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Summary

In an industrial context, we apply deep reinforcement learning (DRL) to a simulator of
an unmanned underwater vehicle (UUV). This UUV is moving in a complex environment
that needs to compute acoustic propagation in very different scenarios. Consequently, the
computation time per timestep varies greatly due to the complexity of the acoustic situation
and the variation in the number of elements simulated. Therefore, we use an asynchronous
actor-learner parallelization scheme to avoid any loss of computational resource efficiency.
However, there is a strong correlation between the current state of the environment and this
variability in computation time. The classical benchmarks in the DRL are not representative
of our environment slowdowns, neither in magnitude nor in their correlation with the current
observation. The aim of this paper is therefore to investigate the possible existence of a bias
that could be induced by an observation-correlated slowdown in the case of a DRL algorithm
using an asynchronous architecture. We empirically demonstrate the existence of such a bias
in a modified Cartpole environment. We then study the evolution of this bias as a function of
several parameters: the number of parallel environments, the exploration, and the positioning
of slowdowns. Results reveal that the bias is highly dependent on the capacity of the policy to
discover trajectories that avoid the slowdown areas.

Contribution(s)

1. We show that classical reinforcement learning benchmarks are not representative of our in-
dustrial environment in terms of the effects of slowdowns correlated with observation.
Context: We based our analysis on the two most used deep reinforcement learning bench-
marks : Mujoco (Todorov et al., 2012) and Atari (Bellemare et al., 2012) using the learning
framework TorchRL (Bou et al., 2024).

2. We provide empirical evidence on a modified version of the Cartpole environment that an
environment with observation-correlated slowdowns can induce a bias on the data generated
and the learned policy for an algorithm using an asynchronous architecture.

Context: We used the Dueling Double Deep Q-Learning (Wang et al., 2016) with the actor-
learner architecture described by Espeholt et al. (2018) which decouples threads when gen-
erating transitions to reduce inter-process synchronization to achieve greater scalability.

3. We investigated bias changes as a function of the number of parallel actors, the exploration,
and the positioning of the slowdown zone. Our results show that the bias is highly dependent
on the capacity of the policy to find trajectories that avoid the slowdown areas.

Context: None



Effect of a slowdown correlated to the observation on an asynchronous architecture

Effect of a slowdown correlated to the current state of
the environment on an asynchronous learning archi-
tecture

Idriss Abdallah'?, Laurent Ciarletta !, Patrick Hénaff', Matthieu Bonavent?,
Jonathan Champagne?

{idriss.abdallah, laurent.ciarletta}@loria.fr,

{jonathan.champagne, matthieu.bonavent}@naval-group.comnm,
patrick.henaff@enib.fr

'LORIA, Université de Lorraine, Nancy, France
2Naval Group, Gassin, France

Abstract

In an industrial context, we apply deep reinforcement learning (DRL) to a simulator
of an unmanned underwater vehicle (UUV). This UUV is moving in a complex envi-
ronment that needs to compute acoustic propagation in very different scenarios. Con-
sequently, the computation time per timestep varies greatly due to the complexity of
the acoustic situation and the variation in the number of elements simulated. There-
fore, we use an asynchronous actor-learner parallelization scheme to avoid any loss of
computational resource efficiency. However, there is a strong correlation between the
current state of the environment and this variability in computation time. The classical
benchmarks in the DRL are not representative of our environment slowdowns, neither
in magnitude nor in their correlation with the current observation. The aim of this pa-
per is therefore to investigate the possible existence of a bias that could be induced
by an observation-correlated slowdown in the case of a DRL algorithm using an asyn-
chronous architecture. We empirically demonstrate the existence of such a bias in a
modified Cartpole environment. We then study the evolution of this bias as a function
of several parameters: the number of parallel environments, the exploration, and the po-
sitioning of slowdowns. Results reveal that the bias is highly dependent on the capacity
of the policy to discover trajectories that avoid the slowdown areas.

1 Introduction

Reinforcement Learning (RL) is a machine learning approach that uses the actions of an agent in an
environment to learn a behavior that maximizes a reward obtained during its interactions (Sutton &
Barto, 2018). This approach, coupled with the ability of neural networks to approximate functions,
has led to the emergence of Deep Reinforcement Learning (DRL), which is the basis of several
advances in the field of sequential control (Mnih et al., 2015) (Silver et al., 2017).

