
Cascade - A sequential ensemble method for continuous control tasks

Supplementary materials

A Cascade pseudocode

Algorithm 1: Cascade
Input: Cascade size n, number of training steps per iteration k
E ← ∅ // Current ensemble
for i = 1 to n do

Initialize base net bi
E ← E ∪ {bi}
Train E for k steps // E is interpreted

// as a Cascade net
end for
Return: E

B Experiment setup

If not explicitly mentioned otherwise, all experiments ran the Cascade-algorithm as described in
Section 3. In the following, the default hyperparameter setup will be described. Modifications will
always be explicitly mentioned.

B.1 Base nets

A base net as part of a Cascade net has the following architecture dependent on its position in the
Cascade net:

• Bottom: The exact same architecture and initialization scheme was used for the standard PPO
baseline (see supplementary materials Section B.4) except that the hidden size of the mean network
is 16 instead of 64.

• Not Bottom: Same as bottom, except that only the output dimension of the mean network is
increased by 1. The output of this extra dimension is the fallback action and followed by a sigmoid
function to ensure its value lies in the range [0, 1].

B.2 Cascade net

Initially, the Cascade net consists only of the bottom base net. After every k steps, the Cascade net C
is extended by another base net b as follows: If (mb, logb) are the outputs (without fallback action)
and λ ∈ [0, 1] is the fallback action of b and (mC , logC) are the outputs of C, then the output of the
extended Cascade net C̃ is (λmC + (1− λ)mb, λ logC +(1− λ) logb). As usual, these outputs are
interpreted as the mean and logstd of a normal distribution. The set of base nets making up C is the
set E in Algorithm 1 for Cascade.

B.3 Hyperparameters

If not mentioned otherwise, all experiments were conducted on Ant-v4 and Walker2d-v4 and as the
long-term behavior was of interest, 6 million steps were performed for each experiment. The entire
Cascade net is always trained with standard PPO as described in supplementary materials Section B.4
with the Cascade net used as the actor. The only exception to this is Section H in the supplementary
materials where we deliberately vary the training algorithm. At each iteration (i.e. when a base
net has been added) the Cascade net is always trained with a new instance of PPO (i.e. new value
function and fresh learning rate schedule) but the observation/reward normalizations stay the same.



Reinforcement Learning Journal 2025

Different training times per iteration were tested (see supplementary materials Section D). Using 1
million steps (i.e. Cascade size n = 6 and k = 1 · 106) proved to be the best choice and was taken as
a default value for the subsequent experiments. Additionally, different initializations for the fallback
action were tested (see supplementary materials Section E) and having an initial fallback action of 0.5
proved to be the best choice. Therefore, this was also chosen as the default value for the following
studies. This default choice for running the Cascade algorithm will be referred to as standard/default
Cascade.

B.4 Algorithm choice and hyperparameters

The exact version of PPO used to train the Cascade net is the one from CleanRL (Huang et al., 2022)
(more specifically ppo_continuous_action.py). This is a highly optimized version of PPO as
many optimizations such as observation/reward-normalization, learning-rate annealing, generalized
advantage estimation, observation/reward-normalization, etc. have been implemented. When not
explicitly mentioned otherwise, all hyperparameters are the default values of this implementation.

B.5 Measurements

For each experiment, every 10, 000 environment steps the exact policy that was used in training at
that point was frozen and 10 evaluation runs were conducted. In particular, this evaluation policy
was non-deterministic, as actions were sampled from a normal distribution with mean and standard
deviation obtained from the network outputs. The average, undiscounted return from the 10 runs
was used as the performance measure. Each experiment was run at least 10 times and no two run
across all experiments used the same seed. Plots show the average of a measured metric (mostly the
performance) over these 10 seeds along with the standard error for that experiment.

C Baselines

The chosen PPO version (see Section B.4) was run on MuJoCo environments to act as a baseline
for the experiments. Fig. 9 shows the performance over the course of k ∈ {2, 3, 4, 5, 6} million
environment steps. Note, that for different k, different graphs emerge. This is because learning rate
annealing is used in the PPO implementation.

