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Summary
This paper studies two popular objective specification mechanisms for sequential decision-

making problems: goals and rewards. We investigate how easy it is for non-AI experts to use
these different specification mechanisms effectively. Namely, we investigate how effectively
people can use these mechanisms to (a) correctly direct an AI system or robot to generate some
desired behavior and (b) predict the behavior encoded in a given objective specification. We
perform a user study to assess these questions. In addition, we present a formalization of the
problems of objective specification and behavior prediction, and we characterize underspeci-
fication and overspecification. While participants have a strong preference for using goals as
an objective specification mechanism, we find a surprising result: even non-expert users are
equally capable of specifying and interpreting reward functions.

Contribution(s)
1. The paper assesses how well non-expert users can effectively make use of goal and reward

specification mechanisms. In particular, we study whether they (a) can use these mecha-
nisms to generate specifications that result in some intended target behavior and (b) can
predict behavior that could result from the given specification.
Context: We are unaware of any works that perform such human-centric comparisons. The
closest works we know of focus purely on how successful engineers are in hand-crafting re-
ward functions (cf. (Knox et al., 2023; Booth et al., 2023)).

2. We provide a formal definition of the specification and prediction task to support compar-
isons between reward functions and goals. We also provide a formal characterization of the
conditions under which an objective can be said to be overspecified or underspecified.
Context: While there are existing works that have tried to model objective misspecifi-
cation (e.g., Mechergui & Sreedharan (2024)), underspecification (e.g., Shah et al. (2022)),
and misspecification (e.g., Amodei et al. (2016)), these definitions have not been formalized
to cover and compare multiple specification modalities.

3. Our results present evidence that the non-expert users’ ability to correctly specify and inter-
pret reward functions is comparable to their ability to provide goal specifications. However,
we see a clear difference in their preferences between the two metrics: they overwhelmingly
prefer the goal mechanism.
Context: We are unaware of any prior works that point to parity in user ability to leverage
the two objective specification mechanisms. This result may imply that developing novel
interfaces for reward functions could help users of RL techniques to utilize reward func-
tions more effectively. Mechanisms like reward machines are one such promising mecha-
nism (Icarte et al., 2022).
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Abstract

This paper studies two popular objective specification mechanisms for sequential
decision-making: goals and rewards. We investigate how easy it is for people without
AI expertise to use these different specification mechanisms effectively. Specifically,
through this paper, we investigate how effectively these mechanisms could be used to
(a) correctly direct an AI system or robot to generate some desired behavior and (b)
predict the behavior encoded in a given objective specification. We first present a for-
malization of the problems of objective specification and behavior prediction, and we
characterize the problems of underspecification and overspecification. We then perform
a user study to assess how well participants are able to use rewards and goals as spec-
ification mechanisms, and their propensity for overspecification and underspecification
with these mechanisms. While participants have a strong preference for using goals as
an objective specification mechanism, we find a surprising result: even non-expert users
are equally capable of specifying and interpreting reward functions as of using goals.

1 Introduction

We examine the two common specification mechanisms for sequential decision-making: goals and
rewards. We assess how well non-AI experts can work with these different specification mecha-
nisms. Goals and rewards have different expected upsides. Goals allow people to provide a partial
specification of their desired end states. This mechanism is commonly used in classical planning
(Cox, 2016) and has also received a lot of attention from recent work in using Large Language Mod-
els (LLMs) (Brown et al., 2020) for robot planning (cf. (Brohan et al., 2023)). Rewards, on the other
hand, are the underlying objective specification mechanisms used by reinforcement learning (RL)
methods (Sutton & Barto, 2018) and Markov Decision Processes (MDPs). Rewards are a means for
encoding goals: the reward hypothesis asserts that “all of what we mean by goals and purposes can
be well thought of as maximization of the expected value of the cumulative sum of a received scalar
signal [reward]” (Sutton & Barto, 2018). The reward format allows one to associate a scalar signal
with reaching some state or performing some action in a given state.

The research community has developed a rigorous understanding of these specification mechanisms’
expressiveness and representational limitations (cf. (Abel et al., 2021)). Despite this understanding,
the ease with which users can express their underlying objectives in these forms has not, to our
knowledge, been explicitly studied. While the development of LLMs has received attention as po-
tentially intuitive interfaces to AI systems, they do not entirely address the question of how to best
construct specifications for AI systems, either. After all, LLMs would need to translate the user
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utterances into the underlying objective specification (whether goals, rewards, or some other form),
and it is unclear if these utterances would contain sufficient information for the translation.

In this paper, we conduct a user study to examine the ease of use, strengths, and weaknesses of
the two specification mechanisms when used by non-AI experts. In the user study, we expose par-
ticipants to these objective specification mechanisms in intuitive tasks using simple interfaces and
measure (a) how well the users are able to use the specific mechanism correctly and (b) how well they
can understand an objective specified using each mechanism. While there have been some efforts
at measuring the difficulty in specifying rewards (Booth et al., 2023), to the best of our knowledge,
our work represents the first effort to perform such a comparative analysis of the two specification
mechanisms among non-AI experts. To ensure our user studies are performed from a firm and formal
grounding, we also provide a concrete characterization of the tasks related to objective specification
and behavior prediction given an objective. Additionally, we provide a characterization for when a
given objective could be said to be overspecified or underspecified.