Its success has come in particular from model-free approaches, which do not require a transition
model of the environment but only a reward function. Although defining a problem with a reward
function is an expressive method (Silver et al., 2021), its design significantly affects the algorithms’
learning, making it difficult to use in practice (Gupta et al., 2022). This freedom also comes at
the price of the need for a large number of interactions to obtain optimal behavior, notably due to
the exploration-exploitation dilemma (Sutton & Barto, 2018). Furthermore, some intrinsic neural
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network flaws result from this coupling of RL and deep learning, including explicability (Zahavy
et al., 2016), training stability, and reproducibility (Henderson et al., 2018). Therefore, a number
of critical aspects still need improvements to enable the application of DRL for a wider range of
situations (Dulac-Arnold et al., 2020).

One of the main concerns of the DRL scientific community is to improve the speed and convergence
capacity of algorithms. Several algorithms are used to generate and learn from data to improve
the learning process of the policy (Sutton & Barto, 2018). Among them, a number of studies have
focused on the efficiency and scalability of these algorithms, enabling them to make the most of
large-scale computing power, such as Gorila (Nair et al., 2015), A3C (Mnih et al., 2016), Ape-X
(Horgan et al., 2018), IMPALA (Espeholt et al., 2018), and SEED (Espeholt et al., 2020). They take
advantage of different concepts such as making the different environment threads asynchronous,
multiplying the number of processes updating the policy, vectorizing inferences, and minimizing
inter-process communications.

In an industrial context, we apply DRL to a simulator of an UUV. This simulator models the kine-
matics of several vehicles as well as the acoustic signal propagation. As a result, we observe highly
variable computation times depending on the current position of the UUV in the environment and
the scenario in progress. This naturally led us to use an asynchronous architecture for reasons of
resource efficiency and scalability of the computing resources available. But we also questioned
whether this may lead to an overrepresentation of trajectories with faster computation times. This
article’s contributions are:

 Evidence on the non-representativeness of the Atari and Mujoco benchmarks for problems related
to a variable computation time as in the considered industrial environment.

» Empirical evidences that a lag correlated with observation can generate bias in the data generated
and in the policy learned.

* The study of the influence of certain learning parameters and environmental slowdowns on this
bias.

First of all, we will define the concepts required for DRL, the parallelization architecture used, and
certain characteristics of our industrial environment (section 2). We then present the various tools
used in this article (section 3) and the results obtained (section 4). Finally, we will discuss the
limitations of our results (section 5) and conclude.

2 Context

2.1 Reinforcement learning

RL is a field of machine learning in which an agent interacts with an environment through an action,
which induces a change in the state of the environment. It then receives a reward in the form of a
scalar that evaluates the transition made. The aim of RL is to learn, through interactions with the
environment, the behavior that maximizes the reward obtained during these interactions.

The mathematical formalism used to represent such a problem is the Markov Decision Process
(MDP). 1t is defined by the tuple (S, A, T,R, pg) with S, the set of possible states, A, the set of
actions available to the agent, T : S x A — S, a transition function that handles the evolution of the
environment, R : § X A x § — R, the reward function, and pg, which defines the distribution of
the initial state over all the states. We define the sum of future discounted rewards as & fyk Tt k+1,
where r; denotes the reward received at time ¢. This allows us to estimate the reward acquired over
a specific horizon length dependent on the discount factor v € [0, 1[. A policy function 7 : S — A
represents a decision-making function which, on the basis of an observation, makes it possible to
choose an action. The problem is to find 7*, the optimal policy that maximizes the expected sum of
future discounted rewards.
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The Dueling DDQN method, as proposed by Wang et al. (2016), serves as the foundation algorithm
for the rest of this article. We used an asynchronous architecture similar to the single-learner archi-
tecture described in Espeholt et al. (2018). The implementations were made using ray (Moritz et al.,
2017), PyTorch, and more precisely, the framework TorchRL (Bou et al., 2024).

In the remainder of this study, we did not use the Prioritized Experience Replay (PER) (Schaul et al.,
2015), even though it greatly increases the training performances (Hessel et al., 2018). In fact, this
modification involves changes to the sampling mechanism from the replay buffer and changes the
distribution of the data provided to the policy. As the effect studied in this article is expected to
directly affect the distribution of the data generated, it is therefore possible that the PER has an
effect on the existence and magnitude of the studied bias, although it was not initially designed to
do so. Hence, we removed it to not interfere with a potential bias linked to slowdowns correlated
with observation (which is the topic of this paper).

