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Summary
We consider minimisation of dynamic regret in non-stationary multi-armed bandits with a

slowly varying property. Namely, we assume that arms’ rewards are stochastic and independent
over time, but that the absolute difference between the expected rewards of any arm at any
two consecutive time-steps is at most a drift limit δ > 0. For this setting that has not received
enough attention in the past, we give a new algorithm and establish the first instance-dependent
regret upper bound for slowly varying non-stationary bandits. The analysis, in turn, relies on a
novel characterization of the instance as a detectable gap profile that depends on the expected
arm reward differences. We also provide the first minimax regret lower bound for this problem,
enabling us to show that our algorithm is essentially minimax optimal. Also, this lower bound
we obtain establishes that the seemingly easier slowly-varying bandits problem is at least as
hard as the more general total variation-budgeted bandits problem in the minimax sense. We
complement our theoretical results with experimental illustrations.

Contribution(s)
1. We design a new algorithm for the problem of slowly-varying non-stationary multi-armed

bandits. We show an instance-dependent regret upper bound for this algorithm. For this, we
come up with a novel instance-dependent quantity that we call ‘detectable gap’.
Context: To the best of our knowledge, this is the first instance-dependent regret bound
for the slowly-varying settings. Instance-dependent bounds have so far been elusive in
any continuously varying bandits (both total variation-budgeted setting and slowly-varying
setting).

2. We show a minimax regret upper bound for our algorithm and establish that it is minimax
optimal.
Context: Besbes et al. (2014) already show a minimax optimal algorithm for the more
general total variation-budgeted bandits problem, so ours is not the first/only minimax opti-
mal algorithm.

3. We show a fundamental lower bound for slowly-varying non-stationary bandits problem.
This bound matches our upper bound and also matches the known lower bound of the total
variation-budgeted bandits problem. This establishes that the more constrained slowly-
varying setting is at least as hard (in a worst case sense) as the more general total variation-
budgeted setting.
Context: To the best of our knowledge, this is the first lower bound for the slowly-varying
non-stationary bandits problem.

4. We experimentally evaluate the performance of our new algorithm, and compare with ex-
isting approaches from the literature.
Context: None.
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Abstract

We consider minimisation of dynamic regret in non-stationary multi-armed bandits with
a slowly varying property. Namely, we assume that arms’ rewards are stochastic and
independent over time, but that the absolute difference between the expected rewards of
any arm at any two consecutive time-steps is at most a drift limit δ > 0. For this setting
that has not received enough attention in the past, we give a new algorithm and estab-
lish the first instance-dependent regret upper bound for slowly varying non-stationary
bandits. The analysis, in turn, relies on a novel characterization of the instance as a
detectable gap profile that depends on the expected arm reward differences. We also
provide the first minimax regret lower bound for this problem, enabling us to show that
our algorithm is essentially minimax optimal. Also, this lower bound we obtain estab-
lishes that the seemingly easier slowly-varying bandits problem is at least as hard as
the more general total variation-budgeted bandits problem in the minimax sense. We
complement our theoretical results with experimental illustrations.

1 Introduction

Reinforcement learning, and specifically bandit optimization, in dynamically changing environ-
ments has remained an active topic of study in machine learning. A variety of non-stationary bandit
settings have been studied incorporating a range of structural assumptions. At one end are classical
stochastic models such as restless bandits (Whittle, 1988), where the state of the arms governs the
bandit problem at any instant, but the transitions between these problems (states) follow probabilis-
tic dynamics. At the other extreme are settings with non-stochastic and arbitrarily changing rewards
such as prediction with expert advice (and the EXP3 algorithm)(Cesa-Bianchi & Lugosi, 2006; Auer
et al., 2002). In between these extremes lie settings of changing environments where the adversary
(environment) is assumed to be limited in its ability to change the rewards, i.e., a structural constraint
is enforced on the amount of change in the rewards across time. These include the abrupt change
(or switching experts) model (Garivier & Moulines, 2011), where at most M arbitrary changes to
the reward distributions are allowed in the entire time horizon, and the variation-budgeted (drifting)
change model (Besbes et al., 2014), in which the total magnitude of changes (of rewards) across
successive time steps is constrained to be within an overall budget.

In this paper, we focus on slowly-varying bandits—a different and arguably more commonly en-
countered, yet less studied, model of non-stationary bandits. In this setting, the arms are allowed
to change arbitrarily over time as long as the amount of change in their mean rewards between two
successive time steps is bounded uniformly across the horizon. Many real-world settings naturally
involve observables whose distributions are ‘smooth’ over time, in the sense that their instantaneous
rate of change is not too large, e.g., slowly drifting distributions in natural language tasks (Lu et al.,
2020), data from physical transducers (position, velocity, power, temperature, chemical concentra-
tion), and slowly fading wireless channels (Tse & Viswanath, 2005). Though the slowly-varying
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bandit setting is subsumed by the total variation-budgeted model with an appropriate budget, the
hope is that the local smoothness of the rewards with time can be exploited by the learner to perform
better.

1.1 Our contributions

We make the following contributions in this regard.

1. We give a new algorithm, SNR, for slowly-varying multi-armed bandits. The algorithm is based
on the principle of adaptive exploration followed by commitment in phases—a strategy that is
known to be optimal for stationary stochastic bandits— but where the commitment phase is
adjusted depending on the smoothness constraint on the rewards. The design of the algorithm
also involves the estimation of a novel property of the bandit instance called the detectable gap
profile, which essentially characterises the gap between the local averaged means of the arms that
can be reliably detected, across time.

2. We derive a regret bound for this algorithm in terms of the detectable gap profile of the bandit
instance (Theorem 1). The bound, to our knowledge, is the first instance-dependent regret guar-
antee for any algorithm for drifting stochastic bandits. Moreover, the worst case regret bound for
a horizon T , over all instances for a given constraint δ on instantaneous reward change, is shown
to be O(TK1/3δ1/3) (Theorem 2).

3. We complement this worst case regret upper bound with a matching fundamental lower bound
(Theorem 3) —the first of its kind for slowly-varying bandits— that shows that our algorithm
is order-wise minimax-optimal. Interestingly, the minimax regret rate happens to be the same
as that of the total variation-budgeted (with equivalent budget δT ) setting, establishing that the
more constrained slowly-varying setting is at least as hard (in a worst case sense) as the more
general total variation-budgeted setting.

4. We evaluate the performance of our new algorithm and existing approaches, showing that it
outperforms the other approaches in some synthetic experiments (Section 6).

1.2 Related Work

Non-stationarity in bandit optimization has been extensively studied and dates back to the seminal
work of Whittle (1988) on restless bandits, in which arms’ states (and thus their reward distributions)
change according to Markovian dynamics (also see Slivkins & Upfal (2008)). The past few decades,
however, have witnessed the growth of hybrid adversarial and stochastic bandit models for non-
stationarity, where the distributions of arms across time can be set by an adversary ahead of time in
an arbitrary manner.

Switching and total variation-budgeted non-stationary MAB. Among the many examples of
non-stationary models are the following two: First, the abruptly changing (or switching) bandits
setting (Garivier & Moulines, 2011; Mukherjee & Maillard, 2019; Auer et al., 2019), where the dis-
tributions are piecewise stationary and can arbitrarily change at unknown time steps. And second,
the total variation-budgeted (or the ‘drifting’ or the ‘continuously changing’) bandits setting intro-
duced by Besbes et al. (2014; 2019) where VT =

∑T
t=2 ∥µt − µt−1∥∞ is the total-variation budget

that puts a constraint on the total amount of successive changes in arms’ reward means. The authors
show that it is possible to devise algorithms with guarantees on the dynamic regret that depend on
the variation budget VT and total time horizon T of order roughly1 Õ

(
V

1/3
T K1/3T 2/3

)
. Table 1

juxtaposes our results against these relevant results from literature.

Other non-stationary bandit settings. Subsequently, the notions of non-stationarity have been
well studied under other bandit settings. (Kim & Tewari, 2020; Cheung et al., 2019; Russac
et al., 2019) consider problems in the linear bandits (of d dimensions) with drifting non-stationarity

1Õ (.) hides logarithmic factors.
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Table 1: A comparison of different regret bounds from the literature for common structures/models
of non-stationarity. We highlight some observation below.
(a) For the abruptyly changing (switching) model of non-stationarity that has sequential periods (or
blocks of time) of stationarity, the instance-dependent regret of an arm is expressed as a function of
the sub-optimality gap ∆j in a block j summed over all M blocks. In their work, the term Hj is a
measure of statistical distinguishability of block j from the preceding block j − 1.
(b) Unlike in switching model above, however, in the continuously-varying models (total variation-
budgeted or slowly-varying), these notions such as blocks and a single value ∆. of gap therein don’t
apply. Thus, characterizing instance-dependent regret expression is non-obvious and has remained
elusive. The λa,min term we use to give such an instance-dependent regret bound above shall be
formalized in Theorem 1.
(c) On the minimax regret bounds front, we discover that the slowly-varying bandits and total-
variation budgeted bandits have the same minimax regret upper and lower bounds with a budget
V = Tδ. In this lens, it is to be noted that the minimax regret we show is indeed sublinear in T
when δ = V/T is a fraction that is o(1) w.r.t. T .

Scenario
Instance-dependent
upper bound - Õ (.)

Minimax
upper bound - Õ (.)

Minimax
lower bound - Ω(.)

Abruptly switching.
(M breakpoints)

∑
arms a

∑
blocks j

log T/Hj

∆a,j

(Mukherjee & Maillard, 2019)

√
MKT

(Garivier & Moulines, 2011)

√
MKT

(Wei et al., 2016)

Total variation-budgeted.
(budget V ) —-

V
1/3K

1/3T
2/3

Besbes et al. (2014)
V

1/3K
1/3T

2/3

Besbes et al. (2014)

Slowly Varying.
(δ drift limit)

∑
arms a

∑
blocks j

log T

λa,min(j)

[Our Work]

δ
1/3K

1/3T
[Our Work]

Besbes et al. (2014)
δ
1/3K

1/3T
[Our Work]

regime, while Russac et al. (2020) look at generalized linear bandits with switching non-stationarity
and both provide optimal minimax regret bounds Keskin & Zeevi (2017) work on the dynamic pric-
ing problem where the demand over time is assumed to be drifting adhering to a variation metric, and
Saha & Gupta (2022) investigate both switching and drifting rewards in a Duelling bandits setup.
Most of these mentioned works use UCB-based approaches tailored to the non-stationary setup—
such as only using samples from a sliding window of the recent past, or applying lesser (decaying)
weightage to samples the further they are in the past—to impart more importance to newer samples
over older ones. On that note, Zhao et al. (2020) handle non-stationarity by restarting algorithms
to discard old information, and Wu et al. (2018) employ a master-slave paradigm, where the mas-
ter bandit optimizes over many slave bandits that pull arms based on their knowledge. Manegueu
et al. (2021) provide an algorithm and analysis that handles multiple closely related types of non-
stationarity at once and provide an algorithm that uses restarting mechanism on top of change-point
detection procedures to handle non-stationarity.

