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Summary
Competitive Pokémon Singles (CPS) is a popular strategy game where players learn to

exploit their opponent based on imperfect information in battles that can last more than one
hundred stochastic turns. AI research in CPS has been led by heuristic tree search and online
self-play, but the game may also create a platform to study adaptive policies trained offline on
large datasets. We develop a pipeline to reconstruct the first-person perspective of an agent
from logs saved from the third-person perspective of a spectator, thereby unlocking a dataset
of real human battles spanning more than a decade that grows larger every day. This dataset
enables a black-box approach where we train large sequence models to adapt to their opponent
based solely on their input trajectory while selecting moves without explicit search of any
kind. We study a progression from imitation learning to offline RL and offline fine-tuning on
self-play data in the hardcore competitive setting of Pokémon’s four oldest (and most partially
observed) game generations. The resulting agents outperform a recent LLM Agent approach
and a strong heuristic search engine. While playing anonymously in online battles against
humans, our best agents climb to rankings inside the top 10% of active players. All agent
checkpoints, training details, datasets, and baselines are available at metamon.tech.

Contribution(s)
1. We build and release an offline RL dataset comprising 3.5M trajectories reconstructed from

years of human gameplay in the complex decision-making task of Competitive Pokémon.
Context: PokéChamp Karten et al. (2025) concurrently released a dataset of Pokémon
battles. The datasets differ in that:

• Ours covers all available data (2014-Present) for a smaller list of popular game modes.
This provides more demonstrations per mode and explores the challenges of learning from
strategies that evolve over time.

• Ours is distributed in a flexible RL format that allows for customization of observations,
actions, and rewards outside of LLM prompts.

• Ours reconstructs the agent’s partially observed perspective from spectator data with more
accuracy thanks to a custom state-tracking and prediction pipeline designed for this pur-
pose. Further discussion is provided in Appendix D and in our open-source release.

2. We demonstrate our dataset’s ability to produce sequence policies that play Competitive
Pokémon at a human level.
Context: Prior work has used online self-play and heuristic search to build successful
Pokémon agents in other rulesets.

https://metamon.tech
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Abstract

Competitive Pokémon Singles (CPS) is a popular strategy game where players learn to
exploit their opponent based on imperfect information in battles that can last more than
one hundred stochastic turns. AI research in CPS has been led by heuristic tree search
and online self-play, but the game may also create a platform to study adaptive policies
trained offline on large datasets. We develop a pipeline to reconstruct the first-person
perspective of an agent from logs saved from the third-person perspective of a spec-
tator, thereby unlocking a dataset of real human battles spanning more than a decade
that grows larger every day. This dataset enables a black-box approach where we train
large sequence models to adapt to their opponent based solely on their input trajectory
while selecting moves without explicit search of any kind. We study a progression from
imitation learning to offline RL and offline fine-tuning on self-play data in the hardcore
competitive setting of Pokémon’s four oldest (and most partially observed) game gen-
erations. The resulting agents outperform a recent LLM Agent approach and a strong
heuristic search engine. While playing anonymously in online battles against humans,
our best agents climb to rankings inside the top 10% of active players. All agent check-
points, training details, datasets, and baselines are available at metamon.tech.

Figure 1: Batch Training and Evaluation in CPS. We develop a platform called Metamon that
enables an offline RL workflow on a dataset of human gameplay from Pokémon Showdown.

https://metamon.tech
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1 Introduction

Competitive Pokémon (Singles) (CPS) is a two-player strategy game that combines the long plan-
ning horizons of chess with the imperfect information, opponent modeling, and stochasticity of
poker — and then adds so many named entities and niche gameplay mechanics that it takes an en-
cyclopedia to document them all. In CPS, players construct teams from billions of possibilities and
battle against an opponent. On each turn of the battle, players can choose to use a move from the
Pokémon already on the field or switch to another member of their team (Figure 1 Right). Moves can
deal damage to the opponent, eventually causing it to faint, until the last player with active Pokémon
wins. CPS AI is an exciting Reinforcement Learning (RL) problem because it requires reasoning
under uncertainty in an incredibly large state space. The best Pokémon AI relies on heuristic search
in custom simulators (Mariglia, 2019) or test-time Monte Carlo tree search with self-play (Wang,
2024). Notably, Competitive Pokémon is played on a website that saves turn-by-turn records of bat-
tles dating back over a decade. We develop a pipeline to convert these logs to the partially observed
point-of-view of an agent playing against humans in official ranked battles, thereby unlocking a
naturally occurring source of offline RL data (Lange et al., 2012) that grows larger every day. Our
“reconstruction” process is specific to CPS and will create further CPS-specific problems that RL
will need to overcome. At a high level, though, it is an example of a challenge that may arise when
using existing data to kickstart a data flywheel. There are applications of RL (healthcare, finance)
where lots of data surrounding the problem exists (patient records, time series) but is not formatted
as trajectory data from the point-of-view of an agent, and any conversion to this format would open
up a “sim-to-real” gap between the reconstructed (PO)MDP and the real world.

Our dataset enables a general perspective on the CPS AI problem that has previously been imprac-
tical: that sequence models might be able to learn to play without explicit search or heuristics by
using model-free RL and long-term memory to infer their opponent’s team and tendencies. Our
experiments take this perspective to its extreme and create a case study in the process of training and
evaluating large policies (Fig. 1 Left). We develop a suite of heuristic and imitation learning (IL) op-
ponents for offline evaluation with procedurally generated Pokémon teams. With these opponents as
a benchmark, we evaluate Transformers (Vaswani et al., 2017) of up to 200M parameters trained by
IL and offline RL. When deployed in ranked battles against human players in the highly competitive
realm of CPS’s first four generations — where battles are longest and reveal the least information
about the opponent’s team — our largest RL policy is officially estimated to have a 41-58% chance
to defeat a randomly sampled opponent (depending on the generation). Rather than waiting for more
data to accumulate in our dataset, we explore the idea that our models would benefit from training
on intentionally unrealistic self-play data that does not attempt to recreate the unknown distribution
of teams and opponents in online battles. The resulting agents improve to win rates of 64-80% —
rising into the top 10% of active usernames and onto the global leaderboards. A recent LLM Agent
(Hu et al., 2024) proves uncompetitive in the long horizons of the early generations, and our best
agents match or surpass the strongest heuristic search engine.

2 Background: Competitive Pokémon Singles

If the reader is unfamiliar with Competitive Pokémon , it is difficult to overstate how complicated
top-level strategy can be. The game combines opponent modeling with stochastic transitions, com-
plex dynamics, long-horizon planning, and a large initial state space. Pokémon is highly stochas-
tic, and gameplay revolves around nuanced mechanics with endless edge cases. CPS is played on
Pokémon Showdown (PS) — a website with thousands of daily players. PS simulates the combat
mechanics of each major commercial game release (or “generation”). Some fundamentals transfer,
but competitive play relies on details specific to each generation. PS divides generations into “tiers”
that enforce various rules to maintain competitive balance. Each tier of each generation is its own
game — or rather, two games played consecutively: team design and control. Players design teams
before they are matched against an opponent and make trade-offs to counter threats they believe they
may face. Team design converges to an equilibrium that helps narrow the search to perhaps many
thousands of meaningfully distinct teams that are considered competitively viable.

https://bulbapedia.bulbagarden.net/wiki/Main_Page
https://bulbapedia.bulbagarden.net/wiki/Main_Page
https://pokemonshowdown.com/
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In addition to navigating Pokémon’s randomness, team control (battling) focuses on decision-making
under imperfect information. Details of the opponent’s Pokémon are only revealed when they di-
rectly impact the battle. We can gain an advantage by inferring our opponent’s team based on what
they have already revealed. For example, we might know that Pokémon A is often used alongside
Pokémon B and that Pokémon A commonly brings move x or y but rarely brings both. We may
try to mislead our opponent by revealing information that suggests one team design only to surprise
them later in the battle. Players make (most) decisions simultaneously. Accurately predicting the
opponent’s choices based on their team and previous tendencies is the key skill that differentiates
high-level players. For example, a move may win the battle but only be safe to select if we believe
our opponent will switch their Pokémon on this turn. In short, Pokémon players are constantly
updating a prior over the opponent’s team and strategy to improve their decision-making.

There are three player metrics on PS. ELO is a standard rating system, but PS’s version is inten-
tionally noisy, and ELO is not comparable across game modes. Glicko-1 is an ELO-like rating that
considers the full history of a player’s battles and is a much better estimate of true skill for our
purposes. The matchmaking system on PS prefers to pair players with similar ELO ratings. GXE
corrects for this matchmaking bias to estimate a player’s odds of defeating a randomly sampled op-
ponent. Pokémon has the kind of inherent variance that would be familiar to Heads-Up No-Limit
Texas Hold’em players: minimizing risk is considered a key skill, but some losses are inevitable.
The very best players have a GXE between 74-90% (Figure 2 Right).

Battle Length Frequencies OverUsed Across Generations

Figure 2: Episode Length, Team Diversity, and Variance by Gen. Battle lengths are based on our
replay dataset and binned with a max length of 100. GXE statistics are captured in February 2025.

AI research in PS faces the question of which generation and tiers to study. The standard choice is the
most recent generation’s “random battles” tier. Random battles remove team design by providing
each player with a procedurally generated team. This ruleset has a more casual player base, and
we will focus on formats where players design teams tailored to their playstyle. Our agents will
learn to play four different tiers, but evaluations will focus on “OverUsed” (OU). OU is the
definitive competitive format, making it the most popular and, therefore, the tier with the most
data to learn from (Section 3). Broadly speaking, each generation of OU increases the number of
team combinations and gameplay mechanics (Figure 2 Right). Importantly, the size of the team
space creates so much variance from Generation 5 onwards that PS adopts a mechanic called “team
preview” that reveals the opponent’s team before the start of the battle. We are particularly interested
in the partial observability of CPS. For this reason, we focus on the first four generations.

Early Generation OverUsed. In addition to their signature lack of team preview, the early gen-
erations of CPS are defined by their unique gameplay mechanics and outlier battle lengths (Fig. 2
Left). Gen1 and Gen2 are infamously stochastic, and reduced offensive power shifts focus away
from team composition and towards battle strategy over long exchanges. Gen3 is notable for its en-
during popularity and competitive balance — with a narrow margin between median and top-level
players by GXE (Fig. 2 Right). Gen4 resembles modern versions in that many Pokémon can elimi-
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nate their opponent in a single move; the fast pace of play leads to high-stakes decisions over short
planning depths. The early generations are an almost independent competitive community with a
long history and a relatively small but self-selective player base. The people we will be playing
against have intentionally sought out the competitive format of a 15+ year-old game because it is
their interest and expertise. There are few casual players here; many of the “low rated” usernames
we will face are experienced players logged into alternate accounts for various reasons. Appendix
C finds that a heuristic using basic Pokémon principles and lookup tables is far less effective against
human players in early-generation OU than modern random battles.