2.2 Industrial environment

As part of our research work applied to an industrial context, we use an environment that allows
us to run scenarios with diversified initial conditions and numbers of vehicles. Because it involves
different vehicles that are not necessarily within detection range, the complexity of the acoustic
environment depends on the current chosen scenario and state of the UUV during the simulation.
This leads to highly variable computation times for each timestep (depending on both the scenario
and the current state of the simulation). In the rest of this article, we refer to this phenomenon as
slowdowns.

In order to have metrics for comparison between the computation time distributions observed in
the rest of the article, we defined interquantile ratios at a% (IQR,v) as the ratio between the
100 — §% quantile and the §% quantile. These metrics depict the slowdown order of magnitude
on 100 — a% of the timesteps of an environment. Figure 1 shows a histogram of the computation
times of the considered industrial environment with the quantiles used to compute the /Q R, in
Figure 2. We generated these time steps using multiple scenarios with variations in the number, type,
position and reactions of the simulated vehicles. It shows a high variability between timesteps, with
a computation time ratio up to 10* between fast timesteps (e.g., lack of interaction between vehicles,
and therefore reliance solely on kinematic models) and slower timesteps to simulate (e.g., presence
of interactions between vehicles translated by calls to complex acoustic propagation models).
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Figure 1: Histogram of 200,000 computation Figure 2: IQR,y values for Atari, Atari
time for a timestep in our industrial environ- without frame skip, Mujoco, Cartpole and
ment. the considered industrial environment.

Slowdowns correlated to the current environment state are a well-known phenomenon. It can be
seen in simulators and video games with varying numbers of graphical and physical components.
We measured the computation times for the Mujoco and Atari benchmarks using their gymnasium
implementation (Brockman et al., 2016). In fact, as Figure 2 illustrates, the median /() R, on Atari
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and Mujoco are more than one hundred times lower than in the considered industrial environment.
Moreover, the frame skip mechanism (Marlos C. Machado & Bowling, 2018) is responsible for the
majority of the variability seen on Atari, but it is not linked to the current state of the environment.
Therefore, even if there is a computation time correlated to the internal state of these environments,
the slowdowns are several orders of magnitude lower than those we have in our industrial environ-
ment.

In addition, Table 1 shows that, unlike our industrial environment, the computation times of the Atari
and Mujoco environments are actually quite low compared to the policy inference and observation
processing times. Therefore, the potential effect induced by a slowdown correlated to the current
state of the environment is even more negligible since this computation variability is absorbed by
the other uncorrelated computation time.

Table 1: Ratios between the median policy inference and observation processing time with the
median simulation time for one timestep on multiple environments.

Atari Atari No Mujoco Considered
Environment (Median on | Skip (Median | (Median on | Cartpole industrial
62 games) | on 62 games) 11 envs) environment
Policy inference to
environment time 3.36 8.17 4.66 6.62 1.91 x 1073
ratio
Observation
processing to 4.70 1.14 x 10! 5.81 6-72> | 901 x 102
environment time 10
ratio

2.3 Asynchronous architecture

Usually, DRL algorithms employ a synchronous parallelization scheme. Figure 3 describes the
threads’ timeline of this architecture. It leads to waiting times between the various threads (simula-
tion, synchronization, communication, and learning). In our industrial setting, the waiting between
simulation processes (i.e. synchronization) is exacerbated because we use several hundred environ-
ments in parallel and have highly variable computation times. Under these circumstances, using a
synchronous architecture reduces our computing resources’ efficiency to 9%.

Hence, we use the asynchronous architecture described in Figure 4. The core idea is to decouple the
threads into the actors (which perform transitions with the environment), the learner (which performs
the policy update), and a buffer (which agregates transitions and the current policy). As illustrated in
Figure 4, asynchronous architecture avoids mutual waiting effects since each actors and the learner
communicate with the master as soon as their current task is over to give their results and get a
new task. This architecture is therefore highly scalable to a large number of parallel environments
(Espeholt et al., 2018).

