
Reinforcement Learning Journal 2025
∣∣ Cover Page

Cascade - A sequential ensemble method for
continuous control tasks

Schmöcker R. , Dockhorn A.

Keywords: Ensemble learning, reinforcement learning, continuous control, PPO.

Summary
Though reinforcement learning has been successfully applied to a variety of domains, there

is still room left for improvement, in particular, in terms of the final performance. Ensemble
Reinforcement Learning (ERL) tries to enhance reinforcement learning techniques by using
multiple models or algorithms. We propose a novel ERL technique, called Cascade which in
the context of continuous control tasks and with PPO as the base training algorithm clearly
outperforms standard PPO in terms of the final performance. To shine light on the working
mechanisms of Cascade, we conduct ablation studies, showing how the different components of
Cascade contribute to its overall performance. Furthermore, we demonstrate that Cascade has a
robust monotonicity as the ensemble’s performance increases with each additional base agent
even when weak base agents are added in large numbers.

Contribution(s)
1. The proposition of a novel Ensemble Reinforcement Learning (ERL) algorithm Cascade for

continuous control tasks that outperforms its base learner when using PPO as the underlying
reinforcement learning algorithm.
Context: To the best of our knowledge, there is no prior work where the ensemble policy
uses a convex combination of its base learners and still gains a significant performance
advantage.

2. By multiple ablation studies, we investigate the mechanisms contributing to Cascade’s
performance.
Context: We show that Cascade relies on all base learners being trained at all stages of the
training process as well as Cascade relying on sequentially adding base learners instead of
starting with the final network. Lastly, we show that Cascade can chain an arbitrary number
of base learners of arbitrary strengths without a loss in performance.



Cascade - A sequential ensemble method for continuous control tasks

Cascade - A sequential ensemble method for continuous
control tasks

Schmöcker R. , Dockhorn A.
schmoecker@tnt.uni-hannover.de, dockhorn@tnt.uni-hannover.de

1Faculty of EECS, Leibniz University Hannover
2Faculty of EECS, Leibniz University Hannover

Abstract

Though reinforcement learning has been successfully applied to a variety of domains,
there is still room left for improvement, in particular, in terms of the final performance.
Ensemble Reinforcement Learning (ERL) tries to enhance reinforcement learning tech-
niques by using multiple models or algorithms. We propose a novel ERL technique,
called Cascade which in the context of continuous control tasks and with PPO as the base
training algorithm clearly outperforms standard PPO in terms of the final performance.
To shine light on the working mechanisms of Cascade, we conduct ablation studies,
showing how the different components of Cascade contribute to its overall performance.
Furthermore, we demonstrate that Cascade has a robust monotonicity as the ensemble’s
performance increases with each additional base agent even when weak base agents are
added in large numbers.

1 Introduction

Ensemble Reinforcement Learning (ERL) tries to improve reinforcement learning methods by using
multiple models or algorithms. Advantages of ERL methods might stem from an increase in diversity,
increased representational capabilities, or avoidance of the reliance on a single, possibly inaccurate
predictor/decision-maker (Dietterich, 2000).

This paper’s research question was the development of a novel ERL algorithm that could perform well
on continuous control tasks. Hence our contribution is the proposal and experimental investigation
of an ERL algorithm named Cascade which sequentially adds agents to an ensemble as opposed to
starting with the full ensemble. The latest agent simultaneously learns a policy and how to integrate
itself into the ensemble consisting of all previous agents. Additionally, the ensemble is designed in
such a way that all ensemble members, once they are added, can refine their policy. Furthermore,
Cascade will set the ensemble up so that it can be trained end-to-end, thereby requiring the selection
of an arbitrary policy-based RL algorithm (such as PPO).

We show experimentally that Cascade, when using PPO to train the ensemble, outperforms PPO on a
variety of continuous control tasks in terms of the final performance. Additionally, the individual
components of Cascade were investigated, discovering that the sequential nature combined with
allowing every ensemble member to be trainable at all times, are the biggest performance contributors.
Furthermore, we show that Cascade is robust to the number of base agents as well as their expressivity
by demonstrating that even for large ensembles consisting of weak base agents, adding a base agent
almost always yields a performance improvement. In particular, we show that even agents, which on
their own lack the capacity to solve the considered tasks, can be effectively combined by Cascade
to solve these tasks. In this paper we focused mainly on PPO as it was the training algorithm that
synergizes best with Cascade.



