, where stochastic policies consistently im-
prove both efficiency and fairness. Moreover, as shown in Table 1 incorporating stochastic policies
also enhances MORL metrics, including HV and cardinality, validating the contribution of stochas-
ticity to both fairness and overall performance.

7 Conclusions and Limitations

In this paper, we presented a novel approach to addressing fairness in the context of multi-policy
MORL. Our proposed methods leverage a single parameterized network to learn optimized policies
across the entire space of possible preferences. Both theoretical and empirical analyses demonstrate
that learning a non-stationary policy significantly improves fairness. Additionally, we highlighted
the importance of stochastic policies in achieving fair outcomes. Experimental evaluations in three
domains validated the effectiveness of our approach in yielding more equitable policies compared
to state-of-the-art MORL and fair baselines.

Our approach also has some limitations. First, it is limited to MOMDPs with discrete action spaces.
Second, it assumes that preference weights are linear to learn the CCS, which may not capture the
concave regions of the Pareto front. Third, the current formulation is focused on individual fairness.
Given that optimizing a welfare function is a broad framework applicable to various real-world
MORL problems involving general utilities, an important direction for future research is to extend
this approach to accommodate more sophisticated objective functions, particularly those related to
group-level fairness, safety, and risk sensitivity.
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8 Proofs of Technical Analysis

In this section, we provide formal proofs of our technical analysis in detail. For better legibility, we
first recall the equations and results that we need for our proofs.

∀ω ∈ Ω, max
π∈Π

ϕ(V (π)), (3)

where Ω is the set of valid preference weights sorted in descending order, V (π) = Eπ[
∑∞

t=0 γ
trt]

is the expected discounted return, and ϕ(J) =
∑N

i=1 wiV(i) with V(1) ≤ · · · ≤ V(n).

Lemma 8.1. For any MOMDP with linear preferences over objectives, the CCS contains an optimal
policy for any linear combination of the objectives.

Proof. Let S be the state space, A be the action space, and r : S × A → rN be the vector-valued
reward function, where N is the number of objectives. Consider a linear preference vector ω ∈ Ω,
where Ω = {ω ∈ rN :

∑N
i=1 wi = 1, wi ≥ 0}. For any policy π, the expected return under a

preference ω is given by ω
(
Eπ

[∑∞
t=1 γ

t−1r(st, at) | s0 = s
] )

. Thus, the optimal policy π∗
ω for

preference ω satisfies

π∗
ω = argmax

π
ωTV π(s), ∀s ∈ S.

By the definition of the CCS, for any ω ∈ Ω, there exists a policy πCCS ∈ CCS such that

ωTV πCCS(s) ≥ ωTV π(s), ∀π ∈ Π,∀s ∈ S.

To prove the proposition, let’s recall the Convex Hull Value Iteration (CHVI) algorithm (Barrett &
Narayanan, 2008). Note that the CHVI algorithm iteratively updates the value function for each
state by considering the convex hull of the achievable rewards via

V (s) = max
a∈A

∑
s′∈S

P (s′ | s, a)CH (r(s, a) + γV (s′)) ,

where CH(·) denotes the convex hull operation. This update rule ensures that the value function
V (s) lies within the convex hull of the achievable rewards and the CH(·) achievable value functions
V π(s) | π ∈ Π forms the CCS. Therefore, for any linear preference vector ω, there must exist at
least a policy πCSS such that

ωTV πCCS(s) = max
π∈Π

ωTV π(s), ∀s ∈ S.

The resulting policies form the CSS, which are sufficient to cover all linear preferences ω ∈ Ω.
Thus, for any linear combination of objectives, the optimal policy can be found within the CSS,
confirming its sufficiency and optimality.

While GGF introduces non-linear fairness objectives, its piecewise linearity and concavity allow
representation as a maximum of linear functions, which ensures that solutions lie within the CCS.
The following proposition establishes the sufficiency of the CCS in representing optimal policies for
ϕGGF preference weights.

Proposition 8.1. For any s ∈ S in an MOMDP and a piecewise-linear concave welfare function
ϕGGF (e.g., GGF) that can be represented as, ϕGGF(V

π(s)) = minσ∈SN
{
ω⊤

σ V
π(s)

}
, there exists

a policy π∗ ∈ CCS such that:

ϕGGF(V
π∗
(s)) ≥ ϕGGF(V

π(s)) ∀π ∈ Π.
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Proof. Consider an arbitrary permutation σA ∈ SN . Since ϕGGF is a piecewise-linear and concave
function, under a fixed permutation σA it becomes:

ϕGGF(V
π(s)) = ω⊤

σA
V π(s).