D Varying base agents’ training duration

The impact of the rate at which new base agents are added was tested. To investigate this, the
training duration per iteration was varied such that in 6 million timesteps a Cascade of size n ∈
{2, 3, 4, 5, 6, 7, 8} could be built. For clarity, only n ∈ {2, 4, 6} were visualized in Fig. 10. The
others followed the general trend. A higher number of cycles led to a higher performance up to the
peak of n = 6, after which the performance slightly degraded for n ∈ {7, 8}. Given these results, a
training duration of 1 million steps per iteration was chosen as the default for the Cascade experiments
which results in a Cascade of size 6.

E Fallback action initialization

The impact of the fallback action initialization was tested in regard to performance. For this, the
bias of the fallback-action output was initialized such that the fallback-action λ was initially equal
to λ ∈ {0.05, 0.5, 0.95} on average. This was possible because like any other neuron, the neuron
responsible for the fallback action λ is a weighted sum of the activations of the prior layer (li)i≤n

followed by a sigmoid activation:



Cascade - A sequential ensemble method for continuous control tasks

(a) Ant-v4 (b) Walker2d-v4

(c) Humanoid-v4 (d) Hopper-v4

(e) HalfCheetah-v4

Figure 9: Performance graphs of PPO for 2 million (red), 3 million (blue), 4 million (green), 5 million
(yellow) and 6 million (beige) environment steps.

Figure 10: Performance graphs of Cascade when adding a new base agent every 3 million steps (red),
every 1.5 million steps (green), and every 1 million steps (blue) on Ant-v4 (left) and Walker2d-v4
(right) for 6 million environment steps.



Reinforcement Learning Journal 2025

λ = sigmoid(bλ +

n∑
i=1

wλ,i · li) (2)

But since the weights (wλ,i)i≤n are initialized with mean 0 and low variance (see implementation
CleanRL (Huang et al., 2022)), λ can initially be approximated by λ ≈ sigmoid(bλ). Therefore, by
setting bλ = sigmoid−1(λ) the initial fallback action can be set.

Fig. 11 shows the results of this experiment with respect to performance for Ant-v4 and Walker2d-v4.
The value of 0.5 appears to be the strongest choice for both environments. The poor performance of
the 0.05 initialization could be explained by the natural tendency of the base agents to strive for a
high fallback weight (shown in Section 4.5), hence the agent started in an unfavorable position. The
0.9 initialization was only slightly worse than 0.5. This could be explained by a lack of exploration
as the newly initialized base nets are initially dominated by the base policy. Given these results, an
initial fallback weight of 0.5 was picked as the default value for the Cascade experiments.

Figure 11: Performance graphs of Cascade on Ant-v4 (left) and Walker2d-v4 (right) for 6 million
environment steps with 0.05 (green), 0.5 (blue) and 0.9 as the initial fallback value for new base
agents.

F Learning rate schedules

Cascade will be investigated in terms of its sensitivity to different learning rate schedules. To do this,
instead of having a cyclical learning rate that linearly decays to 0 every iteration, the learning rate
will now linearly decrease from its initial value to 0 over the course of the entire training - exactly as
the PPO baseline. Fig. 12 shows the performance result of this modification compared with standard
Cascade on Ant-v4 and Walker2d-v4. Up until the last iteration, modifying the learning rate schedule

Figure 12: Performance graphs of standard Cascade (blue) and Cascade with a learning rate that
linearly decays over the course of the entire training (green) as opposed to being cyclical for 6 million
environment steps on Ant-v4 (left) and Walker2d-v4 (right).

had no significant impact on performance. The performance dip in the last iteration is explained by
the learning rate having already decayed too much to guarantee convergence as usual. Therefore,
when disregarding the last iteration it can be concluded that the cyclical learning rate that comes with



Cascade - A sequential ensemble method for continuous control tasks

standard Cascade has little to no impact on the performance. This shows that Cascade is more robust
to different learning rate schedules than standard PPO where performance could vary drastically
depending on the schedule (see C).

G Frozen base nets with no input/reward normalization

Keeping the base nets of Cascade frozen for the experiment in Section 4.3 naturally favors standard
Cascade as it allows the adaptation to new normalization states of the environment. Therefore, this
experiment was repeated for the non-normalized environments. Fig. 13 shows that indeed there is not
much difference in terms of the final performance for both Cascade versions.