While our use of model-free long-context RL and focus on Early Gen OU are novel, there is existing
work on AI for CPS. The best Pokémon bots focus on heuristic tree search with custom high-
throughput simulators. Some work has experimented with network-based state evaluation and Monte
Carlo tree search (MCTS) (Browne et al., 2012) for random battles formats (Huang & Lee, 2019).
Pokémon is primarily played and discussed on the internet, and this affords considerable gameplay
knowledge to recent LLM-Agent techniques (Hu et al., 2024; Karten et al., 2025). Key baselines
will be discussed as we play against them in Section 5. Appendix A provides a survey of AI in CPS,
while Appendix B discusses related work in offline RL and gameplaying.

3 Building an Offline RL Dataset of Real Human Battles

PS creates a log (“replay”) of every battle that expires after a brief period unless saved. Players
save replays for later study, to share a fun outcome with friends, or as a way to record official
tournament results. PS has been the home of Competitive Pokémon for over a decade — time
enough to accumulate millions of replays. The PS replay dataset is an exciting source of naturally
occurring data. However, there is a critical problem: CPS decisions are made from the partially
observed point-of-view of one of the two competing players, but PS replays record the perspective
of a third-party spectator who has access to information about neither team. We unlock the PS replay
dataset by converting spectator views to each player’s perspective separately.

Replay reconstruction involves four high-level steps. First, we simulate the current state of the battle
from a spectator perspective according to the PS API. Throughout this process, we use incoming in-
formation to estimate the initial configuration of both unobserved teams. At the end of the battle, we
infer any information that was never revealed. To do this, we need a way to model the distribution
of competitive teams in each generation and tier. Fortunately, the PS community tracks Pokémon
usage statistics to measure trends and evaluate rule changes. We use available usage data and the
revealed teams of similar replays to model the distribution of human-constructed teams. Next, we
backfill inferred team rosters for a chosen point-of-view player to replicate the information they
would have observed when their decisions were made. Finally, we convert the reconstructed trajec-
tory to a format identical to the online simulator. Appendix D walks through a simplified example
and uses a real replay to visualize the raw input, inferred team, and trajectory output according to
the observation space, action space, and reward function discussed in the next section.

Reconstructed Human Demonstrations Demonstrations by ELO Rating Demonstrations by Trajectory Length

Figure 3: Dataset Summary. The initial version of our offline dataset includes 475k battles —
summarized here by their PS format (left), ELO rating (center), and length in agent timesteps (right).
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This process is not always successful, as some gameplay mechanics cannot be reconstructed from
incomplete information. A list of checks identifies trajectories that have entered ambiguous situa-
tions and conservatively discards them. All told, we are able to download and reconstruct more than
475k human demonstrations (with shaped rewards) from historical Gen 1-4 battles dating back to
2014 (Figure 3). Each battle yields two point-of-view trajectories for a total of about 950k sequences
containing 38M timesteps. Player names and chats are anonymized, and trajectories are stored in a
flexible format that lets researchers customize observations, actions, and rewards. Our pipeline is
actively downloading new battles and has recently expanded to include Gen 9 OU, bringing the total
to 3.5M trajectories. However, the experiments in this paper use the original 950k-trajectory dataset,
with a cutoff of September 2024.

4 Search-Free Pokémon with Offline RL On Sequence Data

Players discuss and teach the game based on the idea that their decision-making policy π is condi-
tioned on their current estimate of their opponent’s policy (πo) and team composition (co). Let cp
be our own team composition. This paper will take a Bayesian RL (Ross et al., 2007; Ghavamzadeh
et al., 2015) or meta-RL (Beck et al., 2023) perspective where we consider our opponent’s choices
part of the environment’s unknown transition function T (st+1 | st, at, πo) (Zintgraf et al., 2021a).
Our goal is to find a policy that maximizes return over some distribution of latent environment
variables, which in our case would be the opponents active on PS and our distribution of teams:

π∗ = argmax
π

Eπo, co∼p(πo,co),cp∼p(cp)

[
Eτ∼p(τ |π,πo,co,cp)

[
T∑

t=0

γt R(st, at)

]]
(1)

Context-based methods condition the policy on estimates of the unobserved variables derived from
previous experience. Here, this would amount to using the entire history of a battle1 (observations,
rewards2, and the actions of both players) to estimate (co, πo). If we want to avoid explicitly pre-
dicting co or πo (Humplik et al., 2019) (which is difficult to formulate) or modeling the complicated
dynamics of Pokémon (Zintgraf et al., 2021b), we can follow a simple black-box framework (Duan
et al., 2016; Wang et al., 2016) where a sequence model Sθ takes all prior experience under the
current latent variables (the entire battle up until the current timestep, τ0:t) as input and outputs a
representation ht for the policy network πϕ. The system is trained end-to-end to maximize Eq. (1) as
in standard deep RL. Because a better estimate of the opponent will increase win rate, the sequence
model will implicitly learn that behavior. The policy navigates an exploration-exploitation trade-off
at test time, where it may take actions that reveal new information if this increases expected returns.

We will be using the offline dataset (D) from Section 3 to approximate the expectations in Eq. (1),
which assumes that the distribution of teams and playstyles across history is identical to that of the
current game (Dorfman et al., 2020; Li et al., 2024). This is false, but it may be close enough,
particularly in the optimized world of Early Gen OU. If we want to expand our dataset (i.e., by self-
play), we need to try to select teams and opponents that match the true distribution. Alternatively, we
can collect data that is unambiguously out-of-distribution (OOD). For example, we can place a rare
Pokémon in the lead-off position so that when the policy begins a real battle and sees a more standard
choice, it has no reason to believe it is facing our synthetically generated teams or opponents.

Pokémon has a complex state space, and our policy may need to be large and non-trivial to train
with offline RL. To stabilize, we can frame the problem from a behavior cloning (BC) perspective:
predicting the actions of a human player requires reasoning about the strategy of the player we are
imitating and their understanding of the opponent. Accurate predictions will require long context
inputs. RL is a tool to sort through the noise of a large dataset that includes the decisions of all
levels of players in both competitive and casual settings. We arrive at the same setup but prefer
an update that safely reduces to BC while allowing room to skew the loss function towards return-
maximizing behavior if we decide the offline RL risks are sufficiently small (Springenberg et al.,

1A natural extension of the context-based framework here would include previous battles between the same players
alongside their current battle. This may allow for adaptation in a tournament best-of-three match format.

2Because our Pokémon reward function never changes, it would be considered part of the state space and happens to be
important for inferring the outcome of the previous turn in our setup.
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2024; Wu et al., 2019; Fujimoto & Gu, 2021). Ideally, BC becomes a lower bound upon which we
can improve. Solutions of this kind are actor-critics that train their critic to output Q-values with
standard one-step temporal difference backups. Actor loss functions take the general form:

LActor = Eτ∼D

[
1

T

T∑
t=0

(
−w(ht, at) log π(at | ht)− λEa∼π(·|ht) [Q (ht, a)]

)]
(2)

Model Name w(h, a) = λ

"IL" 1 0

"Exp"
(or just "RL")

exp(βAπ(h, a))
(clipped) 0

"Binary" Aπ(h, a) > 0 0

"Binary+MaxQ” Aπ(h, a) > 0 > 0

Table 1: Lactor Configurations (Eq. (2)).
Advantages are estimated by the critic:
Aπ(h, a) = Q(h, a)− Ea′∼π[Q(h, a′)].

Where ht is the output of the sequence model Sθ(τ0:t)
that replaces the state. The first term is a BC objective
that re-weights decisions according to a function w and
constrains learning to actions taken in the offline dataset
(Wang et al., 2020; Nair et al., 2020). The second term
is the standard online off-policy actor update that risks
overestimating the value of OOD actions when used of-
fline (Kumar et al., 2019). Our experiments will study
configurations of Equation (2) summarized by Table 1.
For further discussion of RL engineering details, we re-
fer the reader to the AMAGO (Grigsby et al., 2024a)
implementation used throughout our experiments.

Figure 4: Model Overview. Actions are predicted
based on representations of the observation, action,
and reward of each turn in the current battle.

Next, we need to define an observation space,
action space, and reward function for CPS.
Our agent needs enough information to mir-
ror human decisions, and the user interface
of the PS website is an obvious point of ref-
erence. However, our models have memory,
and we do not need to provide all of this infor-
mation at every timestep. We have a trade-off
between dimensionality, memory difficulty,
generalization over Pokémon’s complex dy-
namics, and exposure to sim2real errors be-
tween replay reconstruction and deployment.
We settle on a compromise of 87 words of
text and 48 numerical features. The text com-
ponent is semi-readable, and Figure 5 pro-
vides an example from a replay in our dataset.
The most important detail is that we are
relying entirely on memory to infer the opponent’s team; observations only include the oppo-
nent’s active Pokémon. The memory demands of our CPS observations are more comparable to
those in the commercial video games than the PS web interface. We are confident in our sequence
models’ ability to recall previous timesteps, and this makes it worth avoiding distribution shift over
features of the opponent’s full team as it is slowly revealed. There are nine discrete actions, where
the first four indices correspond to the moves of the active Pokémon, and the remaining five switch
to another team member. The observation conveys the precise meaning of these actions in a pre-
dictable order. The reward function is dominated by binary win/loss but includes light shaping for
damage dealt and health recovered. Appendix E provides more details.

The observation, previous action, and previous reward at each timestep are processed by a Trans-
former encoder that uses designated summary tokens to attend over the multi-modal sequence (De-
vlin et al., 2019). Text is encoded by tokenizing the Pokémon vocabulary based on our dataset
with an <unknown> token for rare cases we may have missed3. The resulting sequence of turn
representations is the input to a causal Transformer with actor and critic output heads (Figure 4).