The two primary takeaways from our study results are as follows. First, non-expert users are not as
bad at specifying reward functions as is generally assumed, and in fact, their ability to do so is com-
parable to their ability to correctly specify goals. This is a surprising result, as goals are a seemingly
more intuitive mechanism and are more commonly represented in everyday communications. Sec-
ond, despite their ability to use rewards as specifications, users generally perceive goal specification
to be more intuitive and easier to specify. We believe that the results from this study could help us
design objective specification interfaces that are more intuitive and easier to use for everyday users.

The paper is structured as follows: Section 2 discusses the related works. Section 3 provides a brief
discussion of goals and rewards as an objective specification mechanism and potential trade-offs.
Section 4 describes the formal definition of specification and prediction. We describe the specific
hypotheses we focus on in Section 5. Section 6 discusses the methods, including the study design.
Section 7 presents the results and discussions. Finally, the conclusion is described in Section 8.

2 Related Work

The notion that goals are a natural way people think about their objectives has a long history. One
could see similar ideas being discussed, Aristotle’s notions of phronēsis (Taylor, 2019) to means-end
analysis (Simon, 2019). Apart from evidence that people may leverage some notions of goals in their
own reasoning, there have been fewer studies performed in determining if goals are, in fact, the best
mechanisms for people to actually specify their objectives. Some works within this space include
proposals to compare how effectively people can specify their objectives in procedural terms, i.e., in
terms of actions or sequence of actions, as opposed to the end goal (Tran, 2024).

In the reward space, reinforcement learning often assumes the existence of a divined reward func-
tion that encodes the task. In practice, though, correctly specifying reward functions is nontrivial:
the challenge of doing so correctly has catalyzed the take-off of the AI safety research commu-
nity (Amodei et al., 2016; Russell, 2022). Further, reward functions are typically designed by engi-
neers through trial-and-error design processes (Knox et al., 2023), which are subject to oversights
and inaccuracies, even when crafted by reinforcement learning experts (Booth et al., 2023).

Because of the challenges of using either goals or rewards as specifications, efforts in human-
computer interaction, broadly construed, have sought to use intuitive signals in place of these explicit
specification modalities. These alternatives span feedback (Knox & Stone, 2009; MacGlashan et al.,
2017), corrections (Losey & O’Malley, 2018; Bajcsy et al., 2018), advice (Thomaz & Breazeal,
2008; Amershi et al., 2014), demonstrations (Ravichandar et al., 2020), dynamical system modu-
lation matrices (Figueroa et al., 2020), and, most famously, preferences (Christiano et al., 2017;
Ziegler et al., 2019; Biyik & Sadigh, 2018). While these intuitive mechanisms unlock non-expert
users’ ability to program machines, their interpretation is subject to failures and misinterpretation
since the human providing the specification has less control over how the system interprets their
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specification. For example, a line of research has questioned the inductive bias used in reinforce-
ment learning from human preference (Knox et al., 2022).

3 Background

We will start by providing a brief sketch of the two specification mechanisms under consideration:
goals and rewards. Since we primarily focus on sequential decision-making settings, for each prob-
lem, we will separate out the task domain from the objective specification. In each case, the task
domain will provide the details on the dynamics of the task and the starting state of the environment.

To start with, goals as an objective specification mechanism is most commonly used in deterministic
factored planning settings, also referred to as “classical planning” settings (Geffner & Bonet, 2013).
In general, a classical planning problem can be represented by a tuple of the form Pc = ⟨Dc,Gc⟩,
where Dc is the task domain and Gc is the goal specification. Here we use the superscript ‘c’ to
denote the fact that the model and the components are part of a classical planning model. The
task domain is further defined as Dc = ⟨F c, Ac, Ic⟩, where F c is a set of proposition variables or
facts used to define the state space, Ac is the set of actions and Ic is the initial state. Each action
a ∈ Ac, is further defined by a tuple of the form a = ⟨pre(a), add (a), del (a)⟩. Here pre(a) ⊆ is
the preconditions that need to be satisfied for the action a to be executable, add (a) and del (a) are
add and delete effects, respectively. The result of executing an action a in state s, is captured by the
transition function Γc, and is given as:

Γc(s, a) =

{
(s \ del (a)) ∪ add (a) if pre(a) ⊆ s

Undefined otherwise

We will also overload the notation and use Γc to denote the execution of action sequences. A solution
to a classical planning problem takes the form of an action sequence whose execution in the initial
state results in a state that satisfies the goal specification. Such an action sequence is referred to as a
plan. More formally, an action sequence π = ⟨a1, ..., ak⟩ is a plan if Γc(Ic, π) ⊇ Gc. In the simplest
formalism, an optimal plan corresponds to the shortest possible plan, i.e., this plan contains the least
number of steps1.

Reward functions are defined in the context of a Markov Decision Process or MDP (Puterman,
1990). Here, an MDP will be defined using a tuple of the form Pm = ⟨Dm,Rm⟩. As with the
previous planning formalism, Dm stands for the domain, but our objective is now given by a reward
function Rm. Here, we use the superscript ‘m’ to denote the fact that this is modeling an MDP. In
this case, the domain is given by a tuple of the form ⟨Fm, Am, Im, Tm, γ⟩, now as before Fm stands
for the state variable and Im the initial state. Here, Am only lists the action labels, and the dynamics
of the action are determined completely by the transition probability function Tm. Finally, γ ∈ [0, 1)
represents the discount factor that determines how the agent maximizes cumulative discounted future
rewards or returns. Here, we will also have a slightly different state space. Specifically, we will
define it as Sm = 2F ∪ {⊥}. Here, we add the new state ⊥ as a stand-in for the end state. Now, the
transition function will be given as

Tm : Sm ×Am × Sm → {0, 1}

Here, the mapping is only to probabilities 0 and 1 since we focus on problems with deterministic
transition probabilities. To support the transition into end states, we will also introduce an exit action
E ∈ Am, that will deterministically transition into the end state ⊥.