Figure 13: Performance graphs of standard Cascade (blue) vs Cascade with the weights of all but the
latest base-net frozen (green) on Ant-v4 (left) and Walker2d-v4 (right) with no observation/reward
normalization for 6 million environment steps.

H Using different base training algorithms

Besides PPO, we also evaluated Cascade with different base training algorithms, namely SAC
(Haarnoja et al., 2018) and DDPG (Lillicrap et al., 2019), which required a slightly different experi-
ment setup. In the following, we mention only the differences to our PPO experiment setup in Section
B.

H.1 SAC

For SAC, we used the implementation of SAC along with its hyperparameters from CleanRL (Huang
et al., 2022) (more specifically, sac_continuous_action.py). The only change we did apply
was using orthogonal weight initialization for the networks’ parameters (instead of Pytorch’s default
initialization). This is the setup we used as the baseline for SAC.

Next, we describe the changes made to the baseline for Cascade. Firstly, we set the actor’s hidden
dimension to 128 instead of 256 so that the parameter counts of the fully stacked Cascade net is about
the same as the baseline SAC network. In contrast to PPO, SAC uses a replay buffer which we reset
whenever a new base agent is added. Additionally, we discovered that SAC is much more sensitive to
fully re-initializing the critic whenever a new base agent is added. Therefore, we simply kept the
critic network whenever a new base agent is added by simply not resetting its parameters.

We ran the experiments using SAC only for 2 million total environment steps and updated added a
new base agent every 5 · 106 steps as our version of SAC converged much faster than PPO.

Fig. 14 shows the performance of the SAC baseline compared to Cascade with SAC. In contrast to
the PPO experiments, using Cascade yields very little or no improvement at all.



Reinforcement Learning Journal 2025

(a) Ant-v4 (b) Walker2d-v4

(c) Humanoid-v4 (d) Hopper-v4

(e) HalfCheetah-v4

Figure 14: Performance graphs of Cascade with SAC (blue) vs SAC (red) on Ant-v4 (top left),
Walker2d-v4 (top right), Humanoid-v4 (bottom left), Hopper-v4 (bottom middle) and HalfCheetah-v4
(bottom right) for 2 million environment steps.

H.2 DDPG

For DDPG, we also used the DDPG implementation along with its hyperparameters from CleanRL
(Huang et al., 2022) (more specifically, ddpg_continuous_action.py). This is the setup we
used as the baseline for DDPG.

Like SAC, DDPG also uses a replay buffer which we reset every time a new base agent is added.
Similarly, to SAC we found that a full re-initializing of the critic is detrimental to performance.
Therefore, we also keep the critic network when we add a new base agent.

Fig. 15 shows the performance of the DDPG baseline compared to Cascade with DDPG. Like SAC,
using Cascade yields very little to no improvement at all.

I Cascade for discrete action spaces

To test Cascade on a greater variety of tasks, Cascade was applied to environments with discrete
action spaces. For this, the MuJoCo environment’s action spaces were discretized to allow for a direct
comparison to the performances on the continuous versions. The following discretization was used
for a continuous action space Acont = [a1, b1] × · · · × [an, bn] ⊆ Rn: Adiscr = {0, . . . , 2n − 1}
and action 0 ≤ i ≤ 2n − 1, is mapped to

i1 . . . in 7→ (a1i1 + b1(1− i1), . . . , anin + bn(1− in))

where i1 . . . in (ij ∈ {0, 1}) is the binary representation of i. This discretization allowed us to use
the discrete version of PPO from CleanRL (Huang et al., 2022) (more specifically ppo.py) without
any modifications. Though this simple discretization does not scale well in terms of dimensions, the
discretized action spaces were still small enough to work well on all considered MuJoCo environments



Cascade - A sequential ensemble method for continuous control tasks

(a) Ant-v4 (b) Walker2d-v4

(c) Humanoid-v4 (d) Hopper-v4

(e) HalfCheetah-v4

Figure 15: Performance graphs of Cascade with DDPG (blue) vs DDPG (red) on Ant-v4 (top left),
Walker2d-v4 (top right), Humanoid-v4 (bottom left), Hopper-v4 (bottom middle) and HalfCheetah-v4
(bottom right) for 6 million environment steps.