3 Tools

3.1 Environment used

The environment used is based on Cartpole (Barto Andrew G. & W., 1983). It’s a 1D toy environ-
ment where a cart has to balance a pole using two discrete actions: go left or go right. The use

1 All these measurements were carried out using the implementation and hyperparameters proposed by the TorchRL github
(Bou et al., 2024), using a single environment on a single CPU core of a 12th Generation Intel(R) Core(TM) i7-12700H. For
the industrial environment, we used a neural network with two fully connected hidden layers of 256 neurons.
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of a light and fast environment is motivated by the possibility of obtaining statistically significant
results. Due to the extreme stochasticity of the DRL, it is challenging to discern distinct patterns
among several trainings (Agarwal et al., 2021). In addition, using an environment with simple and
symmetrical dynamics simplifies the study of the existence of a potential bias. The simplicity of
finding an adequate policy also makes it possible to sweep across hyperparameters while still being
able to converge.

The objective is to study the potential effects of a slowdown correlated to the observation. However,
as shown in Figure 2, there is little slowdown in this environment. Therefore, we created two
symmetrical zones defined by the position of the cart as illustrated by Figure 5. As depicted in
Figure 6, we used these zones to add artificial slowdowns that stop the process for a multiple of
the computation time actually taken for the whole transition (environment transition, observation
processing, and inference). We define the slowdown coefficient of a zone as the value of this
multiple when the cart is in this zone. Thus, it is feasible to observe a potential bias by comparing
the policy behavior in the two different zones while maintaining different slowdown coefficients
during training for both zones.

Left Zone Right Zone

Sl 4

Figure 5: Cartpole environment with the two symmetric zones defined on z, the position of the cart,
such as the left zone (x € [—00; —Z,0n.|) and the right zone (x € [X,one; +00)).

3.2 Update scheduler

As illustrated in Figure 6, adding artificial slowdown to all interactions with the environment on an
asynchronous architecture causes the learning process to execute more update steps for the same
number of timesteps generated. As shown in Figure 7, this leads to changes in learning perfor-
mances. This effect is already known and does not affect the data generation. Hence, we created
an update scheduler that performs learner updates at fixed moments of the training based on the
timesteps generated. This method eliminates the influence of slowdowns on the number of updates
performed and allows us to investigate only the influence on the distribution of the generated data.
For the rest of the paper, we scheduled the updates according to a Cartpole training without any
artificial slowdowns.
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3.3 Simulated asynchronous architecture

The use of the environment described in section 3.1 induced a non-representativeness of the com-
munication and learning time ratios w.r.t. to the considered industrial case and limited values for the
slowdown coefficient (artificial slowdown slows the training algorithm real time).

Therefore, we created a single-process version that uses an event-driven loop in simulated time to
simulate an asynchronous architecture. The core idea is to compute each task allocated to the sim-
ulated actors and the simulated learner without any artificial slowdown. Then, given the slowdown
coefficient, the real computation time, and the trajectory, we evaluate the simulated time (which does
take into account the artificial slowdown) at which each actor should end its task. Therefore, the ac-
tor with the lowest simulated time is added to the replay buffer, and its next task is computed to have
its next simulated time. Figures 8 and 9 illustrate the task order of the main process on a case with 2
actors where each actor’s task consists of 3 transitions, some timesteps have a slowdown coefficient
of 10, and the learner is scheduled to make an update every 9 transitions collected. This enabled us
to neglect the time for communication and learning and to use arbitrary values for slowdowns and
the number of actors while maintaining a constant calculation time. Moreover, this version is highly
parallelizable.

4 Results

The slowdown coefficients studied range from 10° to 10%, which gives us a broad coverage of the
distribution of slowdowns observed in the considered industrial environment. The hyperparameters
correspond to those mentioned in the Appendix, unless their values are explicitly specified. Notably,
as compared to a synchronous algorithm, the algorithm’s performance in terms of total timesteps
used is extremely poor. In fact, the environment is too simple and fast to take advantage of this
architecture, but this section only aims to study the existence of a bias induced by a slowdown
correlated to the observation.