Parameter-free algorithms There is a different thread of work that has removed the assump-
tion of knowing the non-stationary parameter upfront and has incrementally progressed (Karnin &
Anava, 2016; Luo et al., 2018; Cheung et al., 2022) to get to optimal minimax regret upper bounds
(Auer et al., 2019; Chen et al., 2019). Further, Wei & Luo (2021) provide a (non-stationary) parame-
terless black-box meta-algorithm that converts an minimax-optimal stationary bandit algorithm into
a minimax optimal non-stationary bandit algorithm. However, an instance-dependent regret bound
characterization has so far remained elusive under any sort of drifting reward constraint even when
the non-stationary parameter is assumed to be known. Our results not only match the optimal regret
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rates in a minimax sense, but we also give a more instance-dependent regret characterisation for our
algorithm in the slowly-varying drifting bandits setting.

Lower Bounds. In terms of lower bounds, Besbes et al. (2014) provide a minimax lower bound
of Ω(V

1/3
T K1/3T 2/3) that matched their algorithm’s upper bound (upto logarithmic factors), thereby

closing the door on any possible improvements to the total variation-budgeted setting. However, we
show an identical lower bound for slowly-varying bandits setting as well, with equivalent per-round
drift limit. This is a stronger result as our minimax lower bound applies to a more restricted class of
problems instances.

Slowly/smoothly varying bandits. Looking at works whose setups are very close to the slowly-
varying non-stationarity that we consider, the setting where rewards are Lipschitz continuous over
time (with the Lipschitz constant being similar in function to our drift limit δ) is considered in
Combes & Proutiere (2014) who provide asymptotical regret guarantees, and in Trovo et al. (2020)
who provide a Thompson Sampling based approach to obtain an instance specific expression for the
regret. However, both these works additionally assume that the seperation between two arms (in
terms of reward means) is arbitrarily small only for a limited number of time-steps, which makes the
problem instance more manageable from an algorithmic perspective of distinguishing sub-optimal
arms. Recently, Jia et al. (2023) consider smoothly-varying rewards that are β-Hölder functions over
time for the two-armed case, and specifically exploit additional smoothness when β = 2 to show
improved upper bounds. Additionally, a lower bound expression that is Ω(T 2/3) for 1-Hölder (or
Lipschitz) reward function is shown without characterising dependence on the Lipschitz constant
or the number of arms. Perhaps the only other work that studies the exact slowly-varying non-
stationary bandit setting that we consider here is that of Wei & Srivatsva (2018). They modify the
sliding-window-UCB algorithm of Garivier & Moulines (2011) to employ windows that grow in size
with time to get the SW-UCB# algorithm and show minimax regret upper bounds (ignoring number
of arms K) of O(δ1/4T ). In our work, we show an improved bound of O(δ1/3T ), where δ ∈ [0, 1] is
the drift limit that shall be formally introduced in the next section.

2 Setting and Preliminaries

We consider bandits with arm/action set A = {1, 2, . . . ,K} and a time horizon of T . At time
t ∈ [T ] := {1, 2, . . . , T}, when arm a ∈ A is played by a bandit algorithm depending on only
past history, a stochastic reward µ̂a,t drawn from a Bernoulli 2 distribution with expected value
µa,t ∈ [0, 1] is obtained. We denote by µt := (µ1,t, µ2,t, . . . , µK,t) the expected reward tuple at
time t ∈ [T ]. Write µ := (µ1, µ2, . . . , µT ) to be the expected reward profile of the bandit instance.

A bandit instance µ is defined to be slowly-varying with drift limit δ > 0 (denoted as µ ∈ Sδ) if the
expected reward profile satisfies

∀a ∈ A, t ∈ [T − 1], |µa,t − µa,t+1| ≤ δ. (1)

In other words, for an arm a ∈ A at a time step t, the expected reward µa,t can drift in value to some
µa,t+1 (at the next time-step) by at most δ.

Definition 1 (Regret). For a bandit instance µ, the (expected) regret incurred by an algorithm (or
policy) ALG is R(ALG) =

∑T
t=1 µ

∗
t − E

[
µALG(t),t

]
, where µ∗

t = maxa∈A µa,t is the mean reward
of the optimal arm at time t, and ALG(t) ∈ A is the arm played by ALG at time t ∈ [T ].

Note that this is the dynamic regret, where the performance benchmark at each time-step is the
expected reward of the optimal arm at that time-step (µ∗

t ). This is a stronger (i.e., harsher) notion
of regret compared to the classical notion of static regret, where the benchmark at all time-steps is
the expected reward of the best single arm across the entire horizon in hindsight. The goal is to

2In general, our theoretical analysis and results hold for any sub-gaussian reward distributions with a suitably bounded
variance.
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Figure 1: The figure depicts two arms’ true reward means, and the sub-optimal arm’s gap profile,
and the detectable gap profile of one problem instance illustrated at 4 zoom levels. The box in
each image is the region zoomed in for the next image (to its right). First, the detectable gaps (λ)
reasonably positively correlates with the gaps (∆), and initially (in general, whenever there is not a
sufficient window size to detect a gap), for a short span, it takes the form

√
c0K log T/t. Second, λ

roughly trails ∆ as it depends on a recent window (into the past) of ∆ at every time-step. Third, λ is
‘smoother’ compared to ∆, as by design, its values are averaged over a window of samples. Fourth,
although λ is described as a continuous optimization problem over [0, 1], it actually transforms into
a discrete optimization problem over different integral window sizes w. Thus, λ has a ‘piece-wise
constant’ appearance.

learn to play arms to achieve low (dynamic) regret for any problem instance µ ∈ Sδ . We assume
that the algorithm has access to the drift limit δ (or a suitable upper bound on it). This is reasonable
as in practice there is often domain specific information available in advance about the drift of the
quantity in consideration. We now introduce a novel characterization of a non-stationary bandit
instance, and highlight its significance to the algorithm design and analysis to follow later.

Detectable Gap Profile. In the stationary stochastic multi-armed bandit problem, the suboptimal-
ity gap of some arm a is ∆a := µ∗ − µa, where µa is the expected reward of arm a and µ∗ is
the expected reward of the optimal arm. These ∆. quantities essentially characterise the attainable
regret rate3 of the problem instance. With non-stationary reward distributions, the notion of a (time-
invariant) gap must be generalised to a gap profile For arm a, ∆a := (∆a,t)t where ∆a,t := µ∗

t−µa,t

is the difference at time t between the expected rewards of the optimal arm and arm a.

In a continuously non-stationary setting, however, this instantaneous arm gap ∆t does not suffi-
ciently capture the state of the problem instance (in terms of statistical distinguishability of arms) at
the particular time t. It does not contain information about the nature of non-stationarity in the tem-
poral neighborhood of that time-step t. We overcome this by introducing the notion of a detectable
gap profile λ, which intuitively helps to characterise how hard it is to reliably estimate which arm
is optimal and by how much at any time t. This is a derived quantity expressed in terms of the gap
profile taken over a local window of time leading up to t.

Definition 2 (Detectable gap). For an arm a ∈ A, we define its detectable gap λa := (λa,t)t where,

λa,t =


max

b∈A\{a}

λ ∈ (0, 1] :
1

w(λ)

t∑
t′=t−w(λ)+1

µb,t′ − µa,t′ ≥ λ

 , if such λ exists.

√
c0 log T

t
, otherwise.

(2)

where, the summation is over a contiguous time-period of size w(λ) := ⌈c0K log T/λ2⌉ that termi-
nates at t, and c0 = 144 is a constant 4.

3assuming bounded/sub-gaussian rewards
4In fact, in the remainder of the paper, all notations of the form ci shall be suitable universal constants.
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Intuitively, λa,t = α for some time-step t implies that a (sub-optimality) gap of α for arm a can be
detected with high probability by observing samples from all arms in the past ≈ 1/α2 time-steps. In
other words, if an observer directly received the true means of arms after playing them and considers
them as observations from bounded random variables, then the choice of contiguous window w(α)
essentially is upto how far in the past the observer would have to look to separate the arm from some
other arm with high probability using Hoeffding’s concentration inequality.

Fig. 1 depicts the detectable gap profile (λ) and instantaneous gap profile (∆) of the sub-optimal
arm in a two-armed bandit instance. We shall see that the detectable gap profile better reflects the
nature of a non-stationary problem instance. Specifically, for our algorithm, we shall obtain a regret
upper bound (to be shown in Theorem 1) as a function of the detectable gap profile, λ, which is an
instance-dependent quantity.

3 Algorithm Description

Successive Elimination (SE) is a well-known algorithmic recipe for solving stationary stochastic
bandits, built upon the Explore-Then-Commit (ETC) paradigm (see Slivkins (2019) for a text-book
treatment of SE and ETC) In its classical form, SE adaptively pulls all arms in a round-robin fash-
ion until it distinguishes an optimal arm from a sub-optimal arm with a high probability. Then,
it drops the inferior arm indefinitely and continues this procedure with the remaining arms. Our
algorithm, SNR (Snooze and Respawn) gracefully adapts this Successive Elimination paradigm to
the non-stationary bandits setup. It pulls arms in a round-robin fashion until it can assertively iden-
tify/distinguish a sub-optimal arm in a ‘local average’ sense, and then plays only the remaining arms
for a period of time until the earlier distinguished sub-optimal arm can possibly become the optimal
arm due to the non-stationarity.

Specifically, SNR (pseudocode in Algorithm 1) runs in a series of episodes for every arm. Every
episode of an arm a ∈ A begins with an active phase, during which SNR pulls arm a in every round
as a part of its round-robin play. At the end of every time-step (or every round 5 of round-robin
play), it performs a statistical test (Line 6) to detect a clear gap in reward means of arm a compared
to some other arm b. If the test succeeds, the algorithm concludes that arm a is sub-optimal (in the
current temporal neighbourhood) and the active phase of arm a ends, and it possibly snoozes arm
a for a certain period of inactivity (Lines 10-11), termed as the passive phase. During this passive
phase of arm a, SNR plays only the other arms that are in the active phases in their current episodes.
At the end of this passive phase, arm a respawns to become active, and then its next episode begins.

We introduce some notations to describe the statistical test and for further analysis.

