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Summary
The average-reward formulation of reinforcement learning (RL) has drawn increased in-

terest in recent years for its ability to solve temporally-extended problems without relying
on discounting. Meanwhile, in the discounted setting, algorithms with entropy regulariza-
tion have been developed, leading to improvements over deterministic methods. Despite the
distinct benefits of these approaches, deep RL algorithms for the entropy-regularized average-
reward objective have not been developed. While policy-gradient based approaches have re-
cently been presented for the average-reward literature, the corresponding actor-critic frame-
work remains less explored. In this paper, we introduce an average-reward soft actor-critic
algorithm to address these gaps in the field. We validate our method by comparing with ex-
isting average-reward algorithms on standard RL benchmarks, achieving superior performance
for the average-reward criterion.

Contribution(s)
1. We generalize the soft actor-critic (SAC) algorithm from the discounted to the average-

reward setting.
Context: Haarnoja et al. (2018b) derived a MaxEnt RL algorithm, soft actor-critic, for the
discounted setting. We derive theoretical results and implement new algorithmic techniques
to adapt SAC to the average-reward setting.

2. We extend the policy improvement theorem to the entropy-regularized average-reward ob-
jective.
Context: Previous work demonstrated the policy improvement theorem separately in
discounted MaxEnt RL (Haarnoja et al., 2018b) and average-reward (un-regularized)
RL (Zhang & Tan, 2024). We close this gap by analyzing the theoretical properties of
policy improvement in the entropy-regularized average-reward setting.

3. We experimentally demonstrate the advantage of our approach against available baselines
in standard control environments.
Context: We compare our algorithm with existing baseline average-reward methods:
ARO-DDPG (Saxena et al., 2023), ATRPO (Zhang & Ross, 2021), and APO (Ma et al.,
2021).
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Abstract
The average-reward formulation of reinforcement learning (RL) has drawn increased in-
terest in recent years for its ability to solve temporally-extended problems without rely-
ing on discounting. Meanwhile, in the discounted setting, algorithms with entropy reg-
ularization have been developed, leading to improvements over deterministic methods.
Despite the distinct benefits of these approaches, deep RL algorithms for the entropy-
regularized average-reward objective have not been developed. While policy-gradient
based approaches have recently been presented for the average-reward literature, the
corresponding actor-critic framework remains less explored. In this paper, we intro-
duce an average-reward soft actor-critic algorithm to address these gaps in the field. We
validate our method by comparing with existing average-reward algorithms on standard
RL benchmarks, achieving superior performance for the average-reward criterion.

1 Introduction

A successful reinforcement learning (RL) agent learns from interacting with its surroundings to
achieve desired behaviors, as encoded in a reward function. However, in “continuing” tasks, where
the amount of interactions is potentially unlimited, the total sum of rewards received by the agent is
unbounded. To avoid this divergence, a popular technique is to discount future rewards relative to
current rewards. The framework of discounted RL enjoys convergence properties (Sutton & Barto,
2018; Kakade, 2003; Bertsekas, 2012), practical benefits (Schulman et al., 2016; Andrychowicz
et al., 2020), and a plethora of useful algorithms (Mnih et al., 2015; Schulman et al., 2015; 2017;
Hessel et al., 2018; Haarnoja et al., 2018b) making the discounted objective an obvious choice for
the RL practitioner. Despite these benefits, the use of discounting introduces a (typically unphysical)
hyperparameter γ which must be tuned for optimal performance. The difficulty in properly tuning
the discount factor γ is illustrated in our motivating example, Figure 1. Furthermore, agents solving
the discounted RL problem will fail to optimize for long-term behaviors that operate on timescales
longer than those dictated by the discount factor, (1 − γ)−1. Moreover, recent work has argued
that the discounted objective is not even a well-defined optimization problem (Naik et al., 2019).
Importantly, despite most state-of-the-art algorithms operating within this discounted framework,
their metric for performance is most often the total or average reward over trajectories, as opposed
to the discounted sum, which they are designed to optimize. In such cases, the discounted objective
is used as a crutch for optimizing the true object of interest: long-term average performance.

To address these issues, another objective for solving continuing tasks has been defined and
studied (Schwartz, 1993; Mahadevan, 1996): the average-reward objective. Although it is ar-



Reinforcement Learning Journal 2025

guably a more natural choice, it has less obvious convergence properties since the associ-
ated Bellman operators no longer possess the contraction property. Despite an ongoing line
of work on the theoretical properties of the average-reward objective (Zhang et al., 2021;
Wan, 2023), there remain a limited number of deep RL algorithms for this setting. Cur-
rent algorithms beyond the tabular or linear settings focus on policy-gradient methods to de-
velop deep actor-based models (Zhang & Ross, 2021; Ma et al., 2021; Saxena et al., 2023).
While these advancements represent a positive step toward solving the average-reward objec-
tive, there remains a need for alternative approaches for the problem of average-reward deep RL.

Figure 1: The Swimmer-v5 environment,
often not included in Mujoco bench-
marks (Franceschetti et al., 2022), is no-
toriously difficult for discounted methods
to solve when the discount factor is not
tuned over and set to its default value of
γ = 0.99. Other discount-sensitive exam-
ples of environments have been discussed
by Tessler & Mannor (2020). We find that
after carefully tuning the discount factor,
SAC can solve the task, but the solution
is quite sensitive to the choice of γ. Each
curve corresponds to an average over 30
random seeds, with the standard error in-
dicated by the shaded region.