except Humanoid where this discretization would have 217 actions. More precisely, discrete PPO on
the discretized MuJoCo environments even managed to outperform its continuous counterpart on
Hopper, HalfCheetah, and Walker2d. The performances on discrete Ant were poor even though Ant
has an equally small action space which indicates that good performances on Ant require usage of the
entire spectrum of its continuous action space which is not possible here since the discretization is too
coarse. Therefore, we only compare Cascade to PPO on discrete Walker2d, Hopper, and HalfCheetah.

For Cascade to work on a discrete action space, the Cascade net is now trained with a discrete version
of PPO from CleanRL (Huang et al., 2022) (more specifically ppo.py, in the following referred
to as discrete PPO) along with their hyperparameter choice. The Cascade-specific hyperparameters
like the fallback initialization and the frequency of base nets remained the same. The only change is
that the hidden layer width of base agents was increased to 64 from 16 to deal with the large action
spaces of the discretized environments (For example, in the discretized version of Ant, there are
256 = 28 possible actions). The bigger hidden size always outperformed the smaller one in this
discrete setting. The output of the Cascade net is interpreted as the logits of a Categorical distribution,
therefore actions are chosen by applying softmax to Cascade’s outputs and then sampling from that
distribution.

Fig. 16 compares the performances of the above-described discrete version of Cascade compared to
discrete PPO applied to the discretized MuJoCo environments Walker2d, Hopper, and HalfCheetah
for 10 million environment steps. Discrete PPO was also tested for shorter durations to account for
the different learning rate schedules. However, the 10 million versions always performed best in
terms of final performance. In contrast to previous experiments, 10 million steps were chosen since
Cascade did not yet seem to converge for the 6 million version.



Reinforcement Learning Journal 2025

(a) Walker2d-v4 (b) Hopper-v4

(c) HalfCheetah-v4

Figure 16: Performance graphs of discrete PPO (red) compared to Cascade (blue) for 10 million steps
on discretized versions of Walker2d, Hopper, and HalfCheetah.

Though not by much, Cascade manages to outperform PPO in terms of final performance on Walker2d
and Hopper and draws even on HalfCheetah. Though Cascade on discrete action spaces takes longer
to train, it is mostly still superior to PPO in these settings.

J Plasticity gain

In Section 5 we claimed that adding new base agents to the Cascade net improves its plasticity. In
this subsection, we will formally introduce network plasticity and investigate the claim above. Lyle
et al. (2023) describe network plasticity as "[...] the ability of a neural network to quickly change its
predictions in response to new information [...]". Formally, they define it as the expected loss that is
obtained after running an optimization algorithm to minimize a loss sampled from a distribution of
losses. In the following, we describe the concrete optimization problem Lyle et al. used to measure
their network’s plasticity which is the one we employed here too. For details, we refer to their original
paper (Lyle et al., 2023).

Assume f is an ANN architecture whose output layer has a dimension of one and Θ ⊆ Rn is the set
of parameters for f . Furthermore, assume that X is a distribution of inputs for f . For θ ∈ Θ we can
define a family of optimization problems

lω := Ex∼X

[
(f(x, θ)− (a+ sin(105f(x, ω))))2

]
where a = Ex∼X [f(x, θ)] ∈ R, ω ∈ Θ. (3)

If we use θ∗(ω) to denote the final parameters obtained by running an optimization algorithm on lω ,
and W denotes a distribution over Θ, then the plasticity P(θ) of θ is defined as

P(θ) = b− Eω∼W [lω(θ
∗
ω)] where b = Ex∼X,ω∼W

[
sin(105f(x, ω))

]
. (4)

Intuitively, this definition of plasticity quantifies how well f can adapt to perturbations of its output.