3We experiment with an augmentation scheme that sets tokens to <unknown> to force recovery from previous timesteps.
Models above 100M parameters use this strategy by default, while its use in smaller models is indicated by “Aug.” We do
not find evidence that this strategy impacts performance.
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<gen3uu> <anychoice> <player> ampharos leftovers static electric notype 
noeffect tox <move> healbell normal status <move> thunder electric special 

<move> thunderbolt electric special <move> thunderwave electric status 
<switch> feraligatr leftovers torrent <moveset> dragonclaw hydropump 

hyperbeam surf <switch> kangaskhan leftovers earlybird <moveset> bodyslam 
rest toxic wish <switch> scyther choiceband swarm <moveset> aerialace 

hiddenpowerflying quickattack substitute <switch> walrein leftovers thickfat 
<moveset> earthquake hiddenpowergrass icebeam sleeptalk <switch> <blank> 
<blank> <blank> <blank> <blank> <blank> <blank> <blank> <opponent> hypno 

leftovers unknownability notype psychic noeffect nostatus <conditions> 
noweather noconditions reflect <player_prev> thunder <opp_prev> psychic

[Gen 3] UU 
#471406089

(November 6th, 2016)

Turn 11

battle format player’s active pokémon

move #1

switch #1

pokémon 
fainted

active pokémon previous movesweather and field effects

opponent’s 
active 

pokémon

player can move or switch

Action 0 … 3 4 … 8

Type Move 1 … Move 4 Switch 1 … Switch 5

Result Heal 
Bell … Thunder-

wave Feraligatr … Fainted
(Invalid)

Figure 5: Observation and Action Space. Text order is important, but words can be tokenized
into arrays with a consistent length (of 87). Observations also include 48 numerical features. The
meaning of each action index varies by turn but is presented in the text in a consistent order.

5 Experiments

We will begin evaluating a progression of increasingly RL-heavy training objectives across model
architectures with “Small” (15M), “Medium” (50M), and “Large” (200M) parameter counts sum-
marized by Table 3. Models are named in results according to their size and training objective
(Table 1). Table 4 provides a complete list of model configurations. Results will be discussed in
semi-chronological order, though some figures will spoil win rates of models trained on “synthetic”
self-play datasets described in Section 5.3. Our goal is to compete against human players, but this
is expensive and creates a challenging evaluation problem: Which model checkpoints do we deploy
on PS? Our efforts to answer this question result in extensive evaluations against various opponents.

Training uses the offline dataset to assign our players’ teams, but we need to “prompt” our agents
with a set of teams during evaluations. We use three sets: 1) The Variety Set procedurally gener-
ates 1k intentionally diverse teams per gen/tier and will be used to evaluate OOD gameplay and to
generate unambiguous self-play data as mentioned in Section 4. 2) The Replay Set approximates
the choices of top players based on their replays and infers unrevealed details as done in Section
3. 3) The Competitive Set comprises 10-20 complete “sample” teams per gen/tier scraped from
forum discussions; these are generally designed for beginners by experts. Win rates are measured
over large samples of hundreds or thousands of battles unless otherwise noted. Evaluations use
poke-env (Sahovic, 2020) to interact with a locally hosted PS server and the public website.

5.1 Heuristic Evaluations
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Figure 6: Heuristic Composite Scores. The average win rate against six of our heuristics measures
core game knowledge and creates a relatively fixed point of reference across different game modes.

We create a suite of a dozen heuristic opponents that evaluate core game knowledge. Strategies are
based on fundamental Pokémon concepts and re-implementations of policies from official versions
of Pokémon, fan-made ROM hacks with inflated difficulty, and popular CPS AI baselines. Full de-
scriptions of these policies and their relative performance are provided in Appendix C. The average

https://github.com/hsahovic/poke-env
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win rate against 6 of these heuristics on the Variety Set forms a “Heuristic Composite Score” (Figure
6). We tune the Turn Encoder architecture (Fig. 4) with RNN trajectory models Sθ between 500k-
4M parameters trained by BC. Appendix F.1 documents the predictive accuracy of these models and
provides further details. The best BC-RNN models lead the early Heuristic Composite rankings,
and these will become the next rung on the ladder toward human-level gameplay. Clear signs of
underfitting motivate the starting point of 15M for our Transformer agents. While we will go on
to saturate this benchmark in OU, heuristics represent a fixed target unaffected by the discrepan-
cies in data availability between OU and the other three tiers our agents are trained to play (Fig.
3). Figure 7 documents a predictable decline from OU to NeverUsed (NU) gameplay. We evaluate
many variants of the Lactor objective (Eq. 2) but do not find significant differences between them.

OverUsed
(430k Replays)
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(7k Replays)
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Small-RL (Binary+MaxQ)
Small-RL (Exp Aug)
Small-RL (Exp Extreme)
Small-RL (Exp)
Large-IL
Medium-IL
Small-IL

Figure 7: OU → NU. Heuristics highlight a gap be-
tween OU tiers and those with fewer replays. OU
scores are directly comparable against Fig. 6.

5.2 Model-Based Evaluations

Appendix F.1 evaluates our larger Trans-
former models against our best RNN base-
line. RL updates significantly outperform the
pure-BC Transformers, but there is little dif-
ference between the many RL variants con-
sidered. The expected relationship between
model size and performance is clearer for BC
than it is for RL. Following Grigsby et al.
(2024a), we are optimizing actor and critic
network outputs for a set of γs in parallel. At
test time, we are able to select the action cor-
responding to any of these horizons. Figure
8 verifies that our agents are using long-term
value estimates to improve their win rate. All
other evaluations follow the policy for γ = .999. With RL comfortably outplaying our smaller IL
baselines on the more limited Competitive Team Set, we shift to playing against Large-IL on the
Replay Set. Figure 9 highlights the win rate of key models in OU.

5.3 Synthetic Data from Self-Play
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Figure 8: Multi-γ Policies. Models train over multiple
value horizons, but long-term planning increases win rate.

Section 5.5 will find that our of-
fline dataset yields policies capable of
human-level gameplay on the public
ladder. Our agents contribute to each
day’s batch of new replays and grow
the dataset alongside human players.
In principle, we could wait to retrain
new policies on a larger dataset, but
this data is not making a significant
difference on the timescale of a single
project. We can speed up the process
by deploying agents on a local PS ladder, adding their trajectories to the human gameplay dataset,
and retraining or fine-tuning (Figure 1 Left). However, we need to be wary of a shift between the
frequency of teams and opponents implied by the new offline dataset and the true distribution on
PS. One approach would be to try and generate data that is clearly different from the original set
so that when conditioned on a real battle, our model’s implicit estimate of p(πo, co | τ0:i) should
be unchanged at small i. We let a mix of checkpoints from all our agents compete on a locally
hosted PS ladder, playing with teams from the Variety Team Set. By prioritizing diversity over real-
ism, we hope this data will cover replay reconstruction failures and improve model-free learning of
Pokémon’s stochastic transitions without biasing estimates of human teams and strategies.
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Figure 9: Self-Evaluation Against Large IL. Results are determined by the best checkpoint over
the last 200k training steps with a sample size of 500 battles per generation.

The SyntheticRL (SynRL) models are Large Binary+MaxQ (Eq. (2)) policies trained from scratch.
SyntheticRL-V0 trains on “synthetic” variety data for generations 1 and 3 only, for a total dataset
size of 2M trajectories. It is a promising improvement over our previous policies against heuristics
(Fig. 28), BC-RNN (with win rates as high as 95% in Gen1OU and 85% in Gen3OU), and Large-
IL (Fig. 9). SynRL-V1 takes this dataset and adds generations 2 and 4 to reach a total of 3M
trajectories (retraining a 200M policy from scratch) for a consistent improvement across generations.
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Figure 10: Gen1OU Self-Play. Sample of
500 battles on the Replay Set.

We might wonder whether the caution of the “syn-
thetic” data process was necessary. We test this by
letting SynRL-V1 battle recent checkpoints of itself
with the more realistic Replay Set until the offline
dataset is 5M trajectories. Afterward, we resume train-
ing for another 200k gradient steps to create SynRL-
V1+SelfPlay (SP). As expected, the resulting model is
significantly better against itself (Figure 10), and a key
baseline in Section 5.4, but this will translate to incon-
sistent improvement against real players in Section 5.5.
Battle replays make it clear that the model believes it
is playing SynRL-V1. We backtrack and expand the
dataset to 5M with unrealistic teams and IL opponents
and fine-tune SynRL-V1 again to create SynRL-V1++.
Finally, we train a new 200M model from scratch on
the SynRL-V1++ dataset with 50k new human replays. Instead of Binary+MaxQ, we use a simple
binary weighted BC update with value prediction converted to two-hot classification (Schrittwieser
et al., 2020; Hafner et al., 2023; Farebrother et al., 2024) as implemented in this setting by Grigsby
et al. (2024b). This trick is often motivated by hyperparameter insensitivity and invariance to return
magnitudes in multi-task RL. In our case, improved critic accuracy leads to an entirely new level of
pessimism in the binary BC filter (Figure 25) — a potential improvement considering our dataset
is now primarily composed of decisions made at beginner or intermediate human levels (Sec. 5.5).
The resulting SynRL-V2 model is our best by every metric (against heuristics, other models, and
key external baselines yet to be discussed).

5.4 LLM Agents and Heuristic Search

Foul Play (Mariglia, 2019) is an advanced engine for CPS that uses a custom simulator to search over
Pokémon’s game tree. With extensive domain knowledge, it implements much of the behavior we
would hope our policies can learn from data. For example, it infers its opponent’s team during battles
using PS usage statistics, much like we do during dataset construction. A January 2025 update to
Foul Play introduced support for the early generations. We challenge the engine to matches of 300
battles per generation on the Replay Team Set, with results shown in Figure 11a. We manage to
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play the best version of the bot to a draw in Gens 3 and 4 (where the effective search depth would
be lowest), and outperform it in the long horizons of Gens 1 and 2. PokéLLMon (Hu et al., 2024)
is a more general approach that takes advantage of Pokémon’s extensive web presence to build an
LLM-Agent. Prompts are constructed with domain knowledge such as Pokémon type matchups and
move descriptions, and the LLM is tasked with deciding between the available moves. Hu et al.
(2024) evaluate in a random battles tier and note that the agent struggles with long-term planning;
this effect is much more noticeable in the longer battle lengths of Gen1-4 (Figure 11b).
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5.5 Playing Humans On the Pokémon Showdown Ranked Ladder
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Figure 12: Human Evaluations. We visualize the Glicko-1 ladder rating (with its rating deviation).
Bar labels represent GXE statistics. To compare across generations, we plot a heuristic baseline’s
performance and the average Glicko-1 of the bottom 100 players on the Top 500 global leaderboard.

We compete against human players by queuing for ranked battles on the public PS ladders. We
evaluate our agents over periods of 4-8 days — frequently switching between generations to sample
a wider variety of opponents and achieve large sample sizes of at least 400 battles. Evaluations run
from late December 2024 through late March 2025. Models’ Glicko-1 and GXE stats at the end of
their final battle are shown in Figure 12. We include the results of a heuristic agent for additional
context. Figure 14 converts ladder statistics to a percentile among active usernames. Percentiles
are more interpretable without a CPS background, but the distribution of player stats necessary to
compute them is not public information; PS only displays the ratings of the top 500 active usernames.
However, we are able to create a reasonable estimate because our dataset is reconstructing (most)
battles played over the latter half of the evaluation period. We recover the ratings of all the unique
usernames that are active enough to have a Glicko-1 deviation ≤ ±100. This metric is still not ideal
because players frequently use multiple usernames. Top players have clear competitive reasons to
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make new accounts, but we are unable to account for this. The evaluations of SynRL-V1++ and
SynRL-V2 in Gen1OU are impacted by a weeks-long tournament that requires participating (top)
players to make new accounts and leads to massive rating deflation in our high skill bracket4.
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Figure 13: Memory. SynRL-V1
battles a version of itself that can
recall the entire battle.