We will define the reward function as Rm : F × A → R, i.e., a mapping from a state variable and
action pair to a number.The reward associated with a state, action pair is given as

Rm(s, a) =

{∑
f∈S Rm(f, a) if s ̸= ⊥

0 otherwise

1There are more expressive formalisms that allow one to associate non-unit costs with actions.
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A solution to an MDP problem takes the form of a policy π : Sm → A, i.e., a function that maps
states to actions. A policy is said to be optimal if it maximizes the total expected discounted reward
received under the given policy.

At this point, it is worth noting that for every classical planning MDP task domain Dc, we can build
a corresponding task domain Dc

m = ⟨F c
m, Ac

m, Ic, T c
m, γ⟩, where F c

m = F c ∪ {⊥}, Ac
m one action

label for each action in Ac plus a label for E , Ic is the initial state (and same as before), the transition
T c
m returns one only if it is a valid transition per Γc. For the application of actions in states where

the preconditions are not met, we will assign a probability of ‘1’ to transition to ⊥, and ⊥ is treated
as an absorber state.

We will use the notion of trace as a shared notion of behavior that can be used in both settings. A
trace τ for a policy or plan consists of a sequence of state-action pairs that results from the execution
of a policy or plan in the initial state. We will also use the notation P = ⟨D,O⟩ as a generalized
scheme of model representation that can stand in for both classical planning problems and MDP.
Depending on the context, O could either be a reward or a goal.

4 Specification and Prediction

With the basic notations in place, we can precisely define the exact questions under examination.
In particular, we are interested in the user’s ability to specify an objective that can lead to some
desired behavior or be able to predict behavior that could result from optimizing for a given objective
function. These two problems correspond to the primary ways users specify objectives. We start with
the specification problem, where a user must identify an objective resulting in a target behavior.

Definition 1 For a given domain model D and a target trace τ , the specification problem corre-
sponds to finding an objective O, such that τ is a trace for an optimal solution for the problem
P = ⟨D,O⟩.

If the optimal solution for a given objective specification (i.e., a goal or reward) leads to a trace τ ,
then we will refer to that objective specification as being a correctly specified objective for τ , else it
is referred to as a misspecified objective.

Moving from the more general to specific settings, we start seeing differences in the properties of
the specification forms. For example, one can show that even when a goal specification cannot be
found for a given trace, it might be possible to find a reward function in a corresponding MDP.

Proposition 1 For a classical planning domain Dc, let τ = ⟨I, a0, ..., sk⟩, be a trace such that
for every consecutive state-action-state tuple si, ai, si+1 we have Γc(si, ai) = si+1, and the trace
contains no repeating states, then even if there exists no goal for which τ is a trace for an optimal
plan, there still exists a reward function for the corresponding MDP domain Dc

m for which τ is a
trace for an optimal policy.

The above proposition can be proven by showing that there exist traces that satisfy the property for
which no goal exists and by showing the existence of a reward for which the trace is part of an
optimal policy. First, consider a trace that includes an avoidable subsequence. In other words, let si
and sj be part of τ such that their positions in sequences are separated by more than two positions,
i.e., there are at least two actions between si and sj . Now let’s assume there exists an action a, such
that Γc(si, a) = sj . Then, by definition, this trace cannot be part of an optimal plan since you can
get a shorter trace that results in the same state by removing the original actions between si and
sj . As for the second part, consider a reward function that assigns zero to every state. Under this
reward function, all policies have the same value and are optimal. Given the fact that all transition
in the trace corresponds to valid ones in the original domain model, there exists at least one policy
for which this is a valid trace.

This example shows how the reward function provides a clear advantage in terms of expressivity.
However, this advantage goes even further: the knowledge about the goal will allow us to recon-
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struct a reward function for the corresponding model directly. Specifically, one can create a reward
function that assigns a positive reward to all the goal fluents for the exit action, or more formally,

Proposition 2 For a trace τ and a classical planning domain Dc, let Gc be a correctly specified
goal, then Rc

m must be a correctly specified reward for m(Dc), when

Rc
m(f, a) =

{
r+ if f ∈ Gc and a = E
0 otherwise

The validity of the above proposition is straightforward. The agent only receives a positive reward
for performing the exit action from states that satisfy the goal specification. The presence of a
discount factor means that this would need to be achieved in as few steps as possible.

Now, it is also worth noting that not all correctly specified objectives are equal. In particular, we can
identify two categories. In one case, the user may not have provided enough details; we will call
such cases examples of underspecification. In the latter case, the user would have provided more
details than needed or examples of overspecification. The implications of these two design flaws
are wildly different. While overspecification might reduce the set of optimal policies and prevent
the AI system from coming up with creative solutions, underspecification could result in unexpected
behavior or specification gaming. We can more formally define these two categories as follows:

Definition 2 For a domain model D and a target trace τ , a given specification O is said to be
underspecified if there are other traces τ ′ ̸= τ that could result from other optimal solutions for
P = ⟨D,O⟩.

