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Summary
Conventional reinforcement learning (RL) methods often fix a single discount factor for

future rewards, limiting their ability to handle diverse temporal requirements. We propose
a framework that utilizes an interpretation of the value function as a Laplace transform. By
training an agent across a spectrum of discount factors and applying an inverse transform,
we recover a log-compressed representation of expected future reward. This representation
enables post hoc adjustments to the discount function (e.g., exponential, hyperbolic, or finite
horizon) without retraining. Furthermore, by precomputing a library of policies, the agent can
dynamically select the policy that maximizes a newly specified discount objective at runtime,
effectively constructing a hybrid policy to handle varying temporal objectives. The properties
of this log-compressed timeline are consistent with human temporal perception as described
by the Weber-Fechner law, theoretically enhancing efficiency in scale-free environments by
maintaining uniform relative precision across timescales. We demonstrate this framework in a
grid-world navigation task where the agent adapts to different time horizons.

Contribution(s)
1. We extend prior methods for computing log-compressed representations of expected future

reward to a dynamic policy evaluation setting, showing that when a library of policies is
available, this representation enables immediate re-evaluation of these policies under any
desired discount function.
Context: Prior work established methods for computing log-compressed representations
of expected future reward (Momennejad & Howard, 2018; Tiganj et al., 2019; Tano et al.,
2020; Masset et al., 2023). Our extension focuses on dynamical policy evaluation with
arbitrary temporal discounting. We evaluate the approach under idealized conditions where
true value functions are accessible, demonstrated through a grid-world navigation task.

2. Leveraging the Weber–Fechner link between log-time codes and human perception, we
analytically show that log-compressed representations enable efficient decision-making in
scale-free environments by maintaining uniform relative precision across timescales.
Context: The Weber-Fechner law Fechner (1860/1912) is a widely referenced principle in
psychophysics, stating that perceived magnitude is proportional to the logarithm of stimulus
intensity, implying a logarithmic scale.
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Abstract
Conventional reinforcement learning (RL) methods often fix a single discount factor
for future rewards, limiting their ability to handle diverse temporal requirements. We
propose a framework that utilizes an interpretation of the value function as a Laplace
transform. By training an agent across a spectrum of discount factors and applying an
inverse transform, we recover a log-compressed representation of expected future re-
ward. This representation enables post hoc adjustments to the discount function (e.g.,
exponential, hyperbolic, or finite horizon) without retraining. Furthermore, by precom-
puting a library of policies, the agent can dynamically select the policy that maximizes
a newly specified discount objective at runtime, effectively constructing a hybrid policy
to handle varying temporal objectives. The properties of this log-compressed timeline
are consistent with human temporal perception as described by the Weber-Fechner law,
theoretically enhancing efficiency in scale-free environments by maintaining uniform
relative precision across timescales. We demonstrate this framework in a grid-world
navigation task where the agent adapts to different time horizons.

1 Introduction

In traditional RL setting, agents learn by maximizing a cumulative future reward, which is typi-
cally exponentially discounted over time using a fixed temporal discount factor (γ) (Sutton & Barto,
2018). Despite its widespread adoption, such discounting approach presents limitations, particularly
in dynamic environments where the relevance of future rewards may vary over time. For example,
if an agent encounters an emergency situation where immediate action is critical a high discount on
future rewards is beneficial. Conversely, in investment scenarios, considering longer-term outcomes
might be preferred in some cases, necessitating a lower discount rate while in other cases the focus
might be on short-term investments where a higher discount rate would be preferred. Furthermore,
while the exponential discounting has been widely used since exponentially discounted future re-
ward can be efficiently computed using temporal difference (TD) learning thanks to the efficiency
of Bellman equation, other types of temporal discounting are often preferred. Specifically, hyper-
bolic discounting has gained attention for its ability to more closely mimic human decision-making
processes. Unlike exponential discounting, hyperbolic discounting reduces the value of rewards less
steeply over time, which has been shown to reflect more accurately how people value immediate
versus delayed rewards (Ainslie, 1975). This form of discounting suggests that people often display
a preference for smaller-sooner rewards over larger-later rewards when the delays are short, but this
preference can switch as the delays increase, a phenomenon often referred to as “temporal inconsis-
tency” or “preference reversal” (Green & Myerson, 1994; Laibson, 1997). More generally, humans
can adjust the discounting function to adapt to the temporal statistics of the environment (Redish,
2004; Frederick et al., 2002). These considerations highlight the need for more flexible approaches
to temporal discounting in RL, where discounting can be adjusted dynamically after the agent has
been trained.
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1.1 Related work

Limitations of exponential discounting were addressed in a number of previous studies. Inspired
by human decision-making, previous work mainly focused on hyperbolic discounting by integrating
over a spectrum of γ values (Kurth-Nelson & Redish, 2009; Fedus et al., 2019; Masset et al., 2023;
Tiganj et al., 2019; Tano et al., 2020). Tang et al. (2021) used Taylor expansion of discount rates to
interpolate value functions of two distinct discount factors.

