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Summary

Equivariant Graph Neural Networks (EGNNs) excel at Multi-Agent Reinforcement Learn-
ing (MARL) problems by harnessing symmetries in observations, but struggle in real-world
environments where symmetries may be broken to varying degrees. We introduce Partially
Equivariant Graph Neural Networks (PEnGUIN), a novel architecture that learns to exploit
partial symmetries. PEnGUIiN blends equivariant and non-equivariant updates via a learn-
able parameter, adapting to the degree and type of symmetry present and bridging the gap
between fully equivariant and non-equivariant models. In addition, we formalize types of par-
tial equivariance common to real-world environments (subgroup, feature-wise, subspace, and
approximate). Experiments on MARL benchmarks demonstrate PEnGUiN’s superior perfor-
mance and robustness compared to EGNNs and GNNs in asymmetric settings. PEnGUIN
learns where equivariance holds, improving applicability to real-world MARL problems.

Contribution(s)

1. We present the first generalization of Equivariant Graph Neural Networks (EGNN) to Par-
tial Equivariance with our novel neural network architecture Partially Equivariant Graph
Neural Networks (PEnGUiN). We show theoretically that PEnGUiN unifies fully equivari-
ant (EGNN) and non-equivariant (GNN) representations within a single architecture, con-
trolled by a learnable parameter called the symmetry score.

Context: PEnGUIN builds on EGNN (Satorras et al., 2021) and E2GN2 (McClellan et al.,
2024), and is designed to handle environments with asymmetries, unlike prior work that
primarily focuses on full equivariance.

2. We show the first Partially Equivariant Neural Network applied to Multi-Agent Reinforce-
ment Learning, leading to improved performance over GNNs and EGNNs in MARL.
Context: Prior work has applied equivariance to MARL (Pol et al., 2021; McClellan et al.,
2024), these approaches typically assume full equivariance.

3. We formally define and categorize several types of partial equivariance relevant to Multi-
Agent Reinforcement Learning (MARL), including subgroup equivariance, feature-wise
equivariance, subspace equivariance, and approximate equivariance.

Context: While specific instances of broken symmetries have been discussed (Chen et al.,
2023; Park et al., 2024), our work provides a unified and comprehensive categorization
tailored to MARL.

4. Through experiments on Multi-Particle Environments (MPE) and the highway-env bench-
mark, we empirically validate that PEnGUiN outperforms both EGNNs and standard GNNs
in MARL tasks with various types of asymmetries.

Context: None
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Abstract

Equivariant Graph Neural Networks (EGNNs) have emerged as a promising approach
in Multi-Agent Reinforcement Learning (MARL), leveraging symmetry guarantees to
greatly improve sample efficiency and generalization. However, real-world environ-
ments often exhibit inherent asymmetries arising from factors such as external forces,
measurement inaccuracies, or intrinsic system biases. This paper introduces Partially
Equivariant Graph NeUral Networks (PEnGUIiN), a novel architecture specifically de-
signed to address these challenges. We formally identify and categorize various types of
partial equivariance relevant to MARL, including subgroup equivariance, feature-wise
equivariance, regional equivariance, and approximate equivariance. We theoretically
demonstrate that PEnGUIN is capable of learning both fully equivariant (EGNN) and
non-equivariant (GNN) representations within a unified framework. Through extensive
experiments on a range of MARL problems incorporating various asymmetries, we em-
pirically validate the efficacy of PEnGUiIN. Our results consistently demonstrate that
PEnGUIN outperforms both EGNNs and standard GNNs in asymmetric environments,
highlighting their potential to improve the robustness and applicability of graph-based

MARL algorithms in real-world scenarios.

1 Introduction

Multi-Agent Reinforcement Learning (MARL) presents significant challenges due to the
complexities of agent interactions, non-stationary environments, and the need for efficient

exploration and generalization (Zhang et al., 2021) (Brothers,
2025). Recently, Equivariant Graph Neural Networks (EG-
NNi5s) (Satorras et al., 2021) have emerged as a promising ap-
proach in MARL, leveraging inherent symmetries in multi-
agent systems to improve sample efficiency and generaliza-
tion performance (Pol et al., 2021; McClellan et al., 2024).
By encoding equivariance to transformations like rotations and
translations, EGNNs can achieve superior sample efficiency
and generalization, particularly in environments where geo-
metric relationships are crucial.