Reinforcement Learning Journal 2025

The paper is structured as follows: In Section 2 we give a short overview of ERL methods for
continuous control tasks. Afterwards, in Section 3 we will define the Cascade algorithm and explain
its intuition. The subsequent Section 4 presents experiments to answer structured research questions
on Cascade’s capabilities. In Section 5 we will give reasons for why Cascade works as well as it does
and discuss avenues for future work. At last, in Section 6 we summarize our main findings.

2 Related work

A plethora of different approaches to continuous control tasks using ERL exists. Januszewski et al.
(2021) use an ensemble of TD3-like (Fujimoto et al., 2018) agents to counteract the bias an individual
Q function and consequently the actor π has by using the ensemble to average out the bias. They do
this by simultaneously training an ensemble of differently initialized agents. At evaluation time, the
ensemble’s action is simply the average of the individual agents’ actions.

Li et al. (2023) propose a modification, called TEEN , which also trains an ensemble of actor-critics
but such that their state-action visit distributions are as diverse as possible to encourage exploration.
Additionally, they directly decrease the bias of the Q-functions targets by using a shared target that
contains the average of a random subset of the Q-function ensemble.

Saphal et al. (2021) developed SEERL which creates an ensemble of agents within just one training
cycle by regularly saving the agent’s current parameters. To promote diversity between the ensemble
members, they use a cyclical learning rate which ensures convergence before parameters are saved
and enough disturbance to get out of any local minimum. After training, they pick a subset of
the saved agents and combine them without any extra training phase by averaging or binning the
individual action outputs.

Chen & Huang (2023) introduce a hierarchical ensemble method named HED that trains an ensemble
of actor-critics on two different levels. First, on a lower level, where the agents are trained indepen-
dently of each other, and secondly on a higher level where the ensemble’s policy, which is the average
of the individual actor outputs, is updated in a fashion that promotes cooperation among the base
learners.

Liu et al. (2023) took a slightly different approach that aims at increasing the stability of the ensemble
algorithm. During training, they maintain an ensemble of actor-critics and compute their standard
policy gradients which are used to construct a single so-called robust policy gradient which is then
applied to all agents. The robust policy gradient is chosen in such a fashion that when applied to all
agents at once, maximizes the average of the expected returns of all ensemble agents.

Yet another approach, SUNRISE, is demonstrated by Lee et al. (2021) who also use an actor-critic
ensemble. They use the standard deviation of the ensemble’s Q-functions as an uncertainty measure
which is used to weigh samples and to construct an upper-confidence bound (UCB) during inference.
More specifically, each ensemble agent samples an action during inference. The action that maximizes
the UCB (which is a weighted sum of the Q-functions mean and standard deviation) is chosen as the
ensemble’s action.

Jaderberg et al. (2017) showed that an ensemble of agents can be used to optimize a hyperparameter
schedule. They keep a fixed size population of agents which are trained individually in parallel.
Regularly, the lowest scored agents are discarded and replaced by the better performing ones. To
promote further hyperparameter exploration, once the training state and hyperparameters have been
copied, the hyperparameters are slightly perturbed. Their method is applicable to continuous control
tasks even though it was not specifically designed for it.

In contrast to these works, Cascade does not necessarily produce an ensemble of agents that would
perform well on their own. The idea is that not every agent needs to know everything about the
task. They just need to be able to account for the weaknesses of other agents. Hence, Cascade solely
focuses on the performance of the entire ensemble and how the agents can optimally cooperate and
complement each other.



Cascade - A sequential ensemble method for continuous control tasks

Figure 1: Cascade net of size 3. Except for the bottom net b1, each net outputs a fallback action λi

∈ [0, 1] which is used for the convex combination.

More generally, Song et al. (2024) published a comprehensive survey on ERL thereby giving an
overview of the entire field. Their scope is broader than the restriction to continuous control as done
here.