Going beyond integration across γ values, previous work proposed the use of inverse Laplace trans-
form to convert a value function across the set of γ values into a function of future time (Momenne-
jad & Howard, 2018; Tiganj et al., 2019; Tano et al., 2020; Masset et al., 2023). This was primarily
applied to modeling of human decision making as existence of a mental timeline of the future has
been supported by behavioral (Tiganj et al., 2022) and neural evidence (Cao et al., 2024). Proposed
approach builds on this work and integrates the Laplace framework into a setting where agents need
to select actions at every step. We propose that agents construct multiple timelines of the future and
use policy selection at every step.

This approach is in general compatible with model-free and model-based setting. For example, Tano
et al. (2020) used spectrum of γ values to compute a reward as a function of future time in a model-
free setting with TD learning. Model-based RL learning of arbitrary discount functions, including
hyperbolic was also done using function approximation of the optimal policy (Schultheis et al.,
2022). Model based RL approaches used successor representation and statistical learning computed
with a spectrum of γ values to estimate timeline of the future (Tano et al., 2020; Momennejad &
Howard, 2018; Tiganj et al., 2019).

1.2 Summary of the proposed approach

Here we describe an RL method with adaptive temporal discounting, where the discounting func-
tion can be chosen after training and dynamically adjusted. This is achieved by computing expected
reward as a function of future time τ∗ for a policy π. Such function then enables temporal dis-
counting with arbitrary functional forms, such as exponential and power-law as well as temporal
windows (e.g., expected reward from time ti to time tj at a given state) by varying the weight given
to different parts of the future timeline.

To compute expected reward as a function of future time for a given state under a policy π, we com-
pute a set of values V for a spectrum exponentially discount rates γ. Using a linear transformation
this set of values can then be converted from a function of γ into a function of future time, τ∗ . From
a set of candidate policies π, this approach can then select a policy that maximizes a reward under
the desired temporal discounting.

In the limit where the value V is computed for all possible γ values (i.e., γ is a continuous variable)
we show that this approach can select an optimal policy from a set of precomputed policies under a
user-specified temporal discounting function. For practical applications, we consider a discrete set
of geometrically spaced γ values. This gives rise to a log-compressed representation of the future
time where the temporal resolution gradually decreases as a function of distance from the current
state.

Log-compressed time reflects the Weber-Fechner law which governs scale-invariance in human per-
ception across a number of domains, including time: perceived magnitude is proportional to the
logarithm of the true magnitude of the stimulus (Fechner, 1860/1912). In time perception the scale-
invariance is manifested in behavioral tasks such as interval reproduction, where variability of repro-
duced interval by human participants is proportional to the duration of the interval. In other words,
timing precision is proportional to the length of the interval itself, a phenomenon known as the
scalar property (Gibbon, 1977; Wilkes, 2015). Such a logarithmically compressed representation of
time is argued to be advantageous when the environment lacks a single dominant timescale (i.e., it is
scale-free), so that events or correlations extend across multiple orders of magnitude in a self-similar
manner (Howard & Shankar, 2018; Shankar & Howard, 2013). We show that the log-compressed
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representation of the future time described here, captures the scalar property and enables efficient
decision making under the assumption that variability in reward time (or spatial position) scales with
its temporal (or spatial) distance.

2 Methods

We consider a standard RL framework modeled as a Markov Decision Process (MDP), defined by
the tuple ⟨S,A,P,R⟩, where:

• S represents the state space, encompassing all possible states the agent may encounter,

• A denotes the action space, consisting of all actions available to the agent,

• P : S × A × S → [0, 1] is the state transition probability function, specifying the probability
P(s′|s, a) of transitioning to state s′ ∈ S from state s ∈ S upon taking action a ∈ A,

• R : S × A × S → R is the reward function, defining the immediate reward R(s, a, s′) received
when transitioning from state s to state s′ via action a.

The agent’s goal is to learn a policy π(a|s), which maps states to a probability distribution over
actions, maximizing the expected cumulative reward over time under a specified temporal discount-
ing scheme. In the traditional RL formulation, this is captured by the state-value function with an
exponential discount factor γ ∈ [0, 1]:

V π
γ (s) = Eπ

[ ∞∑
τ∗=0

γτ∗
rt+τ∗ | st = s

]
, ∀s ∈ S, (1)

where rt+τ∗ = R(st+τ∗ , at+τ∗ , st+τ∗+1) is the reward at time step t + τ∗, τ∗ denotes future time
steps relative to the current time t, and the expectation Eπ is taken over trajectories induced by the
policy π and the transition dynamics P . The discount factor γ exponentially weights future rewards,
prioritizing immediate rewards when γ < 1. However, this formulation fixes the temporal preference
at training time, limiting adaptability to different discounting schemes or planning horizons post-
training.