However, many real-world MARL scenarios do not exhibit
perfect symmetry, and there are concerns that this architec-
ture may be too restrictive in its assumptions. The real world
is messy, and it is rare for something to be exactly rotation-
ally equivariant. Factors such as external forces (e.g., wind,

EGNN PEnGUIN GNN
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Figure 1: Anexample of how EGNNs
can be advantageous in equivariant en-
vironments, and a liability when an en-
vironment has increased asymmetries.
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gravity), sensor biases, environmental constraints (e.g., obstacles, landmarks, safety zones), or het-
erogeneous agent capabilities introduce asymmetries that break the assumptions underlying fully
equivariant models. Applying standard EGNNS in these partially symmetric environments can lead
to suboptimal performance, as the imposed equivariance constraints may not accurately reflect the
underlying dynamics. Conversely, standard Graph Neural Networks (GNNs), which lack any in-
herent equivariance guarantees, may fail to exploit the symmetries that do exist, leading to reduced
sample efficiency and weaker generalization.

This paper introduces Partially Equivariant Graph NeUral Networks (PEnGUiN), a novel archi-
tecture designed to address the challenges of learning in partially symmetric MARL environments.
PEnGUIN provides a flexible and unified framework that seamlessly integrates both equivariant and
non-equivariant representations within a single model. Unlike traditional approaches that either en-
force full equivariance or disregard symmetries entirely, PEnGUIN learns to adaptively adjust its
level of equivariance based on the input. This is achieved through a blending mechanism controlled
by a learnable parameter that modulates the contribution of equivariant and non-equivariant updates
within the network.

Prior works have explored symmetry-breaking cases broadly under the label of “approximately
equivariant” Wang et al. (2022c). This work introduces several more precise categories of partial
symmetry that commonly emerge in MARL environments. This includes subgroup equivariance,
regional equivariance, feature-wise equivariance, and general approximate equivariance. These
categories are used to design and test on partially equivariant experiments in the Multi-Particle En-
vironments (MPE) (Lowe et al., 2017) and Highway-env Leurent (2018). Our contributions can be
summarized as follows:

(1) We present the first generalization of Equivariant Graph Neural Networks (EGNN) to Partial
Equivariance with our novel neural network architecture Partially Equivariant Graph Neural Net-
works (PEnGUiN). We show theoretically that PEnGUiIN unifies fully equivariant (EGNN) and
non-equivariant (GNN) representations within a single architecture

(2) We formally define and categorize several types of partial equivariance relevant to Multi-Agent
Reinforcement Learning (MARL).

(3) We demonstrate the first Partially Equivariant Neural Network applied to Multi-Agent Reinforce-
ment Learning, leading to improved performance over GNNs and EGNNs in asymmetric MARL.

2 Related Works

Research in equivariant neural networks has explored various architectures and applications, aiming
to improve learning and generalization by leveraging symmetries. Equivariant Graph Neural Net-
works (EGNNs) (Satorras et al., 2021), SEGNNs (Brandstetter et al., 2022), and E3NNs (Geiger
& Smidt, 2022) are prominent examples, designed to be equivariant to rotations, translations, and
reflections. PEnGUIiN builds on the EGNN architecture (Satorras et al., 2021), but extends its capa-
bilities to handle partial equivariance. (Finzi et al., 2021b) introduced Equivariant MLPs, which are
versatile but computationally expensive. Within reinforcement learning, van der Pol et al. (2020)
and Pol et al. (2021) established theoretical frameworks for equivariant Markov Decision Processes
(MDPs) and Multi-Agent MDPs (MMDPs), respectively, focusing on fully equivariant settings with
simple dynamics. McClellan et al. (2024) introduced E2GN2 to address exploration challenges in
EGNN-based MARL. Chen & Zhang (2024) employed SEGNNs for cooperative MARL, though
SEGNNSs often have slower training times. Yu et al. (2024) explored adding a symmetry-based
loss term, showing limited performance gains. Wang et al. (2022b) investigated rotation equivari-
ance for robotic manipulation with image-based observations. These works primarily address full
equivariance, or focus on specific tasks or symmetry types, contrasting with PEnGUiN’s general and
learnable approach to partial equivariance.