All trainings were carried out using the simulated asynchronous algorithm described in section 3.3.
As the results in this paper are solely based on empirical evidence, it was necessary to refine the
confidence intervals as much as possible, given the highly random nature of the DRL (Agarwal
et al., 2021). Hence, each point of each curve presented in this section is the average result obtained
over 1000 separate training sessions with the same set of hyperparameters with its 95% confidence
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interval. This equates to 197,000 trainings for all the results in this section, which is one of the
reasons why we chose to carry out this study on CartPole.

4.1 Bias induced on training data and policy by a slowdown zone

In this subsection, we study the influence of the left zone slowdown coefficient on the data generated
during training and on the final policy learned. The metric used is the average presence per episode
for both zones. Since the environment and the zones are symmetrical, if no bias is induced by a
slowdown, then the presence must be similar between the two zones. This is what we observe when
there is no slowdown, i.e., when the slowdown coefficient is 10° in figures 10 and 11.

In Figure 10 we observe a bias in the proportion of data generated during training, which increases
presence in the right zone and decreases presence in the left zone. Additionally, we can see that the
effect increases with the slowdown coefficient up to around 500 and then seems to stabilize.

Our understanding of this phenomenon is that during learning using an asynchronous architecture for
interactions with the environment, a slowdown correlated with observation can lead to a bias in data
generation. Actors taking trajectories involving a computational overhead will be underrepresented
because they will be in ’competition” with other actors who have avoided these slowdown zones.

Since the left zone (i.e., the zone with the modified slowdown coefficient) is discrete, there comes a
point at which a single timestep in this zone causes the trajectory to have a computation time so high
that it becomes extremely difficult to take as much computation time in the rest of the environment
(i.e., the right zone and the central zone that do not have artificial slowdown). Hence, the ordering
of the actors becomes the number of timesteps spent in the left zone, regardless of the slowdown
coefficient.

Figure 11 demonstrates that the final policy retains a behavior that is more present in the right zone.
The learned behavior is therefore biased. As a result, we conclude that when learning with an
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asynchronous architecture, a slowdown correlated with observation can lead to a bias in the data
generated and also induce a bias in the policy learned.

4.2 Influence of parallel environments number

This subsection aims to evaluate the influence of the number of parallel environments used on the
presence bias towards the right zone. The first noticeable influence is that training is impacted by
the number of actors. This is shown in Figure 12, in the absence of slowdown, there is a decrease
in presence in both zones (e.g., the curves with bullets). Figure 14 also illustrates an impact from
this parameter, since the learning curves are not identical with the same slowdown coefficients.
Our explanation is the access to more independent data from multiple distinct environments and an
overall higher value of ¢ (i.e., the exploration parameter used for ¢ — Greedy) since the annealing
mechanism does not take into account the timesteps currently computed and not returned by the
actors.
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Figure 12: Average frequency of presence
per episode per zone with the final policy av-
eraged over 100 episodes for 1000 trainings
with a 95% confidence interval as a function
of the number of parallel environments for
different values of slowdown coefficients in
the left zone.

Figure 13: Average right zone to left zone
presence ratio per episode with the final pol-
icy averaged over 100 episodes for 1000
trainings as a function of the number of
parallel environments for different values of
slowdown coefficients in the left zone.
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Figure 14: Average rewards over 1000 seeds during training for different slowdown values and
number of parallel environments.

Figure 13 shows the presence ratio between the zones in Figure 12. It shows that the number of
parallel environments amplifies the bias induced by the slowdown in the left zone. Actually, it ap-
pears impossible to identify any influence of the slowdowns for less than four parallel environments.
Nonetheless, for all slowdown values, with more than four parallel environments, the more paral-
lel environments there are, the more prevalent the right zone is in comparison to the left zone. In
addition, we can see in figures 14c and 14d that the slowdown coefficient even seems to induce a
loss of learning performance in the cases using a bigger parallel environment number, in contrast to
trainings using fewer (14a and 14b).

We therefore conclude that the effect of the bias is amplified by the parallel environments number.
Our explanation of this phenomenon is that it increases the number of actors in "competition" and
therefore the chances that trajectories with a very low computation time will be discovered.

4.3 Influence of the exploration

This subsection studies the influence of increasing the exploratory behavior on the bias magnitude.
To do this, we have modified the final timestep for annealing e.