3 Method

The main idea behind Cascade is to sequentially train base agents in such a fashion that a new base
agent always tries to optimally complement the current ensemble. This means that the base agent
should only learn to perform well or learn to adjust the ensemble in a subspace where the ensemble
performs poorly and otherwise delegate the task of choosing an action to the ensemble. The new base
agent can then be integrated into the ensemble to obtain a new, improved ensemble.

A naive approach to this is to train a base agent on a surrogate environment that extends the action
space of the original environment by an action we call the fallback action. The values of this fallback
action lie in the range [0, 1]. With a probability equal to the fallback action, instead of executing
the given action on the original environment, the action of the current ensemble is executed. The
newly trained base agent can then be integrated into the ensemble. The action of the new ensemble
is the action of the latest base agent with probability equal to its fallback action and otherwise the
action of the previous ensemble. Since the base agent could learn to fall back with a probability that
is arbitrarily close to 1 in all states, it is ensured that theoretically an arbitrary amount of base agents
can be chained without a loss in performance.

However, by sampling and then taking either the action of the base agent or the ensemble at each
step as well as treating the ensemble as a blackbox (surrogate environment), non-differentiability is
introduced. Additionally, the weaknesses of older base agents cannot be corrected, as only the latest
base agent is trained. To overcome this, a convex-combination of the current ensemble-policy πe and
the new base agent πb is used to obtain a policy π:

π(x) = λw(x) · πe(x) + (1− λw(x)) · πb(x) (1)

where x is a state and λw is the fallback action of the base agent. This policy π is then used for
training. Both the parameters of πe and πb remain trainable.

Any model that is used to represent base agents has to output the fallback action λ(x) ∈ [0, 1] in
addition to its usual action outputs. In the case of artificial neural networks (ANNs), the policy
π can be approximated by taking a convex combination of the network’s action outputs directly
(instead of the distributions they represent. For example, the convex combination of two normal
distributions is in general not the same as the distribution induced by the convex combination of
their parameters). If several ANNs are stacked this way, then this results in an architecture called
Cascade net. Fig. 1 shows how 3 base agents are chained which results in a Cascade net of size 3. For
reference, the pseudocode of the proposed technique to sequentially train a Cascade net is presented
in the supplementary materials. This algorithm will be referred to as Cascade.



Reinforcement Learning Journal 2025

4 Experiments

First, it will be demonstrated that Cascade is able to clearly outperform the baseline on most MuJoCo
(Todorov et al., 2012) environments using PPO. The subsequent experiments will then shift their
focus towards studying individual components of Cascade to gain insights into the reasons for this
performance increase.

4.1 Experiment setup

Cascade as described in Section 3 was run on various MuJoCo tasks with a focus on the Ant-v4 and
Walker2d-v4 environments because these two differ greatly in terms of dynamics and complexity
which gives a good impression of how Cascade behaves in different settings. When not mentioned
otherwise, PPO was used as the algorithm to train the Cascade, 6 million environment steps took
place, and the Cascade net was extended every 1 million steps. For details and how performances (and
other metrics) were measured see supplementary materials Section B. The code for our experiments
is publicly available at https://github.com/codebro634/Cascade.

4.2 Standard Cascade

Fig. 2 shows the result when Cascade without any modifications as described in the experiment
setup was run on Ant-v4, Walker2d-v4, Humanoid-v4, Hopper-v4, and HalfCheetah-v4. We refer
to this setup as standard Cascade. For comparison, each graph also shows the PPO baseline (see
supplementary materials Section B.4) trained for 6 million steps. However, as mentioned in the
study design, different baseline performances emerge for different training durations since learning
rate annealing is used (see supplementary materials Fig. 9). Except for the Hopper-v4 and Walker
environment where Cascade performs slightly worse or only slightly better than the baseline, Cascade
decisively outperforms the baseline in all other environments after 6M steps. While in Ant-v4,
Humanoid-v4, and HalfCheetah-v4 the baseline performances are about equal when Cascade consists
only of one base net, Cascade takes the lead in performance shortly after a second base net is added
and grows the lead from there.