Research on partial or approximate equivariance includes group CNNs for image processing (Wang
et al., 2022c; 2024; McNeela, 2024; Samudre et al., 2024; Ouderaa et al., 2022; Park et al., 2024)
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Figure 2: Diagram of an individual PEnGUIN layer described in section 4. The colored boxes represent
vectors, where rounded corners indicate the preservation of equivariance and square corners indicate non-
equivariance. An example graph is provided in (a), showing coordinates u; and features h; corresponding
to each node v;. The update for node v; (blue) is split into feature and coordinate updates, shown in (b) and
(c) respectively. Within each subfigure is a non-equivariant branch (top) and an equivariant branch (bottom),
whose outputs are blended via convex combination (red) governed by the symmetry score c.

and combining MLPs with equivariant components (Finzi et al., 2021a), which are distinct from
our graph-based approach. Studies (Wang et al., 2022a; 2023; Petrache & Trivedi) have analyzed
the effectiveness of equivariant models in asymmetric scenarios, motivating models like PEnGUIN
that can learn equivariance quantities. In the realm of GNNs, Hofgard et al. (2024) concurrently
introduce a relaxed equivariant GNN; however, their model is built upon spherical harmonic repre-
sentations (which increases implementation and computation complexity), unlike PEnGUiN, which
is based on EGNNs and allows a smooth transition between fully equivariant and standard GNN
behavior. Huang et al. (2023) studies GNN permutation equivariance, not O(n) equivariance. Chen
et al. (2023), Luo et al. (2024) developed subgroup equivariant GNNs tailored for robotics, specifi-
cally to ignore gravity, limiting their applicability compared to PEnGUiN’s general framework.

3 Background

3.1 Multi-Agent Reinforcement Learning

Multi-Agent Reinforcement Learning (MARL) extends the principles of Reinforcement Learning
(RL) to scenarios involving multiple interacting agents within a shared environment. In MARL,
each agent aims to learn an optimal policy 7; that maximizes its own expected cumulative re-
ward R;, which is influenced by the actions of other agents and the environment dynamics. For-

mally, at each timestep ¢, each agent i observes a local state sf, takes an action a! according
to its policy m;(al|st), and receives a reward ri = R;(s',a'), where s* = (s,...,s%) and
a' = (al,...,aly) represent the joint state and action spaces of all N agents (Littman, 1994). The

goal of each agent ¢ is to learn a policy m;(a;|s) that maximizes its expected return: J(m;) =
Emry, ..., [ Z?:o Y R;(s¢,af, ..., a,{v)] where T is the time horizon, v € (0, 1] is a discount fac-

tor, and a ~ 7;(-|s¢).

3.2 Equivariance

Equivariance describes how functions behave under transformations. A function f is said to be
equivariant to a group of transformations G if transforming the input x by a group element g € G
results in a predictable transformation of the output f(x). Formally, if T, represents a transfor-
mation of the input space and L, represents a transformation of the output space, equivariance is
defined as:f(Tyx) = Lyf(x), Vg € G,Vx. Related to equivariance is invariance, where the
output remains unchanged under the input transformation, i.e., f(Tyx) = f(x).
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4 Partially Equivariant Graph Neural Networks

To address the challenges of learning in partially symmetric environments, we introduce Partially
Equivariant Graph Neural Networks (PEnGUiN). PEnGUIN is a novel graph neural network archi-
tecture designed to seamlessly incorporate varying degrees of equivariance, ranging from full O(n)
equivariance, as in E2GN2s, to non-equivariant behavior, akin to standard GNNs. This flexibility
is achieved through a blending mechanism controlled by a parameter «, allowing the network to
adapt to and learn the specific symmetries present in the data. PEnGUiN follows a similar message-
passing paradigm as a standard GNN with message computation, message aggregation, and node
feature updates. The forward pass of a single layer [ in PEnGUiN, shown in Figure 2, is defined by
the following equations:

Table 1: PEnGUiN Update Equations for layer

Message Computation: Equivariant: mﬁj = ¢ (B, RE, |lul — ué 1)
Non-equivariant: néj = ¢, (hi7 hé., ul, ué)

Message Aggregation: mi=a) ,mi+(1-a)), ,nl

Equivariant Coordinate Update: ul = uld(ml) + 3 i (ul —ul) ¢ (mi))

Feature Update: R ul = ¢y (AL, ml)

Partially Equivariant Coordinate ultt = oul .+ (1—a)uf

Update:

Each node 7 contains two vectors of information: the node embeddings h; € R and the coordinate
embeddings u; € R™. The node embeddings are invariant to O(n). Inputs for layer O for h; may
be information about the node itself, such as node type, ID, or status. The coordinate embeddings
for node i are equivariant to O(n), and inputs will typically consist of positional values (see the
appendix for a discussion on how to incorporate velocity and angles).