Let ea be the total number of episodes (indexed as 1, 2, . . . , ea) of arm a ∈ A in a run of SNR.
For every episode i ∈ [ea] of every arm a, let ta,i denote the time after which the active phase of
episode i of arm a begins. Note that ta,i+1 corresponds to the time at which episode i of arm a
ends. We also always have ta,1 = 0 and ta,ea+1 = T , the end time of the final episode, for all arms
a. Let ga,i denote the time at which the statistical test on line 6 of the algorithm passes, and write
τa,i := ga,i − ta,i to denote the duration of the active phase of episode i of arm a. Let wa,i denote
the number of rounds elapsed in the active phase, or equivalently, the number of times arm a has
been played in the active phase [ta,i + 1, ga,i].

For an arm a at time t in its ith episode, let ωa
1 , ω

a
2 , . . . , ω

a
w ≤ t be the time steps in which arm a was

played in its last w pulls, i.e., the the pull from each of the last w rounds of arm-play until time t.
Write µ̂a,t(w) :=

1
w

∑w
x=1 µ̂a,ωa

x
to denote the empirical reward mean (or simply empirical mean)

of arm a at time t measured/calculated from it’s last w pulls. Here, µ̂a,ωa
x

is the actual reward the
algorithm obtains on pulling arm a at time ωa

x. Note that the true reward means µa,ωa
.

for different
time-steps corresponding to these w pulls need not be the same.

5the terms ‘time-step’ and ‘round’ are sometimes used interchangeably in the bandit literature, but, here, a round corre-
sponds to a sequence of time steps in a round-robin play of SNR in which all active arms are pulled once.
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At a particular time, for a passive (snoozed) arm a ∈ S, denote by ρ(a) the arm which arm a was
compared against in the statistical test that resulted in the most recent snoozing of a. For an arm a,
at a particular time, let ā denote the arm that transitively eliminated (or caused snoozing of) arm a.
Precisely, recursively define 6 ā := ρ(a) if a is passive, and ā := a when a is active.

With these definitions, we define the statistical test as follows.

Definition 3 (λ̂-inferiority). Let λ̂ > 0. At time t, an arm a in the active phase of episode i, is said
to be λ̂-inferior to an arm b (written as b̄ >λ̂ a) if, for a window of w := ⌈c0 log T/λ̂2⌉ rounds that
falls entirely within episode i of arm a, we have

LCBb̄,t(w) > UCBa,t(w) + 2r(w)−Kδ,

and the inequality holds for no other λ̂′ > λ̂.

In the above definition, we write LCBa,t(w) := µ̂a,t(w) − r(w) (sim. UCBa,t(w) := µ̂a,t(w) +
r(w)) to denote the lower (sim. upper) confidence bound of an arm a’s recent reward mean, and
r(w) :=

√
2 log T/w is the accuracy radius with w samples. Note that arm a is compared against arm

b̄ which can denote different arms in the w rounds in the window of consideration. Essentially, in
time periods in which arm b is passive, arm b̄ acts as a (superior) proxy for arm b. The constraint
that all w rounds fall within the same (current) episode of arm a ensures that the rounds from which
arm a’s samples are observed are consecutive.

Using this statistical test (Line 6), SNR evaluates, at a time t, if some arm is λ̂-inferior to another
(as in definition 3). The size of the window, w, in which the empirical means are calculated is
dynamically chosen based on the empirical detectable gap, λ̂, itself that is being tested for. If the
test passes, then SNR decides that arm a is sub-optimal and computes a sub-optimality buffer period,
of duration buf = 2/δ.

√
log T/wa,i (Line 9), that begins at ta,i, the start of the current episode. By

time t, if the buffer period has not fully elapsed, we snooze the sub-optimal arm for a passive phase
that runs until the end of the buffer period.

Optionally, we refer the reader to Appendix E for graphical illustrations (Figs. 6 and 7) of example
algorithmic trajectories (with active/passive phases and statistical tests).

4 Theoretical Guarantees

Our first main result is a regret bound our algorithm in terms of the detectable gap profile of a
slowly-varying bandit instance.

Theorem 1. [Instance-dependent regret bound] If SNR is run with a drift limit parameter δ on a
problem instance µ ∈ Sδ , then its expected regret , R(SNR), is upper bounded by

c6
∑
a∈A

m∑
j=1

1

λa,min(j)
. log T + c8,

where m = T/τ is the number of blocks, each of length not more than τ = min{T, c9δ−2/3 log
1/3 T},

and for every block j ∈ [m] spanning a time period bj := [(j−1)τ+1, jτ ]∩[T ], define λa,min(j) :=
mint∈bj λa,t. Here, cis are suitable constants.

We also have the following upper bound on the worst-case regret (over instances in Sδ) for SNR.

Theorem 2. [Minimax Upper bound] If SNR is run with a drift limit parameter δ on any problem
instance µ ∈ Sδ , then it incurs an expected regret of O(Tδ1/3K1/3 log

1/3 T ), where K is the number
of arms.

6the quantities ρ(a), a depend on the time t in consideration. But we refrain from explicity marking t in the notation as
it shall be obvious from the context of usage.
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Algorithm 1 SNR: Plays the non-stationary slowly-varying bandit problem instance
Input: Time horizon T , a set of arms A = {1, 2, . . . ,K} with sample access, the drift limit δ.
Output: Play an arm for every time-step.

1: Initialize active arms set A = A, snoozed arms set S = ∅.
2: Initialize episode index i(a)← 1 for all arms a ∈ A.
3: for t = 1, 2, . . . , T do
4: x← Least recently pulled arm in A. ▷ Play active arms in round-robin fashion
5: Pull arm x and observe reward µ̂x,t.
6: if ∃ arms a, b ∈ A, ∃λ̂ ∈ [0, 1] such that b̄ >λ̂ a then ▷ As in Definition 3
7: i← i(a), arm a’s current episode.
8: Statistical test success time, ga,i = t, Active phase duration, τa,i = ga,i − ta,i.

9: Compute sub-optimality buffer/snooze period, buf = 2
δ

√
log T
wa,i

.

10: if buf > τa,i then
11: Snooze arm a, update A← A \ {a}, and S ← S ∪ {(a, ta,i + buf)}
12: else
13: Increment episode i(a)← i+ 1, then ta,i ← t. ▷ Episode ends without passive period
14: end if
15: end if
16: if ∃(a, s) ∈ S : t ≥ s then
17: Respawn arm a, update S ← S \ {(a, s)}, and A← A ∪ {a}.
18: Increment episode i(a)← i+ 1, then ta,i ← t. ▷ Episode ends after passive period elapses
19: end if
20: end for

We finally complement the worst-case regret upper bound for SNR with a matching (upto logarith-
mic factors) universal minimax regret lower bound for any algorithm:

Theorem 3. [Minimax Lower Bound] For any algorithm ALG and a drift limit δ > 0, there exists
a problem instance µ ∈ Sδ such that, ALG incurs a expected regret of Ω(Tδ1/3K1/3), where K is
the number of arms.

4.1 Discussion

The minimax regret lower bound we obtain establishes (constructively) that if the drift limit δ =
Ω(1), then it is impossible to achieve a sub-linear (in time) regret guarantee for any algorithm. The
interesting problem space is thus when δ = o(1) as a function of total time T .

A basic sanity check is to evaluate our results for the stationary bandits setting, that is when δ = 0,
and the gap ∆ is unchanged over time. In that case, in Theorem 1, the size of a block is τ = T .
From the detectable gap definition, either with λt = ∆ from the first assignment, or λt > ∆ from
the second, we have λt ≥ ∆ at all times t. This gives us a regret bound of O

(
1
∆ log T

)
. One

can also observe that SNR behaves similar to the classical Successive Elimination algorithm in this
regime. After it distinguishes the optimal arm from the sub-optimal, that is, the statistical test passes,
it computes a sub-optimality buffer limδ→0 buf = 2/δ ·

√
log T/wa,i → ∞, an infinite passive phase,

i.e., it snoozes the sub-optimal arm indefinitely.

Moving on, for non-stationary instances with very small drift limits—specifically, for δ ≤
O
(
T−3/2 · log1/2 T

)
— applying Theorem 1 still yields a block size of τ = T . With a similar

analysis, this results in a regret bound of O
(

1
∆ log T

)
. It is noteworthy that, despite the mild non-

stationarity of the instance, SNR achieves a logarithmic regret, which is typical in a stationary bandit
instance.

This result in Theorem 2 is comparable with that of Besbes et al. (2014) who work on a total
variation-budgeted setting. In our setting, a drift limit of δ per time-step translates to a cumulative
drift limit of Tδ over the entire time horizon. Precisely, for an arm a,

∑T−1
t=1 |µa,t − µa,t+1| ≤ Tδ.

This cumulative drift limit quantity is termed the total variation budget VT in theirs, and we, here,
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have VT = Tδ. Substituting this in their regret upper bound O(T 2/3V
1/3
T K1/3 log

1/3 T ), we get
O(Tδ1/3K1/3 log

1/3 T ), the same upper bound as ours. Thus, we note that our minimax upper bound
matches that of Besbes et al. (2014) which accommodates a more general setting.

On a more interesting note, on substituting VT = Tδ in their regret lower bound Ω(T 2/3V
1/3
T K1/3),

we get Ω(Tδ1/3K1/3), the same lower bound expression that we have established. That is, our mini-
max lower bound matches that of Besbes et al. (2014). This crucially establishes that the seemingly
easier problem of slowly-varying bandits is at least as hard (in a minimax regret sense) as the more
general problem of total variation-budgeted bandits. It can be interpreted that the ability/power of a
total variation-budgeted problem instance to conserve budgets for long periods of time and manifest
drastic non-stationarity in short bursts does not add to the difficulty (in terms of suffering higher
regret) in playing the instance.

5 Proof Sketches

The formal proofs of all results are deferred to the Appendices B to D in the interest of space.

Proof sketch for Theorem 1 (Instance-dependent regret bound) We first restrict our attention
to a ‘good’ event where all empirical means fall close to the reward means, which occurs with high
probability. We establish useful properties about the nature of the active and passive phases, the
sizes of episodes, the connection between the regret and the detectable gap, λ.

We show in Lemma 2 that in every episode, if an arm is snoozed, then it remains sub-optimal for
the entirety of the passive phase. Towards this, we show that, for an arm a in its episode i, when the
statistical test passes, we have, at some point of time (say t′) in the active phase, that true reward
means of the arms are well separated, i.e., µb,t′ − µa,t′ ≥ f for some gap f and some arm b. Then,
we argue that the snooze period is carefully chosen based on this guaranteed true gap f , the drift
limit δ, and the active phase duration τa,i such that arm a remains sub-optimal in it. As only the
other arms are played in the passive phase, our algorithm incurs regret for arm a only during the
active phase, which we try to bound next.