In the above definition, underspecification is purely defined by the fact that there are other traces
and solutions possible (given the deterministic settings we consider, there is a one-to-one mapping
between solutions and traces). On the other hand, defining overspecification requires us to use a
notion of specification size, i.e., |O|, where for goals, the size is given by the number of fluents
in the specification, and for rewards, the number of fluent action pairs with non-zero values. Now,
we can define overspecification to be cases where specifications of smaller size exist that are not
underspecified.

Definition 3 For a domain model D and a target trace τ , a given specification O is said to be
overspecified if (a) O is not underspecified and (b) there exists another correct specification O′,
such that O′ is not an under specification and |O′| < |O|.

This brings us to the end of the section discussing the first task, namely, objective specification.
The second task corresponds to the user’s ability to make inferences based on the given objective.
Here, we consider the simple case of whether a user can tell if a trace is possible under a given
specification.

Definition 4 For a given problem P = ⟨D,O⟩ and a trace τ , the prediction problem corresponds
to identifying whether τ is a trace for an optimal solution for the problem P .

5 Hypotheses

Our study is primarily designed to measure how the choice of specification mechanism can affect
the user’s ability to specify objectives and predict agent behavior. The primary hypotheses we plan
to test here are as follows, since goals register as an intuitively easier form of specification:

• H1-a: Participants are more likely to provide accurate goals than accurate reward specifications.

• H1-b: Participants are more likely to correctly interpret goals than reward specifications.
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The next question we consider concerns the participants’ workload, specifically the cognitive load
imposed and the time required for each of the two specification mechanisms.

• H2-a: Reward specifications will result in a higher workload than goal specifications and will
require a longer time to finish.

• H2-b: Trying to interpret reward functions will result in a higher workload than goal specifications
and will require a longer time to finish.

Now, we also wanted to use this as an opportunity to understand ways in which the user specification
may differ from the minimal specification, which brings us to the hypothesis:

• H3: Participants are more likely to underspecify objectives than to overspecify them.

We will test the above hypothesis for both reward and goal specification cases.

To assess the H2, we measure the participants’ workload for each objective specification mechanism
and task in the survey using the NASA Task Load Index (TLX). NASA TLX has six dimensions:
mental demand, physical demand, temporal demand, performance, effort, and frustration level (Hart,
1986). Each dimension is measured using a Likert rating scale, ranging from 0 to 20. 0 indicates the
lowest possible level of demand or workload for that dimension (e.g., the task was not demanding,
no effort was required, or no frustration was experienced). Conversely, 20 indicates the highest
possible level of demand or workload for that dimension (e.g., the task was extremely demanding,
required maximum effort, or extreme frustration).

6 Methods

6.1 Study Design

To compare the two mechanisms, we designed three intuitive but diverse domains in which two pri-
mary tasks related to each mechanism can be tested: (1) the user’s ability to provide an objective
specification that will result in a given behavior and (2) their ability to predict the behavior from a
given specification. We chose domains that non-AI experts could understand without considerable
training, but that corresponded to potential real-world robotics applications. Specifically, the do-
mains included (1) a robot navigation task, (2) a tabletop pick-and-place task, and (3) a task with
a self-driving vehicle. We chose deterministic versions of the tasks to avoid potential confounders
that may arise from the stochasticity of the environment dynamics. The environment setting for each
domain can be seen in Figure 1.

The navigation task involves robots navigating through a workspace. In this case, a robot needs to
pick up and drop off a suitcase in different locations within a small workspace. The pick and place
domain contains a set of blocks that can be stacked on top of one another. The objective is usually to
achieve a specific configuration of the blocks. For the self-driving vehicle domain, we have a self-
driving car powered by a battery that needs to pick up and drop off a passenger in different locations.
It also needs to charge the battery to make sure that the battery is enough to perform its task. In each
environment setting, the current state is defined by a set of binary variables, henceforth referred to
as facts. There is also a set of actions that can be taken by the robot, including an exit action that
will allow the robot to end the task. Each domain had about 6-7 facts and 4-5 actions. We choose to
keep the facts and action counts similar to roughly balance the workload between domains.

We created surveys that test the participants’ ability to specify an objective that will result in some
provided behavior or their ability to predict what behavior will result from a given objective for each
of these domains. The survey uses a mixed study design, combining both between-subjects and
within-subjects study designs. The participants are shown either the specification task or prediction
task (making this study design between-subjects), chosen from three different problem domains as
mentioned above. Given the problem domain, the participants are tested on how well they are able to
complete the specified task across the two objective specification mechanisms (within subjects). We
use a counterbalancing technique to vary the order in which participants will be shown the different
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Figure 1: A visualization of each domain used in the study. Top left: a robot navigation task. Top
right: a pick-and-place task. Bottom: a self-driving vehicle task.

specification mechanisms. This is to ensure that no single order influences the results of the study.
The counterbalancing is achieved through a least-fill random basis.

For each objective specification mechanism, there are two sections in the survey: demo and test. The
demo section is a learning phase, where participants are familiarized and introduced to the concepts
of goal and reward specifications. In this section, participants are shown a video that demonstrates a
simple behavior along with the corresponding goal or reward (see the example illustration in Figure
2). For goals, the video shows the “facts to be achieved (goal state)” and how the “facts that are true
(current state)” change during the duration of robot behavior until it reaches the goal state. On the
other hand, for rewards, the video shows the rewards matrix and how individual rewards from the
matrix are added to the total when the agent performs specific actions. For example, based on the
illustration in Figure 2, the agent will get 50 points if it takes an “exit the task” action while the fact
that “the robot is holding the suitcase” is true.