2.1 Computing Expected Rewards as a Function of Future Time

To enable this adaptability, we compute the state-value function V π
γ (s) across a discrete set of dis-

count factors Γ = {γ1, γ2, . . . , γm}, where each γi ∈ [0, 1]. For a specific discount factor γi, the
value function is:

V π
γi
(s) = Eπ

[ ∞∑
τ∗=0

γτ∗

i rt+τ∗ | st = s

]
. (2)

Define g(τ∗) = Eπ [rt+τ∗ | st = s], which represents the expected reward at future time step τ∗

under policy π, starting from state s at time t. This allows us to rewrite the value function as:

V π
γi
(s) =

∞∑
τ∗=0

γτ∗

i g(τ∗). (3)

This expression resembles the discrete analog of the Laplace transform (or unilateral Z-transform)
of the sequence g(τ∗), with γi acting as the transform variable. Equivalently, letting σi = − ln(γi)
(so γi = e−σi ), we can express it as:

V π
γi
(s) =

∞∑
τ∗=0

e−σiτ
∗
g(τ∗), (4)
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where V π
γi
(s) can be interpreted as the Laplace transform of g(τ∗) evaluated at σi, i.e., V π

γi
(s) =

L{g(τ∗)}(σi). By computing V π
γi
(s) for multiple γi ∈ Γ, we obtain a set of samples of this trans-

form at points σi:

Vπ(s) = [V π
γ1
(s), V π

γ2
(s), . . . , V π

γm
(s)]. (5)

To recover the expected reward function g(τ∗) from these samples, we apply an inverse transform.
With a finite set of γi, we approximate g(τ∗) for discrete τ∗ = 0, 1, 2, . . . using numerical methods,
such as the Post inversion formula Post (1930) (see Sec. S1 for discussion on numerical stability
and demonstrations of other approaches for computing the inverse that can provide better numerical
stability than Post inversion formula). The Post method approximates g(τ∗) as:

g(τ∗) ≈ (−1)k

k!

(
k

τ∗

)k+1
dk

dσk
V π
γ (s)

∣∣∣∣
σ=k/τ∗

, (6)

where k is a parameter chosen to balance accuracy and computational stability as discussed in the
next section, and γ = e−σ .

Once g(τ∗) is estimated, we can compute the value of the policy under any arbitrary temporal
discounting function. Examples include finite horizon: for a horizon T , the cumulative expected
reward is:

V π
0→T (s) =

T∑
τ∗=0

g(τ∗), (7)

and hyperbolic and power-law discounting: with a discount function f(τ∗) = 1
(1+Kτ∗)β

, the value
is:

V π
hyperbolic(s) =

∞∑
τ∗=0

1

(1 +Kτ∗)
β
g(τ∗), (8)

where K > 0 controls the discounting rate.

Fig.1a shows how value increases as a function of τ∗: without temporal discounting the value
reaches the true magnitude of the reward. Fig. 2 illustrates the impact of finite horizon on the
value for different distances from the goal.

(a) (b)

Figure 1: Value function as a result of integrating expected reward at future time steps for different
values of reward (with k = 10) (a) and parameter k (b). The reward is located at a distance of 10
steps from the agent.

Overall, this approach eliminates the need to retrain the policy for different temporal preferences,
offering a flexible framework for post-hoc adaptation.
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Figure 2: Value of
∫ τ∗=m

τ∗=0
g(τ∗) across varying deadlines (m) and distance from rewarding goal

state (τ ) for a terminal reward of magnitude 1 for k = 30.

2.2 Emergence of Log-Compression in the Estimation of Future Time

In this section, we investigate how the discrete approximation employed to estimate the expected
reward function g(τ∗) naturally yields a log-compressed representation of future time. This property
arises from the mathematical structure of the inverse transform approximation and carries important
implications for an agent’s temporal perception and decision-making.

To illustrate the emergence of log-compression we take advantage of linearity of the Laplace and
inverse Laplace transform and first derive its impulse response and later generalize that to arbitrary
reward functions. To compute the impulse response, we consider an environment where a single
reward of magnitude 1 is positioned at a temporal distance τ from the current state, indicating the
number of steps to reach the reward. The expected reward at a future time step τ∗ is:

g(τ, τ∗) =
1

τ

kk+1

k!

( τ

τ∗

)k+1

e−k( τ
τ∗ ). (9)

The result has a form of gamma distribution (Weisstein, 2004), and has been widely used in learning
temporal relationships (Hopfield & Tank, 1990; Grossberg & Schmajuk, 1989; Shankar & Howard,
2012; Jacques et al., 2021).

As shown by Shankar & Howard (2012) taking the partial derivative of the impulse response of
g(τ, τ∗) with respect to τ∗ and setting it to zero, we find that it is a unimodal function of time t with
a maximum at τ∗ k

k+1 (in the limit when k → ∞, the peak is exactly at τ∗, see Appendix S3 for
derivation). Expected reward as a function of future time for reward magnitude of 1 and distance of
25 steps is shown in Fig. 3 for different values of k. We used 50 log-spaced τ∗ values ranging from
1 to 50.