In both the discounted and average-reward scenarios,
optimal policies are known to be deterministic (Ma-
hadevan, 1996; Sutton & Barto, 2018). However, un-
der various real-world circumstances (e.g. errors in
the model, perception, and control loops), a determin-
istic policy can fail. In deployment, when RL agents
face the sim-to-real gap, are transferred to other envi-
ronments, or when perturbations arise (Haarnoja et al.,
2017; 2018a; Eysenbach & Levine, 2022), fully-trained
deterministic agents may be rendered useless. To ad-
dress these important use-cases, it would be useful to
have a stochastic optimal policy which is flexible and
robust under uncertainty. Rather than using heuris-
tics (e.g. ε-greedy, mixture of experts, Boltzmann) to
generate a stochastic policy post-hoc, the original RL
problem can be regularized with an entropy-based term
that yields an optimal policy which is naturally stochas-
tic. Implementing this entropy-regularized RL objec-
tive corresponds to additionally rewarding the agent (in
proportion to a temperature parameter, β−1) for using
a policy which has a lower relative entropy (Levine,
2018), in the sense of Kullback-Leibler divergence.
This formulation of entropy-regularized (often consid-
ered in the special case of maximum entropy or “Max-
Ent”1) RL has led to significant developments in state-
of-the-art off-policy algorithms (Haarnoja et al., 2017;
2018b;c).

Despite the desirable features of both the average-
reward and entropy-regularized objectives, an empirical study of the combination of these two for-
mulations is limited, and no function-approximator algorithms exist yet for this setting. To address
this, we propose a novel algorithm for average-reward RL with entropy regularization which is an
extension of the discounted algorithm Soft Actor-Critic (SAC) (Haarnoja et al., 2018b;c).

Notably, our implementation requires minimal changes to common codebases, making it accessible
for researchers and allowing for future extensions by the community.

2 Preliminaries

In this section, we discuss the background material necessary for the subsequent discussion. Let
∆(X ) denote the probability simplex over the space X . A Markov Decision Process (MDP) is
modeled by a state space S, action space A, reward function r : S × A → R, transition dynamics
p : S × A → ∆(S) and initial state distribution µ ∈ ∆(S). The state space describes the set of
possible configurations in which the agent (and environment) may exist. (This can be juxtaposed

1MaxEnt refers to using a uniform prior policy. In that case, “low relative entropy” (with respect to a uniform prior) is
equivalent to “high Shannon entropy”. In this work, we consider the case of more general priors.
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with the “observation” which encodes only the state information accessible to the agent. We will
consider fully observable MDPs where state and observation are synonymous.) The action space is
the set of controls available to the agent. Enacting control, the agent may alter its state. This change
is dictated by the (generally stochastic) transition dynamics, p. At each discrete timestep, an action
is taken and the agent receives a reward r(s, a) ∈ R from the environment.

We will make some of the usual assumptions for average-reward MDPs (Wan et al., 2021):

Assumption 1. The Markov chain induced by any stationary policy π is communicating.

Assumption 2. The reward function is bounded.

In solving an average-reward MDP, one seeks a control policy π which maximizes the expected
reward-rate, denoted ρπ . In the average-reward framework, such an objective reads:

ρπ = lim
N→∞

1

N
E

τ∼p,π,µ

[
N−1∑
t=0

r(st,at)

]
, (1)

where the expectation is taken over trajectories generated by the dynamics p, control policy π, and
initial state distribution µ.

The remaining non-scalar (that is, state-action-dependent) contribution to the value of a policy is
called the average-reward differential bias function. Because of its analogy to the Q-function in
discounted RL, we follow recent work (Zhang & Ross, 2021) and similarly denote it as:

Qπρ (s,a) = E
τ∼p,π

[ ∞∑
t=0

r(st,at)− ρπ
∣∣∣∣∣s0 = s,a0 = a

]
. (2)

We will now introduce a variation of this MDP framework which includes an entropy regularization
term. For notational convenience we refer to entropy-regularized average-reward MDPs as ERAR
MDPs. The ERAR MDP constitutes the same ingredients as an average-reward MDP stated above,
in addition to a pre-specified prior policy2 π0 : S → ∆(A) and “inverse temperature”, β. The mod-
ified objective function for an ERAR MDP now includes a regularization term based on the relative
entropy (Kullback-Leibler divergence), so that the agent now aims to optimize the expected entropy-
regularized reward-rate, denoted θπ:

θπ
.
= lim
N→∞

1

N
E

τ∼p,π,µ

[
N−1∑
t=0

r(st,at)−
1

β
log

π(at|st)
π0(at|st)

]
, (3)

π∗(a|s) = argmax
π

θπ. (4)

Assumption 1 implies the expression in Equation (3) is independent of the initial state-action and
ensures the reward-rate is indeed a unique scalar. From hereon, we will simply write θ = θπ

∗
for

the optimal entropy-regularized reward-rate for brevity. Comparing to Equation (1), this rate is seen
to include an additional entropic contribution, the relative entropy between the control (π) and prior
(π0) policies.