Next, we compared Cascade to a slightly different PPO agent that mimics a base agent of Cascade
as closely as possible. Therefore, a single base net (see supplementary materials Section B) will be
trained with PPO for 6 million steps. To mimic the conditions under which Cascade trained, the
learning rate was cyclical, linearly decreasing from its initial value to 0, every 1 million timesteps.
Other than changing the network architecture and learning rate schedule, everything else is identical
to the baseline PPO. Fig. 3 shows the performance results compared with standard Cascade.

Surprisingly, in Ant-v4, a single base agent reached a significantly higher performance than the PPO
baseline which just differs in the network size and learning rate schedule, which might suggest that
the byproduct of having a cyclical learning rate (remember, a new PPO instance is used every time
the Cascade net expands) adds to the performance of Cascade. This is not the case however, as
Cascade is very robust to different learning rate schedules (for details, see supplementary materials
F). Nonetheless, there is still a clear gap between the base agent and Cascade both in Ant-v4 and
Walker2d-v4.

Additionally, we evaluated the Cascade algorithm with SAC and DDPG as the base training algorithm,
as detailed in the supplementary materials in Section H. Using these training algorithms Cascade
did not outperform PPO, therefore we chose PPO as the default training algorithm for subsequent
experiments. It remains to be researched why Cascade synergizes so well with PPO in particular.

https://github.com/codebro634/Cascade


Cascade - A sequential ensemble method for continuous control tasks

(a) Ant-v4 (b) Walker2d-v4

(c) Humanoid-v4 (d) Hopper-v4

(e) HalfCheetah-v4

Figure 2: Performance graphs of standard Cascade (blue) vs PPO (red) on Ant-v4 (top left), Walker2d-
v4 (top right), Humanoid-v4 (bottom left), Hopper-v4 (bottom middle) and HalfCheetah-v4 (bottom
right) for 6 million environment steps.

Question 1: Can Cascade outperform any RL-algorithm while using the same RL-algorithm to train
its base agents?

Yes, Cascade using PPO as the training algorithm outperforms PPO in most of the considered
environments. In the cases Cascade outperformed PPO it managed to do so rather early,
requiring only two base agents. And in the environments Cascade does not or barely outperform
the baseline, the peak performance throughout training at least draws even with peak PPO
performance.

Though this paper’s focus was continuous action space environments, we also applied a slightly
modified version of Cascade to discretized versions of the MuJoCo environments (see supplementary
materials Section I) and found that though Cascade also outperforms PPO in most of the discrete
settings, the margins were very slim and Cascade took far longer to converge.

The final Cascade nets, obtained after running standard Cascade on Ant-v4 and Walker2d-v4, were
investigated in more detail to see how many changes were applied to the initial base agent after its
initial training phase. Ant: In this case, the entire Cascade mostly relies on the bottom base net
(i.e. the net at the bottom of the Cascade net with no fallback action): While the entire Cascade
net achieves an average performance of around 5.1k the bottom net alone reaches an average return



Reinforcement Learning Journal 2025

Figure 3: Performance graph of Cascade (blue) and PPO with cyclical learning rate on a base net of
Cascade (green) for 6 million environment steps on Ant-v4 (left) and Walker2d-v4 (right).

of approximately 3.2k. All other policies further up the chain have a negative average return. As
hypothesized in the algorithm-description this base policy improved even past 1 million steps when
other agents were starting to be stacked on top. At 1 million steps the base policy performance was at
around 1.5k while it was approximately 3.2k by the end of training. Walker2d: These characteristics
differ for Walker2d-v4, as instead of improving past 1 million steps, the base policy degraded, going
from 2.5k to approximately 600. However, all other policies further up the chain still perform poorly
on their own, each with a performance of less than 100. Nonetheless, the entire chain still performs
well, performing slightly better than the PPO baseline with a performance of roughly 3.9k at the end
of training.

Question 2: Does Cascade still apply big changes to base agents once they are no longer at the top
of the cascade?

Yes, judging by the performance of the bottom base agent. However, depending on the
environment its performance may degrade or improve. Either way, the Cascade improves.