To demonstrate that the representation is indeed log-compressed, we express the width of the uni-
modal impulse response of g(τ, τ∗) through the coefficient of variation CV = 1√

k+1
, which is a

ratio of standard deviation and mean (see Appendix S4 for derivation). Critically, CV does not
depend on τ and τ∗, implying that the width of the unimodal basis functions increases linearly with
their peak time indicating log-compression.
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Figure 3: Expected reward at future time steps for different values of k. The reward of magnitude
1 is presented at distance 25. Increasing k results in more narrow peaks that approach closer to the
value of the reward (since τ∗peak = τk/(k + 1)).

If discrete time steps τ∗1 , τ
∗
2 , . . . , τ

∗
m are log-spaced, i.e., τ∗i = eci (where c sets the spacing), then

log(τ∗i ) = ci, yielding constant intervals on a logarithmic scale. Peaks at τ∗peak = k
k+1τ are also

log-spaced, as log(τ∗peak) = log
(

k
k+1

)
+ log(τ). With constant CV, peak widths scale with τ∗peak,

maintaining consistent relative width on a log scale, thus compressing distant time steps relative to
near ones.

For temporal discounting with a finite horizon we provide lemmas and proofs for analytical solutions
for three different integral bounds: 0 to m (Fig. 4a), m to n (Fig. 4b) and m to∞ (Fig. 4c). Proofs
for the lemmas are in Supplemental Information (Sec. S2).

Lemma 1: The value of a state at distance τ from the reward given the deadline m can be computed
as:

∫ m

0

g(τ, τ∗)dτ∗ = e−k
(τ)
m

k−1∑
i=0

(k (τ)
m )i

i!
. (10)

Lemma 2: The state-value perceived by the agent between steps τ∗ = m and τ∗ = n in the future
where m < n when the agent is at distance τ from the reward can be computed as follows:

S(n, c, x) = ecx
n∑

i=0

(−1)n−i n!

i!cn−i+1
xi

∫ n

m

g(τ, τ∗)dτ∗ = (−1)k+1(
kk+1

k!
)[S(k − 1, k,

−τ
n

)− S(k − 1, k,
−τ
m

)]. (11)

Lemma 3: The value perceived by the agent between step m and∞ in the future when the agent is
at a distance τ from the reward can be computed as follows:

∫ ∞

m

g(τ, τ∗)dτ∗ = 1− e−k
(τ)
m

k−1∑
i=0

(k (τ)
m )i

i!
. (12)
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(a) (b) (c)

Figure 4: Illustration of expected reward as a function of the future time integrated over different
bounds: 0 to m (a), m to n (b) and m to∞ (c). In this example, the reward of magnitude 1 is located
25 steps from the current state (marked as 0). The total area under each curve corresponds to the
magnitude of the reward. Analytical derivation for each integral is provided in the Supplemental
Information (Sec. S2).

2.3 Policy Selection Under Arbitrary Discounting Functions

In this subsection, we extend our framework to select the optimal policy from a set of precomputed
policies under any user-specified temporal discounting function. This method leverages the expected
reward function g(τ∗) introduced earlier, enabling adaptability to diverse temporal preferences with-
out requiring retraining or additional environment interactions.

Given a set of precomputed policies Π = {π1, π2, . . . , πp}, we assume each policy πk has been
evaluated to compute state-value functions V πk

γi
(s) for a discrete set of discount factors Γ. As

described above, we approximate the expected reward function gk(τ
∗) = Eπk

[rt+τ∗ | st = s] for
each policy πk using the inverse transform applied to the sampled values V πk

γi
(s).

For a user-specified temporal discounting function f : N → R+, which assigns weights to rewards
based on their temporal distance τ∗, we compute the value of each policy πk as:

V πk

f (s) =

∞∑
τ∗=0

f(τ∗)gk(τ
∗). (13)

This value represents the expected cumulative reward under policy πk adjusted by the discounting
function f . The optimal policy from the set Π is then selected as:

π∗ = arg max
πk∈Π

V πk

f (s). (14)

This approach allows the agent to adapt to arbitrary discounting schemes post-training. Under ide-
alized conditions—where the set of discount factors Γ is continuous and gk(τ

∗) is perfectly re-
covered—the selected policy π∗ is optimal within Π (not globally optimal) for the given f (see
Appendix S5 for proof of optimality).

In practice, Γ is finite, and gk(τ
∗) is approximated as ĝk(τ

∗). Thus, we compute V̂ πk

f (s) =∑∞
τ∗=0 f(τ

∗)ĝk(τ
∗), and the selected policy is optimal with respect to these approximations.