Beyond a mathematical generalization from the MaxEnt formulation, the KL divergence term has
also found use in behavior-regularized RL tasks, especially in the offline setting (Wu et al., 2019;
Zhang & Tan, 2024) and has found growing interest in its application to large language models
(LLMs) (Rafailov et al., 2024; Yan et al., 2024). Using a non-uniform prior has also been exploited to
develop approaches for solving the un-regularized problem Adamczyk et al. (2025) and the problem
of potential-based reward shaping and compositionality Adamczyk et al. (2023). Intuitively, the
choice of prior allows one to exploit inductive biases while maintaining robustness.

2For convenience we assume that π0 has support across A, ensuring the Kullback-Leibler divergence is always finite.
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The corresponding differential entropy-regularized action-value function is then given by:

Qπθ (s,a) = r(s,a)− θπ + E
τ∼p,π

[ ∞∑
t=1

(
r(st,at)−

1

β
log

π(at|st)
π0(at|st)

− θπ
)∣∣∣∣∣s0 = s,a0 = a

]
. (5)

We have used the subscripts of θ and ρ in this section to distinguish the two value functions.
In the following, we drop the θ subscript as we focus solely on the entropy-regularized objec-
tive. Similar to the notation for the average-reward rate, we make the notation compact, and write
Q(s,a) = Qπ

∗

θ (s,a) as a shorthand.

3 Prior Work

Research on average-reward MDPs has a longstanding history, dating back to seminal contributions
by Blackwell (1962) and later Mahadevan (1996), which laid the groundwork for future algorithmic
and theoretical investigations (Even-Dar et al., 2009; Abbasi-Yadkori et al., 2019; Abounadi et al.,
2001; Neu et al., 2017; Wan et al., 2021). Due to their theoretical nature, these studies primarily
focused on algorithms within tabular settings or under linear function approximation, possibly ex-
plaining the limited work on the average-reward problem in the deep RL community. However,
recent work has begun to address this challenge by tackling deep average-reward RL (Zhang &
Ross, 2021; Ma et al., 2021; Saxena et al., 2023) with methods based on the policy gradient algo-
rithm (Sutton et al., 1999). Especially when tested on long-term optimization tasks, these studies
have demonstrated superior performance of average-reward algorithms in the continuous control
Mujoco benchmark (Todorov et al., 2012), compared to their discounted counterparts.

In the deep average-reward RL literature, research has primarily focused on extending known algo-
rithms from the discounted to the average-reward setting. For example, Zhang & Ross (2021) first
provided an extension of the on-policy trust region method TRPO (Schulman et al., 2015) to the
average-reward domain. To extend the classical discounted policy improvement theorem to this
domain, they introduced a novel (double-sided) policy improvement bound based on Kémeny’s con-
stant (related to the Markov chain’s mixing time). Experimentally, they illustrated the success of
ATRPO against TRPO, especially for long-horizon tasks in the Mujoco suite. Shortly thereafter, (Ma
et al., 2021) introduced an analogue of PPO (Schulman et al., 2017) for average-reward tasks with an
extension of generalized advantage estimation (GAE) and addressing the problem of “value drift”,
again proving successful in experimental comparisons with PPO. Most recently, Saxena et al. (2023)
continued this line of work by extending DDPG (Lillicrap et al., 2016) to the average-reward do-
main with extensive supporting theory, including finite-time convergence analysis. The authors
also demonstrate the improved performance of their algorithm, ARO-DDPG, against the previously
discussed methods, thereby demonstrating a new state-of-the-art algorithm for the average-reward
objective.

In parallel, the discounted objective has included an entropy-regularization term, discussed in works
such as (Todorov, 2006; 2009; Ziebart, 2010; Rawlik, 2013; Haarnoja et al., 2017; Geist et al.,
2019) which to our knowledge has not yet been introduced in a deep average-reward algorithm. The
included “entropy bonus” term in these methods has found considerable use in the development of
both theory and algorithms in distinct branches of RL research (Haarnoja et al., 2018a; Eysenbach
& Levine, 2022; Park et al., 2023). This innovation yields optimal policies naturally exhibiting
stochasticity in continuous action spaces, which has led SAC (Haarnoja et al., 2018c) and its variants
to become state-of-the-art solution methods for addressing the discounted objective.

However, there is limited work on the combination of average-reward and entropy-regularized meth-
ods, especially for deep RL. Recent work by Rawlik (2013); Neu et al. (2017); Rose et al. (2021);
Li et al. (2022); Arriojas et al. (2023); Wu et al. (2024) set the groundwork for combining the
entropy-regularized and average-reward formulations by providing supporting theory and validat-
ing experiments. We will leverage their results to address the problem of deep average-reward RL
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with entropy regularization, while introducing some new theoretical results. In the next section, we
present our average-reward extension of soft actor-critic.