A layer is updated by first computing the non-equivariant n;; € R™ and equivariant m,;; € R™
messages between each pair of nodes ¢ and j. Each node then aggregates these messages across
all neighboring nodes. At this stage, the aggregated non-equivariant and equivariant messages are
mixed together. Finally, the updated feature node vector hﬁ“ for layer [ + 1 is computed by passing
the aggregated message through an MLP ¢, : R"*™ s R"*"  This update includes a skip con-
nection to the previous feature node vector. Note that the output of ¢y, is split into h; € R™ and
u? € R" (the latter is used in the Partially Equivariant Coordinate update).

The equivariant coordinate vector is updated using the learnable functions (typically MLPs) ¢, :
R™ — R and ¢, : R™ > R. This update in table 1 is guaranteed to be equivariant to O(n) Satorras
et al. (2021). Finally, in the Partially Equivariant update, the equivariant term u; ., is mixed with a
non-equivariant component u!’ € R™.

A key element of PEnGUIN is the addition of the term o € (0,1) C R to quantify the amount of
equivariance in the system. For convenience, we will refer to «v as the "symmetry score". The value
of the symmetry score has the following important implications:

Proposition 1 Given a Partially Equivariant Graph Neural Network Layer as defined in table 1,
when o = 1 the Partial Equivariant Layer is exactly equivalent to an E2GN2 layer. (see Appendix

A for proof)

An important implication of this proposition is when @ = 1 PEnGUIN is exactly equivariant to
rotations (the group O(n)). This proposition establishes that PEnGUIN embeds EGNN as a special
case. When o« = 1, PEnGUIN fully exploits the benefits of the equivariant inductive bias, such as
improved sample efficiency and generalization in environments with symmetric observations.
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Figure 3: Examples of the types of partial equivariance described in Table 2, with respect to a 90-degree
clockwise rotation about the origin.

Proposition 2 Given a Partially Equivariant Graph Neural Network as defined in table 1, when
«a = 0 the Partial Equivariant Graph Neural Network is equivalent to a GNN (see Appendix A for

proof)

This proposition highlights PEnGUiN’s ability to operate in asymmetric settings. As o approaches
0, the network’s reliance on equivariant updates diminishes, allowing it to learn arbitrary, non-
equivariant relationships.

In practice, the amount of equivariance will rarely be a simple constant. Equivariance may be
restricted to a certain region, or a subset of features. Thus, we estimate o using an MLP as a
function of the input features for each node: ¢, (h?,z{) = a. We will refer to this network as
the Equivariance Estimator (EE). This allows « to be learned as a spatially and entity-dependent
function, enabling the network to adaptively modulate equivariance within the network.

5 Categories of Partial Equivariance

Previous works have noted that functions may have some error in equivariance (Wang et al., 2022c).
Others have noted that functions may be equivariant to subgroups instead of an entire group (Chen
et al., 2023). In this work, we present a new formalism to unify these asymmetries. We refer to
partial equivariance as any situation with asymmetries.

We divide partial equivariance into four categories: subgroup equivariance, feature-wise equivari-
ance, regional equivariance, and approximate equivariance. Approximate equivariance and subgroup
equivariance were previously defined in (Wang et al., 2022¢) and (Chen et al., 2023) respectively.
Recall that an equivariant function f will result in the following equality: || f(T,z) — Ly f(x)|| =0
where G is a group with a representation tranformation 7, acting on the input space and a represen-
tation L4 acting on the output space.

Table 2: Types of Partial Equivariance

Type Name Equation Examples
Relaxed/Approximate | f(Tyx) — Laf(x)|| <€ External forces, nonlinear
Equivariance dynamics, sensor errors.

Subgroup Equivariance f(Thz) = Lpf(z), VYhe HCG Ignoring the gravity vector.

Feature-Wise Equivari- f(Tgz1,m2) = Lo f(x1, x2) Fixed Obstacles.
ance
Regional Equivariance |f(Tyx) — Lo f(2)|| = e(x) Costly Regions.

Definition 5.1 (Approximate Equivariance) Let f : X — ) be a function The function f is ap-
proximately equivariant if there exists a small constant € > 0 such that: ||f(Tgx) — Ly f(z)] <
e, VYreX, Vged
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Approximate equivariance is the most general category of Partial Equivariance. Approximate equiv-
ariance means that the function is almost equivariant, but there might be small deviations from
perfect equivariance. This is a relaxation of the strict equality required for perfect equivariance.
Multi-agent systems with unpredictable wind, nonlinear dynamics, or sensor errors may result in
approximate equivariance.