For the first task, i.e., ease of objective specification, the test section shows a sample behavior to the
user. Then, participants are asked to come up with goals and/or rewards for that scenario. Figure 3
presents screenshots of the interface provided to the user to specify the objective. We refer to goals
as facts and rewards as scores to simplify the description to non-AI expert participants. From the
participants’ answers, we can determine whether their specifications are correct or incorrect. Correct
specifications for goals were measured by comparing the facts to be achieved listed by participants
with the correct list of facts to be achieved that were associated with the given video. As for the
reward specifications, the correctness was measured by using the value iteration algorithm to get
the trajectory implied by the participant’s reward matrix. If the trajectory is similar to the trajectory
shown in the video, then the reward specification is correct.
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Figure 2: Illustrations for the sample specifications that could be shown to the participants.

For the incorrect goals or rewards, the potential sources of errors can be analyzed, including un-
derspecification. We have provided the formal definition of underspecification in Section 4, and we
used these definitions to measure underspecification in our experimental results. In our task design,
underspecification for goals occurs when a participant specifies only a subset of the goals. This in-
complete specification can lead to unexpected behavior (and is hence an incorrect specification). For
the rewards specification, we implemented the value iteration algorithm to get the trajectory implied
by the participant’s reward matrix. If the participant’s reward specification is correct but allows for
multiple possible optimal traces (i.e., the rewards matrix does not uniquely determine the intended
behavior), we classify this as underspecification.

We similarly measure overspecification. We have provided the formal definition of overspecification
in Section 4. We should note that overspecification is a correct specification. Overspecification for
goals is measured by comparing the set of facts a participant lists as goals to the correct minimal
specification. If a participant includes additional facts that are true in the final state but are not
necessary for achieving the intended outcome, this is considered overspecification. For rewards,
overspecification is identified when a participant assigns non-zero values to more fluent-action pairs
in the reward matrix than are present in the correct minimal specification.

On the other hand, to test how easily non-AI experts can understand goals and rewards, instead of
showing the demonstration, we show the correct goal (list of facts to be achieved) or the rewards
specification (in the form of scores). Then, we ask the participants to predict or interpret the behavior
of the agent based on that. Specifically, we provide three video options and ask them to choose one
that most aligns with the given goals or rewards. For the prediction task, only one option is correct.

Additionally, at the end of the survey, we ask the participants to directly compare the two specifi-
cation mechanisms in terms of their ease, intuitiveness, likeability, and challenge. We also ask for
qualitative feedback on why they think that particular objective specification mechanism is easier or
harder than the other. Finally, we collect demographic information, including age, gender, highest
level of education, and familiarity with computer science and AI subjects.
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Figure 3: Sample interfaces used by the participants to specify goals (left) and rewards (right). These
examples are taken from the navigation task.

6.2 Participants and Procedure

Before the main study, we ran a small pilot think-aloud study with three participants to refine the
study design. For the primary user studies, we recruited a total of 30 participants: 15 participants (8
males and 7 females) for the specification task and 15 participants (7 males and 8 females) for the
prediction task. We recruited participants on the Prolific platform. The participants were given a link
to take the survey. They were paid $18.5 USD per hour, and they identified their native language as
English. The majority of them (21 out of 30) reported having never taken an AI course.

In addition to the primary user studies, we also conducted two additional user studies that served as
variants of the specification task. Altogether, we carried out four distinct user studies: (1) Study 1:
assessed participants’ ability to provide objective specifications, (2) Study 2: also assessed partici-
pants’ ability to provide objective specifications, but used different videos to highlight how interme-
diate fact values change, (3) Study 3: also tested participants’ ability to provide objective specifica-
tions, but focused on a variation of the navigation task where the participants simply provided scores
for each state variable achievement, (4) Study 4: tested participants’ ability to predict behavior based
on the provided objective specifications. Further details about participant demographics for all four
user studies are provided in the supplementary materials.

This study was IRB-approved. Participants were provided with informed consent before they started
the survey. Multiple attention check questions were included throughout the study. For the main
study, each participant was shown all three domains in random order. For the first variant of the
specification study (Study 2), each participant was also shown all three domains in random order.
Finally, for the second variant of the specification study (Study 3), each participant was only shown
one domain, i.e., the robot navigation domain. For all user studies, the order in which the spec-
ification mechanism was shown was randomized to ensure the results between the two objective
specification mechanisms were counterbalanced.

7 Results and Discussions

7.1 Impressions from the Think-Aloud Study

We used the think-aloud study (Baxter et al., 2015) as a means of both testing our interface, partic-
ularly for specification tasks, and collecting some initial anecdotal information on the mechanisms.
The reactions we observed were aligned with what we hypothesized (H1-a and H2-a), where the
participants showed more positive reactions to the goal specification interface as opposed to the re-
ward. Some reactions to goal specifications included: “This one is fun, like playing,” and “The task
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was super easy.” On the other hand, for the reward specification, users reported a lack of confidence
about their ability to correctly provide such specifications: “I don’t understand, I’m very bad at this,”
and “I don’t know why this is confusing me.” Their qualitative feedback at the end of the survey
also reflected their strong preference for using the goal specification mechanism.