Next, we show in Lemma 4 a trajectory-dependent upper bound on arm a’s regret Ra,i, in episode i,
based on τa,i, the duration of the active phase. We use the fact that the statistical test did not pass at
time ga,i−1 = ta,i+τa,i−1, specifically the fact that arm a was not identified to be λ̂-inferior to any
other arm. We deduce that, their empirical means, and by the good event assumption, also their true
means over a period of time were not well separable after playing the active arms in the round-robin
fashion for τa,i− 1 time steps. Put simply, for these τa,i− 1 time-steps, the gaps between arm a and
other better arms were small. This helps us get the following bound the regret of arm a in episode
i as a function of the active phase duration τa,i and the rounds of samples observed wa,i, or more
precisely over carefully constructed blocks of time (as in Definition 5) that partition the active phase
τa,i, where w(k)s are the rounds/sample count within each block.

Ra,i ≲ 1 +

j∑
k=1

c2
√
w(k). log T . (3)

We draw the reader’s attention to the fact that this expression in Equation (3) is an algorithmic
trajectory-dependent quantity as it is a function of the active phase duration of the arm a that depends
on the stochasticity/randomness in the observed rewards. Next, we convert this expression to a
a problem instance-dependent quantity independent of the trajectory. Specifically, we go on to
make a connection between the trajectory-specific active phase duration τ.,. and the instance-specific
detectable gap profile, λ.

Lemma 7 shows that, at time t in the active phase of some episode of arm a, if sufficiently many
rounds w have passed, i.e., we have λa,t ≳

√
c0 log T/w, then our algorithm will detect a gap in arms

sufficient to declare b̄ >λ̂ a for some arm b, and the statistical test shall pass. However, given that the
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statistical test did not pass in the period upto ga,i−1 = ta,i+τa,i−1, or more specifically at a certain
points (αk)k∈[j] of choice (as shall be described in Definition 5) we derive the instance-dependent
episodic regret bound: Ra,i ≲

∑j
k=1

log T/λαk
in Lemma 6.

The remainder of the proof involves collecting all the episodic regrets of all arms (Lemma 11),
smartly accounting them into blocks of time based on minimum possible size of any episode
(Claims 9 and 10) to arrive at the final bound.

Proof sketch of Theorem 2 (Minimax regret bound). For every episode i of any arm a, we first
consider the average/per time-step regret Rave

a,i =
Ra,i

ta,i+1−ta,i
and upper bound it. We argue that the

blocks (where a block k is of time period τ(k) with w(k) rounds of samples) are constructed within
each episode’s active phase in such a design (in Definition 5) that we have τ(k) ≈ 1

δ

√
log T/w(k).

As a tool of convenience, we introduce the notion of inflated episodes which are obtained by rear-
ranging (or re-accounting) timesteps between episodes of different arms, thereby altering their dura-
tions but not their regret expressions. We show that the block size constraints extend to the inflated
episode as τ̃(k) ≥ τ(k) ≈ 1

δ

√
log T/w(k). By nature of construction of inflated episodes, we show

that each round, after inflation, accounts one time-step for each of the K arms, thereby establishing
that τ̃(k)/K = w(k). From Equation (3), we have the regret in an episode i of arm a dependent on the
breakdown of active phase duration τa,i into some j blocks as Ra,i ≲ 1 +

∑j
k=1 c2

√
w(k). log T ,

where w(k) and τ̃(k) are the number of rounds and time steps respectivey of block k of an inflated
episode.

We finally argue that the average per-time-step regret of each block in an inflated episode is suitably
bounded as O(δ1/3K−2/3 log

1/3 T ). We multiply this by the length of the horizon, T , and the number
of arms K to show the desired bound.

Proof sketch for Theorem 3 (Worst-case regret lower bound). We derive this result with
information-theoretic arguments commonly employed in bandit literature (Garivier & Kaufmann,
2016). First, in Lemma 12, we adapt the standard ‘change of measure inequality’ for sequential
sampling (see Garivier et al. (2019) for example) to a version that can accommodate non-stationary
reward distributions. Second, we break the time horizon into suitably small blocks of size m, es-
tablish lower bounds within each of them, and finally aggregate them to arrive at the lower bound
expression.

Towards proving the lower bound within a block, we consider a base instance ν, where all arms are
identical and stationary with Ber (1/2) reward distributions. We design a confusing instance, ν′,
where all but one arm are stationary with Ber (1/2) rewards, whereas, the other arm (say, arm 1,
with a distribution of ν′1,t at time t within the block) exhibits non-stationarity as follows:

ν′i,t =



Ber

(
1

2

)
if i = 2, 3, . . . ,K

Ber

(
1

2
+

t− 1

m
.ε

)
if i = 1, t ≤

⌈m
2

⌉
Ber

(
1

2
+

m− t

m
.ε

)
if i = 1, t >

⌈m
2

⌉
.

(4)

Essentially, within a block, in the confusing instance, arm 1 starts identical to the other arms with
Ber (1/2) rewards, and for the first half of the block, drifts (by a suitably chosen value ε) upwards
and away from a mean of 1/2, and reaches a maximum reward mean gap at half-way point. Then,
for the remainder of the block, it drifts towards (downwards) a mean of 1/2 and reaches back the
Ber (1/2) reward distribution at the end of the block.

With this setup, we argue that when presented with a randomly chosen bandit problem instance
between ν and ν′, any algorithm is condemned to incur in expectation the stated minimum regret.
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6 Experiments

We present some numerical experiments to better illustrate the characteristics of our algorithm. In
this section, first, we compare the performance of our algorithm SNR against other algorithms in the
literature for the slowly-varying (and also the closely related total variation-budgeted) bandits prob-
lem in Section 6.1. Second, we show the algorithmic trajectory of SNR for two problem instances
in Appendix E.2.

6.1 Comparison with Literature

We numerically evaluate the performance of SNR on synthetic two-armed bandit problem instances.
We also implement algorithms from the literature and conduct a comparative study with different
problem instances. In particular, we consider the following algorithms; (1) REXP3 (Besbes et al.,
2014), that divides the time into blocks upfront and repeatedly runs the Exp3 algorithm from scratch
in each block, (2) SW-UCB# (Wei & Srivatsva, 2018), a soft exploration algorithm based on the
arms’ reward means’ upper confidence bounds that are computed over a sliding window that enlarges
with time. (3) EXP3.S (Besbes et al., 2019), a ‘smoother’ variant of Exp3 algorithm. We note that
REXP3 and EXP3.S are originally proposed for the more general total variation-budgeted setting.
Also, all these algorithms have knowledge of the drift limit δ (or the appropriate drift parameter) in
advance.

(a) (b)

Figure 2: Comparison of average regret among the 4 algorithms (SNR, EXP3.S, REXP3, and
SW-UCB#).

(a) (b)

Figure 3: Comparison of average regret incured by SNR on 4 problem instances characterized by
different drift limit δ values.
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We consider a time horizon of T =
⌊
e12
⌋
≃ 1, 60, 000, and report results averaged from 10 runs, the

translucent regions (of the same colour) around the curves mark 1 standard deviation. The rewards
are drawn from a Gaussian distribution with the specified mean, and a variance of 1/4. 7.

First, in Fig. 2a, we run all the algorithms on a problem instance with a low value of drift
δ = 1/(10·c9 log T ) ≃ 2.1 × 10−5 where the arms are well-separated and the identity of the opti-
mal arm remains unchanged throughout (problem instance depicted in Fig. 4a in Appendix E.1). We
observe that REXP3 and EXP3.S perform poorer compared to SW-UCB# and SNR. While SNR and
SW-UCB# are very adaptive in their behaviour to the observed empirical reward means, we see that
REXP3 predetermines the sizes of blocks (tailored to the drift parameter), and EXP3.S, after tuning
the weights, additionally boosts up the weights of the arms equally without taking into account the
observed empirical gaps.

Second, in Fig. 2b, we run all algorithms on a problem instance with a relatively larger value of drift
δ = 1/(c9 log T ) ≃ 2.1 × 10−3, where both arms have short alternating stretches of stationarity and
drifts, with the identity of the optimal arm toggling with every drift (problem instance depicted in
Fig. 4b in Appendix E.1). Interestingly, we observe that SW-UCB# performs poorer compared to
SNR. We hypothesise that SNR makes better use of short frequent stretches of stationarity: With the
arms oscillating as we have here, when the sliding window encompasses the optimal stretches (and
the drifts) of both arms, SW-UCB# does not take into account the recency of the samples within the
sliding window. SNR, on the other hand, operates with dynamically-sized windows based on the
observed detectable gaps that always capture the most suitably sized number of recent samples.

Third, in Fig. 3a, we evaluate the performance of our algorithm on different instances. In particular,
we consider 4 instances with similar structure that differ only by the drift limit δ imposed, and have
common periods of stationarity and drift (problem instance depicted in Fig. 5a in Appendix E.1).
We observe that the average regret does not correlate with an increase in drift limit δ. The well
separated nature of the arms in instances with a higher δ improves performance as increased detected
(empirical) gaps lengthen the snooze periods. This potentially offsets the higher regret caused due
to more frequent episodes with larger δ values leading to shorter snooze periods.

Finally, in Fig. 3b, we consider another set of 4 structurally similar instances with different δ, where
arms have equal total cumulative drift and almost common periods of stationarity and drift (problem
instance depicted in Fig. 5b in Appendix E.1). With the same maximum gaps among instances, the
regret increases with drift limit δ, which is in line with what our theory lays down.

7 Conclusion & Future Work

In this paper, we studied the slowly-varying non-stationary bandits and provided multiple theoret-
ical results that help better understand the difficulty of that class of problems. We came up with
the construct of detectable gap profile which enabled us to show an instance-dependent characteri-
zation of the regret. We believe that our characterization of detectable gap profile is a fundamental
property of non-stationarity in bandits, and may hold the key to more refined performance analysis,
beyond merely the slowly-varying setting considered here. On that note, one interesting direction to
pursue would be to characterize instant-dependent regret bounds in the more general total variation-
budgeted setting.

It would also be interesting to explore the suitability of other flavours of algorithms such as Thomp-
son sampling and Upper Confidence Bound (UCB) based approaches, especially if such algorithms
can be designed in a parameter-free fashion, given the state-of-the-art algorithms provide such min-
imax guarantees in certain non-stationary settings.

7Indeed, the choice of a Gaussian draw with 1/4 variance fits in with our theoretical analysis, specifically, the Hoeffding’s
inequality usage in Claim 1.
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A Miscellaneous

We present in Table 2 a compilation of frequently used notations in this paper.

Notation Description

A Set of all K arms.

µa,t Expected reward of arm a at time t.

µ∗
t Expected reward of the optimal arm at time t.

µ̂a,t Empirical reward of arm a at time t.

∆a,t µ∗
t − µa,t. Sub-optimality gap of arm a at time t.