4.3 Keeping base nets frozen

Next, it was investigated how allowing every base net to be trainable at every stage of the training
process impacted the performance. For this, only the parameters of the latest base agent were trainable,
the rest were kept frozen. Fig. 4 shows the performance graphs compared to standard Cascade. It can
be observed that even though each training iteration leads to a minor improvement in performance for
the frozen version, the overall performance is drastically worse compared to the non-frozen version
for Ant-v4 and slightly worse for Walker2d-v4. This suggests that it is in fact vital for all base agents
to remain trainable to correct for imperfections, adapt to new normalization states (observation/reward
normalization is used by default, for details see supplementary materials Section B.4) and in general
make the entire network less rigid. The difference could in fact be partially explained by the ability to
adapt to new normalization states as both versions only slightly differ in their final performance when
no normalization is used (see supplementary materials Fig. 13). However, in the normed setting, older
base agents are modified beyond just adapting to new normalization states as could be seen in the
previous section where the policy of the oldest base agent changed drastically which was indicated
by the drastic change in its average performance.

Question 3: What is the impact on the performance when keeping the parameters of the current
ensemble frozen when training a new base agent?

Keeping the parameters frozen severely worsens performance.

4.4 Starting with the final Cascade net

Next, the effect of sequentially adding base agents to the Cascade was tested. For this, the Cascade net
obtained at the end of training was used right from the start. To have the same training conditions, the
learning rate was cyclical, linearly decreasing from its initial value to 0, every 1 million environment



Cascade - A sequential ensemble method for continuous control tasks

Figure 4: Performance graphs of standard Cascade (blue) vs Cascade with the weights of all but the
latest base-net frozen (green) on Ant-v4 (top) and Walker2d-v4 for 6 million environment steps.

Figure 5: Performance graphs of standard Cascade (blue) versus Cascade where the final net of
standard Cascade is trained right from the start (green) on Ant-v4 (top) and Walker2d-v4 (bottom) for
6 million environment steps.

steps (as PPO used to train the base agents in standard Cascade uses learning rate annealing. See
supplementary materials Section B). Fig. 5 shows the performance results for this experiment on
Ant-v4 and Walker2d-v4.

In both environments, the sequential variant clearly outperforms its non-sequential counterpart. While
in Ant-v4, the sequential variant outperforms right from the start and ends with a final performance
almost twice that of the non-sequential version, in Walker2d-v4 the sequential variant only takes the
lead in performance during the third iteration and ends only with a small advantage.

This shows that the architecture itself is not the deciding factor for performance. In fact, there
seems to be nothing inherently special to this architecture, as it performs worse than the standard
feedforward architecture used for the baseline experiments.

Question 4: How does the performance of training the final Cascade net right from the start compare
to adding the base agents sequentially?

Training the final Cascade net right from the start performs significantly worse than adding the
base agents sequentially, thus proving that it is in fact vital to slowly build up the Cascade.

4.5 Fallback action characteristics

Now, the tendency of base agents to fallback will be looked into. This was done by measuring the
average fallback actions of different base nets over the course of training. This was done for three
different fallback action initializations, namely {0.05, 0.5 (Default), 0.9} (To see how this is done,
see supplementary materials Section E).

First, simply the product of all fallback actions of all base agents within the Cascade net was measured.
This is the contribution of the bottom base net to the final output. Fig. 6 shows this product over the
course of training on Ant-v4 and Walker2d-v4. In all settings, the fallback product slowly decreases
as the Cascade grows. However, during every iteration, the product mostly increases (except for
the first two iterations with the 0.9 initialization). This shows that the base agents have a clear



Reinforcement Learning Journal 2025

Env Init λ2 λ3 λ4 λ5 λ6

Ant 0.05 0.97 0.99 0.99 0.97 0.55
Ant 0.5 0.96 0.96 0.96 0.96 0.88
Ant 0.9 0.95 0.97 0.97 0.97 0.96

Walker2d 0.05 0.66 0.82 0.79 0.80 0.56
Walker2d 0.5 0.82 0.85 0.92 0.90 0.81
Walker2d 0.9 0.84 0.89 0.91 0.95 0.94

Table 1: The final average fallback action of each base net in the Cascade net when standard Cascade
was run on Ant-v4, Walker2d-v4 and with different fallback initializations for 6 million environment
steps. λ2 is the average fallback of the second oldest base net and λ6 is the fallback of the one added
last. The first base net isn’t listed because it does not have a fallback action.

tendency towards fallbacking. This tendency is slightly stronger in Ant-v4 than in Walker2d-v4. For
reference, if each base net would assign 0.5 to its fallback action then the bottom base net would only
account for 0.55 = 0.03125 of the final output. Since in each setting (except the 0.05 initialization in
Walker2d-v4) the fallback product is ≥ 0.5 means that it is the bottom base net that contributes most
to the final output.