7.2 Specification Task

We started by analyzing the initial results from the specification task. In regard to hypothesis H1-
a, we calculated the number of times the participants were able to provide correct specifications
(presented in Table 1). We were surprised to find that the participants were actually able to identify
correct reward functions more frequently than correct goal specifications. Further, analyses of the
results showed that the most frequent mistakes made by participants in goal specification involved
the inclusion of intermediate facts in the goal specification. These intermediate facts, while made
true by the agent’s action, are also made false by further actions in the plan. For example, the subjects
might indicate that “the robot is holding the suitcase”, but in the observation of the environment, the
robot places the suitcase down at the end of the video. As such, including these intermediate facts
in the final goal specification leads to an unachievable objective specification. The goals provided
by the users reflected a more procedural description of the agent’s behavior than a final goal state
description. On the other hand, such intermediate state scores can be more naturally incorporated
into the reward function. To analyze the factors that could explain these results, we created two
follow-up variants of the specification and reran our study.

In the first follow-up, we updated all our videos to highlight how intermediate fact values change.
In each of our demonstration videos, we added animations that showed which facts became false.
We reran the experiment on five participants (thus collecting 15 specifications per mechanism). The
results from the study are presented in Table 2. While we see that the additional information does
improve the overall percentage of correct goal specification, the resulting percentage is similar to
that of the rewards. Thus indicating that the additional information balances participants’ ability to
craft goals or rewards.

In the second follow-up, we considered a variation of the navigation task in which participants
provided scores for each state variable’s achievement. This variant was motivated by the possibility
that including actions in the specification mechanism might help the participant by allowing them
to think procedurally about the task. Here, we set a specific absorbing state, and the reward for
each state was set to the sum of rewards associated with each state factor. We ran this variant on
15 participants, and the percentage of correct goal and reward specifications was, in fact, the same
(Table 3). This shows that the presence of actions assisted participants in crafting rewards, and that
crafting rewards over states instead of state-action-state tuples is a harder task in these domains.

Taken together, this collection of results suggests that the hypothesis that goals are easier to specify
than rewards may not be true. This is particularly surprising, given that this hypothesis is quite
frequently taken to be self-evident in the literature (cf. (Mechergui & Sreedharan, 2024)).

However, when we move on to the hypothesis related to workload and time taken (H2-a), we see
a clear distinction between the two specification mechanisms, with subjects overwhelmingly pre-
ferring the goal mechanism. Running paired t-tests shows that there is a statistically significant
difference between the cognitive load of goal specification (M = 9.444, SD = 5.057) and reward
specification (M = 12.689, SD = 5.008). There is also a statistically significant difference between
the time taken to complete the goal specification (M = 82.014, SD = 36.225) and reward specification
(M = 148.521, SD = 87.015). In addition, we also see similar responses with respect to the quali-
tative responses, with most participants finding goals easier to specify (86.67%) and more intuitive
(73.33%). The supplementary file provides the breakdown of individual dimensions of the workload
and more details on the qualitative feedback. These results support our hypothesis H2-a.

Finally, moving to H3, our results again do not support our hypothesis. In fact, we say more instances
of the users overspecifying their objectives than underspecification (see Table 1, 2, and 3). Such
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patterns were also replicated in the incorrect specifications. Looking at incorrect goal specification,
we saw a larger set of participants (75%) added incorrect facts as opposed to leaving out some
facts (0.027%). We include the more complete result of the statistical analysis in the supplementary
materials.

Table 1: Results from the main specification user study

Category Sub-category Percentage of total response
Goals Rewards

Correct
Correct minimal specification 4.45 2.22
Correct but overspecified 13.33 35.56
Correct but underspecified - 8.89

Incorrect Incorrect because gave subset 82.22 53.33
Total 100 100

Table 2: Results from the first variant of the specification study

Category Sub-category Percentage of total response
Goals Rewards

Correct
Correct minimal specification - -
Correct but overspecified 73.33 66.67
Correct but underspecified - -

Incorrect Incorrect specification 26.67 33.33
Total 100 100

Table 3: Results from the second variant of the specification study

Category Sub-category Percentage of total response
Goals Rewards

Correct
Correct and minimal specification - -
Correct and overspecification 66.67 66.67
Correct and underspecification - -

Incorrect Incorrect specification 33.33 33.33
Total 100 100

7.3 Prediction Task

As discussed, the goal of the prediction task was to test whether a user can predict the behavior
that could result from a given specification. We see that as a proxy for the ease with which users
can correctly interpret specifications expressed using each mechanism. For the prediction task, we
also see a similar pattern. The participant’s accuracy in predicting behavior based on the given
goals function and reward function is comparably high, with 93.33% predicting the goals function
correctly and 91.11% predicting the rewards function correctly. Here, the difference is not high
enough to establish any statistically significant difference between the two groups. As for the results
related to the cognitive workload, our t-test was not able to establish any significant difference
between the prediction from the goal function (M = 6.267, SD = 6.308) and from the reward function
(M = 7.044, SD = 6.502) with P-value equal to .251. There was also no significant difference
between the time taken to complete the prediction from goal function (M = 82.840, SD = 75.285)
and from reward function (M = 90.873, SD = 59.339); t(44) = -0.878, P = .385. This seems to
suggest that both of our hypotheses, H1-b and H2-b, may not hold.
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However, when we move on to the participant preference between the two mechanisms, most par-
ticipants find the goal function easier to predict (86.67%) and more intuitive (80%). In addition to
this, most participants reported that the reward function is more challenging to predict (80%). These
preferences are consistent in both specification and prediction tasks.