λa,t ‘Detectable gap’ of arm a at time t (as in Equation (2)).

ea Number of episodes of arm a in an algorithmic run.

ta,i Time step after which active phase of episode i of arm a begins.

ga,i Time step at which statistical test of episode i of arm a passes.

τa,i ga,i − ta,i. Duration of active phase of episode i of arm a.

wa,i Number of rounds in the active phase of episode i of arm a,

(or equivalently) the number of times arm a is played in its episode i.

ωa
1 , ω

a
2 , . . . , ω

a
w List of time steps of most recent w pulls of arm a until mentioned time step.

µa,t(w)
1
w

∑w
x=1 µa,ωa

x
. Expected reward mean of arm a at time t in its last w pulls.

µ̂a,t(w)
1
w

∑w
x=1 µ̂a,ωa

x
. Empirical reward mean of arm a at time t in its last w pulls.

ā (the arm that most recently snoozed)* arm a at mentioned time.

Ra,i Regret of playing arm a in its episode i.

Ra(j) Regret of playing arm a in its episode blocks accounted to block j.

Ra Regret of playing arm a in entire time horizon.

w(k) Number of rounds in block k of the mentioned arm and episode (as in Definition 5).

τ(k) Duration of block k of the mentioned arm and episode (as in Definition 5).

τ̃a,i Duration of ‘inflated’ active phase of episode i of arm a.

τ̃(k) Duration of ‘inflated’ block k of the mentioned arm and episode.

Table 2: Notations and their verbose descriptions.

A.1 On Computability of λ-inferiorty

The statistical test (Line 6) of our algorithm, SNR, describes the identification of λ̂-inferiority of
an arm as an optimization problem over the continuous domain λ̂ ∈ [0, 1]. However, with the
integrality constraint of the sample window size w corresponding to a λ̂ ∈ [0, 1], we have w ∈ D ⊆
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{1, 2, . . . , t} belongs to a finite countable domain of size not more than t. Thus, the identification
of a λ̂-inferior arm becomes a discrete optimization problem. Also, at all times, for every arm b, it
is feasible to keep track of the indentity of b̄ and the empirical means µ̂b̄,.(w) for different rounds of
any window w. Thus, we note that the statistical test is deterministic and tractable.

B Proof of Theorem 1

We proceed to derive an instance-dependent regret upper bound expression for SNR. Towards that,
we first establish useful properties about the nature of the active and passive phases, the sizes of
episodes, the connection between the regret and the detectable gap, λ.

Let G denote the good event where for all time-steps and all arms, for all valid window sizes, the
empirical reward means of the arm (or its proxy in certain parts of the window) fall close to the true
reward means. In other words,

G := {∀a ∈ A, t ∈ [T ],∀w : µ̂ā,t(w)− r(w) < µā,t(w) < µ̂ā,t(w) + r(w)} . (5)

Claim 1. The good event G occurs with high probability; specifically, P {G} ≥ 1− 2
T .

Proof. We work in the probability space in which the rewards from arm pulls µ̂a,ts are generated
(as a tape) ahead of time, and for every time t ∈ [T ], arm a ∈ A, we have µ̂a,t is an independent
sample from Ber (µa,t).

Recalling the definitions in Section 3, for an arm a, the notion of ā refers to the arm that transitively
snoozed arm a in the rounds in which a is passive, and refers to arm a itself otherwise (when a is
active). Applying this to the other definitions, we have that, for any arm a, for some time-step t, for
a window of w rounds, the arm ā was played by SNR at time steps ωā

1 , ω
ā
2 , . . . , ω

ā
w ≤ t in the last

w rounds, and µ̂ā,t(w) :=
1
w

∑w
x=1 µ̂ā,ωā

x
is the average of empirical reward means of arm ā over

those samples, while µā,t(w) := 1
w

∑w
x=1 µā,ωā

x
is the average of true reward means of arm ā in

those time steps (ωā
t )

w
t=1.

Note that the terms µ̂ā,t(w) (sim. µā,t(w)) and µ̂a,t(w) (sim. µa,t(w)) denote the same quantity if
arm a is active in all of the w rounds in consideration.

Now, the probability of the average of empirical reward means µ̂ā,t(w) deviating from the average

of true reward means µā,t(w) by more than a confidence radius r(w) :=
√

2 log T
w is upper bounded

using Chernoff-Hoeffding inequality as follows:

P {|µ̂ā,t(w)− µā,t(w)| ≥ r(w)} ≤ 2e−2w.r(w)2 = 2e−2w. 2 log T
w =

2

T 4
.

Taking a union bound over all arms a ∈ A (given |A| < T ), all time steps t ∈ [T ], all windows of
rounds w (where w ≤ T ) gives

P {∃a ∈ A, t ∈ [T ], w, s.t. |µ̂a,t(w)− µa,t(w)| ≥ r(w)} ≤ 2

T

=⇒ P {∀a ∈ A, t ∈ [T ],∀w : |µ̂a,t(w)− µa,t(w)| ≤ r(w)} ≥ 1− 2

T
.

For the rest of the analysis in this section until Theorem 1 is restated, we shall assume that event G
occurs.

Lemma 2 (Sub-optimality of snoozed arms). A snoozed arm is never optimal during the passive
phase. Precisely, for an arm a in its episode i, for some arm b, we have b̄ >λ̂ a at time ga,i. Then,
for all times t ∈ [ga,i + 1, ta,i+1], we have µa,t ≤ µ∗

t .
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Proof. Note that if there is no passive phase in the episode, i.e., when arm a is not snoozed, the
result is vacuously true. Thus, what is to be shown is only the case where arm a is snoozed for a
non-empty passive phase [ga,i + 1, ta,i+1]. We prove this lemma in two steps. First, we show (in
Claim 3) that when SNR detects b̄ >λ̂ a at time ga,i, then, for a period of time culminating at ga,i,
some arm α has a larger average true reward mean than that of arm a by a certain margin. Second,
we argue that the duration of the passive phase for which arm a is snoozed is chosen based on this
margin such that it remains sub-optimal for the entirety of the passive phase owing to the drift limit.

At the end of the active phase of arm a’s episode i, at ga,i, SNR detects for some λ̂ ∈ [0, 1] and
some arm b that b̄ >λ̂ a. We make the following claim about the sub-optimality gap of arm a from
another arm at some point in time during this active phase.

Claim 3. There exists a time-step t′ ∈ [ta,i + K/2, ga,i] such that for some arm α, we have

µα,t′ − µa,t′ ≥
λ̂

3
−Kδ ≥ 4

√
log T

wa,i
−Kδ.

Proof. As arm b̄ >λ̂ a at time t = ga,i, by Definition 3, we have, for a window of w rounds

LCBb̄,t(w) > UCBa,t(w) + 2r(w)−Kδ

=⇒ µ̂b̄,t(w)− r(w) > µ̂a,t(w) + r(w) + 2r(w)−Kδ

(a)
=⇒ µb̄,t(w) > µ̂b̄,t(w)− r(w) > µ̂a,t(w) + r(w) + 2r(w)−Kδ > µa,t(w) + 2r(w)−Kδ

=⇒ µb̄,t(w)− µa,t(w) > 2r(w)−Kδ

=⇒ µb̄,t(w)− µa,t(w) > 2

√
2 log T

w
−Kδ = 2

√
2 log T.λ̂2

72 log T
−Kδ = 2

√
λ̂2

36
−Kδ =

λ̂

3
−Kδ.

(6)

The implication (a) is due to the occurence of event G. Note that λ̂ ∈ [0, 1] is constrained (again, as
in Definition 3) by the number of samples w available in the current episode i as follows:

⌈
c0 log T

λ̂2

⌉
≤ wa,i =⇒ λ̂ ≥

√
c0 log T

wa,i
. (7)

We use the short-hand f := 1
3

√
c0 log T
wa,i

= 4
√

log T
wa,i

for ease of expression. Expanding the terms

µa,t(w) and µb̄,t(w) by their definitions, we have

µb̄,t(w)− µa,t(w) =
1

w

w∑
i=1

µb̄,ωb̄
i
− µa,ωa

i

(a)
>

λ̂

3
−Kδ

(b)
≥ f −Kδ. (8)

The (a) is due to Equation (6) and the (b) is due to f ≤ λ̂
3 from Equation (7).

The average of w terms being larger than f − δ implies that atleast one term is larger than f − δ.
Thus, for some 1 ≤ i ≤ w, we have µb̄,ωb̄

i
− µa,ωa

i
> f − δ. The two time steps ωb̄

i and ωa
i from

the same round i can not be more than K − 1 time steps apart by the nature of round-robin play of
arms. With the drift limit implication as in Equation (1), we have µb̄,ωa

i
− µa,ωa

i
> f −Kδ. Thus,

we get for some t′ ∈ [ta,i + K/2, ga,i] that µb̄,t′ − µa,t′ ≥ f −Kδ. This completes the proof of the
claim with the arm α = b̄ at time t′.
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We continue to use the short-hand f := 4
√

log T
wa,i

for ease of expression. From Claim 3, at some

time t′ ∈ [ta,i + K/2, ga,i], we have for some arm b that µb,t′ − µa,t′ > f − Kδ. By adhering
to the drift limit, we have |∆a,t −∆a,t+1| ≤ 2δ for all time-steps t ∈ [T − 1]. Thus, for the
identity of the optimal arm to change, i.e., for the sub-optimality gap of at least f − Kδ of arm a
to get exhausted/overturned, it requires a minimum of (f−Kδ)/2δ = f/2δ − K/2 time-steps to pass.
Thus, for all t′′ ∈ [t′, t′ + f/2δ − K/2], and thus for all t′′ ∈ [ga,i + 1, ta,i + f/2δ] (which is a
shorter sub-period) we have µa,t′′ ≤ µb,t′′ ≤ µ∗

t′′ . i.e., arm a is sub-optimal in the time period
[ga,i + 1, ta,i + f/2δ].

Once SNR detects b̄ >λ̂ a at time t, it computes the duration of the sub-optimality buffer period as
buf = f/2δ (in Line 9). If ta,i + buf ≤ ga,i or equivaently buf ≤ τa,i, the arm a is not snoozed for a
passive phase. Otherwise, as in Line 11 of the agorithm, the sub-optimal arm a is snoozed until time-
step ta,i+1 = ta,i + buf = ta,i + f/2δ, i.e., the passive phase runs for the period [ga,i+1, ta,i + f/2δ].
We have already shown that during this period arm a is sub-optimal.

Thus, thanks to Lemma 2, during the passive phase of an episode, not playing the snoozed arm does
not lead to any regret.