Definition 5.2 (Subgroup Equivariance) A function f : X — Y is subgroup equivariant with
respect to a subgroup H C G if, forallh € H and all x € X the following is true f(Ty,x) = Ly f(x)

As an example of subgroup equivariance, consider a quadcopter operating in 3d space. Previous
works have shown this will not be equivariant in £(3), specifically due to the effects of the gravity
vector (i.e. rotating in the x-z plane affects the dynamics). Instead, (Chen et al., 2023) only enforced
equivariance to the group orthogonal to the gravity vector, that is the subgroup of F(3) that only
includes rotations orthogonal to gravity.

Definition 5.3 (Feature-wise equivariance) Letx = (x1, T, ..., Ty, ) be an input vector where each
x; represents a different feature or subset of features. A function f is feature-wise equivariant if:

f(Tgxlax% 7xn) = Lgfl(x)va(x)a () fm(x) Where f($) = (fl(x)a fQ(x)v 7fm(x))

Feature-wise equivariance applies when only part of the input is subject to a symmetry transforma-
tion. The function is equivariant with respect to that part of the input, while other parts might be
invariant or behave in a non-equivariant way. This allows us to handle situations where some entities
of the environment are symmetric, and others are not.

Definition 5.4 (Regional Equivariance) Ler f : X — Y be a function, The function f is regional
equivariant if there exists a subspace S C X such that for all x € S:

e(x) = f(Tyx) = Lef(2),  Vge&
wheree(z) >0 if z€S, and ex)=0 if ¢S

Regional equivariance means that the function exhibits perfect equivariance only within a specific
region or regional of the input space. Outside this region, the equivariance property might not hold,
or it might be violated to varying degrees.

6 Experiments

This section presents an empirical evaluation of Partially Equivariant Graph Neural Networks (PEn-
GUIN) to address the following key questions: (1) Does PEnGUiN offer performance improvements
over standard Equivariant Graph Neural Network structures (i.e. EGNN, E2GN2)? (2) Is PEnGUIN
capable of effectively identifying and leveraging symmetries where they exist while accommodating
asymmetries where necessary? (3) Does the Equivariance Estimator component of PEnGUIN cor-
rectly estimate Partial Equivariance? To investigate these questions, we conducted experiments on
the Multi-Particle Environments (MPE) benchmark suite (Lowe et al., 2017) and the more com-
plex highway-env benchmark Leurent (2018). We compared the performance of PEnGUiN against
several baselines using the Proximal Policy Optimization (PPO) (Schulman et al., 2017) algorithm
implementation from RLIib (Liang et al., 2018).

6.1 Multi-Particle Environment (MPE)

We utilized two representative scenarios from the MPE benchmark (Lowe et al., 2017). Simple Tag:
a classic predator-prey environment where multiple pursuer agents, controlled by the RL policy, aim
to collide with a more nimble evader agent controlled by a heuristic policy to evade capture. The
environment also includes static landmark entities. Simple Spread: a cooperative environment in
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Figure 4: Learning curves on MPE simple spread (Top) and simple tag (Bottom) environments under ‘None’,
‘Bias’, and ‘Safety asymmetry conditions. Results are averaged over 10 seeds with shaded regions indicating
standard error. PEnGUIN shows consistent performance, especially in environments with feature-wise and
regional equivariance.

which three agents are tasked with positioning themselves over three landmarks. Agents receive a
dense reward for being close to landmarks and are penalized for collisions with each other. These
MPE scenarios provide a simplified setting to initially assess the capabilities of PEnGUIN in en-
vironments with varying degrees of symmetry. To systematically evaluate PEnGUiN’s ability to
handle partial equivariance, we introduced three distinct types of asymmetries into the MPE scenar-
ios, corresponding to the categories previously defined:

1. Sensor Bias (Approximate Equivariance): We introduced a constant positional bias to the
observations of a subset of entities. In simple tag, this bias was applied to the observed positions
of landmarks and the evader agent. In simple spread, the bias was applied to the landmark
observations. Critically, this bias was consistently applied to entities not belonging to the agent’s
team, mimicking biased sensor measurements of external entities.

2. Safety/Costly Region (Regional Equivariance): We implemented a safety scenario by impos-
ing a negative reward penalty whenever an agent entered the upper-right quadrant of the environ-
ment. This creates a spatially defined asymmetry.