7.4 Results Summary

From our experiments, we find that our hypotheses H1-a and H1-b are surprisingly not supported:
we did not find evidence that people are able to more correctly specify or interpret goals over reward
functions. Despite this, we find that there was a significant difference in the cognitive effort and
time needed to specify objectives: goals were a clear winner on these axes (H2-a). We were also
surprised to find that people are not more likely to underspecify goals than to overspecify (H3).
Overall, though, the subjective feedback reflects that participants strongly preferred using goals
over reward functions.

7.5 Limitations of Study Scenarios

It is important to acknowledge the limitations in our study scenarios. All studies were carried out
in purely deterministic settings, where the agents can not get stuck in loops or face probabilistic
transitions. While this is stereotypical of many tasks where goals are used, this does not necessarily
represent all the ways rewards could be utilized, which is a more general specification mechanism.

Similarly, we considered simple enough scenarios where the participants could easily enumerate all
possible facts and incorporate them into the specification. While this design choice helps participants
avoid feeling overwhelmed and enables the clear measurement of specification correctness, it also
means that our results may not generalize to more complex domains where the state space is larger
or the dynamics are not deterministic.

Additionally, several potential confounding factors are present in the experimental design, includ-
ing task complexity. The simplicity of the scenarios may not adequately reveal the full range of
participants’ ability to provide specifications and predict the behavior of the agents. If the tasks are
too simple, participants may not encounter the ambiguities or difficulties that would arise in more
complex settings. Uncontrolled environmental factors, such as the testing environment, time of day,
or participant fatigue, can also influence performance, which could potentially confound the results.

Given these limitations, our findings should be viewed as preliminary. Future work is needed to ex-
amine whether the results we observed in this study persist under more varied and complex settings
to ensure broader validity.

8 Conclusion

In this paper, we performed a comparison to assess how easy it would be for non-expert users to
provide and understand reward specifications and goal specifications. Our results provide evidence
that people’s ability to provide and understand rewards is fairly comparable to that of goals. How-
ever, there is a clear difference in the user preferences and the cognitive load imposed by the two
methods (at least for the specification task). One interesting question to ask in this context would be
whether this difference can be explained by the interface we used for our study. As such, one would
want to investigate if it is possible to develop interfaces that allow users to intuitively provide reward
functions. Such interfaces would have pretty immediate advantages, given that reward functions are
more expressive than goals. Future work should investigate how goals and rewards compare with
other objective specification mechanisms, such as policy sketches and reward machines.

Acknowledgments

This study was funded by NSF grant 2303019.



Goals vs. Rewards: A Preliminary Comparative Study

References
David Abel, Will Dabney, Anna Harutyunyan, Mark K. Ho, Michael L. Littman, Doina Precup, and

Satinder Singh. On the expressivity of markov reward. In NeurIPS, pp. 7799–7812, 2021.

Saleema Amershi, Maya Cakmak, William Bradley Knox, and Todd Kulesza. Power to the people:
The role of humans in interactive machine learning. AI magazine, 35(4):105–120, 2014.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Con-
crete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Andrea Bajcsy, Dylan P Losey, Marcia K O’Malley, and Anca D Dragan. Learning from physical
human corrections, one feature at a time. In Proceedings of the 2018 ACM/IEEE International
Conference on Human-Robot Interaction, pp. 141–149, 2018.

Kathy Baxter, Catherine Courage, and Kelly Caine. Understanding your users: a practical guide to
user research methods. Morgan Kaufmann, 2015.

Erdem Biyik and Dorsa Sadigh. Batch active preference-based learning of reward functions. In
Conference on robot learning, pp. 519–528. PMLR, 2018.

Serena Booth, W. Bradley Knox, Julie Shah, Scott Niekum, Peter Stone, and Alessandro Allievi.
The perils of trial-and-error reward design: Misdesign through overfitting and invalid task speci-
fications. In AAAI, pp. 5920–5929. AAAI Press, 2023.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog, Daniel Ho,
Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. Do as i can, not as i say: Grounding
language in robotic affordances. In Conference on robot learning, pp. 287–318. PMLR, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Michael T Cox. A model of planning, action, and interpretation with goal reasoning. In Proceedings
of the 4th Annual Conference on Advances in Cognitive Systems, pp. 48–63, 2016.

Nadia Figueroa, Salman Faraji, Mikhail Koptev, and Aude Billard. A dynamical system approach
for adaptive grasping, navigation and co-manipulation with humanoid robots. In 2020 IEEE
International conference on robotics and automation (ICRA), pp. 7676–7682. IEEE, 2020.

Hector Geffner and Blai Bonet. A concise introduction to models and methods for automated plan-
ning. Morgan & Claypool Publishers, 2013.

Sandra G Hart. Nasa task load index (tlx). 1986.

Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith. Reward ma-
chines: Exploiting reward function structure in reinforcement learning. Journal of Artificial In-
telligence Research, 73:173–208, 2022.

W Bradley Knox and Peter Stone. Interactively shaping agents via human reinforcement: The tamer
framework. In Proceedings of the fifth international conference on Knowledge capture, pp. 9–16,
2009.

W Bradley Knox, Stephane Hatgis-Kessell, Serena Booth, Scott Niekum, Peter Stone, and Alessan-
dro Allievi. Models of human preference for learning reward functions. Transactions on Machine
Learning Research, 2022.



Reinforcement Learning Journal 2025

W. Bradley Knox, Alessandro Allievi, Holger Banzhaf, Felix Schmitt, and Peter Stone. Reward
(Mis)design for autonomous driving. Artificial Intelligence, 316(103829), 2023.