We now bound the expected regret incurred by the sub-optimal arm a in episode i, Towards that, we
define the notion of regret in an episode:

Definition 4 (Episode Regret). In an algorithmic run of SNR with a drift limit parameter δ on a
problem instance µ ∈ Sδ , the regret for arm a in its episode i defined as

Ra,i =

ta,i+1∑
t=ta,i+1

(
µ∗
t − µSNR(t),t

)
× 1 {SNR(t) = a} ,

where µ∗
t = maxa∈A µa,t is the mean reward of the optimal arm at time t, SNR(t) ∈ A is the arm

pulled by SNR at time t ∈ [T ].

Here, 1 {X} is the indicator random variable that takes the value 1 if event X happens, and 0
otherwise.

Next, we upper bound the regret Ra,i as a function of wa,i, the number of times arm a is pulled in
its episode i. Towards that, we state a key definition about partitioning the active phase into blocks
of time as follows:

Definition 5 (Blocks in an active phase of episode). For an episode i of arm a, divide the time period
[ta,i + 1, ga,i − 1] of size τa,i − 1 (consisting of wa,i − 1 rounds) into j ≥ 1 consecutive blocks of
time periods, where every block k ∈ [j] spans the time period [αk−1 + 1, αk] of size τ(k) which
contains a window of w(k) rounds of samples.

The size of every block k ∈ [j − 1] is τ(k) and is chosen such that τ(k) = 1
δ

√
log T
w(k) and for the last

block, where k = j, such that τ(k) ≤ 1
δ

√
log T
w(k) . Note that the active phase’s first time step α0 = ta,i

and last time step αj = ga,i − 1 here.

Lemma 4 (Episode regret trajectory-dependent upper bound). In an algorithmic run of SNR with a
drift limit parameter δ on a problem instance µ ∈ Sδ , the regret for arm a in its episode i is upper
bounded as

Ra,i ≤ 1 +

j∑
k=1

c2
√

w(k). log T .

where c2 = 10 is a constant, and terms j and w(k)s are as in Definition 5.
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Proof. From Definition 4,

Ra,i =

ta,i+1∑
t=ta,i+1

(
µ∗
t − µSNR(t),t

)
× 1 {SNR(t) = a}

(a)
=

ga,i∑
t=ta,i+1

(µ∗
t − µSNR(t),t)× 1 {SNR(t) = a}

(b)
≤1 +

ga,i−1∑
t=ta,i+1

(µ∗
t − µSNR(t),t)× 1 {SNR(t) = a} . (9)

The (a) is due to the snoozed arm not being played in the entire passive phase [ga,i + 1, ta,i+1]. The
(b) is obtained by trivially upper bounding the regret at time ga,i by 1.

Recall that SNR rotates the active arms (i.e., play in a round-robin fashion) in the time period
[ta,i + 1, ga,i − 1], and the statistical test did not pass in that period. Thus, we have that there

was no λ̂ ∈ [0, 1] (and a corresponding window of w :=
⌈
c1 log T

λ̂2

⌉
rounds) for which b̄ >λ̂ a at any

time t ∈ [ta,i + 1, ga,i − 1].

Applying Definition 3 at time this time t with some valid window of w rounds, we have for all arms
b ∈ A \ {a} that

LCBb̄,t(w) ≤UCBa,t(w) + 2r(w)−Kδ

=⇒ µ̂b̄,t(w)− r(w) ≤µ̂a,t(w) + r(w) + 2r(w)−Kδ

(a)
=⇒ µb̄,t(w)− r(w)− r(w) ≤µ̂b,t(w)− r(w)

≤ µ̂a,t(w) + r(w) + 2r(w)−Kδ ≤µa,t(w) + r(w) + r(w) + 2r(w)−Kδ

=⇒ µb̄,t(w)− µa,t(w) ≤6r(w)−Kδ

⇐⇒ µb̄,t(w)− µa,t(w) ≤6

√
2 log T

w
−Kδ

(b)
=⇒ µb,t(w)− µa,t(w) ≤6

√
2 log T

w
−Kδ = c1

√
log T

w
−Kδ, (10)

where c1 =
√
72 is a constant. The (a) is due to occurrence of the good event G. The (b) is due to

µb̄,t(w) ≥ µb,t(w) as per Lemma 2. Note that Equation (10) is a generic inequality to upper bound
the gap of an arm a to another single arm b whilst the statistical test keeps failing.

Continuing the analysis from Equation (10) that upper bounds the reward mean gap of arm a from
another single arm b, we next try to upper bound the reward mean gap of arm a from that of the
optimal arm at each time-step. For this, we constrain the number of rounds, w, of samples available
from the current episode for the statistical test, and the time period τ that spans the w rounds as
follows:

Claim 5. At time t, if the statistical test doesn’t detect that arm a is λ-inferior with a window of
w rounds of samples that spans a time period of size τ from the current episode, such that τ ≤
1
δ

√
log T
w , then the sub-optimality of arm a is upper bounded as follows: for all t′ ∈ [t − τ + 1, t],

we have

µ∗
t′ − µa,t′ ≤ c2

√
log T

w
−Kδ.

Proof. From Equation (10), for all arms b ∈ A\{a}, we have µb,t(w)−µa,t(w) ≤ c1

√
log T
w −Kδ.

Expanding the terms, we have 1
w

∑w
x=1 µb,ωb

x
− µa,ωa

x
≤ c1

√
log T
w −Kδ. Thus, we have that for
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some round ℓ ∈ [w],

µb,ωb
ℓ
− µa,ωa

ℓ
≤ c1

√
log T

w
−Kδ. (11)

By the drift limit implication, for any time steps t′, t′′ ∈ [t − τ + 1, t], we have for all arms b that

µb,t′−µb,t′′ ≤ τ.δ ≤
√

log T
w . Combining this with Equation (11), for all time steps t′ ∈ [t−τ+1, t]

and for all arms b ∈ A \ {a}, we have that µb,t′ − µa,t′ ≤
(
c1

√
log T
w −Kδ

)
+

(√
log T
w

)
=

c2

√
log T
w − Kδ, where c2 = 10 ≥ c1 + 1 is a constant. Consequentially, as it holds for all other

arms b, maxb∈A\{a} µb,t′ − µa,t′ = µ∗
t′ − µa,t′ ≤ c2

√
log T
w −Kδ. This completes the proof of the

claim.

Using the results obtained in Claim 5 that constraints the window w of samples and time period τ
that spans the window, we proceed with bounding the episodic regret Ra,i by similarly breaking
down the active phase τa,i and total rounds wa,i of samples observed into suitably sized blocks of
time periods as described in Definition 5.

Next, bringing back Equation (9), we have

Ra,i ≤1 +

ga,i−1∑
t=ta,i+1

(µ∗
t − µSNR(t),t)× 1 {SNR(t) = a}

≤1 +

j∑
k=1

αk∑
t=αk−1+1

(µ∗
t − µSNR(t),t)× 1 {SNR(t) = a}

(a)
≤1 +

j∑
k=1

(
c2

√
log T

w(k)
−Kδ

)
.w(k)

≤1 +

j∑
k=1

c2
√

w(k) log T . (12)

Here, (a) is due to Claim 5. This completes the proof of the Lemma 4.

We see that Lemma 4 characterizes the episodic regret as a function of algorithm-run (trajectory)
dependent quantities—such as the window of samples, wa,is, with a constrained break-up of the
active phase of size τa,i. Next, we strive to get an instance dependent characterization of the episodic
regret in terms of the detectable gap λ by drawing connections to the samples observed, wa,i (or
w(k)s to be precise).

Lemma 6 (Episode regret instance-dependent upper bound). In an algorithmic run of SNR with a
drift limit parameter δ on a problem instance µ ∈ Sδ , the regret in episode i ∈ [e] of an arm a is
upper bounded as

Ra,i ≤ c4

j∑
k=1

1

λαk

log T + c5,

where c4 = 120, c5 = 1 are constants, and terms j and αks are as in Definition 5.

Proof. Towards proving this lemma, we make an important observation about the connection be-
tween the detectable gaps λ and the success of the statistical test used in our algorithm.
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Lemma 7. [Sufficient condition for positive statistical test] At some time t in the active phase of

some episode of arm a when w rounds have passed, if we have λa,t >
√

c0 log T
w , then the statistical

test passes, i.e., algorithm SNR at time t declares b̄ >λ̂ a for some arm b. Here, c0 = 144 is a
constant.

Proof. If λa,t =
√

c0 log T
t (from second assignment in Eqn. 2), we always have λa,t ≤

√
c0 log T

w

as w ≤ t. But, given that we have its negation as the premise of the Lemma statement, we assume
the description of detectable gap λ as quantified by the first assignment in Equation (2). While this
description guarantees over an average of reward mean gaps computed over a window of contiguous
time steps, to make a comparison with the algorithm’s statistical test, we desire similar guarantees
about the average of reward mean gaps computed over a sparser set of time-steps from the window,
specifically, from one time step per round over the window. We make the following claim towards
that:

Claim 8. The averages of the true reward means of arm a and some arm b at time t computed
over a window of w ≥ c0 log T

λ2
a,t

rounds spanning a time period of at most c3K log T
λ2
a,t

obeys µb,t(w) −
µa,t(w) ≥ λa,t −Kδ. Here, c3 = 72 is a constant.

Proof. Let b be the arm that was compared with arm a in determining the value of λa,t. From
Equation (2), we have for a contiguous window of size τ ′ := c0K log T

λ2
a,t

that spans [s = t− τ ′ +1, t],
we have

1

τ ′

t∑
t′=s

µb,t′ − µa,t′ ≥ λa,t

(a)
=⇒ 1

w

w∑
x=1

µb,ωb
x
− µa,ωa

x
≥ λa,t −Kδ.

The (a) is due to the δ drift limit implication and the fact that the ωb
x and ωb

a time steps are at most K
steps apart between themselves and between two consecutive rounds (i.e., between ωb

x and ωb
x+1),

and the fact that all w time steps are from within the time period of [s = t− τ ′+1, t] for which λa,t

was originally computed.

From Claim 8, we have

µb,t(w)− µa,t(w) ≥ λa,t −Kδ

(a)
=⇒ µ̂b,t(w)− µ̂a,t(w) ≥ λa,t − 2r(w)−Kδ

(b)
=⇒ µ̂b̄,t(w)− µ̂a,t(w) ≥ λa,t − 2r(w)−Kδ

=⇒ LCBb̄,t(w)− UCBa,t(w) ≥ λa,t − 4r(w)−Kδ

=

√
c3K log T

τ ′
− 4

√
2 log T

w
−Kδ

(c)
≥
√

c3 log T

w
− 4

√
2 log T

w
−Kδ

= 2r(w)−Kδ, (13)

where c3 = 4 ≥ √
c0 − 4

√
2 is a constant. Here, (a) is due to occurence of G, the (b) is due to

µ̂b̄,t(w) ≥ µ̂b,t(w) from Lemma 2, and (c) uses w ≥ τ ′
/K.