2.4 Dynamic Policy Selection

In this subsection, we present an extension to our framework that enables dynamic policy selection
at each time step. This approach allows the agent to adapt its strategy based on the current state and
a user-specified temporal discounting function f .
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At each time step t, the agent, in state st, computes the value of each policy πk from that state under
the discounting function f . This value is given by:

V πk

f (st) =

∞∑
τ∗=0

f(τ∗)gk(τ
∗ | st), (15)

where gk(τ
∗ | st) represents the expected reward at time t + τ∗ under policy πk, starting from st.

The agent selects the policy πk∗ that maximizes this value:

πk∗ = arg max
πk∈Π

V πk

f (st). (16)

The action at st is then at = πk∗(st). Upon transitioning to the next state st+1, the agent repeats this
process, recomputing V πk

f (st+1) for all πk ∈ Π and selecting the optimal policy for st+1, which
may differ from the previous choice.

This dynamic process constructs a hybrid policy πhybrid, where the action at each state st is de-
termined by the policy πk∗ that maximizes V πk

f (st) at that time. The hybrid policy πhybrid is not
necessarily an element of Π, as it may combine actions from multiple policies depending on the
state, where πk∗ = argmaxπk∈Π V πk

f (st). By greedily selecting the action from the policy that
maximizes the value at each state, πhybrid locally optimizes the expected cumulative reward under f .
In environments where different policies perform better in different regions of the state space, this
approach can outperform any single policy in Π.

We illustrate this approach through a grid-world example (Fig. 5). The agent starts from a corner
of the grid. Five rewards are placed at different locations in the environment such that rewards
with a larger magnitude are placed further from the agent’s start location. We first compute five
different policies and corresponding values such that each of the policies leads the agent to a different
reward. When the agent starts navigating, it is given a number of steps to complete the task (finite
horizon). The agent follows Alg. 1, which at each step uses the precomputed reward timelines,
gk(τ

∗|st) to evaluate the value of each policy under the current horizon. The agent always selects
a policy that leads to the largest reward and takes the corresponding action. In our example, the
agent always reached the largest possible reward given the available number of steps (note that this
is not guaranteed, as we investigate in the following subsections). We emphasize that agents based
on traditional exponential discounting with a single value of γ would always converge to the same
reward since those agents do not have the capability to take into account the available horizon.

(a) T=4 (b) T=9 (c) T=12 (d) T=25 (e) T=38

Figure 5: Paths chosen by the model for a varying number of available steps, T . The colors represent
reward locations and correspond to rewards of different magnitudes. Higher rewards are located
further. Given a longer horizon, the agent chooses rewards located further to obtain a larger reward.

2.5 Efficient Performance in Scale-Free Environments

In environments lacking a single dominant timescale—often called scale-free—reward timing may
follow a power-law pattern in its temporal correlations, for instance E[ rt rt+τ∗ ] ∝ (τ∗)−α with
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Algorithm 1 Dynamic Policy Selection

1: Input: Set of policies Π = {π1, π2, . . . , πp}, temporal discounting function f , initial state
s0, maximum time steps T , horizon for each time step h0, h1, ...hT−1, approximated expected
reward functions gk(τ∗ | s) for each πk ∈ Π and state s

2: Set s← s0
3: Set t← 0
4: while t < T and s is not terminal do
5: for each πk ∈ Π do
6: Compute V πk

f (s)←
∑ht

τ∗=0 f(τ
∗)gk(τ

∗ | s)
7: end for
8: Select πk∗ = argmaxπk∈Π V πk

f (s)
9: Take action a = πk∗(s)

10: Observe next state s′ and reward r
11: Set s← s′

12: Set t← t+ 1
13: end while

α > 0. This implies that reward timing variances scale with the square of their mean, Var(τ) ∝
τ2—a relationship observed in interval-timing tasks in humans and other animals.

To illustrate this, suppose the agent can pursue two rewards: one at τ = 10 steps (with variance ±1
step), and another at τ = 100 steps (with variance±10 steps). In our log-compressed timeline, each
reward is represented by a unimodal function centered near its mean arrival time, whose “width” is
proportional to that mean. Thus, the reward at 10 steps exhibits a narrow peak, while the reward at
100 steps has a broader peak. When integrating the expected reward up to a finite horizon T = 50,
that is

V π
0→T (s) =

T∑
τ∗=0

g(τ∗), (17)

the entire distribution for the near reward lies within the 50-step horizon. In contrast, only a portion
of the broader distribution at 100 steps overlaps the first 50 steps. However, if that distant reward
is large enough, the probability of it arriving earlier than 100 steps can contribute a higher total
expected value than the smaller near reward. By preserving the full variance structure around each
expected time, the agent’s scale-adaptive representation captures this partial overlap automatically.