4 Proposed Algorithm

We begin with a brief discussion of soft actor-critic (SAC), for which we derive new theoretical
results and provide an algorithm in the average-reward setting. SAC (Haarnoja et al., 2018b) re-
lies on iteratively calculating a value (critic) of a policy (actor) and improving the actor through
soft policy improvement (PI). In the discounted problem formulation, soft PI states that a new
policy (denoted π′) can be derived from the value function of a previous policy (π) with π′ ∝
expβQπ(s,a), which is guaranteed to outperform the previous policy in the sense of (soft) Q-
values: Qπ

′
(s,a) > Qπ(s,a) for all s,a (cf. Lemma 2 of (Haarnoja et al., 2018b) for details). We

will first show that an analogous result for policy improvement holds in the ERAR setting. Note
that in the case of large state-action spaces, experimentally verifying such inequalities becomes in-
tractable (Naik, 2024) and can be alleviated by instead comparing reward rates: scalar quantities
which can (in principle) be efficiently evaluated with rollouts.

Since the value of a policy is now encoded in the entropy-regularized average reward rate θπ and
not in the differential value, the analogue to policy improvement (Qπ

′
> Qπ) is to establish the

bound θπ
′
> θπ for some construction of π′ from π. Indeed, as we show, the same Boltzmann form

over the differential value leads to soft PI in the ERAR objective. We later give some intuition on
how this result can be understood as the limit γ → 1 of SAC. After establishing PI and the related
theory in this setting we will present our algorithm, denoted “ASAC” (for average-reward SAC, and
following the naming convention of APO (Ma et al., 2021) and ATRPO (Zhang & Ross, 2021)).

4.1 Theory

As in the discounted case, it can be shown that theQ function for a fixed policy π satisfies a recursive
Bellman backup equation3. This proposition was also derived in the concurrent work of Wu et al.
(2024) which analyzed the ERAR problem in the inverse RL framework:

Proposition 1. Let an ERAR MDP with reward function r(s,a), policy π and prior policy π0 be
given. Then the differential value of π, denoted Qπ(st,at), satisfies

Qπ(st,at) = r(st,at)− θπ + E
st+1∼p

V π(st+1), (6)

with the entropy-regularized definition of state-value function

V π(st) = E
at∼π

[
Qπ(st,at)−

1

β
log

π(at|st)
π0(at|st)

]
. (7)

For completeness, we give a proof of this result (and all others) in the Appendix. As in the discounted
case, the proof exploits the recursive structure of Eq. (5).

As mentioned above, in the average reward formulation, the metric of interest is the reward-rate.
Our policy improvement result thus focuses on increases in θπ , generalizing the recent work of
Zhang & Ross (2021) to the entropy-regularized setting. We find that the gap between any two
entropy-regularized reward-rates can be expressed in the following manner:

3Equation (7) is an extension of V π
soft in (Haarnoja et al., 2017) to the case of non-uniform prior policy.
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Lemma 1 (ERAR Rate Gap). Consider two policies π, π′ absolutely continuous w.r.t. π0.
Then the gap between their corresponding entropy-regularized reward-rates is:

θπ
′
− θπ = E

st∼dπ′
at∼π′

(
Aπ(st,at)−

1

β
log

π′(at|st)
π0(at|st)

)
, (8)

where Aπ(st,at) = Qπ(st,at) − V π(st) is the advantage function of policy π and dπ′ is
the steady-state distribution induced by π′.

As a consequence of this result, we find that with the proper choice of the updated policy π′, the
right-hand side of Equation (8) is guaranteed to be positive, implying that soft PI holds. Using the
Boltzmann form of a policy (Haarnoja et al., 2018b) with the differential Q-values as the energy
function and the appropriate prior distribution (π0), gives the desired result:

Theorem 1 (ERAR Policy Improvement). Let a policy π absolutely continuous w.r.t. π0
and its corresponding differential value Qπ(st,at) be given. Then, the policy

π′(at|st)
.
=

π0(at|st)eβQ
π(st,at)∫

eβQπ(st,at)dπ0(at|st)
(9)

achieves a greater entropy-regularized reward-rate. That is, θπ
′ ≥ θπ , with equality only at

convergence, when π′ = π = π∗.

Upon convergence, Equation (8) is identically zero, with the optimal policy satisfying
π∗ ∝ expβA∗(st,at) as expected from the analogous discounted result. We note that the corre-
sponding result in Lemma 2 of Haarnoja et al. (2018b) for SAC (which uses a uniform prior pol-
icy), involves the total value function. On the other hand, under the average-reward objective, the
improved policy is calculated with the differential value function. Intuitively, this result can be un-
derstood as the γ → 1 limit of PI for SAC. Numerically, this can be seen as setting γ = 1 and
continuously subtracting the “extensive” contribution to the total value function throughout. This
bulk contribution scales with the number of timesteps in an episode and is the result of accruing
a per-timestep reward θπ . Since the same term accrues in the state- and action-value functions, it
cancels in the numerator and denominator of Equation (9). In the case of SAC, the bulk contri-
bution (essentially Nθπ , for N ≫ 1) is included in the value function and so a discount factor
γ < 1 is required to ensure that the total value function is bounded in the limit of large N (in the
sense of Equation (3)). In contrast, for the case of ASAC, the bulk contribution is automatically ex-
cluded from the corresponding evaluation (by definition), and the differential value function remains
bounded in the limit of large N , obviating the need to introduce a discount factor. This intuition can
be formalized through a Laurent series expansion; cf. Mahadevan (1996).

To complete the discussion of convergence for ASAC, the policy evaluation (PE) step must also
converge. To formulate this, we rely on the work of Wan et al. (2021) who give convergence proofs
for average-reward policy evaluation.