The inequality in Equation (13) is the condition for the algorithm to declare b̄ >λ̂ a (as in Defini-
tion 3) at time t. Thus, the statistical test passes. This completes the proof of Lemma 7.
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Now, recall that the statistical test did not pass in the time period [ta,i + 1, ga,i − 1]. Specifically,
the test did not pass in the time-steps α1, α2, . . . , αj = ga,i − 1 associated with the active phase

of arm a’s episode i. By Lemma 7, for all k ∈ [j], we have λαk
≤
√

c0 log T
w(k) or equivalently,√

w(k) ≤
√
c0 log T
λαk

. Substituting this in Equation (12), we get

Ra,i ≤ 1 +

j∑
k=1

c2
√

w(k). log T

≤ 1 +

j∑
k=1

c2

√
c0 log T

λαk

√
log T

=

j∑
k=1

c4
1

λαk

log T + 1

= c4

j∑
k=1

1

λαk

log T + c5.

This completes the proof of Lemma 6.

Next, we upper bound the overall regret of an arm a over all episodes. Towards that, we argue that
the time steps αks that are a part of the episodic regret upper bound in Lemma 6 are well spaced
between themselves (as in Claim 9) and between different episodes (from Claim 10). We next
present two claims in that regard.

Claim 9. In the regret upper bound expressions in Lemma 6, for every episode i of arm a, the
time steps α1, α2, . . . , αj that characterize the duration of the contiguous time blocks and the regret
expression are spaced as follows: for all k ∈ [j − 1], we have αk − αk−1 ≥ δ−2/3 log

1/3 T .

Proof. By definition (as in Lemma 4), we have the time period [ta,i+1, ga,i − 1] divided into j
consecutive blocks of time periods, where every block k ∈ [j] spans the time period [αk−1 + 1, αk]
of size τ(k) which contains a window of w(k) rounds of samples. The sizes of every block k ∈
[j − 1] are chosen such that τ(k) = 1

δ

√
log T
w(k) . Trivially, τ(k) ≥ w(k). Thus, we have τ(k) ≥

δ−2/3 log
1/3 T , completing the proof of Claim 9.

Claim 10 (Minimum duration of an episode). In an algorithmic run of SNR, for any arm a, the
duration of any episode i ∈ [ea − 1] (except the last one) is lower bounded as follows: ti+1 − ti ≥
c9δ

−2/3 log
1/3 T . Here, c9 = 22/3 is a constant.

Proof. At the end of the active phase (of duration τa,i) at time-step ga,i, the sub-optimality buffer

computed is buf = 2
δ

√
log T
wa,i

. In Lines 10-11, the algorithm decides what the snooze duration of arm
a should be, thus determining ta,i+1, the time when the episode i of arm a shall end, based on the
following two cases.

Case τa,i ≥ buf : Equivalently, we have τa,i ≥ 2
δ

√
log T
wa,i

. The sub-optimal arm does not get
snoozed, so, episode i terminates at ta,i+1 = ga,i = ta,i + τa,i.

Case τa,i < buf : Equivalently, we have τa,i < 2
δ

√
log T
wa,i

. The sub-optimal arm gets snoozed until

time ta,i + buf = ta,i +
2
δ

√
log T
wa,i

. The end of the passive phase marks the end of episode i, thus,

ta,i+1 = ta,i +
2
δ

√
log T
wa,i

.
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From these two cases, we can see that ta,i+1 = ta,i + max
{
τa,i,

2
δ

√
log T
wa,i

}
. As τa,i ≥ wa,i, to

lower bound ta,i+1 − ta,i, we minimize the quantity max
{
wa,i,

2
δ

√
log T
wa,i

}
. As the two quantities

grow oppositely with wa,i, the minimum occurs when

wa,i =
2

δ

√
log T

wa,i
⇔ wa,i = 2

2/3δ
−2/3 log

1/3 T.

Thus, we have ta,i+1 − ta,i ≥ c9δ
−2/3 log

1/3 T , completing the proof of Claim 10.

Lemma 11 (Single arm instance-dependent regret upper bound). In an algorithmic run of SNR with
a drift limit parameter δ on a problem instance µ ∈ Sδ , the regret of an arm a is upper bounded as

Ra =
∑
i∈[ea]

Ra,i ≤ c6

m∑
j=1

1

λa,min(j)
. log T + c7,

where m = T/τ is the number of blocks, each of length not more than τ =

min
{
T, c3δ

−2/3K1/3 log
1/3 T

}
, and for every block j ∈ [m] spanning a time period bj :=

[(j − 1)τ + 1, jτ ] ∩ [T ], define λa,min(j) := mint∈bj λa,t. Here, cis are suitable constants.

Proof. To show this upper bound, we partition the time-horizon into blocks of suitably small size,
and bound the regret in episodes (from Lemma 6) by accounting each term in them to some block.

Recall that in an algorithmic run of SNR, ea is the number of episodes that arm a runs for. These
episodes, indexed 1, 2, . . . , ea, start after times ta,1 = 0, ta,2, . . . , ta,ea (and a hypothetical tea+1 =
T marks the end of the last episode e) respectively. Note that the collection of episode time periods
([ta,i + 1, ta,i+1])i∈[ea]

for each arm a partitions the entire time horizon [T ]. Thus, the total regret
incurred by the algorithm (in a particular run 8 ) is R(SNR) =

∑
a∈A

∑
i∈[ea]

Ra,i.

For analysing the total regret, we partition the time horizon into m = T/τ blocks (indexed as
1, 2, . . . ,m), each of size τ = c9δ

−2/3 log
1/3 T , where c9 = 22/3 is a constant. Each block j ∈ [m]

spans the time period bj := [(j − 1)τ + 1, jτ ] ∩ [T ].

As stated earlier, the chosen size of a block τ is the minimum duration of an episode stated in
Claim 10. Thus, a block period bj overlaps with a maximum of two episodes.

Note that the chosen block size τ is also the minimum size of a block (except the last one) as per
Claim 9 in the episodic regret upper bound expression in Lemma 6. Thus, a block period bj overlaps
with at most two episodic regret blocks from a particular episode.

Thus, for any block j ∈ [m], there are at most 2 episodes, say i, i+ 1, and at most 4 corresponding
episodic regret blocks end times, say αk, αk+1 for episode i and αk′,αk′+1

for episode i+1, intersect
with the block period bj . We account the corresponding four block regrets to block j. We denote
this regret to block j ∈ [m] as

Ra(j) ≤ c4.

(
1

λa,αk

+
1

λa,αk+1

+
1

λa,α′
k

+
1

λa,αk′+1

)
. log T + 4c5 (14)

As the αks in Equation (14) are algorithm trajectory dependent quantities, and every block j ∈ [m]
accounts for at most a constant number of regret terms, we further upper bound Ra(j) as follows:

8while the quantities eas, τa,is, wa,i etc. are random variables, we use them here as quantities obtained after a single
algorithmic trajectory/run.
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Ra(j) ≤4c4.max
t∈bj

1

λa,t
. log T + 4c5

c6.
1

mint∈bj λa,t
. log T + c7

c6.
1

λa,min(j)
. log T + c7, (15)

where we write λa,min(j) := mint∈bj λa,t, and c6 = 4c4 = 480, c7 = 4c5 = 4 are constants.

Note that every regret term of every episode from Lemma 6 is accounted to some block j ∈ [m].
By this accounting criteria, we modify the expression for regret of arm a from a summation over
episodes to a summation over blocks as follows:

Ra =
∑
i∈ea

Ra,i ≤
∑
j∈[m]

Ra(j)
(a)
≤
∑
j∈[m]

c6.
1

λa,min(j)
. log T + c7,

where (a) is from Equation (15).

This completes the proof of the Lemma 11.

Next, we come to the final part of the proof. We show the instance-dependent regret bound of SNR
over the entire time horizon as an accumulation of regret bounds of all arms:

R(SNR) =
∑
a∈A

Ra

(a)
≤
∑
a∈A

m∑
j=1

c6
1

λa,min(j)
+ c7, (16)

where (a) is from Lemma 11.

For the remainder of the proof, we drop the implicit assumption that G occurs, and upper bound
the conditional expected regret of our algorithm SNR when high probable event G occurs using
Equation (16), and then generously upper bound the conditional regret when G′ occurs by T (a
regret of 1 for every time-step). Along with Claim 1, we have

E [R(SNR)]

=E [R(SNR|G)] .P {G}+ E [R(SNR|G′)] .P {G′}

≤

∑
a∈A

m∑
j=1

c6.
1

λa,min(j)
+ c7

+ T.
2

T
(17)

=c6
∑
a∈A

m∑
j=1

1

λa,min(j)
. log T + c8,

where c6 = 480 and c8 = c7 + 2 = 6 are constants. This completes the proof and leads to the
Theorem.
Theorem 1. [Instance-dependent regret bound] If SNR is run with a drift limit parameter δ on a
problem instance µ ∈ Sδ , then its expected regret , R(SNR), is upper bounded by

c6
∑
a∈A

m∑
j=1

1

λa,min(j)
. log T + c8,

where m = T/τ is the number of blocks, each of length not more than τ = min{T, c9δ−2/3 log
1/3 T},

and for every block j ∈ [m] spanning a time period bj := [(j−1)τ+1, jτ ]∩[T ], define λa,min(j) :=
mint∈bj λa,t. Here, cis are suitable constants.
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C Proof of Theorem 2

In this section, we show a minimax (instance-independent) upper bound for the regret incurred
by SNR that depends on the time horizon T , the drift limit δ, and the number of arms K but, is
independent of the actual reward mean profile µ. Towards this, for every episode, we upper bound
the average regret or per-time-step regret.

Then, we shall show a minimax regret that is bounded by T times the maximum average regret
incurred in any episode.

Theorem 2. [Minimax Upper bound] If SNR is run with a drift limit parameter δ on any problem
instance µ ∈ Sδ , then it incurs an expected regret of O(Tδ1/3K1/3 log

1/3 T ), where K is the number
of arms.

Proof of Theorem. As shown in Equation (17), the conditional regret when G′ occurs can be
bounded as E [R(SNR|G′)] .P {G′} ≤ 2. Thus, it is sufficient to prove the required bound under
the assumption of occurrence of G.

We begin our proof from Equation (12) that was used as an intermediary part of the proof of the
earlier Theorem 1. The regret of an arm a in its episode i as per Equation (12) is

Ra,i ≤1 +

j∑
k=1

c2
√
w(k). log T

≤
j∑

k=1

c10
√
w(k). log T , (18)

where j is the number of blocks partitioning the active phase and w(k) is the number of rounds (or
the number of times arm a is pulled) in block k ∈ [j], as per Definition 5.