The efficiency of such a log-compressed representation can be framed in terms of minimizing the
maximum relative error under a scale-invariant prior p(τ) ∝ 1/τ . Specifically, for the expected
squared relative error,

Error = E
[(

ĝ(τ∗)−g(τ∗)
g(τ∗)

)2
]
, (18)

this approach ensures that √
Var(ĝ(τ∗))

g(τ∗) = CV = 1√
k+1

, (19)

remains constant across τ∗.

By contrast, a representation with uniform precision across a linear timeline (e.g., using basis func-
tions of a fixed width) would face a difficult trade-off. To accurately represent near-future rewards,
it would require narrow basis functions, leading to an extremely inefficient tiling of the distant fu-
ture with a large number of redundant units. Conversely, using wide basis functions to cover the
distant future would blur near-term events, resulting in poor temporal resolution for immediate de-
cisions. The log-compressed timeline avoids this dilemma by naturally adapting its resolution to the
timescale. The log compression allocates resources proportionally to the relevant timescale, ensur-
ing uniform relative precision for near and distant rewards—particularly advantageous in scale-free
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settings and under limited time horizons. We stress that this efficiency argument is theoretical; em-
pirical validation in environments with demonstrable scale-free reward structures is a necessary next
step for future work.

2.6 Controlling the Precision of Reward Estimation

The parameter k in the log-compressed representation governs the precision of reward estimation,
with the coefficient of variation given by CV. Larger values of k reduce the CV (Fig. 3), enhancing
accuracy but increasing computational demands and impact stability of the inverse transform (since
k controls the order of the numerical derivative in the Post inversion, Eq. 6). The change in expected
future reward as a function of future time for different values of k is shown in Fig. 1b. The choice
of k can impact the choice that the agent makes. This is illustrated in Fig 6a where with k = 3 agent
prefers a closer but smaller reward and in Fig 6b where the only change is that k = 80 but the agent
now prefers more distant but larger reward. This flexibility in k reflects a tunable trade-off between
precision and computational cost, allowing the representation to adapt to different environments or
resource constraints. We emphasize that this does not undermine the representation’s core efficiency
principle, which ensures uniform relative precision across τ∗ for any chosen k. This variability in
k also offers a parallel to human timing behavior, where the scalar property implies a constant CV
that differs across individuals.

(a) k = 3 (b) k = 80

Figure 6: Comparison of value function for different values of k in the presence of rewards of
different magnitudes at different distances.

3 Discussion

This paper introduces a framework for reinforcement learning (RL) that separates temporal discount-
ing from the training phase, allowing adjustments to the discount function after training without the
need for retraining. By employing a log-compressed representation of expected future rewards, de-
rived from value functions computed across a range of discount factors, the approach enables agents
to adapt flexibly to various temporal preferences—such as exponential, hyperbolic, or finite-horizon
discounting. Additionally, it enables dynamic policy selection by utilizing a precomputed library
of policies to construct a hybrid strategy that adjusts to varying temporal objectives. These con-
tributions enhance the adaptability of RL systems, which could prove useful in applications where
temporal preferences vary, such as robotics or financial decision-making. Furthermore, the log-
compressed representation aligns conceptually with human perception of time, as described by the
Weber-Fechner law, suggesting a potential avenue for modeling human-like decision processes in
artificial agents.

Despite its potential, the framework has several limitations that warrant consideration:
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• Approximation errors: The reliance on an approximated inverse Laplace transform, based on a fi-
nite set of discount factors, introduces possible inaccuracies in reconstructing the desired discount
function. The quality of this approximation depends heavily on the number and distribution of
discount factors chosen, which may not generalize across all environments.

• Computational overhead: Reconstructing the reward timeline and selecting policies dynamically
at each step can demand significant computational resources, particularly in large or complex state
spaces. The feasibility of scaling this approach to high-dimensional tasks, such as continuous
control, has yet to be demonstrated.

• Policy library dependence: The success of dynamic policy selection hinges on the diversity and
quality of the precomputed policy library. If the library lacks policies suited to a specific discount
objective, performance may fall short compared to a policy trained specifically for that purpose.

• Efficiency and comparison to human perception: Claims of efficiency in scale-free environments
and alignment with human perception are theoretical; additional experiments, such as comparisons
to human behavior or dynamic deadline shifts, could strengthen these, as could scalability tests
beyond grid-worlds.

Inspired by human perception and decision making, this work offers a step toward greater flexibility
in RL, enabling agents to adapt to varying temporal preferences and objectives.
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Supplementary Materials
The following content was not necessarily subject to peer review.

S1 Numerical Approximations of the Inverse Laplace Transform

In this section, we describe a numerical approximation for computing the inverse Laplace transform
using the CME-R (Complex Matrix Exponentials with Real eigenvalues) method (introduced by
Mészáros & Telek (2022)). This method provides better numerical stability when compared to
Post’s method (Post, 1930) (Fig S1).