Let πA ∈ Π be the policy that maximizes this linear scalarization:

πA = argmax
π∈Π

ω⊤
σA

V π(s).

By the definition of CCS and the result from Lemma 8.1, there exist a π∗ ∈ CCS such that

ϕωσA
(V π∗

(s)) ≥ ϕωσA
(V πA(s)).

Thus,

ϕωσA
(V π∗

(s)) ≥ ϕωσA
(V π(s)) ∀π ∈ Π

Because this holds for any permutation σ ∈ SN , we cam conclude that for any policy π ∈ Π, there
exists a corresponding π∗ ∈ CCS such that

∀π ∈ Π, ∃π∗ ∈ CCS, ϕGGF(V
π∗
(s)) ≥ ϕGGF(V

π(s)).

Fairness of Non-Stationary Policies. In fair MORL, learning non-stationary policies can be par-
ticularly beneficial, as they leverage historical information to make more informed decisions and
adapt over time (see Section 4).

Proposition 8.2. Let the reward r be nonnegative, and ΠS and ΠNS be the sets of stationary and
non-stationary policies, respectively. For any s ∈ S in an MOMDP and a given ϕGGF, there exists a
non-stationary policy πNS ∈ ΠNS that achieves a higher welfare score than any stationary policy
πS ∈ ΠS , i.e.,

∃πNS ∈ ΠNS : ϕGGF(V
πNS(s)) ≥ max

πS∈ΠS
ϕGGF(V

πS(s))

Proof. Let the state value function be defined by:

V (s) = E
[
Gt

∣∣∣ st = s
]

where the return Gt is given by:

Gt =

∞∑
k=0

γk rt+k+1.

Suppose an episode begins at time t and terminates at time Tend. For any intermediate time T with
t ≤ T < Tend, we can decompose the return into two parts:

Gt = rt+1 + γrt+2 + · · ·+ γT−t−1rT︸ ︷︷ ︸
G

(1)
t

+ γT−t (rT+1 + γrT+2 + . . . )︸ ︷︷ ︸
G

(2)
t

.

With above decomposition, We define value function as two parts:

Early-period value function: V1(s) = E
[
G

(1)
t

∣∣∣ st = s
]

Late-period value function: V2(s) = E
[
G

(2)
t

∣∣∣ sT = s
]
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so that

V (s) = V1(s) + γT−tV2(s)

At time T , stationary policy πS selects action solely based on late period value function V2(s), while
non-stationary policy has access to both early V1(s) and late period value function V2(s) and can
condition its action selection on the combined information given by two value functions.
Under a stationary policy, The total value can be presented as:

V πS (s) = V1(s) + γT−t argmax
V2(s)

{ϕGGF[V2(s)]}

In contrast, under a non-stationary policy the total value is given by

V πNS (s) = argmax
V1(s),V2(s)

{ϕGGF[V1(s) + γT−tV2(s)]}

therefore:

∃πNS ∈ ΠNS : ϕGGF(V
πNS(s)) ≥ max

πS∈ΠS
ϕGGF(V

πS(s))

This completes the proof.

Optimality of Stochastic Policies for Fairness Unlike the single-objective scenario, in MORL, a
deterministic policy may not be optimal. A fairer solution can often be achieved through random-
ization.

Proposition 8.3. Let ΠST be the set of stochastic policies and ΠD be the set of deterministic policies.
For an MOMDP M and a concave welfare function such as ϕGGF, there exists a stochastic policy
πST ∈ ΠST such that:

ϕGGF(V
πST) ≥ max

πD∈ΠD
ϕGGF(V

πD).