Lemma 2 (ERAR Policy Evaluation). Consider a fixed policy π, for which θπ of Equation (1) has
been calculated (e.g. with direct rollouts). The iteration of Equations (2) and (7) converges to the
entropy-regularized differential value of π: Qπ(st,at).

Proof. The proof follows from the convergence results established in the un-regularized case, e.g.
Wan et al. (2021). Since the policy π is fixed (and π ≪ π0), the entropic cost −β−1KL (π||π0) is
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Figure 2: Training curves on continuous control benchmarks. We compare our algorithm, average-
reward soft actor-critic (ASAC), with the following baselines: average-reward off-policy deep deter-
ministic policy gradient (ARO-DDPG), average-reward trust-region policy optimization (ATRPO),
and average-reward policy optimization (APO). ASAC learns the fastest with the best asymptotic
performance. Each curve corresponds to an average over 20 random seeds, with standard errors
indicated by the shaded region.

finite and can be absorbed into the reward function’s definition: r ←− r − β−1KL (π||π0), and the
standard proof techniques apply.

4.2 Implementation

As in SAC (Haarnoja et al., 2018b), we propose to interleave steps of policy evaluation (PE) and
policy improvement (PI) using stochastic approximation to train the critic and actor networks, re-
spectively. We use a deep neural net with parameters ψ, and denote Qψ as the “online” critic net-
work (with trainable parameters), and denote Qψ̄ as the “target” critic, updated periodically through
Polyak averaging of the parameters. To implement a PI step, we use the KL divergence loss to update
the parameters ϕ of an actor network πϕ based on the policy improvement theorem (Equation (9)):

Lϕ =
∑
st∈B

KL
(
πϕ(·|st)

∣∣∣∣∣∣∣∣π0(·|st)eβQψ(st,·)Z(st)

)
. (10)

Similar to SAC, the independence of parameters on the partition function Z allows us to simplify
this loss expression to the more tractable form:

Lϕ =
∑
st∈B

E
at∼πϕ

(
log

πϕ(at|st)
π0(at|st)

− β−1Qψ(st,at)

)
. (11)

In practice, we also use the re-parameterization trick to efficiently propagate gradients through the
actor model. After updating the actor via soft policy improvement, we update the critic (differential
value) by performing a policy evaluation step with actions sampled from the current actor network.
The mean squared error loss is calculated by comparing the expected Q-value to the right-hand side
of Equation (6):

Lψ =
∑

(st,at,r,st+1)∼B

∣∣∣∣Qψ(st,at)− ŷ(r, θ; ψ̄, ϕ)∣∣∣∣2, (12)
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where ŷ is the target value, defined as:

ŷ(r, θ; ψ̄, ϕ) = r − θ + E
at+1∼πϕ(·|st+1)

[
Qψ̄(st+1,at+1)−

1

β
log

πϕ(at+1|st+1)

π0(at+1|st+1)

]
.

To update the ERAR rate θπ , we define its target as the batch-wise mean of its definition in Equa-
tion (3). We treat θ as a trainable parameter (using an Adam optimizer) and train it to minimize the
residual error compared to this target value.

We adopt the double Q-learning paradigm (Fujimoto et al., 2018; Haarnoja et al., 2018b; Saxena
et al., 2023) used in previous literature for reducing estimation bias: two critics are maintained, and
the minimumQ-value is used at each state-action pair. Although the corresponding theory (Fujimoto
et al., 2018) for the average-reward case has not been studied in detail, we found this to improve
experimental performance. Understanding the effect of estimation bias is an interesting line of
study for future work.

Unique to the average-reward objective is the family of solutions to the Bellman equation. Rather
than a unique solution, the average-reward Bellman equation gives the differential value function
an additional degree of freedom: If Q(s,a) satisfies Eq. (5) then Q(s,a) + c is also a solution for
all c ∈ R. Section 4.1 of (Ma et al., 2021) provides an interesting discussion on the learning of
value functions with an additive bias and a related downstream “value drifting problem”, which they
correct with value-based regularization. Section 6 of (Wan et al., 2021) provides a discussion on
learning centered value functions via an additionally learned corrective “value function” F . To cor-
rect for this additional degree of freedom in an off-policy way, we introduce a baseline for centering
the value function. Since an entire family of value functions can solve the Bellman equation, to pin
the value, we choose the solution which passes through the origin, by always subtracting the value
Q(s = 0, a = 0). This choice is arbitrary, but works well in practice. Compared to the proposed
regularization, it does not require any additional hyperparameters. Since it is not centering the value
function in the traditional sense, it does not require on-policy data, but in principle the constant shift
can be recovered upon convergence via rollouts of the optimal policy.

Finally, in average-reward tasks with terminating states, previous work (Zhang & Ross, 2021) has
introduced a “reset cost”, giving a penalty to the agent for resetting the environment and treating
the reset state s ∼ µ(·) as the next state to emulate a continuing task. Prior work has chosen a
fixed reset cost (−100) which was deemed suitable in the environments tested. However, it is not
reasonable to expect such penalties to be effective for tasks with different reward scales or dynamics
(cf. Humanoid results in Appendix D of (Zhang & Ross, 2021)). As such, we introduce a novel
adaptive reset cost: To ensure the penalty for resetting is commensurate with the accrued rewards,
we simply take the mean of all rewards in the current batch that do not correspond to termination.
We use a rolling average (with the same learning rate as used for θ) to slowly adapt the penalty to the
agent’s policy. We note that learning (and even defining) an “optimal” reset cost is an open question,
which calls for further study. More details on the implementation, as well as the pseudocode for
ASAC can be found in the Appendix, Section 9.