The Large-RL model rises to the level of an intermediate
player and is favored to win against a randomly selected op-
ponent in Gens 1 and 2. High-variety self-play data leads
to dramatic improvements over the course of our work. Our
SynRL-V2 model is a reasonably advanced player estimated
to be inside the top decile across generations. Although ELO
ratings are noisy, the SynRL-V1 and SynRL-V2 models reach
peak global rankings of #46 and #31 in Gen1OU, respectively,
and SynRL-V2 makes two appearances inside the top 300 in
Gen3OU. All RL models sit inside the top 500 in Gen2OU.
To the best of our knowledge, this is the first time an AI has
achieved any of SynRL-V2’s ladder ratings in any of the Early-
Gen OU tiers — and it achieves this without a dynamics model
or falling back on Pokémon heuristics while learning to play
16 rulesets at the same time (Appendix A). Qualitatively, our
models display human-like gameplay. During our evaluation process, we saved sample replays on
the PS website that can be viewed by searching models’ usernames (Table 6) at this link. Policies
learn to play reasonable openings, make safe Pokémon switches, and anticipate the moves of their
opponent. However, our agents occasionally suffer from the accumulating errors we might expect
from a sequence policy and can begin to make nonsensical decisions in long battles — particularly
when the opponent is playing with a rare team or uncommon strategy. Figure 13 evaluates the impact
of memory on the win rate of a policy competing against the full-context-length version of itself.
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Figure 14: Ladder Percentiles. Replays downloaded between Feb-Mar 2025 identify 14022 active
Gen1-4 usernames. Using Gen1 as an example, 5095 of these usernames played Gen1OU, while
2661 were active enough to have a valid GXE statistic when results were finalized.

6 Conclusion
Our work enables a scalable offline RL approach to Competitive Pokémon Singles and demonstrates
that sequence models trained on historical gameplay can be competitive with humans in the chal-
lenging setting of Early-Generation OverUsed. Our PS trajectory dataset will continue to grow over
time and may be of broader interest in offline RL as a way to evaluate new research on a com-
plex task. We hope our dataset and baseline models will inspire research interest in Competitive
Pokémon. Alternative training details and large-scale self-play techniques may create a path to
super-human performance. Our code, pretrained models, and datasets are available on GitHub at:
UT-Austin-RPL/metamon.

4SynRL-V2 plays 613 human battles and settles at a Gen1OU GXE of 79.9% (Glicko-1 1761± 35) after more than 100
battles. However, its rating declines over its next 100 games because we stop avoiding a competition where top players are
playing with fresh (low-rated) usernames. Figures 12 and 14 conservatively report the final metrics.

https://replay.pokemonshowdown.com/
https://github.com/UT-Austin-RPL/metamon/tree/main
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Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choroman-
ski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Noam Brown and Tuomas Sandholm. Superhuman ai for heads-up no-limit poker: Libratus beats
top professionals. Science, 359(6374):418–424, 2018.

Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. Combining deep reinforcement
learning and search for imperfect-information games. Advances in neural information processing
systems, 33:17057–17069, 2020.

Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowling,
Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton.
A survey of monte carlo tree search methods. IEEE Transactions on Computational Intelligence
and AI in Games, 4(1):1–43, 2012. DOI: 10.1109/TCIAIG.2012.2186810.

Murray Campbell, A.Joseph Hoane, and Feng hsiung Hsu. Deep blue. Artificial Intelligence,
134(1):57–83, 2002. ISSN 0004-3702. DOI: https://doi.org/10.1016/S0004-3702(01)
00129-1. URL https://www.sciencedirect.com/science/article/pii/
S0004370201001291.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized ensembled double q-learning:
Learning fast without a model. arXiv preprint arXiv:2101.05982, 2021.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference
of the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

https://www.sciencedirect.com/science/article/pii/S0004370201001291
https://www.sciencedirect.com/science/article/pii/S0004370201001291


Metamon: Human-Level Competitive Pokémon

Ron Dorfman, Idan Shenfeld, and Aviv Tamar. Offline meta learning of exploration. arXiv preprint
arXiv:2008.02598, 2020.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl 2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

FAIR FAIR Diplomacy Team, Anton Bakhtin, Noam Brown, Emily Dinan, Gabriele Farina, Colin
Flaherty, Daniel Fried, Andrew Goff, Jonathan Gray, Hengyuan Hu, et al. Human-level play in
the game of diplomacy by combining language models with strategic reasoning. Science, 378
(6624):1067–1074, 2022.

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taïga, Yevgen Chebotar, Ted Xiao, Alex
Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, et al. Stop regressing: Training
value functions via classification for scalable deep rl. arXiv preprint arXiv:2403.03950, 2024.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Quentin Gallouédec, Edward Beeching, Clément Romac, and Emmanuel Dellandréa. Jack of all
trades, master of some, a multi-purpose transformer agent. arXiv preprint arXiv:2402.09844,
2024.

Matthias Gerstgrasser, Rakshit Trivedi, and David C. Parkes. Crowdplay: Crowdsourcing human
demonstrations for offline learning. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=qyTBxTztIpQ.

Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, Aviv Tamar, et al. Bayesian reinforcement
learning: A survey. Foundations and Trends® in Machine Learning, 8(5-6):359–483, 2015.

Jake Grigsby, Linxi Fan, and Yuke Zhu. AMAGO: Scalable in-context reinforcement learning for
adaptive agents. In The Twelfth International Conference on Learning Representations, 2024a.
URL https://openreview.net/forum?id=M6XWoEdmwf.

Jake Grigsby, Justin Sasek, Samyak Parajuli, Ikechukwu D Adebi, Amy Zhang, and Yuke Zhu.
Amago-2: Breaking the multi-task barrier in meta-reinforcement learning with transformers.
Advances in Neural Information Processing Systems, 37:87473–87508, 2024b.

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gómez, Konrad Zolna,
Rishabh Agarwal, Josh S Merel, Daniel J Mankowitz, Cosmin Paduraru, et al. Rl unplugged:
A suite of benchmarks for offline reinforcement learning. Advances in Neural Information
Processing Systems, 33:7248–7259, 2020.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Varun Ramesh Harrison Ho, 2014. URL https://varunramesh.net/content/
documents/cs221-final-report.pdf.

Johannes Heinrich, Marc Lanctot, and David Silver. Fictitious self-play in extensive-form games.
In International conference on machine learning, pp. 805–813. PMLR, 2015.

Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt, and Hado
Van Hasselt. Multi-task deep reinforcement learning with popart. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pp. 3796–3803, 2019.

Sihao Hu, Tiansheng Huang, and Ling Liu. Pokéllmon: A human-parity agent for pokémon battles
with large language models. arXiv preprint arXiv:2402.01118, 2024.

https://openreview.net/forum?id=qyTBxTztIpQ
https://openreview.net/forum?id=M6XWoEdmwf
https://varunramesh.net/content/documents/cs221-final-report.pdf
https://varunramesh.net/content/documents/cs221-final-report.pdf


Reinforcement Learning Journal 2025

Dan Huang and Scott Lee. A self-play policy optimization approach to battling pokémon. In 2019
IEEE Conference on Games (CoG), pp. 1–4, 2019. DOI: 10.1109/CIG.2019.8848014.

Jan Humplik, Alexandre Galashov, Leonard Hasenclever, Pedro A Ortega, Yee Whye Teh, and
Nicolas Heess. Meta reinforcement learning as task inference. arXiv preprint arXiv:1905.06424,
2019.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-
Fei, Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with
multimodal prompts. arXiv preprint arXiv:2210.03094, 2022.

Yuheng Jing, Kai Li, Bingyun Liu, Yifan Zang, Haobo Fu, QIANG FU, Junliang Xing, and Jian
Cheng. Towards offline opponent modeling with in-context learning. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=2SwHngthig.

Akshay Kalose, Kris Kaya, and Alvin Kim. Optimal battle strategy in pokemon using reinforcement
learning. Web: https://web. stanford. edu/class/aa228/reports/2018/final151. pdf, 2018.

Seth Karten, Andy Luu Nguyen, and Chi Jin. Pok\’echamp: an expert-level minimax language
agent. arXiv preprint arXiv:2503.04094, 2025.

KGS. Kgs go game archives, 2025. URL https://www.gokgs.com/archives.jsp. Ac-
cessed: 2025-03-21.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yoga-
mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
transactions on intelligent transportation systems, 23(6):4909–4926, 2021.

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning via
bootstrapping error reduction, 2019.

Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine. Offline q-
learning on diverse multi-task data both scales and generalizes. In The Eleventh International
Conference on Learning Representations, 2022.

Thomas Lampe, Abbas Abdolmaleki, Sarah Bechtle, Sandy H Huang, Jost Tobias Springenberg,
Michael Bloesch, Oliver Groth, Roland Hafner, Tim Hertweck, Michael Neunert, et al. Mastering
stacking of diverse shapes with large-scale iterative reinforcement learning on real robots. In 2024
IEEE International Conference on Robotics and Automation (ICRA), pp. 7772–7779. IEEE, 2024.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In
Reinforcement learning: State-of-the-art, pp. 45–73. Springer, 2012.

Romain Laroche and Rémi Tachet des Combes. Multi-batch reinforcement learning. Proceedings
of the 4th Reinforcement Learning and Decision Making (RLDM), 2019.

Dongsu Lee, Chanin Eom, and Minhae Kwon. Ad4rl: Autonomous driving benchmarks for of-
fline reinforcement learning with value-based dataset. In 2024 IEEE International Conference on
Robotics and Automation (ICRA), pp. 8239–8245. IEEE, 2024.

Scott Lee and Julian Togelius. Showdown ai competition. In 2017 IEEE Conference on
Computational Intelligence and Games (CIG), pp. 191–198, 2017. DOI: 10.1109/CIG.2017.
8080435.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

https://openreview.net/forum?id=2SwHngthig
https://openreview.net/forum?id=2SwHngthig
https://www.gokgs.com/archives.jsp


Metamon: Human-Level Competitive Pokémon

Lanqing Li, Hai Zhang, Xinyu Zhang, Shatong Zhu, Yang Yu, Junqiao Zhao, and
Pheng-Ann Heng. Towards an information theoretic framework of context-based
offline meta-reinforcement learning. In A. Globerson, L. Mackey, D. Belgrave,
A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information
Processing Systems, volume 37, pp. 75642–75667. Curran Associates, Inc., 2024. URL
https://proceedings.neurips.cc/paper_files/paper/2024/file/
8a30aba6514b56d02976f49797f6338a-Paper-Conference.pdf.