Similar to the section 4.2, Figure 15 demonstrates that, even in the absence of any slowdown, the
parameter affects learning generally. However, figure 16 demonstrates that the bias increases when
the final timestep for annealing ¢ is increased.
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Figure 16: Average right zone to left zone
presence ratio per episode with the final pol-
icy averaged over 100 episodes for 1000
trainings as a function of the last timestep
for annealing epsilon for different values of
slowdown coefficients in left zone.
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We conclude that the amount of exploration chosen also has an effect on the potential bias induced
by a slowdown correlated to the observation. Our explanation for this trend is the increase in the
probability of discovering trajectories that avoid the slowdown zone and the reduction in the propor-
tion of actions driven by the reward signal.

4.4 Influence of the zone position

° ° °
= S >

Zone presence per episode
°

°
°

Figure 17: Average frequency of presence per episode per zone during training averaged over 1000
trainings without slowdowns with a 95% confidence interval as a function of zone size.

This subsection aims to evaluate the influence of the slowdown zone on the bias induced on the final
policy. Figure 17 shows that the presence value per zone is strongly related to the size of the zone.
In order to evaluate and compare the bias while varying the x .., value, we therefore varied x . one
but measured presence in the fixed zones corresponding to = ,one = 0.

As seen in Figures 18 and 19, the impact of slowdowns is not directly proportional to the zone’s
size. Indeed, we can observe that for slowdown zones representing a large part of the observation
space (see Figure 17 between -0.1 and 0.1), there is in fact almost no bias on the policies learned.
However, the bias worsens for values of x,,,. between 0.2 and 0.4, even though the slowed zone
represents a smaller proportion of the data encountered during training. Then, the bias magnitude
decreases as .o, diminishes for values greater than 0.4.
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Figure 18: Average frequency of presence
per episode per zone with the final policy av-
eraged over 100 episodes for 1000 trainings
with a 95% confidence interval as a function
of the size of the slowdown zone for different
values of slowdown coefficients in the left
zone.

Figure 19: Average right zone to left zone
presence ratio per episode with the final pol-
icy averaged over 100 episodes for 1000
trainings as a function of the size of the slow-
down zone for different values of slowdown
coefficients in the left zone.

Since the episodes are randomly initialized so that z € [—0.05,0.05], it is quite difficult to avoid
a slowing zone that is too central from the perspective of environment dynamics. As a result, a
slowdown zone that cannot be avoided has little or no influence. However, a slowdown in a lightly
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explored zone, where the policy is able to learn how to avoid it, can have an effect on the final policy.
Finally, a slowdown in a zone that is almost never explored will not have any impact on the policy.

We therefore conclude that the effect of the bias is closely linked to the internal dynamic of the
environment and the positioning of the slowdown zone in the state space.

5 Limitations

The main limitation of this study lies in the scope of validity of the environment used. Since our aim
was to study the potential existence of a bias induced by slowdowns correlated with the observa-
tion, we chose a toy environment to obtain statistically significant results. Furthermore, the perfect
symmetry of the dynamics and the reward function make it easier to exacerbate this phenomenon.
It would therefore be interesting to study the feasibility of creating such a bias in a similar way in a
more complex environment.

Furthermore, the slowdown zone considered is oversimplified, which does not accurately reflect
our industrial context. Actually, the slowdown zone is discrete and purely geometrical, whereas
industrially it comes from a coupling between the positions of all the vehicles in the operational
theater.

Conclusion

Our industrial research work is based on an environment characterized by a high variability in com-
putation time between each timestep. Therefore, we believed that using an asynchronous architec-
ture was necessary to avoid a significant decrease in computational efficiency. However, the orders
of magnitude of the observed slowdown and their correlation with the current state of the environ-
ment are not representative of conventional DRL benchmarks.

In the first part of this paper, we investigated the potential existence of a bias induced by such
slowdowns in a modified version of the CartPole environment. Our results show that while the
environment’s dynamics and reward function are fully symmetrical, the final policy avoids the slow-
down zone. This phenomenon is problematic because it shows that the slowdowns have an effect on
the distribution of the data generated by the environment, potentially inducing a bias in the learned
policy.

Next, we examined a number of algorithmic and slowdown zone parameters to determine how they
affected the bias. Our results show that the bias is amplified by the number of parallel environments
and by the proportion of actions dedicated to exploration. Furthermore, the zone’s location is crucial
because the bias only manifests when the zone is sufficiently eccentric. Our understanding is that
the creation of a bias is strongly linked to the ability to find trajectories that avoid the slowdown
zone.