5 Experiments

To evaluate our new algorithm, we test ASAC on a set of locomotion environments of increasing
complexity including HalfCheetah, Ant, Swimmer, Hopper, Walker2d, and Humanoid (all version
5) from the Gymnasium Mujoco suite (Todorov et al., 2012; Towers et al., 2024). We compare the
performance (average evaluation return across 10 episodes) against the existing average-reward al-
gorithms discussed in Section 3: APO, ATRPO, and ARO-DDPG. For these baselines, we use the
hyperparameters provided in the corresponding papers. While the focus of this paper is on a compar-
ison of algorithms for the average-reward criterion, we also provide a comparison to the discounted
algorithm SAC in the Appendix. To alleviate the cost of hyperparameter tuning, we simply use
the default values inherited from SAC. Further details on the implementation and hyperparameter
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selection can be found in Section 9.1. ASAC performs well compared to both off-policy (ARO-
DDPG) and on-policy algorithms (ATRPO, APO). To maximize performance of the ARO-DDPG
baseline, we found it beneficial to use a replay buffer of maximum length (equal to number of envi-
ronment interactions). Compared to ASAC, the baselines fail to solve the task in a meaningful way
on some environments (Walker, Ant, Humanoid), highlighting the importance of maximum-entropy
approaches for high-dimensional locomotion tasks, especially in the average-reward setting. The
results of these experiments are shown in Figure 2. Our experiments show that ASAC represents a
novel and effective algorithm for the average-reward setting.

6 Discussion

The motivation for developing novel algorithms for average-reward RL arises from the problems
generally associated with discounting. When the RL problem is posed in the discounted framework,
a discount factor γ ∈ [0, 1) is a required input parameter. However, there is often no principled
approach for choosing the value of γ corresponding to the specific problem being addressed. Thus,
the experimenter must treat γ as a hyperparameter. This reduces the choice of γ to a trade-off be-
tween large values to capture long-term rewards and small values to capture computational efficiency
which typically scales polynomially with the horizon, H = (1− γ)−1 (Kakade, 2003).

It is important to note that the horizon H introduces a natural timescale to the problem, but this
timescale may not be well-aligned with another timescale corresponding to the optimal policy: the
mixing time of the induced Markov chain. For the discounted solution to accurately approximate the
average-reward optimal policy, the discounting timescale (horizon) must be larger than the mixing
time. Unfortunately, the estimation of the mixing time for the optimal dynamics can be challenging
to obtain in the general case, even when the transition dynamics are known, making a principled use
of discounting computationally expensive.

Therefore, an arbitrary “sufficiently large” choice of γ is often made (sometimes dynamically (Wei
et al., 2021; Koprulu et al., 2024)) without knowledge of the relevant problem-dependent timescale.
This can be problematic from a computational standpoint as evidenced by recent work (Jiang et al.,
2015; Schulman et al., 2017; Andrychowicz et al., 2020). These points are illustrated in Figure 1
which showed the performance of SAC for the Swimmer environment with different choices of γ.
For the widely used choice γ = 0.99 the evaluation rewards are low relative to the optimal case,
whereas the average rewards algorithms perform well (Fig. 2), highlighting the benefits of using the
average-reward criterion. After submission of this paper, we became aware of related work: RVI-
SAC Hisaki & Ono (2024), which uses relative value iteration (RVI) to estimate the reward-rate. A
detailed comparison of RVI-SAC and ASAC is left to future work.

In this work, we have developed a framework for combining the benefits of the average-reward ap-
proach with entropy regularization. In particular, we have focused on extensions of the discounted
algorithm SAC to the average-reward domain. By leveraging the connection of the ERAR objective
to the soft discounted framework, we have presented the first solution to ERAR MDPs in continuous
state and action spaces by use of function approximation. Our experiments suggest that ASAC com-
pares favorably in several respects to their discounted counterparts: stability, convergence speed, and
asymptotic performance. Our algorithm leverages existing codebases allowing for a straightforward
and easily extendable implementation for solving the ERAR objective.

7 Future Work

The current work suggests multiple extensions for future exploration. Beginning with the average-
reward extension of SAC (Haarnoja et al., 2018b), further developments have been made (Haarnoja
et al., 2018c) including automated temperature adjustment, which we foresee as a straightforward
extension for future work. As a value-based technique, other ideas from the literature such as TD(n),
REDQ (Chen et al., 2021), DrQ (Kostrikov et al., 2020), combating estimation bias (Hussing et al.,
2024), or dueling architectures (Wang et al., 2016) may be included. From the perspective of sam-
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pling, the calculation of θ can likely benefit from more complex replay sampling, e.g. PER (Schaul
et al., 2015). An important contribution for future work is studying the sample complexity and con-
vergence properties of the proposed algorithm. We believe that the average-reward objective with
entropy regularization is a fruitful direction for further research and real-world application, with this
work addressing a gap in the existing literature.
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8 Proofs