Lichess. Lichess game database, 2025. URL https://database.lichess.org/. Accessed:
2025-03-21.

P. Mariglia. Foul play - a competitive pokémon ai research project. https://github.com/
pmariglia/foul-play, 2019. Accessed: 2025-02-27.

Michaël Mathieu, Sherjil Ozair, Srivatsan Srinivasan, Caglar Gulcehre, Shangtong Zhang, Ray
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A AI in Competitive Pokémon

A.1 Online Tree Search

Many CPS AI approaches rely on model-based online tree search with heuristic value approxima-
tions — much like the methods that led to early successes in games like chess and Go. Harri-
son Ho (2014) use shallow search and mostly ignore imperfect information to reach 55% GXE in
Gen6RandomBattles. The best heuristic Pokémon engines use PS team composition statistics to
estimate private information at the current root node and reduce CPS to perfect-information depth-
limited search (Stone, 2010). Sarantinos (2023) adds more complex heuristic value functions, search
pruning, and private information inference to peak at rank #33 in Gen7RandomBattles. Sarantinos
(2023) play a comparable number of human battles as each of our main models (600+). However,
they are evaluating a single policy in a single ruleset — enabling a large effective sample size that
clearly demonstrates the extreme variance of PS’s ELO and world ranking metrics. Glicko-1 and
GXE are not reported but are far better metrics, and we encourage their use in future comparisons.
Based on results in old forum posts, years of continued development, and our knowledge of method
details and feature coverage relative to competitors, Foul Play (Mariglia, 2019) is the strongest open-
source engine today.

A.2 RL and Self-Play

Kalose et al. (2018) evaluate small-scale Q-learning in a simplified version of CPS against random
and minimax heuristic agents with limited success. Prior works use an online self-play process
by collecting on-policy data against their own policy. Huang & Lee (2019) train PPO (Schulman
et al., 2017) self-play agents without tree search. They achieve a 1677 Glicko-1 and 72% GXE on
the Gen7RandomBattle Pokémon Showdown ladder. Wang (2024) augments PPO with MCTS at
test-time and achieve a 1756 Glicko-1 and 79.5% GXE on the Gen4RandomBattle ladder.

Pokémon 
Showdown Battle Universal 

State
Replay
State

Parsed 
Replay

poke-env ours

Datatypes	for	Tokenization

Observations Actions Rewards

Online Simulator Offline Simulator

Raw 
Replay

Figure 15: Creating an Offline poke-env Dataset. Our offline replay reconstruction pipeline
interprets PS replays in a custom implementation designed to parse historical replays, improve team
inference beyond the PS viewer, and diagnose failures. The resulting trajectory is then converted to
a representation that can also be recovered from the online poke-env interface.

Lee & Togelius (2017) propose CPS and Pokémon Showdown as an important benchmark for AI
research. poke-env (Sahovic, 2020) has made the PS domain much more accessible and has
become the default for recent work, including ours and those in Appendix A.3. Our Metamon
release aims to be the final bridge connecting academic RL research and PS; we use a custom
version of poke-env geared towards the early generations and add 1) a suite of additional baseline
opponents, 2) standardized team sets, 3) a template for BC experiments, and 4) direct compatibility
with large-scale RL training (Grigsby et al., 2024a). Fifth, and most importantly, we create the PS
replay dataset with a complex reconstruction process (Section 3). From the perspective of the user,
our dataset appears to provide offline trajectories of human gameplay recorded via poke-env. At
test time, the online poke-env interface is used to play against other agents and humans on the
public ladder. However, this compatibility is an illusion enabled by closing a sim2sim gap between
our own replay parser and poke-env (Figure 15). More discussion in Appendix D.
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A.3 Large Langauge Model Agents

Pokémon’s web presence lets large language models (LLMs) act on Pokémon game states that in-
volve many categorical variables that can be formatted as natural language. PokéLLMon (Hu et al.,
2024) conditions the LLM on a history of observations, actions, and turn results to select the next ac-
tion. They also use retrieval-augmented generation from a Pokémon knowledge database to inform
the LLM’s decisions. PokéLLMon achieves a 49% win rate on the Gen8RandomBattles Pokémon
Showdown ladder but does not report Glicko-1 or GXE statistics that control for matchmaking bias.
Note that the expected raw win rate on the Pokémon Showdown ladder in modern generations (where
large player pools allow for even matchmaking) is ≈50% unless well below human-level. Karten
et al. (2025) extend the LLM prompting setup to model the opponent’s decisions and enable depth-
limited search with heuristic value functions. Prompts include information like move damage calcu-
lations that let future outcomes inform action selection. Pokéchamp’s planning allows for a 76% win
rate against PokéLLMon in Gen8RandomBattles and Gen9OU. Pokéchamp is concurrent work, and
non-trivial modifications are needed to convert its model-based search to the gameplay mechanics of
the early generations. Finally, Zhang et al. (2023) use an LLM for reward design to improve sample
efficiency of DQN (Mnih et al., 2015) against heuristics.

B Broader Related Work

Imitation Learning and Offline RL. Many large-scale agents in complex domains are trained by
imitation learning. These methods prioritize training scalable sequence models on large datasets and
avoid RL obstacles (Reed et al., 2022; Gallouédec et al., 2024; Jiang et al., 2022; Raad et al., 2024;
Brohan et al., 2023). Offline RL (Prudencio et al., 2023; Levine et al., 2020) learns policies that
outperform their demonstrations and has found success at scale (Kumar et al., 2022; Springenberg
et al., 2024). In practice, offline RL can be used in a way-off-policy or multi-batch setting (Laroche
& des Combes, 2019; Najib et al., 2024,) where models are iteratively retrained or fine-tuned as
data accumulates or better training techniques are found (Lampe et al., 2024; Tirumala et al., 2023);
the ability to learn stable policies from large mixed-quality datasets unlocks a flexible engineering
workflow. Many solutions prevent the learned policy from deviating too far from the offline dataset
(Wang et al., 2020; Nair et al., 2020; Fujimoto & Gu, 2021). These approaches create a spectrum
between unconstrained RL and behavior cloning and let a single objective replace the two-stage
process of BC pre-training → RL fine-tuning.

Offline RL targets real-world use cases where (1) data collection is expensive or (2) deployment
mandates some minimum performance standard well above random exploration. Playing Pokémon
against humans leads to both problems: battles are slow (and there are limits to how many games
we can play in parallel), and finding competent strategies across the full range of Pokémon teams
and game modes is a daunting exploration challenge. In simulated RL domains, it is common to
mimic the process of learning from existing data by first training online RL agents and then saving
their rollouts for offline research (Reed et al., 2022; Fu et al., 2020; Gulcehre et al., 2020; Agarwal
et al., 2020). If online RL cannot solve the task, it may be possible to crowdsource demonstration
datasets (O’Neill et al., 2024; Gerstgrasser et al., 2022). It would be more realistic (and more
convenient) if offline datasets already existed and grew naturally without requiring researchers to
collect data. Our Pokémon dataset falls in this category — as do other games played on the internet
like Chess (Lichess, 2025), Go (KGS, 2025; Silver et al., 2016), Diplomacy (FAIR Diplomacy Team
et al., 2022), and Starcraft II (Vinyals et al., 2019; Mathieu et al., 2023). Other examples include
autonomous driving (Kiran et al., 2021; Lee et al., 2024) and e-commerce (Saito et al., 2020).

Gameplaying. Games have always been key benchmarks for AI and RL research (Campbell et al.,
2002; Tesauro, 1995). High-profile successes include AlphaZero in chess and Go (Silver et al.,
2018), AlphaStar in StarCraft II (Vinyals et al., 2019), OpenAI Five in DOTA 2 (Berner et al.,
2019), and DeepNash in Stratego (Perolat et al., 2022). Applications of model-based search to
imperfect information games (IIGs) like poker (Moravčík et al., 2017; Brown & Sandholm, 2018;
Brown et al., 2020) create methods at the intersection of RL and game theory. We refer interested
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readers to Schmid et al. (2023) for a detailed overview. Policy learning in CPS (Section 4) could
also be viewed from the perspective of IIG formalisms like Factored Observation Stochastic Games
(Schmid, 2021). Model-free RL against hybrid populations of opponent agents is a viable alternative
despite lacking theoretical guarantees to converge to optimal (equilibrium) policies (Vinyals et al.,
2019; Rudolph et al., 2025; Heinrich et al., 2015). Finally, long-context sequence models have been
used to model the decisions of opponents (Nashed & Zilberstein, 2022) in multi-agent settings (Jing
et al., 2024).

C Heuristic Opponents

In an attempt to evaluate a variety of Pokémon fundamentals, we develop an array of heuristic
opponents. These policies are unable to cheat by accessing unrevealed information about their
opponent’s team but are otherwise free to use ground-truth knowledge of Pokémon’s mechanics to
select actions. Figure 16 summarizes the relative performance of these heuristics. Ultimately, we
find it difficult to generate meaningful diversity from this larger set and focus on six heuristics:

• RandomBaseline selects a legal move (or switch) uniformly at random and measures the most
basic level of learning early in training runs.

• Gen1BossAI emulates the decision-making of opponents in the original Pokémon Generation 1
games. It usually chooses random moves. However, it prefers using stat-boosting moves on the
second turn and “super effective” moves when available.

• Grunt is a maximally offensive player that selects the move that will deal the greatest damage
against the current opposing Pokémon using Pokémon’s damage equation and a type chart and
selects the best matchup by type when forced to switch. Its strategy amounts to greedy one-ply
search and is an improvement over a common “MaxBasePower” agent in related work.

• GymLeader improves upon Grunt by additionally taking into account factors such as health. It
prioritizes using stat boosts when the current Pokémon is very healthy, and heal moves when
unhealthy.

• PokeEnv is the SimpleHeuristicsPlayer baseline provided by Sahovic (2020).

• EmeraldKaizo is an adaptation of the AI in a Pokémon Emerald ROM hack intended to be as
difficult as possible. The game’s online popularity has led to a community effort to document
its decision-making in extensive detail. We use this documentation to re-implement the policy.
It selects actions by scoring the available options against a rule set that includes handwritten
conditional statements for a large portion of the moves in the game.