(a) Ant-v4 (b) Walker2d-v4

Figure 6: Product of all base agents’ fallback actions over the course of training for 6 million
environment steps with fallback initializations of 0.9 (yellow), 0.5 (blue) and (0.05) green.

To see how the product is made up and how different base nets contribute to it, the fallback action of
the individual base nets was tracked. Tab. 1 lists the final average fallback action of each base net for
all settings. In the case of the 0.05 or 0.5 initialization, it is the 6th base net that contributes either
the most or second most to the final output of the Cascade net. In the case of the 0.9 initialization,
the base nets (except the bottom one) contribute roughly equally to the final output. Note that the
contribution of the i-th net is (1 − λi) · λi+1 · . . . · λ6 for i > 1 and λ2 · . . . · λ6 for i = 1 . Still,
in all cases (except for 0.9 initialization) and no matter the position in the Cascade, the final base
agent’s fallback is always significantly higher than what it started with, in most cases ending up well
above 0.8.

Why for the cases 0.05 and 0.5 the 6th base net is the biggest or second biggest output-contributor can
be best understood by looking at the fallback graph over the course of the training of an individual
base agent. Fig. 7 shows this graph for the second to bottom base net for Ant-v4 and Walker2d-v4.

It becomes evident, that the base nets only reach their highest fallback value once they are no longer
at the top of the Cascade. So naturally it is the last added base net (in this case the 6th) that has the
lowest fallback value. On top of that, its final output contribution is directly given by 1− λ6 (i.e. no
other nets can lower the contribution other than itself). This explains why it is either the biggest or
second biggest contributor to the final output.



Cascade - A sequential ensemble method for continuous control tasks

(a) Ant-v4 (b) Walker2d-v4

Figure 7: The average fallback action value for the second oldest base agent (i.e. the first one that has
a fallback action) over the course of 5 million environment steps after this base agent has been added.
This value has been plotted for Cascade with 0.5 (blue) and 0.05 (green) as the fallback initialization.
Note that the spiky fallback change that occurs whenever a base net is added to the Cascade comes
from the sudden change in the state distribution that goes along with adding a new base net.

Question 5: Do the base agents have a tendency towards fallbacking or not and which base agents
contribute most to the final output?

Given different fallback action initializations of different magnitudes, all base agents always
learned to assign a large value to the fallback action. Hence there is a clear tendency to fallback.
In general, it is the bottom base net that contributes the most and the last added base net that
contributes the second most to the final output.

4.6 Tiny Cascade nets

To push the hypothesis to its limits, Cascade will be applied to extremely small base nets with
only one hidden layer of size 1. A lower training duration of only half a million steps will also be
considered to make it hard for Cascade to effectively chain base agents. 16 of these tiny base nets
will be combined with Cascade. Fig. 8 shows the results of this experiment.

Figure 8: Performance graphs of Cascade with minimal base agents (one hidden layer of size 1) that
are added every 1 million (green) or 0.5 million (yellow) steps for 16 million environment steps on
Ant-v4 (top) and Walker2d-v4 (bottom).

As expected, the performances are much worse than those of standard Cascade. However, even
though 16 base agents were chained, there was always a monotone performance increase from one
iteration to another, even near the end when the Cascade consisted already of more than 10 base
agents. At worst, the performance after a base agent was added only drew even to that of the previous
iteration. This even held true for the case with only half a million training steps per iteration.



Reinforcement Learning Journal 2025

Question 6: Can a high number of base agents be chained without a loss in performance?

Yes. In all considered settings (Standard Cascade and Cascade with tiny base agents) adding
additional agents to the Cascade has always been beneficial regardless of the training duration
per iteration or the expressive capabilities of the added base agents.