Lemma 1 (ERAR Backup Equation). Let an ERAR MDP be given with reward function r(s,a),
fixed evaluation policy π and prior policy π0. Then the differential value of π, Qπ(st,at), satisfies

Qπ(st,at) = r(st,at)− θπ + Est+1∼pV
π(st+1), (13)

with the entropy-regularized definition4 of state-value function

V π(st) = Eat∼π

[
Qπ(st,at)−

1

β
log

π(at|st)
π0(at|st)

]
. (14)

Proof. We begin with the definitions for the current state-action and for the next state-action value
functions, respectively:

Qπ(st,at) = r(st,at)− θπ + E
p,π

[ ∞∑
k=1

(
r(st+k,at+k)−

1

β
log

π(at+k|st+k)
π0(at+k|st+k)

− θπ
)]

,

Qπ(st+1,at+1) = r(st+1,at+1)− θπ + E
p,π

[ ∞∑
k=2

(
(st+k,at+k)−

1

β
log

π(at+k|st+k)
π0(at+k|st+k)

− θπ
)]

.

Re-writing Qπ(st,at) by writing out the first term in the infinite sum and highlighting the terms of
Qπ(st+1,at+1) in blue,

Qπ(st,at) = r(st,at)− θπ+ E
p,π

[
r(st+1,at+1)−

1

β
log

π(at+1|st+1)

π0(at+1|st+1)
− θπ+

∞∑
k=2

(
r(st+k,at+k)−

1

β
log

π(at+k|st+k)
π0(at+k|st+k)

− θπ
)]

,

Qπ(st,at) = r(st,at)− θπ+ E
st+1∼p,at+1∼π

[
Qπθ (st+1,at+1)−

1

β
log

π(at+1|st+1)

π0(at+1|st+1)

]
.

Identifying the entropy-regularized state value function (as in the discounted setting)
V (st) = Eat∼π

[
Qπ(st,at)− 1

β log π(at|st)
π0(at|st)

]
completes the proof.

Lemma 1 (ERAR Rate Gap). Consider two policies π, π′ absolutely continuous w.r.t. π0. Then the
gap between their corresponding entropy-regularized reward-rates is:

θπ
′
− θπ = E

st∼dπ′
at∼π′

(
Aπ(st,at)−

1

β
log

π′(at|st)
π0(at|st)

)
, (15)

whereAπ(st,at) = Qπ(st,at)−V π(st) is the advantage function of policy π and dπ′ is the steady-
state distribution induced by π′.

4Equation (14) is an extension of V π
soft in Haarnoja et al. (2017) to the case of a non-uniform prior policy.
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Proof. Working from the right-hand side of the equation,

E
st∼dπ′ ,at∼π′

(
Aπ(st,at)−

1

β
log

π(at|st)
π0(at|st)

)
= E

st∼dπ′ ,at∼π′

(
Qπ(st,at)− V π(st)−

1

β
log

π′(at|st)
π0(at|st)

)
= E

st∼dπ′ ,at∼π′

(
r(st,at)− θπ + E

st+1∼p
V π(st+1)− V π(st)−

1

β
log

π′(at|st)
π0(at|st)

)
= θπ

′
− θπ + E

st∼dπ′ ,at∼π′

(
E

st+1∼p(·|st,at)
V π(st+1)− V π(st)

)
= θπ

′
− θπ.

where we have used the definition

θπ
′
= E

st∼dπ′ ,at∼π′

(
r(st,at)−

1

β
log

π′(at|st)
π0(at|st)

)
, (16)

and
E

st∼dπ′
E

at∼π′
E

st+1∼p
V π(st+1) = E

st∼dπ′
V π(st), (17)

which follows given that dπ′ is the stationary distribution. In other words, dπ′ is an eigenvector of
the transition operator p(st+1|st,at) · π′(at+1|st+1).

Theorem 1 (ERAR Policy Improvement). Let a policy π absolutely continuous w.r.t. π0 and its
corresponding differential value Qπ(st,at) be given. Then, the policy

π′(at|st)
.
=

π0(at|st)eβQ
π(st,at)∫

eβQπ(st,at)dπ0(at|st)
(18)

achieves a greater entropy-regularized reward-rate. That is, θπ
′ ≥ θπ , with equality only at conver-

gence, when π′ = π = π∗.

Proof. Let π′ be defined as above. Then

1

β
log

π′(at|st)
π0(at|st)

= Qπ(st,at)−
1

β
log E

a∼π0

eβQ
π(st,at). (19)

Using Lemma 1,

θπ
′
− θπ = E

s∼dπ′ ,a∼π′

(
Aπ(st,at)−

1

β
log

π′(at|st)
π0(at|st)

)
= E
s∼dπ′ ,a∼π′

(
Qπ(st,at)− V π(s)−

1

β
log

π′(at|st)
π0(at|st)

)
= E
s∼dπ′ ,a∼π′

(
1

β
log E

a∼π0

eβQ
π(st,at) − V π(s)

)
≥ 0 ,

where the last line follows from the variational formula Mitter & Newton (2000); Theodorou &
Todorov (2012),

1

β
log E

a∼π0

eβQ
π(st,at) = sup

π
E
a∼π

(
Qπ(st,at)−

1

β
log

π(at|st)
π0(at|st)

)
. (20)
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Figure 3: Comparison to SAC shows that our average-reward extension outperforms the original
discounted SAC on the environments tested. It is worth recalling that SAC and ASAC are inherently
designed to optimize different objectives (a discounted return and average reward, respectively),
despite the prevalent use of SAC as a surrogate for optimizing the average reward. Nevertheless,
we give a comparison between the two algorithms here for completeness. We note that the reward
values are different than in earlier environment versions (as used in e.g. Haarnoja et al. (2018b)),
as the result of an updated reward function and bug fixes (including changes to contact forces,
control costs), described in detail here: https://farama.org/Gymnasium-MuJoCo-v5_
Environments.