3. Decoy (Feature-wise Equivariance): To test feature-wise equivariance, we added a "decoy"
entity to the environment. This decoy visually resembled the agents’ objective (evader in simple
tag, landmarks in simple spread) but provided no reward upon interaction. The true objective
remained static, while the decoy moved randomly, introducing an asymmetry based on object
identity and reward relevance.

We employed the RLLib PPO agent for training all neural network architectures. We compared
PEnGUIN against the following baselines. EGNN: Equivariant Graph Neural Network Satorras
et al. (2021), representing a fully equivariant baseline. E2GN2: An unbiased version of EGNNs,
with improved MARL performances (McClellan et al., 2024). GNN: A standard Graph Neural
Network, serving as a non-equivariant baseline.

For PEnGUIN, the o parameter was implemented as a Multi-Layer Perceptron (MLP) that takes as
input the node’s position u! and node type. This allows « to be learned as a spatially and entity-
dependent function, enabling the network to adaptively modulate equivariance.

6.1.1 Results and Discussion (MPE)

Figure 4 presents the learning curves for PEnGUiN, EGNN, E2GN2, and GNN across the
standard MPE scenarios and their partially equivariant modifications. In the fully symmet-
ric "None" condition, EGNN and E2GN2 achieve strong performance, validating the ben-
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efits of equivariance in symmetric environments. However, their performance significantly
degrades in the "Bias" and "Safety" scenarios, demonstrating their sensitivity to symmetry
breaking. In contrast, PEnGUiIN consistently maintains high performance across all asymme-
try conditions, showcasing its robustness and adaptability to partial equivariance. While the
standard GNN is less affected by the introduced biases, it consistently underperforms PEn-
GUIN and equivariant models in symmetric settings, and does not reach the peak perfor-
mance of PEnGUIN in asymmetric ones. In the "Decoy" environment, PEnGUiN also ex-
hibits superior performance, indicating its effectiveness in handling feature-wise asymmetries.

No Asymmetry Bias
[
Next, we want to explore how well PEnGUIN identifies 00 . - — tname
Partial Equivariance. In theory, we expect the symmetry | = e
score (o) to increase as certain regions or features remain -
equivariant. As asymmetries are introduced into the sce- 02 W i
nario, the symmetry score should decrease in value where om0z om on 100 om o o0 om0
those asymmetries are present.

6.2 PEnGUIiN Quantifying Partial Equivariance

Alpha

Alpha

Figure 5: Descriptive statistics of a over
training for simple tag. Each statistic is av-
eraged over all 10 seeds for training.

During training we tracked the average, minimum, and
maximum values of the symmetry score. We show
these results for the simple tag environment in figure 5.
For the scenario with no asymmetries, the symmetry score increases quickly. PEnGUIN is able to
learn that the equivariance applies across the scenario. However, it does not reach the exact optimal
symmetry score, which would be 1 for this scenario. For the safety and decoy scenarios, we note
that the minimum value of o decreases rapidly. It is important to note that the average value seems
to stabilize rather quickly, so it appears that learning for the symmetry score occurs primarily in the
early stages of training.

To further investigate PEnGUiN’s learned be-
havior, we visualized the equivariance estima-

; ‘ I tor output in the "Costly Region" scenario (Fig-
° 2 o ure 6).
o ® o The heatmap shows the output of the equivari-
1C ance estimator as a function of agent position
% I (X and Y coordinates). Lower « values (red)

indicate reduced equivariance, while higher «
Figure 6: Left: the *Costly Region’ of the simple tag values (blue) represent stronger equivariance.
scenario. Right: visualization of learned « values for PENGUIN learns to reduce equivariance in the
PEnGUIN in the "Costly Region" scenario. designated costly region (upper-right quadrant),

effectively adapting to the regional asymmetry.
Figure 6 reveals that PEnGUIN indeed learns to modulate equivariance spatially. The heatmap
shows lower a values concentrated in the upper-right quadrant, corresponding to the costly region.
This suggests that PEnGUiN successfully identifies the region where equivariance is broken and
reduces its reliance on equivariant updates in that area, while maintaining higher equivariance in the
symmetric regions of the environment.

Finally, we experiment with using a hand-designed value for «. If an en-
gineer can identify the symmetries and asymmetries in a scenario, they
may encode that into the neural network, improving the inductive bias
of the model. For this experiment, we use the simple tag safety environ-
ment. We set @« = 0 when = > 0 (i.e. where the costly region violates
equivariance and then set & = 1 for the remaining locations. In figure
7, we see the results of this simple experiment. Hand designing «, in Figure 7: An example of
this case, does indeed seem to improve sample efficiency. This may not using domain knowledge to
hand-design «
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always be the case, there are many environments where hand designing
« may be nontrivial, especially when one considers that « is used for all layers, and the optimal «
may depend on the layer.