Let β, η ∈ RM , where τ∗i ∈ R, σij =
βj

τ∗
i

and γij = e−σij . The approximation takes the form:

g(τ∗i ) ≈
M∑
k=1

ηk
τ∗i

V π
γi,k

. (20)

Here, M represents the maximum number of function evaluations and serves a similar role to the
parameter k in the Post’s method. Both η and β are real-valued tensors. It is worth noting that
Equation 20 requires higher numerical precision as M increases to obtain accurate inverse Laplace
transform results. The detailed methodology for computing the parameters η and β is thoroughly
documented in the work of Mészáros & Telek (2022).

Figure S1: Comparing expected return between CME-R inverse, Offline Post Inverse and Online
Post Inverse. While this figure represents a general property of the inverse Laplace transform for a
time-series input, in our case, the input (blue) is a time-varying reward function. Despite high tem-
poral variability of the input (reward), CME-R (orange) is able to construct a faithful log-compressed
estimate with temporal resolution gradually decaying from 0 (the current state) towards the future.
Offline Post inverse (red) is an analytically computed offline solution that convolves the input func-
tion with the set of impulse responses defined in Eq. 9. (It serves as a ground truth since it does not
suffer from numerical issues.) A high match between CME-R and the Offline Post inverse indicates
the good fidelity of the CME-R representation. On the other hand, Online Post inverse (computed
online using Eq. 6) suffers from numerical instabilities when the input signal has high temporal vari-
ability (green).

S2 Lemmas and Proofs

We define τ∗, τ ∈ [0,∞]. τ is the distance from the reward and τ∗ refers to the number of steps
in the future from the agent’s current position and σ = k

τ∗ . If we assume there is a single terminal
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reward with magnitude 1 in an environment, then the value of state s at distance τ from the reward
is given by γτ = (e−σ)τ = e−στ . Then we can compute the expected reward at time step τ∗i in the
future as follows:

g(τ, τ∗) = L−1{V π
γ=e−στ (s)}

= L−1{e−στ}

=
(−1)k

k!
σk+1 dk

dτk
e−στ

=
(−1)k

k!
σk+1(−τ)ke−στ

=
1

τ

kk+1

k!
(
τ

τ∗
)k+1e−k( τ

τ∗ )

Lemma 1: The value of a state at distance τ from the reward given the deadline m can be computed
as:

∫ m

0

g(τ, τ∗)dτ∗ = e−k
(τ)
m

k−1∑
i=0

(k (τ)
m )i

i!
. (21)

Proof:

∫ m

0

g(τ, τ∗)dτ∗ =

∫ m

0

1

τ

kk+1

k!
(
τ

τ∗
)k+1e−k( τ

τ∗ )dτ∗

=
1

τ

kk+1

k!

∫ m

0

(
τ

τ∗
)k+1e−k( τ

τ∗ )dτ∗

Substituting u = τ
τ∗ ,

= −kk+1

k!

∫ τ
m

∞
uk−1e−kudu

=
kk+1

k!

∫ ∞

τ
m

uk−1e−kudu

=
kk+1

k!
[

∫ ∞

0

uk−1e−kudu−
∫ (τ)

m

0

uk−1e−kudu]

Using
∫∞
0

yme−kydy = Γ(m+1)
km+1 ,

=
kk+1

k!
[
Γ(k)

kk
−
∫ (τ)

m

0

uk−1e−kudu]

= 1− kk+1

k!

∫ (τ)
m

0

uk−1e−kudu
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Using
∫ b

0
xne−axdx = n!

an+1

[
1− e−ab

∑i=n
i=0

(ab)i

i!

]
,

= 1− kk+1

k!

(k − 1)!

kk

[
1− e−k

(τ)
m

i=k−1∑
i=0

(k (τ)
m )i

i!

]

= 1− 1

[
1− e−k

(τ)
m

i=k−1∑
i=0

(k (τ)
m )i

i!

]

= e−k
(τ)
m

i=k−1∑
i=0

(k (τ)
m )i

i!

Lemma 2: The state-value perceived by the agent between steps τ∗ = m and τ∗ = n in the future
where m < n when the agent is at distance τ from the reward can be computed as follows:

S(n, c, x) = ecx
n∑

i=0

(−1)n−i n!

i!cn−i+1
xi

∫ n

m

g(τ, τ∗)dτ∗ = (−1)k+1(
kk+1

k!
)[S(k − 1, k,

−τ
n

)− S(k − 1, k,
−τ
m

)]. (22)

Proof: ∫ n

m

g(τ, τ∗)dτ∗ =

∫ n

m

1

τ

kk+1

k!
(
τ

τ∗
)k+1e−k( τ

τ∗ )dτ∗

= (−1)k+1 1

τ

kk+1

k!

∫ n

m

(
−τ
τ∗

)k+1e−k( τ
τ∗ )dτ∗

Substituting u = −τ
τ∗ ,

= (−1)k+1 1

τ

kk+1

k!

∫ −τ
n

−τ
m

uk+1eku
τ

u2
du

= (−1)k+1 1

τ

kk+1

k!