Proof. The key idea here is that a stochastic policy can represent a convex combination of determin-
istic policies for any concave welfare function ϕGGF Busa-Fekete et al. (2017). Hence, stochastic
policies can achieve outcomes in the objective space that are unattainable by deterministic policies.
Specifically, for ϕGGF, a deterministic policy πD yields a fixed utility vector V πD while a stochastic
policy πST can yield a distribution over utility vectors. Thanks to concavity of ϕGGF, which makes
our problem in 2 convex optimization and Jensen’s inequality (Jensen, 1967), we obtain

ϕGGF (Eτ∼π[V
πst ]) ≥ Eτ∼π [ϕGGF(V

πst)] . (4)

Since ϕGGF is a piecewise linear concave function, there exists a stochastic policy πst that is a convex
combination of deterministic policies such that

Eτ∼π[ϕ(V
πst)] ≥ max

πd∈ΠD
ϕ(V πd). (5)

By combining (4) and (5), we can obtain

ϕ(Eτ∼π[V
πst ]) ≥ Eτ∼π[ϕ(V

πst)] ≥ max
πd∈ΠD

ϕ(ϕπd)].

This completes the proof.

The optimality of stochastic policies implies that restricting the search for fair solutions to deter-
ministic policies is insufficient. Stochastic policies offer a broader range of solutions and may better
capture the trade-offs among multiple objectives, enhancing the overall fairness of the policy.
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9 Fairness

In a fair single-policy setting, where the goal is to learn a single policy treating all users equally,
three fairness principles, efficiency, equity, and impartiality, are defined below.

Definition 9.1. Efficiency states that among two feasible solutions, if one solution is (weakly or
strictly) preferred by all users, then it should be preferred to the other one, e.g., u ≻ u′ ⇒ ϕ(u) >
ϕ(u′), where ϕ(u) is the scalar utility function that specifies the value of a solution.

Intuitively, the efficiency property specifies that given all else equal, one prefers to increase a user’s
utility. In the MORL setting, the efficiency property simply means Pareto dominance. More specifi-
cally, a solution is considered efficient if it is not dominated by any other solution for all objectives.

Next, we discuss the significance of the equity property, which is a stronger property than efficiency
and is often associated with distributive justice, as it refers to the fair distribution of resources or op-
portunities. This property ensures that a fair solution follows the Pigou-Dalton principle (Moulin,
2004), which states the transferring of rewards from the more advantaged users to the less advan-
taged users.

Definition 9.2. A solution satisfies the Pigou-Dalton principle if for all u, u′ equal except for
ui = u′

i + δ and uj = u′
j − δ where u′

i − u′
j > δ > 0, ϕ(u) > ϕ(u′).

Finally, we discuss the impartiality property. This property is rooted in the principle of “equal
treatment of equals”, which states that individuals sharing similar characteristics should be treated
similarly.

Definition 9.3. In a system, individuals with similar characteristics should be treated similarly,
i.e., the solution should be independent of the order of its arguments ϕ(u) = ϕ(uσ), where σ is a
permutation and uσ is the vector obtained from vector u permuted by σ.

9.1 Welfare Function

A welfare function, denoted as ϕ : RD → R, aggregates the utilities of all users (or objectives) and
offers a metric of the overall desirability of a solution for the entire group, where ω represents the set
of aggregation weights for all objectives. One well-established welfare function used in this paper is
the generalized Gini welfare function. The generalized Gini welfare function constitutes a specific
instance of the ordered weighted average (OWA)(Yager, 1988). It is a renowned welfare function
employed in multi-objective optimization (Weng, 2019; Siddique et al., 2020; Zimmer et al., 2021;
Do & Usunier, 2022; Yu et al., 2023a;b; Siddique et al., 2023), initially devised to quantify income
distribution inequality in economics (Weymark, 1981). The generalized Gini welfare function is
defined as follows:

ϕGGF(u) =

N∑
i=1

ωσ(i)u = wT
σu , (6)

where σ ∈ SN , which depends on ω, is the permutation that sorts the components of ω and ωσ =
(ωσ(1), . . . , ωσ(N)). Equation (6) holds as the weights are rearranged based on the utility vector,
assigning the largest weight to the smallest component of u, the second-largest weight to the second-
smallest component of u, and so forth.

The generalized Gini welfare function satisfies the three fairness properties. Due to the positive
weights, it is monotonically related to Pareto dominance, fulfilling the efficiency property. More-
over, the reordering of the components in the welfare function makes it symmetric with respect to its
components, satisfying the impartiality property. Lastly, as the generalized Gini weights are positive
and decreasing, it is Schur-concave, meeting the equity property.