6.3 Experiments on Highway Environment
6.3.1 Environment Setup

To assess PEnGUiN’s performance in more complex and realistic scenarios, we evaluated it on
the highway-env benchmark Leurent (2018), a suite of environments for autonomous driving. We
focused on two challenging environments: Racetrack and Roundabout. Racetrack: In this environ-
ment, the agent must navigate a closed racetrack, following the track’s curvature while maintaining
speed and avoiding collisions with other vehicles. Roundabout: This scenario requires agents to
navigate a roundabout intersection, performing lane changes and speed adjustments to efficiently
pass through the roundabout while avoiding collisions.

These environments utilize a more sophisti-
cated bicycle dynamics model for vehicle mo-
tion, introducing non-linear dynamics and re-
quiring precise control over steering and throt-
tle actions. Furthermore, the constraint of stay-
ing within the road boundaries and lanes nat-
urally introduces a form of regional equivari-
ance, as symmetry is broken at the road edges.

Figure 8: Vizualization of roundabout and racetrack

We maintained consistent implementation de- -
scenario

tails with the MPE experiments, using RL-
Lib PPO and comparing PEnGUiN against the
same set of baselines (EGNN, E2GN2, and GNN).

6.3.2 Results and Discussion (highway-env)

Figure 9 presents the learning curves for the highway-env racetrack and roundabout scenarios.
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Figure 9: Learning curves on highway-env racetrack and roundabout environments. Results are averaged
over multiple seeds with shaded regions indicating standard error. PEnGUIN consistently outperforms EGNN,
E2GN2, and GNN, demonstrating its effectiveness in more complex environments with non-linear dynamics
and regional constraints.

The results in Figure 9 demonstrate that PEnGUIN consistently outperforms all baselines in both
highway-env scenarios. PEnGUIN achieves higher rewards and exhibits faster convergence com-
pared to EGNN, E2GN2, and GNN. This indicates that PEnGUiN’s ability to adapt to partial equiv-
ariance is beneficial even in environments with more complex, non-linear dynamics and regional
constraints, where full equivariance might be a suboptimal inductive bias.
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7 Conclusion

This paper introduced Partially Equivariant Graph Neural Networks (PEnGUiN), a novel architec-
ture for Multi-Agent Reinforcement Learning (MARL) that addresses the limitations of existing
fully equivariant models in real-world, partially symmetric environments. Unlike traditional Equiv-
ariant Graph Neural Networks (EGNNG5) that assume full symmetry, PEnGUIiN learns to blend equiv-
ariant and non-equivariant updates, controlled by a learnable parameter. This allows it to adapt to
various types of partial equivariance, including subgroup, feature-wise, subspace, and approximate
equivariance, which we formally defined and categorized.

We theoretically demonstrated that PEnGUIN encompasses both fully equivariant (EGNN) and
non-equivariant (GNN) representations as special cases, providing a unified and flexible frame-
work. Extensive experiments on modified Multi-Particle Environments (MPE) and the more com-
plex highway-env benchmark showed that PEnGUIN consistently outperforms both EGNNs and
standard GNNss in scenarios with various asymmetries, demonstrating improved sample efficiency
and robustness. Furthermore, visualizations of the Equivariance Estimator explored PEnGUiN’s
ability to identify and exploit regions and features where equivariance holds and where it is violated.
PEnGUIN expands the applicability of equivariant graph neural networks to real-world MARL by
handling partial symmetries, common in scenarios like robotics, autonomous driving, and multi-
agent systems with sensor biases or external forces. By learning to navigate the complexities of
partial symmetries, PEnGUiN represents a step towards realizing safe and dependable multi-agent
robotic systems in the real world.

A Appendix A: Proofs

For convenience we rewrite the equations for a single GNN update using node ¢ embeddings h; €
R” and intermediate messages between node i and j: n;; € R™. where ¢;, and ¢, are the MLPs.
We will use superscripts [ below to denote the layer.