5 Discussion

5.1 Reasons for the performance gain

Though the conducted experiments showed that the performance increase of Cascade over the standard
PPO baseline is nontrivial and coming mainly from the fact that the base agents are added sequentially
and that even older base nets are trainable at all times, the reasons why this is so effective remain
unclear. Likely, there are many factors contributing to it. Two of these might be the following:
First, regularly adding a net base agent helps with exploration: Directly after adding a base net the
output of the entire cascade is greatly perturbed such that it initially becomes essentially random, as
can be observed by the sharp drops in the performance graphs, thereby causing a huge shift in the
state-distribution. Secondly, adding fresh networks prevents the Cascade net from losing its plasticity.
Neural plasticity loss (Lyle et al., 2023) is a phenomenon where neural networks slowly lose their
ability to train and adapt to new optimization targets which is present in reinforcement learning. In
Section J in the supplementary materials, we measured the plasticity gain caused by adding a new
ensemble member to the cascade.

5.2 Future work

First, pinpointing the exact causes of performance gain remains an open question that should be
addressed in future work. In particular, it can be investigated why Cascade synergizes so well PPO yet
yields only very little improvement in conjunction with other RL-algorithms. Even when considering
only PPO, there are performance differences depending on the environment. It is worth investigating
why in Hopper specifically, Cascade did not outperform PPO.

Future work might also include generalizing the strictly sequential nature of the resulting chain. It
could be interesting to see what happens if the base nets choose between k nets (instead of k = 1)
to fall back to. One possibility to implement this is to train groups of k nets (perhaps as diverse as
possible), each of which has fallback access to each of the k nets of the previous group. Or more
extremely, the entire output is directly determined by the latest base agent in the cascade, which
assigns a fallback weight to all other base nets. In standard Cascade, all agents remain trainable and it
showed that freezing all base nets except the top one mostly hampers performance. However, it could
be interesting to see if this holds true if some sort of attention mechanism is used to dynamically
control which base nets are frozen and which remain trainable. Perhaps at a certain size of the
cascade, no new agents should be added and it is beneficial to train inner agents and leave the top
agent frozen.

Application to different domains: The behavior of Cascade could be studied on a larger suite of
environments. For example, surveying the Atari benchmark could lead to new insights. Additionally,
multi-agent problems with a combinatorial action space might be worth investigating as they come
with a natural way of delegating the task between the action nets (one action net for each agent).

Hyperparameter optimization: The RL-baselines used for comparison were highly optimized version
of PPO, SAC and DDPG. However, little to no hyperparameter optimization took place for Cascade.
And the hyperparameters that were tuned, were high-level ones such as the number of base agent’s
training steps in Cascade. However, Cascade might be sensitive to the hyperparameters of the
employed training algorithm.



Cascade - A sequential ensemble method for continuous control tasks

6 Summary

In this work, an ERL method, called Cascade has been proposed and experimentally verified on some
MuJoCo environments. With some minor high-level hyperparameter tweaking, Cascade managed to
decisively outperform the PPO baseline on 4 out of 5 MuJoCo environments. Also, standard Cascade
proved to be an effective tool for combining a large number of base agents no matter their training
time or expressive capabilities. The characteristics of Cascade were investigated and it was found that
the base agents have a natural tendency to assign a large value to their fallback action which led to the
bottom base agent contributing most to the Cascade’s output. By observing the bottom base agent’s
performance, it was discovered that Cascade makes heavy use of the freedom to change older agents
in the cascade. In fact, keeping older base agents frozen proved detrimental to performance in a
normalized environment. It also proved vital that the Cascade is built sequentially since starting with
the final Cascade net also hampered performance thus showing that the architecture is not special but
rather its sequential buildup.

References
Gang Chen and Victoria Huang. Ensemble reinforcement learning in continuous spaces – a hierarchi-

cal multi-step approach for policy training. In Edith Elkind (ed.), Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence, IJCAI-23, pp. 3514–3522. International
Joint Conferences on Artificial Intelligence Organization, 8 2023. DOI: 10.24963/ijcai.2023/391.
URL https://doi.org/10.24963/ijcai.2023/391. Main Track.