Figure 17 evaluates the PokeEnv Heuristic against humans on the ladder. We choose PokeEnv for
this task because it appears in external work, but its strengths and weaknesses are similar to several
other heuristics in our set. We use the same Competitive Team Set as our main model evaluations
but evaluate over a smaller sample of battles per ruleset. The relationship between battle format
and heuristic performance in Fig. 17 is predictable given knowledge of the PS metagames. Players
correctly accuse the heuristic of being a bot in the online chat, and we decide we have made our
point and stop evaluations. Notably, these accusations are not rooted in the super-human reaction
time of the policy, but in its lack of move diversity and multi-turn strategy while playing at the
(low) level people have come to expect from hobbyist bot projects and the Pokémon video games.
Our learning-based agents do not suffer from these problems, and we will return to this discussion
in Appendix F. We would expect the heuristic to perform worst (and play least like a human) in
Gen2OU, but are not comfortable evaluating this. Glicko-1 ratings can be slow to converge when
this far below the mean, and it is possible that Fig. 17 is an overestimate. However, our low rating
skews matchmaking in our favor (we are matched against the lowest ELO players) — making this a
rare case where raw win-loss records can be informative as an upper bound on win rate (Table 2).
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Battle Format Wins Losses

Gen1OU 16 59
Gen3OU 16 54
Gen4OU 21 36
Gen7RandomBattle 24 32
Gen9RandomBattle 28 32

Table 2: PokeEnv Heuristic Win-Loss Records on the PS Ladder.

D Replay Reconstruction

As mentioned in Appendix A.2, we build a custom replay reconstruction pipeline designed to inter-
pret years-old records of human gameplay and identify teams from a spectator point-of-view (POV).
The resulting trajectories train offline policies that can be deployed online via poke-env (Sahovic,
2020).

We follow a process visualized by a simplified example in Figure 18 to extract complete battle in-
formation. On each turn, we add newly revealed information to a running estimate of the initial
team configuration. By the end of the battle, some details may still be missing and are inferred with
Pokémon Showdown statistics. We then backfill the inferred team through the trajectory, accounting
for any changes to the roster that occur during the battle. Since Player A should have full knowl-
edge of their own team, but limited knowledge of Player B’s, we save a trajectory from Player A’s
perspective by using the inferred version of Player A’s private state and the original spectator POV
of Player B’s state.

During reconstruction, we will obtain: (1) the complete team composition for each player and (2)
per-turn observations from one player’s POV. We can use a real battle as an example. You can
view the relay at this link. Figure 21 gives a sample of the raw PS log for this replay, while Figure
22 shows a chosen POV player’s observed and inferred team. Finally, Figure 23 shows the fully
reconstructed replay containing all necessary information for model training.

https://replay.pokemonshowdown.com/gen4nu-776588848
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Figure 18: Simplified Replay Reconstruction. We walk through the reconstruction of the perspec-
tive of Player A in a Gen1OU example with teams of 3 Pokémon.

D.1 Reconstruction Failures

A challenge in the replay reconstruction process is that inaccurate team inference can create inac-
curate records of human decision-making: An expert player may have may have only picked the
action in the replay because they did not have access to the moves or Pokémon our dataset says
they did. This is a fundamental problem created by the spectator POV, but it could be improved
by team inference strategies that are more sophisticated than sampling from historical statistics.
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Figure 19: Replay Parser Failure States.
An informal visualization of how the re-
play reconstruction process creates holes
in our dataset on top of the more standard
distribution shift inherent to offline RL.

Offline RL always confronts a distribution shift prob-
lem created by sampling a finite dataset from a large
state/action space (Levine et al., 2020). Replay recon-
struction can fail, and these failures add an additional
challenge in that some specific state/actions will never
appear in a dataset of any size (Figure 19). Some of
these failures are caused by unimplemented game me-
chanics that rarely occur but could be improved. Others
are caused by fundamentally ambiguous situations from
the spectator perspective — even the PS browser replay
viewer gets these wrong or warns that values may be
inaccurate. A long list of checks throughout the recon-
struction process attempts to find and discard trajecto-
ries in these states. These situations are rare and dis-
carding them may be needlessly cautious.

There are two gaps in the replay dataset that we cannot
ignore. Our solutions impact our findings and are worth discussing in detail:

Illegal Actions. Pokémon always has up to 9 discrete actions, but some of these actions become
invalid as the battle progresses. Humans are not given the option to select invalid actions, so they
never appear in the dataset. Offline RL should be able to handle this problem. Our policies are
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clearly told which actions are invalid, and we let their mistakes become indicators of accumulating
OOD behavior5. We send a random valid action to PS if an invalid action is selected. Invalid
action masking was added to our open-source release long after the experiments in this paper and
predictably made little difference when enforced only at test time — though it may improve value
estimation during training.
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Figure 20: Impact of Improved Missing Action La-
bels on a 15M Transformer IL Policy.

(Stochastically) Unrevealed Moves.
There are situations where the player’s
action choice has no impact on the battle
and is not revealed to spectators. These
occur too often to discard the trajectory,
so we either need to mask or fill the action
label. BC-RNN baselines (Appendix F.1)
mask unrevealed action labels. When
training offline RL along a full trajectory
sequence in parallel, it is risky to back
up the Q-values of timesteps where the
actor or critic is not trained. Therefore,
the RL models fill action labels and the main Transformer BC models follow suit to create a direct
comparison between variants of the actor objective (Eq. (2)). We initially fill missing actions with
a small BC-RNN model trained on a much earlier version of the dataset. The precise accuracy
of these moves may not seem important because they have no impact on the battle. However,
there are stochastic gameplay mechanics (mainly sleep and paralysis) where they could have
impacted the battle. We eventually suspect we can improve by filling missing actions with the more
accurate (Figure 27) BaseRNN model. We retrain 15M IL and RL Transformer policies on this
revised (“Filled Action”) version of the dataset. Offline RL should have already been able to avoid
sub-optimal action choices in the situations they are relevant. Indeed, we find no evidence that the
new action labels impact the RL policies. However, the Small IL model is significantly improved
— now ranking between Large IL and the RL eval scores against heuristics (Figure 20 Left), and
BC-RNN (Fig. 20 Right). Though not included in the figures, Small IL with Filled Actions also
ranks between Large IL and all RL scores against Large IL (Figure 9) and the Foul Play engine
(Figure 11a).

We conclude that while the comparisons between IL and RL remain a fair evaluation of the same ar-
chitecture trained on the same dataset, the original dataset was challenging in a way that was uninten-
tionally similar to contrived benchmarks that dilute high-quality demonstrations with poor decisions
(Fu et al., 2020). Our final batch of RL models (SynRL-V1+SP, SynRL-V1++, and SynRL-V2) use
improved labels in their human battle trajectories out of caution. After the release of this paper, we
added missing action masking directly into the RL training pipeline with similar results.

5For reference, all RL policies average valid action rates of 97-99% against heuristics and 95-98% against humans.
Nearly all of these invalid actions occur in succession once the policy is already in a lost position or runs into a limitation of
the observation space discussed in Appendix E.1.
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Raw Replay: [Gen 4] NU (#776588848)

id:		gen4nu-776588848
format:		[Gen	4]	NU
players:		- King	Wynaut - lt51np	confide

log:		

… (boilerplate pre-battle messages cut for space)

|start
|switch|p1a:	Piloswine|Piloswine,	M|100/100
|switch|p2a:	Electrode|Electrode|100/100

|turn|1|
|move|p2a:	Electrode|Rain Dance|p2a:	Electrode|-weather|RainDance
|move|p1a:	Piloswine|Earthquake|p2a:	Electrode|-supereffective|p2a:	Electrode|-damage|p2a:	Electrode|0	
fnt|-damage|p1a:	Piloswine|91/100|[from]	item:	Life	Orb|faint|p2a:	Electrode||-
weather|RainDance|[upkeep]|upkeep|
|switch|p2a:	Relicanth|Relicanth,	F|100/100

|turn|2|
|switch|p1a:	Politoed|Politoed,	M|100/100
|move|p2a:	Relicanth|Aqua Tail|p1a:	Politoed|-immune|p1a:	Politoed|[msg]|[from]	ability:	Water	Absorb|
|-weather|RainDance|[upkeep]|upkeep

|turn|3|
|move|p2a:	Relicanth|Stone Edge|p1a:	Politoed|-damage|p1a:	Politoed|42/100|-damage|p2a:	
Relicanth|91/100|[from]	item:	Life	Orb
|move|p1a:	Politoed|Surf|p2a:	Relicanth|-damage|p2a:	Relicanth|33/100||-weather|RainDance|[upkeep]
|-heal|p1a:	Politoed|48/100|[from]	item:	Leftovers|upkeep

… (cut for space)

turn|21|
|move|p1a:	Magmortar|Focus Blast|p2a:	Skuntank|-damage|p2a:	Skuntank|0	fnt|faint|p2a:	Skuntank|
|win|King Wynaut

uploadtime:		1531753033
views:		17

Figure 21: An example Gen4 NeverUsed (NU) replay file downloaded from PS server.
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Replay: [Gen 4] NU #776588848
Player 1’s 

Observed Team
Player 1’s 

Inferred Team

Figure 22: Continuing the Gen4 NU example by listing the observed team and the inferred team
after replay reconstruction.
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Reconstructed Replay: [Gen 4] NU (#776588848)
King Wynaut vs. lt51np confide (from POV of King Wynaut)

Played July 16th, 2018

Text Obs #0:	<gen4nu>	<anychoice>	<player>	piloswine lifeorb oblivious	ground	ice	noeffect nostatus
<move> avalanche	ice	physical	<move> earthquake	ground	physical	<move> stealthrock rock	status	<move>
stoneedge rock	physical	<switch> haunter	lifeorb levitate	<moveset>	shadowball sludgebomb substitute	
thunderbolt	<switch> jynx focussash forewarn	<moveset>	focusblast grassknot lovelykiss nastyplot <switch>
magmortar choicescarf flamebody <moveset>	fireblast flamethrower	focusblast sleeptalk <switch> magneton	
leftovers	magnetpull <moveset>	explosion	flashcannon substitute	thunderbolt	<switch> politoed leftovers	
waterabsorb <moveset>	encore	perishsong protect	surf	<opponent>	electrode	unknownitem unknownability
electric	notype noeffect nostatus <conditions>	noweather noconditions noconditions <player_prev>	nomove
<opp_prev>	nomove

(observations also include an array of numerical features)

Action #0:	1 (à 2nd <move> à earthquake)
Reward #1: 0.91

Text Obs #1:	<gen4nu>	<anychoice>	<player>	piloswine lifeorb oblivious	ground	ice	noeffect nostatus <move>
avalanche	ice	physical	<move> earthquake	ground	physical	<move> stealthrock rock	status	<move> stoneedge
rock	physical	<switch> haunter	lifeorb levitate	<moveset>	shadowball sludgebomb substitute	thunderbolt	
<switch> jynx focussash forewarn	<moveset>	focusblast grassknot lovelykiss nastyplot <switch> magmortar
choicescarf flamebody <moveset>	fireblast flamethrower	focusblast sleeptalk <switch> magneton	leftovers	
magnetpull <moveset>	explosion	flashcannon substitute	thunderbolt	<switch> politoed leftovers	waterabsorb
<moveset>	encore	perishsong protect	surf	<opponent>	relicanth unknownitem unknownability rock	water	
noeffect nostatus <conditions>	raindance noconditions noconditions <player_prev>	earthquake	<opp_prev>	
nomove