Dylan P Losey and Marcia K O’Malley. Including uncertainty when learning from human correc-
tions. In Conference on Robot Learning, pp. 123–132. PMLR, 2018.

James MacGlashan, Mark K Ho, Robert Loftin, Bei Peng, Guan Wang, David L Roberts, Matthew E
Taylor, and Michael L Littman. Interactive learning from policy-dependent human feedback. In
International conference on machine learning, pp. 2285–2294. PMLR, 2017.

Malek Mechergui and Sarath Sreedharan. Goal alignment: Re-analyzing value alignment prob-
lems using human-aware AI. In Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI
2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024,
Fourteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2014, February
20-27, 2024, Vancouver, Canada, pp. 10110–10118. AAAI Press, 2024.

Martin L Puterman. Markov decision processes. Handbooks in operations research and management
science, 2:331–434, 1990.

Harish Ravichandar, Athanasios S Polydoros, Sonia Chernova, and Aude Billard. Recent advances
in robot learning from demonstration. Annual review of control, robotics, and autonomous sys-
tems, 3(1):297–330, 2020.

Stuart Russell. Human-compatible artificial intelligence., 2022.

Rohin Shah, Vikrant Varma, Ramana Kumar, Mary Phuong, Victoria Krakovna, Jonathan Uesato,
and Zac Kenton. Goal misgeneralization: Why correct specifications aren’t enough for correct
goals. arXiv preprint arXiv:2210.01790, 2022.

Herbert A Simon. The Sciences of the Artificial, reissue of the third edition with a new introduction
by John Laird. MIT press, 2019.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Christopher Taylor. Aristotle on practical reason. In The Oxford Handbook of Topics in Philosophy.
Oxford University Press, 2019. ISBN 9780199935314.

Andrea L Thomaz and Cynthia Breazeal. Teachable robots: Understanding human teaching behavior
to build more effective robot learners. Artificial Intelligence, 172(6-7):716–737, 2008.

Nhi Tran. Goals vs. actions as user-facing representations for robot programming. In 2024 AAAI
Fall Symposium Series. AAAI, 2024.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.



Goals vs. Rewards: A Preliminary Comparative Study

Supplementary Materials
The following content was not necessarily subject to peer review.

9 Participants’ Demographics for the Objective Specification Mechanisms
User Studies

Table 4 provides more detailed information about the participants’ demographics from the four user
studies that we conducted. As mentioned in Section 6, the following is a brief description of each
user study. Study 1 is a primary study that assessed participants’ ability to provide objective specifi-
cations. Similarly, Study 2 also assessed participants’ ability to provide objective specifications, but
used different videos to highlight how intermediate fact values change. Study 3 also tested partic-
ipants’ ability to provide objective specifications, but focused on a variation of the navigation task
where the participants simply provided scores for each state variable achievement. Finally, Study
4 is also a primary study, with the objective to test participants’ ability to predict behavior based
on the provided objective specifications. For Studies 1, 3, and 4, we have 15 participants in each
study. And for Study 2, we have 5 participants. Based on the demographic variable “have taken AI
courses”, we can see that the majority of the participants in each study declared that they have never
taken an AI course.

Table 4: Participants’ demographics for the objective specification mechanisms user studies

Demographic
Variable Category Frequency

Study 1 Study 2 Study 3 Study 4

Age

18-24 years old 2 0 2 2
25-34 years old 4 0 7 4
35-44 years old 4 3 4 3
45-54 years old 2 2 2 4
55+ years old 3 0 0 2

Sex Male 8 2 8 7
Female 7 3 7 8

Highest level
of education

High school or
equivalent 6 0 3 3

Attended college/
university 2 1 5 1

Associate degree 0 0 0 2
Bachelor’s degree 4 2 5 6
Master’s degree 3 1 2 2
Doctorate degree 0 1 0 1

Have taken Computer
Science courses

Yes 7 2 6 9
No 8 3 9 6

Have taken AI courses Yes 5 2 6 4
No 10 3 9 11

Self-declared
AI knowledge

Novice 6 2 6 9
Intermediate 6 3 5 5
Advanced 2 0 3 1
Expert 1 0 1 0

10 Statistical Analysis Results from the User Studies

Table 5 provides more detailed information about the statistical results from the four user studies
that we conducted. (Note. p < .05. Means and standard deviations are reported for each dependent
variable and each condition. Confidence intervals are 95%. t = paired two-sample for means t-test).
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11 Raw Nasa TLX Scores

Figure 4: Box tables representing the NASA TLX score collected for both specification and predic-
tion tasks.

12 Subjective Feedback from Participants

Here is the subjective feedback provided by the participants for each of the objective specification
mechanisms. Here, the participants were asked to select the objective mechanisms they felt most
closely matched the description provided

Figure 5: The raw number of selections provided by the participants for each task.

13 Screenshots from the Variants

Here are some of the screenshots from the two variants of the specification tasks.
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Figure 6: Screenshots from the new video for the first variant that highlights the false facts and how
they change over actions.

Figure 7: Screenshots from the second variant that show the task and the new reward specification
mechanism.

14 Additional Resources

Here are some of the additional resources, including code and an example of the survey: Goals vs.
Rewards Repository.

https://github.com/septiarani/rlc2025_goals_vs_rewards
https://github.com/septiarani/rlc2025_goals_vs_rewards