Thomas G. Dietterich. Ensemble Methods in Machine Learning. In Multiple Classifier Systems, pp.
1–15, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg. ISBN 978-3-540-45014-6.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pp. 1587–1596. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/
fujimoto18a.html.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In Jennifer G. Dy and
Andreas Krause (eds.), International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pp. 1856–1865. PMLR, 2018.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep rein-
forcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022. URL
http://jmlr.org/papers/v23/21-1342.html. Code last accessed on 9th July 2023.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha Fernando, and
Koray Kavukcuoglu. Population based training of neural networks. CoRR, abs/1711.09846, 2017.
URL http://arxiv.org/abs/1711.09846.

Piotr Januszewski, Mateusz Olko, Michał Królikowski, Jakub Swiatkowski, Marcin Andrychowicz,
Łukasz Kuciński, and Piotr Miłoś. Continuous control with ensemble deep deterministic policy
gradients. In Deep RL Workshop NeurIPS 2021, 2021. URL https://openreview.net/
forum?id=TIUfoXsnxB.

Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. SUNRISE: A simple unified
framework for ensemble learning in deep reinforcement learning. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pp. 6131–
6141. PMLR, 2021. URL http://proceedings.mlr.press/v139/lee21g.html.

https://doi.org/10.24963/ijcai.2023/391
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
http://jmlr.org/papers/v23/21-1342.html
http://arxiv.org/abs/1711.09846
https://openreview.net/forum?id=TIUfoXsnxB
https://openreview.net/forum?id=TIUfoXsnxB
http://proceedings.mlr.press/v139/lee21g.html


Reinforcement Learning Journal 2025

Chao Li, Chen Gong, Qiang He, and Xinwen Hou. Keep various trajectories: Promoting exploration
of ensemble policies in continuous control. In Alice Oh, Tristan Naumann, Amir Globerson, Kate
Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning, 2019.

Guoqiang Liu, Gang Chen, and Victoria Huang. Policy ensemble gradient for continuous control
problems in deep reinforcement learning. Neurocomputing, 548:126381, 2023. ISSN 0925-2312.
DOI: https://doi.org/10.1016/j.neucom.2023.126381. URL https://www.sciencedirect.
com/science/article/pii/S0925231223005040.

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Ávila Pires, Razvan Pascanu, and Will Dabney.
Understanding plasticity in neural networks. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference
on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pp. 23190–23211. PMLR, 2023. URL https:
//proceedings.mlr.press/v202/lyle23b.html.

Rohan Saphal, Balaraman Ravindran, Dheevatsa Mudigere, Sasikanth Avancha, and Bharat Kaul.
SEERL: sample efficient ensemble reinforcement learning. In Frank Dignum, Alessio Lomus-
cio, Ulle Endriss, and Ann Nowé (eds.), AAMAS ’21: 20th International Conference on Au-
tonomous Agents and Multiagent Systems, Virtual Event, United Kingdom, May 3-7, 2021, pp.
1100–1108. ACM, 2021. DOI: 10.5555/3463952.3464080. URL https://www.ifaamas.
org/Proceedings/aamas2021/pdfs/p1100.pdf.

Yanjie Song, Ponnuthurai Nagaratnam Suganthan, Witold Pedrycz, Junwei Ou, Yongming He, Ying-
Wu Chen, and Yutong Wu. Ensemble reinforcement learning: A survey. Appl. Soft Comput., 149
(Part A):110975, 2024. DOI: 10.1016/J.ASOC.2023.110975. URL https://doi.org/10.
1016/j.asoc.2023.110975.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. DOI: 10.1109/IROS.2012.6386109.

https://www.sciencedirect.com/science/article/pii/S0925231223005040
https://www.sciencedirect.com/science/article/pii/S0925231223005040
https://proceedings.mlr.press/v202/lyle23b.html
https://proceedings.mlr.press/v202/lyle23b.html
https://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1100.pdf
https://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1100.pdf
https://doi.org/10.1016/j.asoc.2023.110975
https://doi.org/10.1016/j.asoc.2023.110975