Among numerous welfare functions, the generalized Gini welfare function possesses several favor-
able properties, namely, simplicity as it is a weighted sum in the Lorenz space (Chakravarty, 1990;
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Perny et al., 2013), well-understood properties axiomatized by Weymark (1981), and generality.
These favorable properties make it a suitable choice for addressing the challenge of finding fair so-
lutions. Moreover, it is notably a concave function, which will make the solution to our problem
easier.

To emphasize the versatility of the generalized Gini welfare function, various special cases can be
derived by adjusting its weights accordingly. These cases include:

• Maxmin fairness: Setting ω1 = 1 and ωi = 0 for i = 2, · · · ,K corresponds to the maxmin
notion of fairness (Rawls, 1971).

• Regularized maxmin fairness: Assigning ω1 = 1 and ωi = ε for i = 2, · · · ,K aligns with the
regularized maxmin notion of fairness.

• Utilitarian approach: Setting ωi = 1/K represents the utilitarian approach.
• Leximin fairness: If the ratio ωj/ωj+1 tends toward infinity, it corresponds to the leximin notion

of fairness (Rawls, 1971; Kurokawa et al., 2015).

10 Descriptions of Environments

10.1 Species Conservation

In the field of ecology, the challenge of conserving interdependent endangered species is paramount.
The simulation environment focuses on the balance required in the conservation of two such species:
the sea otter and the northern abalone, which are currently endangered. The predation relationship
between these species, with sea otters feeding on abalones, presents a unique challenge that re-
quires careful consideration of fairness and equity in conservation efforts. Based on the framework
in (Chadès et al., 2012), we define the state space as the current population numbers of the sea otters
and northern abalones. The action space consists of: introducing sea otters, enforcing antipoach-
ing measures, controlling sea otter populations, implementing a combination of half-antipoaching
and half-controlled sea otters, or taking no action. Each action carries significant ecological conse-
quences; for instance, while the reintroduction of sea otters is essential for maintaining the abalone
population, it must be carefully managed to prevent the abalone’s extinction. Conversely, overlook-
ing other management actions could lead to the demise of either species. The transition function
employed in our model accounts for population dynamics, including external threats such as poach-
ing and oil spills. Since our objective is to optimize the population densities of both species, we
define the reward function as the densities of both species, i.e., N = 2.

10.2 Resource Gathering

In this scenario of resource gathering, we consider a 5× 5 grid world domain inspired from (Barrett
& Narayanan, 2008). This domain presents a unique challenge centered around the acquisition of
three types of resources: gold, gems, and stones, thereby establishing a multi-objective framework
with K = 3. The autonomous agent is positioned within this grid world, and resources are dis-
tributed randomly across various locations. As a resource is collected by the agent, it is immediately
regenerated at a new random location within the grid, ensuring a perpetual availability of resources.
In this problem, the state is characterized by the agent’s current location on the grid and a cumula-
tive count of each type of resource collected over the course of the agent’s trajectory. The agent can
navigate the grid through actions aligned with the four cardinal directions: up, down, left, and right,
facilitating movement across the grid. To add complexity to the resource management challenge,
resources are assigned differing values, reflecting their relative importance. Specifically, gold and
gems are attributed a value of 1, underscoring their significance, whereas stones are considered less
valuable, with a value of 0.4. This valuation leads to an intentionally uneven distribution of resources
within the grid, comprising two stones, one gold, and one gem. This configuration is designed to
simulate a scenario where the agent must not only maximize the collection of resources but also
achieve a balanced acquisition across the different types of resources. The overarching objective
for the agent in this environment is dual: to maximize the total value of resources collected while
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ensuring an equitable collection across the various resource types. Achieving this balance is crucial
for optimizing the agent’s resource-gathering strategy, enhancing its overall utility and adaptability
within the dynamic grid world. This nuanced approach to resource management in a simulated en-
vironment offers insights into the complexities of resource distribution and acquisition strategies,
contributing to the broader discourse on multi-objective optimization in dynamic settings.