Studying the presence of this bias in our industrial environment will be the primary focus of our
upcoming work. This study shows that the extent of the bias is strongly related to the policy’s ability
to avoid slowdowns. If we do indeed observe a bias, we will then evaluate the pros and cons of using
an asynchronous architecture and potentially study approaches to mitigate it.

References

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, and Marc G. Belle-
mare. Deep reinforcement learning at the edge of the statistical precipice. In NeurIPS, pp. 29304—
29320, 2021.

Sutton Richard S. Barto Andrew G. and Anderson Charles W. Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics,
1983.



Reinforcement Learning Journal 2025

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
Vol. 47:253-279, 2012.

Albert Bou, Matteo Bettini, Sebastian Dittert, Vikash Kumar, Shagun Sodhani, Xiaomeng Yang,
Gianni De Fabritiis, and Vincent Moens. Torchrl: A data-driven decision-making library for
pytorch. In ICLR, 2024.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016. URL http://arxiv.org/abs/1606.01540.

Gabriel Dulac-Arnold, Nir Levine, Daniel J. Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal,
and Todd Hester. An empirical investigation of the challenges of real-world reinforcement learn-
ing. CoRR, abs/2003.11881, 2020.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, lain Dunning, Shane Legg, and Koray Kavukcuoglu. Im-
pala: Scalable distributed deep-rl with importance weighted actor-learner architectures. CoRR,
abs/1802.01561, 2018.

Lasse Espeholt, Raphaél Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. Seed rl: Scal-
able and efficient deep-rl with accelerated central inference. In ICLR, 2020.

Abhishek Gupta, Aldo Pacchiano, Yuexiang Zhai, Sham M. Kakade, and Sergey Levine. Unpacking
reward shaping: Understanding the benefits of reward engineering on sample complexity. In
NeurlIPS, 2022.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In AAAI 2018.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. In AAAI pp. 3215-3222, 2018.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Hasselt,
and David Silver. Distributed prioritized experience replay. In /CLR, 2018.

Erik Talvitie Joel Veness Matthew J. Hausknecht Marlos C. Machado, Marc G. Bellemare and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, loannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518:529-533, 2015.

Volodymyr Mnih, Adria Puigdomeénech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. CoRR, abs/1602.01783, 2016.

Philipp Moritz, , Robert Nishihara, , Stephanie Wang, , Alexey Tumanov, , Richard Liaw, , Eric
Liang, , William Paul, , Michael I. Jordan, , and Ion Stoica. Ray: A distributed framework for
emerging Al applications. CoRR, abs/1712.05889, 2017.

Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro De
Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Petersen, Shane
Legg, Volodymyr Mnih, Koray Kavukcuoglu, and David Silver. Massively parallel methods for
deep reinforcement learning. CoRR, abs/1507.04296, 2015.


http://arxiv.org/abs/1606.01540

Effect of a slowdown correlated to the observation on an asynchronous architecture

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.
CoRR, abs/1511.05952, 2015.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering
the game of go without human knowledge. Nature, 550:354—, 2017.

David Silver, Satinder Singh, Doina Precup, and Richard S. Sutton. Reward is enough. Artif. Intell.,
299:103535, 2021.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In Intelligent Robots and Systems (IROS), pp. 5026-5033. IEEE, 2012.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Freitas.
Dueling network architectures for deep reinforcement learning. In /ICML, volume 48, pp. 1995—
2003, 2016.

Tom Zahavy, Nir Ben-Zrihem, and Shie Mannor. Graying the black box: Understanding dqns. In
ICML, volume 48, pp. 1899-1908, 2016.



Reinforcement Learning Journal 2025

Appendix
Parameter \ Value ‘
Network architecture [64, 64, 32]
Learning rate 0.001
Optimizer Adam
Total timestep 200000
Parallel actors 16
Parallel learners 1
Transition per task for actor 200
Update per task for learner 32
Timestep per update for learner 1024
5y 0.99
n-step 5
Initial £ value 1
End € value 0.005
Last timestep for annealing € 50000
Initial random step 10000
Replay buffer size 50000
L zone 0.3
Right zone slowdown coefficient 1
Left zone slowdown coefficient 1

Table 2: Default hyperparameters value used