We measured the plasticity of the Cascade net from the experiments in Section 4.2 right before the
second base agent is added and directly afterwards for the Walker2d and Ant environment. The
Cascade net has an output dimension greater than one as we output a mean and a logstd value
for each dimension of the action space. To fix this, we simply averaged over the network’s mean
output and discarded the logstd output. We used a uniform distribution over 1000 samples from
the observation distribution of the current Cascade net (after adding the new agent) for X and the
parameter distribution W is the initial parameter distribution of our Cascade net. Furthermore, we
used the same optimization as the Cascade net used during training and defined θ∗(ω) as the result of



Cascade - A sequential ensemble method for continuous control tasks

Env Parameters PPO Parameters Cascade Runtime PPO Runtime Cascade

Ant 12497 11286 5.5h 8.6h
Walker2d 11085 9470 5.1h 7.7h
Hopper 10119 8186 4.6h 7.4h

Humanoid 57763 68098 6.5h 8.7h
HalfCheetah 11085 9470 5.2h 8.1h

Table 2: Average runtime in hours of Cascade and vanilla PPO for 6 million steps along with the
parameter count.

Env σ2 σ3 σ4 σ5 σ6

Ant 0.051 0.039 0.041 0.046 0.087
Walker2d 0.198 0.174 0.144 0.113 0.095

Table 3: The standard deviation of the fallback action within one episode for each base net in the
Cascade net when standard Cascade was run on Ant-v4 and Walker2d-v4 for 6 million environment
steps. We denote the fallback standard deviation of the second oldest base net by σ2 and σ6 is the
fallback standard deviation of the one added last. The first base net isn’t listed because it does not
have a fallback action.

optimization after 104 parameter updates. The expectations in Equation 4 are approximated using 10
samples from W .

Taking the average of 5 runs, the Cascade net before adding the second base agent had the plasticity
P = 0.014 in Walker2d and P = 0.16 in Ant. After the base agent has been added, the plasticity was
P = 0.042 in Walker2d and P = 0.30 in Ant. The baseline b’s average was 0.50 in Walker2d and
0.56 in Ant. This clearly shows that the addition of extra-base agents hugely improves the network’s
plasticity.

K Runtime measurements

In this section, we compare the runtime of Cascade to the baseline PPO agent that was measured in
the experiments 4.2. Tab. 2 compares the runtimes of PPO and Cascade along with their parameter
count for Ant, Walker2d, Hopper, Humanoid, and HalfCheetah for a training duration of 6 million
steps which results in a Cascade net of size 6 for Cascade. The experiments have been run on Xeon
Gold 5120 CPUs with 28 cores à 2.20GHz. Though by construction both PPO and Cascade have the
same parameter count, Cascade is around 50% slower because its inference step is not parallelizable
as each base agent has to wait for the output of the previous one.

L Fallback action distribution

In this section, we take a closer look at how the fallback actions reported in Tab. 1 are distributed
over the state space. Firstly, just by looking at the standard deviation of the fallback action within one
episode, we can directly see that the learned fallback behavior is non-trivial as the fallback action
does not just assume a constant value. Tab. 3 lists these standard deviations for the final Cascade net
for Ant and Walker2d.

We can go even one step further and look directly at the course of the fallback action within one
episode for one concrete model. Fig. 17 visualizes the course of the fallback action over one episode
for the second oldest and latest base agent on Ant-v4 and Walker2d-v4 for one randomly picked



Reinforcement Learning Journal 2025

model (Though the individual graphs differ for each model, the main patterns are the same for each
model).

Figure 17: Course of the fallback action of a trained Cascade net over the course of one episode
(capped at 1000 steps) for the second oldest base agent (blue) and the latest base agent (red) on
Ant-v4 (left) and Walker2d-v4 (right)

It can be observed that base net 2 (second oldest base net) in general assumes values close to 1
meaning it mostly delegates its action to the original base net. However, there are some regularly
spaced spikes (more so in Walker2d) where suddenly a much lower fallback value is assigned
suggesting that it specialized itself to certain regions of the state space. The same can be said for base
net 6 (lastest base net) on Walker2d where the fallback action regularly switches between roughly
0.8 to values as low as roughly 0.4. However, in Ant, base net 6 does not seem to have any spikes
and oscillates only within a range of roughly 0.1 (We note though that in general this range is much
larger and only coincidentally this small for the model we picked).