Action #1:	8 (à 5th <switch> à politoed)
Reward #2: 0.00

Text Obs #2:	<gen4nu>	<anychoice>	<player>	politoed leftovers	waterabsorb notype water	noeffect nostatus
<move> encore	normal	status	<move> perishsong normal	status	<move> protect	normal	status	<move> surf	
water	special	<switch> haunter	lifeorb levitate	<moveset>	shadowball sludgebomb substitute	thunderbolt	
<switch> jynx focussash forewarn	<moveset>	focusblast grassknot lovelykiss nastyplot <switch> magmortar
choicescarf flamebody <moveset>	fireblast flamethrower	focusblast sleeptalk <switch> magneton	leftovers	
magnetpull <moveset>	explosion	flashcannon substitute	thunderbolt	<switch> piloswine lifeorb oblivious	
<moveset>	avalanche	earthquake	stealthrock stoneedge <opponent>	relicanth unknownitem unknownability rock	
water	noeffect nostatus <conditions>	raindance noconditions noconditions <player_prev>	nomove <opp_prev>	
aquatail

Action #2:	3 (4th <move> à surf)
Reward #3:	0.15

…	(cut for space)
Text Obs #25:	<gen4nu>	<anychoice>	<player>	magmortar choicescarf flamebody fire	notype noeffect
nostatus <move> fireblast fire	special	<move> flamethrower	fire	special	<move> focusblast fighting	special	
<move> sleeptalk normal	status	<switch> <blank>	<blank>	<blank>	<blank>	<blank>	<blank>	<blank>	<blank>	
<switch> <blank>	<blank>	<blank>	<blank>	<blank>	<blank>	<blank>	<blank>	<switch> <blank>	<blank>	<blank>	
<blank>	<blank>	<blank>	<blank>	<blank>	<switch>	<blank>	<blank>	<blank>	<blank>	<blank>	<blank>	<blank>	
<blank>	<switch>	<blank>	<blank>	<blank>	<blank>	<blank>	<blank>	<blank>	<blank>	<opponent>	skuntank
unknownitem unknownability dark	poison	noeffect nostatus <conditions>	noweather noconditions noconditions
<player_prev>	focusblast <opp_prev>	crunch

Action #25:	2 (3rd <move> à focusblast)
Reward #26:		101.91

Figure 23: Concluding the Gen4 NU example with an abridged version of the reconstructed replay.
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E Training Details

E.1 Reward Function

Rewards are a combination of three shaping terms and a binary win/loss indicator (rwin):

R(st, at) = rhp +
1

2
rstat + rfaint + 100rwin

We describe the shaping terms from the perspective of the agent’s player:

• Health Reward rhp: Encourages dealing more damage than the opponent and/or recovering more
health than the opponent. Computed by net health points gained/lost by our active Pokémon versus
those gained/lost by the opponent’s active Pokémon (with all health values scaled 0− 1).

• Status Reward rstat: Encourages dealing status conditions while avoiding taking status conditions
ourselves. Status conditions are a key indicator of mid-game progress. Computed by the net gain
in the binary presence of a status condition of the two Pokémon on the field.

• Faint Reward rfaint: Encourages knocking out the opponent’s Pokémon while preserving our
own. Computed by the number of Pokémon we made unavailable to the player on this turn minus
the number we lost.

The reward function is designed to give some shaping to help the offline filter w (Equation (2)) learn
to assign unique weights over short horizons but be dominated by the binary win/loss outcome we
ultimately care about. We do find some qualitative evidence of models exploiting the shaped terms.
For example, our agents tend to cling to life in clearly lost positions by using recovery moves.

E.2 Observation Space

Observations include a language description (depicted by Figure 5) and 48 numerical features.
Numerical features include the base power and accuracy of moves and the health/stats/boosts of
Pokémon. We defer a full account to the open-source release. Implementation details add the previ-
ous action and reward as policy inputs. Rewards may help resolve some ambiguity over the outcome
of the previous turn (e.g., did the move hit and deal damage?). The player’s previous action is a one-
hot vector that is mostly redundant to information in the text observation but helps provide a history
of action choices that were not revealed to the opponent.

Our observation space relies on long-term memory to track the true state of the battle. Section 4
notes that we only include the visible attributes of the opponent’s active Pokémon, which reduces
dimensionality and distribution shift over the opponent’s team. We can infer the public state of the
opponent’s team from memory over the active Pokémon on previous turns and their move choices.
Text tokens include the most recent move of both Pokémon on the field. The long-term memory of
our models is quite effective in general. As one example, PS enforces a rule called “Sleep Clause”
where attempting to put a second opponent Pokémon to sleep does nothing and wastes a turn. Our
policies are remarkably good at following this rule even though their only way to track it is to recall
that they put a Pokémon to sleep and that it has not reappeared and woken up.

There is a limit to the number of times a move can be used by a Pokémon in a battle. These
“PowerPoint” (PP) limits break long stalemates in CPS, but PP counts are unreliable and full of
edge cases in replays. While PP counts are tracked during reconstruction to help discard replays,
we ultimately exclude them from the observation space. We decided to protect against sim2sim
gaps because we assumed our agents would have to be unrealistically skilled to survive long enough
for PP limits to be relevant. Our final policies are actually strong enough that PP stall losses are
their most noticeable flaw and the leading cause of invalid action selections (Appendix D.1). PP
counts can be inferred from memory over the move history. However, this is challenging in practice,
especially when lacking opponent policies that force PP stalls during self-play. SynRL-V2 does
demonstrate some ability to play around PP limits.
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The observation space can be improved to address specific gameplay mechanics and will be version
controlled for future comparisons. However, environments as complex as CPS will always have
nuanced partial observability and benefit from the flexibility of sequence model policies.

E.3 Action Space

Agents play with 9 discrete actions. The first four indices correspond to the active Pokémon’s moves,
and the remaining indices switch to the other Pokémon on the player’s team. The correspondence
between action index and move/switch choices is indicated by both the text and numerical observa-
tion — which arrange their features in a consistent alphabetical order. As discussed in Appendix
D.1, actions become invalid over the course of a battle. Invalid actions are also noted in the ob-
servation. If the agent selects an invalid action, it is replaced by a random valid action within the
environment’s transition dynamics.

E.4 Models and Hyperparameters

Table 3 details the default training configuration for Small (15M), Medium (50M), and Large (200M)
model sizes. Table 4 lists changes for all the models and ablations mentioned in the paper and
released in our open-source code.

Small Medium Large
Learning Rate 1e-4
Linear LR Warmup Steps 1000
Target Critic τ 0.004
TD Loss Coeff 10
Grad Clip 1.5
L2 Coeff 1e-4
Batch Size 32 40 48
Actor Activation Leaky ReLU
Actor Layers 2
Actor Hidden Dimension 300 400 512
Agent Popart (Hessel et al., 2019) True
Critic Ensemble Size (Chen et al., 2021) 4
Critic Layers 2
Critic Activation Leaky ReLU
Critic Hidden Dimension 300 400 512
Turn Encoder Token Dim 100 100 160
Turn Encoder Layers 3 3 5
Turn Encoder Summary Tokens 4 6 11
Turn Encoder Attention Heads 5 5 8
Turn Encoder Numerical Tokens 6
Causal Transformer Layers 3 6 9
Causal Transformer Attention Heads 8 8 20
Causal Transformer FF Dim. 2048 3072 5120
Causal Transformer Model Dim. 512 768 1280
NormFormer (Shleifer et al., 2021) True
σReparam (Zhai et al., 2023) True
Causal Transformer Normalization LayerNorm (Ba et al., 2016)
Max Context Length 200 200 128
Causal Transformer Activation Leaky ReLU

Table 3: Base Training Hyperparameters by Model Size. In reference to the architecture in Figure
4 and the AMAGO training configuration (Grigsby et al., 2024a).
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Model Name Dataset Architecture
(Table 3)

Loss
(Equation (2)) Notes

Small IL RPS 950k Small Behavior Cloning

Small IL (Filled Actions) RPS 950k Small Behavior Cloning
A late ablation that replaces
missing actions with improved
estimates (Appendix D.1).

Small RL RPS 950k Small Exponential w
Exp w default to β = .5
and clip weight values in [1e-5, 50].

Small RL (Binary) RPS 950k Small Binary w

Small RL (Exp Extreme) RPS 950k Small Exponential w
β = 1, clip [−1e-5, 100].
(Testing sensitivity to w hyperparameters).

Small RL (Aug) RPS 950k Small Exponential w
Randomly sets tokens to
<unknown> timestep-wise.

Small RL (Filled Actions) RPS 950k Small Binary w
Ablation that replaces missing actions
with improved estimates
(Appendix D.1).

Small RL (Binary+MaxQ) RPS 950k Small Binary w, λ = 1
Testing Q overestimation on the
replay dataset before scaling up.

Medium IL RPS 950k Medium Behavior Cloning

Medium RL RPS 950k Medium Exponential w

Medium RL (Aug) RPS 950k Medium Exponential w

Medium RL (Binary+MaxQ) RPS 950k Medium Binary w, λ = 1

Large IL RPS 950k Large Behavior Cloning
All Large architecture models use
the "Aug" dropout scheme by default.

Large RL RPS 950k Large Exponential w

Large RL (Binary+MaxQ) RPS 950k Large Binary w, λ = 1

SyntheticRL-V0

RPS 950k
+ 1M Gen1&3
Variety Set model vs. model
trajectories with an ad-hoc
mixture of all policies above.
2M total trajectories.

Large Binary w, λ = 10

SyntheticRL-V1

SyntheticRL-V0
+ 1M Gen2 & Gen4
Variety Set model vs. model
battles. 3M total trajectories.

Large Binary w, λ = 10

SyntheticRL-V1+SelfPlay

SyntheticRL-V1
+ 2M Gen1-4 SynRL-V1
self-play trajectories. Models
from here to the end of the
table use improved action
labels in their RPS dataset
(Appendix D.1).
5M total trajectories.

Large Binary w, λ = 10

SyntheticRL-V1++

SyntheticRL-V1
+ 2M additional
Variety Set model vs. model
trajectories (5M total).