= ¢e (h§7h§) , My = Znija R = ¢, (Rl n;)
J#£i
A.1 Proof PEnGUiN embeds an E2GN2

Setting @ = 1 in the PEnGUIiN equations directly yields the EGNN equations. For clarity we will
rewrite the partially equivariant node and coordinate update equations and how it changes when

a=1:
l l l l
m; = aZmiJ— +(1 fa)Znij = aZmij
J#i J#i J#i
I+1 l l
ui+ = aui,eq + (1 - a)uf = ui,eq
Then when alpha = 1 the update equations become:

ui,e _ul¢e +Z u _u ¢u( z))
J#i

mi =Y mi; hit' =gy (hi,m))
i
These are precisely the update equations for an E2GN?2 layer.

A.2 Proof of GNN equivalence

Proof PEnGUIN is equivalent to a GNN when a = 0. Recall the node embeddings h; € R” and
the coordinate embeddings u; € R"™ For clarity we will rewrite the partially equivariant node and
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coordinate updates (the equations with «), and how it changes when o = 0:

l l l l
mi=a) mi+(1-a)) ni;=3 nj
J#i J#i J#i
u =aul, 4+ (1-a)ul =ul
Thus far this means that our output h; will be purely using the GNN update message n;;. Next
we will note that we can rewrite hé“, u? as hé,o: > hé) h:hin (€ssentially this is simply renaming
notation. In the main text, we used u! to aid in clarity). We use this renaming to represent that
hé,o: ,, contains the first 1 elements of the output from ¢y, and hi h:hn 18 the remaining n elements.
Thus the final node update for this layer becomes: k! ;.. bl )1\, = én (hi, m})

To ensure this is equivalent to a GNN, we now look at the next layer in the network. We now see
that the next layer becomes:

o 141 pi41 041 041\ 141 141 141 141
ni; = én (h’i ’h’j YUy Uy )—¢n (hz’,():L72’hj,():L72’hj,L72:L’h’j,L72:L)

This is equivalent to a standard GNN messgae update which is: ¢y, (h;, vh;) The only difference is
that we explicitely separate (then later concatenate) the last n elements of h The remainder of the
equations of PEnGUIN for layer [ + 1 (with v = 0) will be: m[*> = >°.,;n/ ", with the final
node update: h%:zh, hé,h:h+n = ¢y (hi“, mi“) which is equivalent to a GNN
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Additional Training Details

Hyperparameters  value

train batch size 2000
mini-batch size 1000

PPO clip 0.2
learning rate 30e-5

num SGD iterations 10
gamma 0.99
lambda 0.95

Table 3: hyperparameters for MPE

Hyperparameters value

train batch size EpisodeLength*16
mini-batch size EpisodeLength*4

PPO clip 0.2
learning rate 45e-5

num SGD iterations 10
gamma 0.99
lambda 0.95

Table 4: PPO Common Hyperparameters for Highway-env

All MLPs in the GNNs use 2 layers with a width of 32. For all GNN structures we use separate
networks for the policy and value functions.

Graph Structure and Inputs The graph structure for MPE environments is set as a complete graph.
For MPE environments the input invariant feature for each node h!? is the id (pursuer, evader, or
landmark). For MPE there is also a velocity feature, which we incoporate following the procedure
described in (Satorras et al., 2021).

Graph Outputs for Value function and Policy We followed the design choices in (McClellan
et al., 2024) for the action space and value function design: the value function output comes from
the invariant component of the agent’s node of final layer of the EGNN/E2GN2. For MPE the actions
are (partially) equivariant, so we use the outputs of the coordinate embeddings. For highway env,
the actions are (partially) invariant, so we use the outputs of h; for the output of the policy function.

Experiment design For the MPE simple tag environment we added a hard-coded evader agent.
This agent computed the force as force = —z; + %2 >y — ) /|| — x;||?) where x; is the
evader’s position, and j corresponds to each pursuer. Essentially the agent tries to move away from
the pursuers, and to stay close to the center of the world (to avoid going off to infinity). The force
from the pursuers is limited to not be larger than 2. The final force is normalized and divided by
3. As described in the main text we have 3 modifications to MPE. The bias modification is to add
a value of 0.3 in the x direction to each landmark and evader. The safety scenario gives a negative
reward when the agent is in the region xz,y > 0. In simple tag this reward is -15, for spread it is
-5. Note that for spread the agents are not initialized within the costly region. Finally the decoy
environment consists of having the objective (landmarks/evader) being static. For spread there are
three decoy landmarks, with the actual landmarks at the xy positions: (1.5,.9),(-.9,0.),(-.5,-.5). The
tag environment has one decoy with the actual evader at (.75,.75).