9 Implementation Details

For all SAC runs, we used Raffin et al. (2021) implementation of SAC with hyperparameters (beyond
the default values) shown below in Section 9.1. The finetuned runs here took ∼ 3000 GPU hours
for all environments, ran on a variety of RTX series and A100 GPUs. Each run requires roughly
∼ 1− 10 GB of RAM.

9.1 Hyperparameters

In addition to the methods discussed in the main text, we also use gradient clipping (on critic network
only), with the maximum gradient norm of 10 for all experiments.

For all ASAC experiments, we use the same hyperparameters as Haarnoja et al. (2018b): batch size
of 256, replay buffer size of 1 000 000, hidden dimension of 256 for each of 2 hidden layers (actor
and critic networks), Polyak averaging with coefficient 0.005, train frequency and gradient steps
of 1 (train for one gradient step at each environment step). We use the Adam optimizer for actor,
critic, and reward-rate with learning rates 10−4, 5 × 10−4, 5 × 10−3. We clip the critic network
gradients with a maximum norm of 10. The scale for reset penalties is chosen as p0 = 10 (see
pseudocode below). In all environments (for SAC and ASAC) we use β = 5, except for Swimmer
and Humanoid, for which we use β = 20. Note that this is in line with the “reward scale” used
in (Haarnoja et al., 2018b). We found that hyperparameter sweeps can give better performance for
individual environments, but the values listed above gave a strong performance universally.

We found the replay buffer size to be a sensitive hyperparameter for ARO-DDPG, in particular for
maintaining its asymptotic performance. We chose the largest replay buffer for ARO-DDPG (equiv-
alent to total environment interactions), but further tuning is left to future work as it is an expensive
environment-dependent operation. We also note that beyond the default hyperparameters for ASAC
described above, we did not perform any tuning, showcasing ASAC’s robustness to hyperparame-
ter choice. Future work may entail an extensive hyperparameter sweep and sensitivity analysis to
further understand the robustness and maximize performance across various environments.

https://farama.org/Gymnasium-MuJoCo-v5_Environments
https://farama.org/Gymnasium-MuJoCo-v5_Environments
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Algorithm 1 Average-Reward Soft Actor-Critic (ASAC)

1: Initialize policy parameters ϕ, Q-function parameters ψ1, ψ2.
2: Initialize target parameters ψ̄1 ← ψ1, ψ̄2 ← ψ2.
3: Initialize learning rates and optimizers (Adam).
4: Initialize mini-batch size b, Polyak step-size τ , temperature α (fixed), replay buffer D.
5: while not converged do
6: Observe state st and sample action at ∼ πϕ(· | st)
7: Execute at, observe reward rt and next state st+1

8: Store (st, at, rt, st+1) in replay buffer D
9: for each gradient step do

10: Sample mini-batch of b tuples (si, ai, ri, s′i) ∼ D
11: Sample a′i ∼ πϕ(· | s′i)
12: Shift the target Q-functions to pass through the origin:

Qψ̄j (s, a)← Qψ̄j (s, a)−Qψ̄j (0, 0)

13: Use pessimistic estimate by taking the pointwise minimum:

Qψ̄(s, a)← min
j=1,2

Qψ̄j (s, a) ∀(s, a)

14: If episode terminated at s′, apply adaptive penalty:

r ← r − p where p← (1− τ)p+ τ p̄ and p̄ = p0 ·
1

b

∑
r∼B

r

15: Compute target:

ŷ(r, θ; ψ̄, ϕ) = r − θ + Ea′∼πϕ(·|s′)
[
Qψ̄(s

′, a′)− β−1 log
πϕ(a

′ | s′)
π0(a′ | s′)

]
16: Update Q-functions (for ψ ∈ {ψ1, ψ2}) by minimizing:

Lψ =
1

b

∑
(s,a,r,s′)∼B

(
Qψ(s, a)− ŷ(r, θ; ψ̄, ϕ)

)2
17: Update policy by minimizing (using pessimistic estimate of online networks Qψ):

Lϕ =
1

b

∑
s∈B

Ea∼πϕ
[
log

πϕ(a | s)
π0(a | s)

− β−1Qψ(s, a)

]

18: Update ERAR rate θ by minimizing Lθ = (θ − θ̄)2 where:

θ̄ =
1

b

∑
(s,a,r)∼B

[
r − β−1 log

πϕ(a | s)
π0(a | s)

]

19: Update target networks:

ψ̄j ← τψj + (1− τ)ψ̄j for j = 1, 2

20: end for
21: end while