Large Binary w, λ = 10

SyntheticRL-V2

SyntheticRL-V1++ adding
100k trajectories from 50k
human battles in Jan-Mar
2025 (RPS 1.05M) —
including many of our
own public battles.
5M total trajectories.

Large Binary w

Value predictions are converted to
two-hot classification following
(Grigsby et al., 2024b)
with 96 output bins spaced
evenly between [−110, 110].

Table 4: Model Variations. Datasets, architectures, and hyperparameter changes (from the base set
in Table 3) for the 20 main Transformer models trained throughout the paper. “RPS 950k” refers
to the original replay reconstruction dataset (Appendix D). “Exponential” weight functions (w) are
implemented following AWAC (Nair et al., 2020). “Binary” weight functions are implemented
following CRR (Wang et al., 2020). In both cases, advantage estimates approximate V (s) as the
mean over the critic ensemble. “Synthetic” models increase batch size from 48 → 96 sequences.

We train all models on a single 8× NVIDIA A5000 GPU machine for at least 1M gradient steps.
We default to the checkpoint at 1M, which is well after performance has converged according to
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our evaluations. In the open-source code and weights, an “epoch” is an arbitrary interval of 25k
gradient steps, and we save checkpoints every 2 epochs. Therefore, results default to checkpoint 40
unless otherwise noted. SyntheticRL-V1+SelfPlay fine-tunes from epoch 40 → 48 and defaults to
48, while SyntheticRL-V2 is an exception in that we can confirm it is still improving at 1M, and so
we use the last available checkpoint (of 48). These exceptions are noted by Table 6, and Appendix
F.3 contains more discussion.

Figure 24 shows the relationship between model size and action prediction accuracy for behavior
cloning models on the replay dataset. Figure 25 highlights the difference between scalar regression
and two-hot classification for value prediction.
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Figure 24: Transformer IL Train Loss Curves.
Training loss on the Pokémon human replay
dataset has a predictable relationship with model
size when using a standard BC objective.
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Figure 25: Critic Filter Pessimism. We track
the percentage of the offline dataset assigned as
weight w(h, a) > 0 (Eq. (2)) throughout train-
ing. The accuracy of the two-hot classification
filter has a significant impact on the pessimism of
the BC process. Curves are noisy because they
track the average value of a single GPU mini-
batch (of 12 battles).

F Experimental Details and Additional Figures

This section contains figures and experimental details that support Section 5 in the main text.

F.1 Early Imitation Learning Models

In the beginning of our effort, it is not apparent that the Pokémon replay dataset requires architec-
ture sizes beyond the scale of common RL problems. We begin by building a small-scale behavior
cloning pipeline (that is still available in the Metamon code release). Figure 26 identifies clear
underfitting on the reconstructed battle replay dataset. Our early development leads to the Turn
Encoder Transformer architecture (Figure 4) with a GRU-based (Cho et al., 2014) trajectory model
(rather than the Transformer in Fig. 4) to create a “BaseRNN“ opponent. BaseRNN leads the early
Heuristic Composite Score rankings (Figure 6) and later serves as a fast (CPU-only) opponent and
as a way to fill missing action labels (Appendix D.1). Figure 27 documents BaseRNN’s predictive
accuracy alongside two ablations. “WinsOnlyRNN” follows a common offline RL ablation by test-
ing whether performance can be improved by manually discarding low-return trajectories from the
POV of the losing player.
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Figure 26: Underfitting on PS Replays. We report
the train-set accuracy of (small) recurrent BC poli-
cies on increasingly large datasets of human game-
play. Error bars denote the maximum and minimum
over four random subsets. Model sizes are reported
by their hidden state and number of recurrent layers.
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Figure 27: BC-RNN Accuracy. Action la-
bels are high-entropy and we find Top-2 ac-
curacy to be a more useful metric for tuning.
“BaseRNN” is 3.5M params, “MiniRNN”
ablates to 800k, and “WinsOnlyRNN” fol-
lows the filtered BC approach of only imitat-
ing decisions from the POV of the winning
player (cutting its train/val sets in half).

F.2 Heuristic Evaluations

Figure 28 records the Heuristic Composite Score (Section 5.1) of various models (Table 4) through-
out training. Much of our early effort goes into creating strong but inexpensive heuristics to monitor
training progress, but performance converges in less than 250k training steps. Model-based oppo-
nent evaluations run fast enough to generate learning curves after the fact and shed more light on the
relationship between training budget and performance (Appendix F.3).
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Figure 28: Heuristic Composite Learning Curves. Performance converges quickly but shows no
sign of degrading over long training runs. BC and offline RL form two clear clusters with Lactor
changes and model size having no clear impact.

F.3 Model-Based Evaluations

Figure 29 evaluates a variety of models against the BaseRNN behavior cloning model. Like the
heuristic learning curve in Figure 28, performance converges well before the end of training against
this opponent. Figure 30 highlights the continued improvement of our final model (“SyntheticRL-
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V2“) against a previous version that had climbed into the global top 50 in Gen1OU. SyntheticRL-V2
may not have converged after 1.2M steps, but training was cut short due to time constraints. Table
5 evaluates the impact of narrow self-play data with realistic teams and controls for the additional
training budget of fine-tuning on this dataset versus continuing training on the original dataset.
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Figure 29: Transformer IL and RL vs. RNN BC.
We evaluate the performance of Transformer policies
trained on the offline replay dataset against a smaller
RNN-based model designed for CPU-only inference.
The RL updates do not display meaningfully distinct
performance but outperform BC at all model sizes.
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Figure 30: Improvement of Advanced Poli-
cies. We record the improvement of our best
model (“SyntheticRL-V2”) against a previ-
ous version that reached a top 50 ranking in
Gen1OU.

Gen1OU Gen2OU Gen3OU Gen4OU
SyntheticRL-V1+SelfPlay @ 1.2M Steps 63.6% 59.6% 61.4% 59%

Synthetic-V1 @ 1.2M Steps 50% 53.8% 48.4% 48.2%

Table 5: Win Rates vs. SyntheticRL-V1. We evaluate a checkpoint fine-tuned on a dataset of self-
play battles against the original version (at 1M training steps). We control for the additional training
steps with a second version that maintains its original dataset. Sample size of 500 games.

F.4 Human Evaluations

Our models play under identical conditions to humans. We assign each model its own username
(Table 6). Usernames are visible to the opponent, so humans can adapt to the model over repeat
matchups (just as they might exploit any other player). We use the PS statistics for each username
in Figures 12 and 14. Note that ratings like ELO and Glicko-1 confidence intervals decay every 24
hours, so the PS statistics at the time of reading will no longer match our figures. Table 7 records
each model’s overall win/loss for completeness — though we note again that such records have little
meaning because PS matches stronger models against stronger players.

The PS ladder has increment time controls (similar to chess) that go into effect if requested by either
player. We always request the timer in order to keep evaluations moving if our opponent disconnects
from the game for an extended time. Note that most players also request time constraints, as Early
Gen battles can be 20+ minutes long even when enabled. Time limits can be a key constraint for
CPS AI methods involving search or LLMs (Karten et al., 2025). However, our agents select an
action at the inference speed of ≤ 200M parameter Transformer, and this makes time constraints
a non-issue. In fact, our pace of play is suspiciously fast. However, the opponent must be playing
very quickly for this to be noticeable because decisions are made simultaneously, and the battle
moves at the pace of the slower player. As we reach high ELO, we begin to run into the few
players who can defeat our models while playing quickly. We eventually implement a random delay
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to hide the inference speed (while still playing faster than the opponent on most turns). Super-
human speed aside, all our policies play in an undeniably human-like style. We saved hundreds
of battle replays to the PS website, which you can browse via the links in Table 6 or by searching
https://replay.pokemonshowdown.com/. These replays are a (mostly) unbiased sample
of all matches played in public (spectator-viewable) battles while the lead author was monitoring
the ladder evaluations.

Model Name PS Username Checkpoint

Small-IL SmallSparks 40

Large-IL DittoIsAllYouNeed 40

Large-RL Montezuma2600 40

SyntheticRL-V0 Metamon1 40

SyntheticRL-V1 TheDeadlyTriad 40

SyntheticRL-V1
+ Self-Play ABitterLesson 48

SyntheticRL-V1++ QPrime 40

SyntheticRL-V2 MetamonII 48

Table 6: Public Ladder Usernames. Models are tied to unique usernames throughout evaluations.
Links lead to a replay page for each model. Miscellaneous test battles are also played under the
usernames “NotableWalrus” and “PsyduckIsUbers”, which are not always the same model and do
not appear in results, but may be present in replays or videos featured in our release materials.

We believe that the ability to generate human-like gameplay at fast inference speeds with arbitrarily
prompted teams can be a fun and useful practice tool for human players. However, the models can
be frustrating to play against because their reward function encourages delaying losses, and they
do not forfeit. Figure 31 uses the Large RL model to show that Q-value predictions are calibrated
enough to identify lost positions and implement auto-forfeits.
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Figure 31: Q-functions as a win estimate. We track critic value predictions (for γ = .999) during
battles across a 24-hour period of the Large-RL model’s gameplay on the PS ladder. If we simplify
by ignoring the reward function’s small shaping terms and the discount factor, we can plot these
values as a more interpretable estimate of win probability. We mark these value series by their true
outcome. Small error bars denote two standard deviations over the ensemble of 4 critics.

https://replay.pokemonshowdown.com/
https://replay.pokemonshowdown.com/?user=SmallSparks
https://replay.pokemonshowdown.com/?user=DittoIsAllYouNeed
https://replay.pokemonshowdown.com/?user=Montezuma2600
https://replay.pokemonshowdown.com/?user=Metamon1
https://replay.pokemonshowdown.com/?user=TheDeadlyTriad
https://replay.pokemonshowdown.com/?user=ABitterLesson
https://replay.pokemonshowdown.com/?user=QPrime
https://replay.pokemonshowdown.com/?user=MetamonII
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Model Username Gen1 OU Gen2 OU Gen3 OU Gen4 OU
PokeEnv Heuristic WinningIsOptional 16 - 59 N/A 16 - 54 21 - 36
Small IL SmallSparks 54 - 66 20 - 63 25 - 50 41 - 59
Large RL Montezuma2600 72 - 60 49 - 56 68 - 67 32 - 42
SynRL-V0 Metamon1 57 - 42 42 - 35 61 - 52 49 - 51
SynRL-V1 TheDeadlyTriad 107 - 64 76 - 52 82 - 74 83 - 61
SynRL-V1+SP ABitterLesson 65 - 38 51 - 30 80 - 71 64 - 56
SynRL-V1++ QPrime 72 - 52 37 - 24 48 - 32 68 - 53
SynRL-V2 MetamonII 148 - 95 75 - 40 76 - 53 68 - 48

Table 7: PS Usernames and Win - Loss Records.