∫ −τ
n

−τ
m

uk−1ekudu

Using S(n, c, x) =
∫
xnecxdx = ecx

∑n
i=0(−1)n−i n!

i!cn−i+1x
i,

= (−1)k+1(
kk+1

k!
)[S(k − 1, k,

−τ
n

)− S(k − 1, k,
−τ
m

)

Lemma 3: The value perceived by the agent between step m and∞ in the future when the agent is
at a distance τ from the reward can be computed as follows:

∫ ∞

m

g(τ, τ∗)dτ∗ = 1− e−k
(τ)
m

k−1∑
i=0

(k (τ)
m )i

i!
. (23)

Proof:

∫ ∞

m

g(τ, τ∗)dτ∗ =

∫ ∞

0

g(τ∗)dτ∗ −
∫ m

0

g(τ∗)dτ∗

= (
1

τ

kk+1

k!

∫ ∞

0

(
τ

τ∗
)k+1e−k( τ

τ∗ )dτ∗)− (

∫ m

0

g(τ∗)dτ∗)
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Substituting u = τ
τ∗ ,

= (
−kk+1

k!

∫ 0

∞
uk−1e−kudu)− (

∫ m

0

g(τ∗)dτ∗)

= (
kk+1

k!

∫ ∞

0

uk−1e−kudu)− (

∫ m

0

g(τ∗)dτ∗)

Using
∫∞
0

yme−kydy = Γ(m+1)
km+1 ,

= 1−
∫ m

0

g(τ∗)dτ∗

Using Lemma 1,

= 1− e−k
(τ)
m

k−1∑
i=0

(k (τ)
m )i

i!

S3 Derivation of the Peak Time of the Impulse Response

∂T (τ, τ∗)
∂τ∗

= 0.

Define u = τ
τ∗ , so the function becomes T (τ, τ∗) = 1

τ
kk+1

k! uk+1e−ku. Since τ is fixed, we differ-
entiate with respect to u, where τ∗ = τ

u and dτ∗

du = − τ
u2 . Using the chain rule:

∂T
∂τ∗

=
∂T
∂u
· du
dτ∗

,

with du
dτ∗ = − τ

(τ∗)2 . Compute the derivative:

∂T
∂u

=
1

τ

kk+1

k!

[
(k + 1)uke−ku − kuk+1e−ku

]
=

1

τ

kk+1

k!
e−kuuk [(k + 1)− ku] .

Setting this to zero:

(k + 1)− ku = 0 ⇒ u =
k + 1

k
.

Since u = τ
τ∗ , we solve for τ∗:

τ∗ =
k

k + 1
τ.

Thus, the peak occurs at τ∗peak = k
k+1τ , showing a linear relationship with τ , where the factor k

k+1
approaches 1 as k grows, enhancing accuracy.
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S4 Derivation of CV of the Impulse Response

The mean of the impulse response of g(τ, τ∗) is:

µ =

∫ ∞

0

tf̃(s; t)dt

=

∫ ∞

0

t
1

t

kk+1

k!

(
t

τ∗

)k+1

e−k t
τ∗ dt

=
kk+1

k!

∫ ∞

0

(
t

τ∗

)k+1

e−k t
τ∗ dt

= τ
k + 1

k
.

The standard deviation of the impulse response of g(τ, τ∗) is:

σ =

√∫ ∞

0

(t− µ)2f̃(s; t)dt

=

√∫ ∞

0

(t− µ)2
1

t

kk+1

k!

(
t

τ∗

)k+1

e−k t
τ∗ dt

= τ

√
k + 1

k
.

Finally, the coefficient of variation is then:

CV =
σ

µ
=

1√
k + 1

.

S5 Proof of Optimality for Policy Selection

Consider a finite set of policies Π and a discounting function f(τ∗) ≥ 0 with
∑∞

τ∗=0 f(τ
∗) < ∞.

For each policy πk ∈ Π, the true value under f is:

V πk

f (s) =

∞∑
τ∗=0

f(τ∗)gk(τ
∗),

where gk(τ
∗) = Eπk

[rt+τ∗ | st = s] is the exact expected reward at time τ∗, fully determined
by πk, P , and R. In the limit of continuous Γ, the inverse Laplace transform recovers gk(τ

∗)
exactly from V πk

γ (s) =
∑∞

τ∗=0 γ
τ∗
gk(τ

∗), as V πk
γ (s) is the Laplace transform of gk(τ∗) evaluated

at σ = − ln(γ). Thus, V πk

f (s) precisely captures the expected discounted reward under discount
function f .

Since Π is finite, there exists a policy π∗ ∈ Π such that:

V π∗

f (s) = max
πk∈Π

V πk

f (s).

The selection π∗ = argmaxπk∈Π V πk

f (s) identifies this policy, proving that π∗ is optimal within Π
for the given f under these idealized conditions.
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