10.3 Multi-Product Web Advertising

We now consider the multi-product web advertising (MWP) problem, where an online store of-
fers N distinct types of products for sale and an intelligent agent makes strategic decisions at each
timestep about which advertisement to display: a product-specific advertisement for one of the prod-
ucts i ∈ [0, ..., N − 1], or a general advertisement that is not tailored to any specific product. The
effectiveness of an advertisement is contingent upon its relevance to the customer’s recent web ac-
tivity, with appropriate advertisements significantly increasing the likelihood of a purchase, whereas
inappropriate ones may deter the customer altogether. The state space of this problem is defined by
the number of products available in the store, augmented by the number of visits, purchases, and
exits. A visit state indicates a customer’s interest in a particular product, a purchase state signifies
the completion of a transaction, and an exit state occurs when a customer leaves the website without
making a purchase. The action space is expanded to n+1 actions, where actions 0 through n corre-
spond to displaying advertisements for specific products, and action n represents the option to show
a general advertisement that does not target any specific product in the inventory. This additional
action introduces an additional layer of complexity, as the agent must decide the optimal moment to
transition between states. The reward function is designed such that the agent receives a reward of 1
in the ith dimension of the reward vector if a product of type i is sold after the display of its adver-
tisement. The primary objective of this problem is to maximize the aggregate returns from product
sales while striving for an equitable distribution of sales across the different product types. This goal
underscores the need for fair solutions that not only optimize overall profitability but also ensure a
balanced representation of product sales, thereby addressing the dual challenges of efficiency and
equity in this domain.

11 Hyperparameters

To ensure reproducibility, we have meticulously documented all hyperparameters across different
environments in Tables 1,2,3, and 4. We utilize the well-known high-quality MORL baselines1 for
implementing baseline algorithms. In these tables, we present the hyperparameters corresponding to
Envelope, GPI, PCN, and our proposed algorithms in three distinct environments, namely, species
conservation (SC), resource gathering (RC), and multi-web product advertising (MWP).

1https://github.com/LucasAlegre/morl-baselines
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Table 2: Set of hyperparameters used for training Envelope.

Hyperparameter SC RC MWP

Discount factor (γ) 0.99 0.99 0.99
Learning rate (α) 0.0001 0.0005 0.005
Batch size 64 64 64
Hidden Layers 256 x 256 x 256 x 256 256 x 256 x 256 x 256 256 x 256 x 256 x 256
Buffer Size 50000 50000 50000
Initial Epsilon 1.0 1.0 1.0
Final Epsilon 0.05 0.05 0.05
Epsilon Decay Steps 50000 50000 50000
Learning Starts 100 100 100
Gradient Updates 1 1 5
Max Gradient Norm 1.0 1.0 1.0
Ω Distribution Gaussian Gaussian Gaussian
Tau 0.5 0.5 0.5

Table 3: Set of hyperparameters used for training our proposed methods.

Hyperparameter SC RC MWP

Discount factor (γ) 0.99 0.99 0.99
Learning rate (α) 0.0001 0.0005 0.005
Batch size 64 64 64
Hidden Layers 256 x 256 x 256 x 256 256 x 256 x 256 x 256 256 x 256 x 256 x 256
Buffer Size 50000 50000 50000
Initial Epsilon 1.0 1.0 1.0
Final Epsilon 0.05 0.05 0.05
Epsilon Decay Steps 50000 50000 50000
Learning Starts 100 100 100
Gradient Updates 1 1 5
Max Gradient Norm 1.0 1.0 1.0
Ω Distribution Gaussian Gaussian Gaussian
Tau 0.5 0.5 0.5

Table 4: Set of hyperparameters used for training GPI.

Hyperparameter SC RC MWP

Discount factor (γ) 0.99 0.99 0.99
Learning rate (α) 0.0001 0.0005 0.005
Batch size 128 128 256
Hidden Layers 256 x 256 x 256 x 256 256 x 256 x 256 x 256 256 x 256 x 256 x 256
Num Networks 2 2 2
Buffer Size 50000 50000 50000
Initial Epsilon 1.0 1.0 1.0
Final Epsilon 0.05 0.05 0.05
Epsilon Decay Steps 50000 50000 50000
Learning Starts 100 100 100
Gradient Updates 1 1 5
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Table 5: Set of hyperparameters used for training PCN.

Hyperparameter SC RC MWP

Discount factor (γ) 0.99 0.99 0.99
Learning rate (α) 0.0001 0.0001 0.0005
Batch size 128 256 128
Hidden Layers 64 x 64 64 x 64 64 x 64
Desired Return [1, 1] [200, 200, 200] [100, 100, 100, 100, 100]
Buffer Size 500000 500000 1000000
Max Horizon 5000 1000 1000