The total regret for our algorithm over the entire time horizon over all arms is

R(SNR) =
∑
a∈A

∑
i∈[ea]

Ra,i

(a)
≤
∑
a∈A

∑
i∈[ea]

j∑
k=1

c10
√
w(k). log T

≤ KT max
a∈A,i∈[ea]

∑j
k=1 c10

√
w(k). log T

ta,i+1 − ta,i
, (19)

where (a) uses Equation (18).

The final inequality is due to the fact that each time-step is a part of only one episode of every arm.
Note that

∑j
k=1 c10

√
w(k). log T/ta,i+1−ta,i is the averaged regret per-time-step of episode i of arm a.

The episode of period [ta,i +1, ta,i+1] can comprise of both active and passive phases, and we have
τa,i/K ≤ wa,i as not all K arms are necessarily active (and thus played) in every round.

Inflated episodes. For convenience in handling these quantities, we introduce an analytical con-
struct that we call inflated episodes. For an episode i of an arm a, we obtain an inflated episode
(with inflated active and passive phase) by interleaving into it time steps from episodes of other
arms. Precisely, we do the following. Consider some round in the algorithmic run/trajectory of size
x ≤ K, i.e., x distinct arms are pulled once each during that round. We have x arms in their active
phases and K − x arms in their passive phases for that round. There are x time steps in each of the
K − x passive arms in the current round, thus a total of x(K − x) passive time steps. We inflate the
current round of the x active arms by assigning K − x time steps each, thus each of the x(K − x)
passive time steps are added into the round of some active arm. This inflated round is a part of the
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inflated active phase (and inflated episode) of the active arm. Now, the round of each of the x active
arms have K timesteps each, and the round of each of the K − x passive arms have no time steps.

By repeating this exercise for all rounds of an algorithmic trajectory, we obtain the complete set of
inflated episodes. Observe that every time step removed from the passive phase of some arm gets
into the inflated active phase of some other arm. Thus, we have

∑
a∈A

∑
i∈[ea]

ta,i+1 − ta,i =
∑
a∈A

∑
i∈[ea]

τa,i + (ta,i+1 − ga,i) =
∑
a∈A

∑
i∈[ea]

τ̃a,i,

where τ̃a,i is the length of the inflated active phase of episode i of arm a, and such inflated episodes
don’t have a passive phase.

Now, we make use this property and continue from Equation (19) by replacing the averaged per-
time-step regret of an episode with the averaged per-time-step regret of an inflated episode as fol-
lows:

R(SNR) = KT. max
a∈A,i∈[ea]

∑j
k=1 c10

√
w(k). log T

τ̃a,i

≤ KT. max
a∈A,i∈[ea],k∈[j]

c10

√
w(k). log T

τ̃(k)
(20)

where τ̃(k) is the length of the inflated block k ∈ [j].

What remains to be shown is that
√

w(k). log T

τ̃(k) term in Equation (20) is O(δ1/3K−2/3 log
1/3 T ).

By the nature of our construction of inflated episodes where each round has K time steps, we have
for all arms a and episodes i ∈ [ea] that τa,i ≤ τ̃a,i = K.wa,i. As the construction (i.e., moving time
steps from passive arms to active arms) happens at a round level, we have for every block k ∈ [j]
that τ(k) ≤ τ̃(k) = K.w(k).

Thus, we have

τ̃(k) ≥ τ(k) =
1

δ
.

√
log T

w(k)

≥ 1

δ
.

√
log T

w(k)

=⇒ τ̃(k) ≥ δ
−2/3K

−1/6 log
−1/6 T.

Substituting this in averaged inflated block regret expresssion
√

w(k). log T

τ̃(k) to minimize, we have

√
w(k). log T

τ̃(k)
=

√
log T

K.τ̃(k)

≤ log1/2 T.δ−1/3.K−1/6 log−1/6 T

K1/2

=δ
1/3K

−2/3 log
1/3 T.

This completes the proof of the Theorem.
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D Proof of Theorem 3

Theorem 3. [Minimax Lower Bound] For any algorithm ALG and a drift limit δ > 0, there exists
a problem instance µ ∈ Sδ such that, ALG incurs a expected regret of Ω(Tδ1/3K1/3), where K is
the number of arms.

Proof of Theorem. Towards proving this theorem, first, we shall state and prove some useful infor-
mation theoretic lemmas. Then, we will divide the time horizon into smaller blocks and lower bound
the expected regret of each block using those lemmas. Finally, we shall aggregate the regrets of the
individual blocks by adhering to problem specific limitations, specifically, the drift limit δ, to arrive
at the final overall lower bound.

The Change of Measure Inequality presented in Lemma 12 generalizes that of Garivier & Kaufmann
(2016) by accommodating non-stationary reward distributions of arms.

Lemma 12 (Non-stationary Change of Measure Inequality). Let ν and ν′ be two non-stationary
bandit instances (sets of reward distributions for each time-step) with k arms over time horizon
[T ]. For any bandit algorithm ALG, for any random variable Z with values in [0, 1] that is fully
determinable from the trajectory (history) of an algorithmic run, HT , i.e., Z is σ(HT )- measurable,
we have

k∑
i=1

T∑
t=1

KL
(
νi,t, ν

′
i,t

)
Eν [1 {ALG(t) = i}] ≥ KL (Ber (Eν [Z]) , Ber (Eν′ [Z])) (21)

where, Eν [X] is the expected value of random variable X under bandit instance ν, ALG(t) is the
arm played by ALG at time-step t, KL(a, b) is the Kullback-Leibler divergence between distribu-
tions a and b, Ber(a) is the Bernoulli distribution with expectation a.

Proof. We prove this inequality by establishing two intermediate results:

k∑
i=1

T∑
t=1

KL
(
νi,t, ν

′
i,t

)
Eν [1 {ALG(t) = i}] = KL

(
PHT+1
ν ,PHT+1

ν′

)
, and (22)

KL
(
PHT+1
ν ,PHT+1

ν′

)
≥ KL (Ber (Eν [Z]) , Ber (Eν′ [Z])) . (23)

Here, PHT+1
ν (resp. PHT+1

ν′ ) is the probability distribution under instance ν (resp. ν′) of the algorith-
mic trajectory HT+1 = (U1, I1, Y1, . . . , UT , IT , YT , UT+1). And, Ut, It, Yt are random variables
that correspond to internal randomness, arm pulled, and reward obtained respectively at time t.

We start with the right-hand-side (RHS) of step 1 (Equation (22)) and show it’s equality to the
left-hand-side (LHS). By definition,

KL
(
PHT
ν ,PHT

ν′

)
=
∑
hT+1

Pν {HT+1 = hT+1} log
Pν {HT+1 = hT+1}
Pν′ {HT+1 = hT+1}

,

where hT+1 := (u1, i1, y1, . . . , uT , iT , yT , uT+1) is a realisation of a trajectory of a bandit algo-
rithm. We continue by writing the sought-after divergence as

∑
hT+1

Pν {HT+1 = hT+1} log
(

fu(u1).Pν {I1 = i1|U1 = u1} .Pν {Y1 = y1|U1 = u1, I1 = i1} .fu(u2). . . .

fu(u1).Pν′ {I1 = i1|U1 = u1} .Pν′ {Y1 = y1|U1 = u1, I1 = i1} .fu(u2). . . .

)
.
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The internal randomness function fu(·) of the algorithm ALG is instance-agnostic. Also, the prob-
ability distribution of It under instances ν and ν′ are identical when conditioned upon the the tra-
jectory (u1, i1, y1, . . . , ut−1, it−1, yt−1, ut). We continue by writing the sought-after divergence
as ∑

hT+1

Pν {HT+1 = hT+1} log
T∏

t=1

νit,t(yt)

ν′it,t(yt)
=
∑
hT+1

Pν {HT+1 = hT+1}
T∑

t=1

log
νit,t(yt)

ν′it,t(yt)
.

We represent the above expression as an expectation over all possible trajectories ht under instance
ν. At time step t, the deterministic arm played it is replaced by the random variable It. We continue
the derivation as follows.

KL
(
PHT
ν ,PHT

ν′

)
= Eν

[
T∑

t=1

log
νIt,t(yt)

ν′It,t(yt)

]
(a)
= Eν

[
T∑

t=1

log
νIt,t(yt)

ν′It,t(yt)

k∑
i=1

1 {It = i}

]

=

k∑
i=1

T∑
t=1

Eν

[
1 {It = i} log νi,t(yt)

ν′i,t(yt)

]
(b)
=

k∑
i=1

T∑
t=1

Eν

[
1 {It = i}Eν

[
log

νi,t(yt)

ν′i,t(yt)

]
|1 {It = i}

]

=

k∑
i=1

T∑
t=1

Eν

[
1 {It = i}KL(νi,t, ν

′
i,t)
]

=

k∑
i=1

T∑
t=1

KL(νi,t, ν
′
i,t)Eν [1 {It = i}] .

The (a) is due to the fact that at every time t, exactly one arm is played. In (b), the inner expectation
is over all realisations of yt. This completes the proof of Equation (22).

For the proof for Equation (23), to avoid repetition, we refer the reader to Garivier et al. (2019). This
completes the proof of the Lemma 12.

Next, we shall divide the time horizon into smaller blocks, and use this lemma to prove a lower
bound on each of them individually. We shall finally aggregate them to get the final lower bound.
Divide the time horizon [T ] := 1, 2, . . . , T into blocks of size m, to be determined later. We get
T/m9 blocks in total. Throughout this section, we trade the notion of mean rewards µ (or µi,t) in
favour of the more generic notion of reward distributions ν (or νi,t). Also, the time horizon of the
block is [m] instead of the global time horizon [T ].

Construction of ‘confusing’ problem instances. Consider two reward distributions ν, ν′. Let ν
be a stationary instance with identical arms with Ber (1/2) rewards, i.e., for i ∈ A, all time steps
t ∈ [m], we have νi,t ∼ Ber (1/2). One of the K arms is played at most in m/K number of time
steps, i.e., ∃i ∈ A : Eν [Ni] ≤ m/K, where Ni is the number of times arm i is played in the block
(by the end of time step m). Without loss of generality, assume that it is arm i = 1 that satisfies the
above condition, i.e., Eν [N1] ≤ m/K.

We construct bandit problem instance ν′ in such a way that the lesser played arm in instance ν (arm
1) is optimal in ν′.

9For technical clarity, we assume integrality of all quantities suitably.
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In ν′, all arms other than arm 1 have a stationary (for all times t ∈ [m]) Ber (1/2) reward distribu-
tion. Whereas, arm 1 has a Ber (1/2) reward distribution at the beginning and ending time-step of
the block, but, has reward distributions with larger means (than 1/2) in the intervening time-steps.
Precisely,

ν′i,t =



Ber

(
1

2

)
if i = 2, 3, . . . ,K

Ber

(
1

2
+

t− 1

m
.ε

)
if i = 1, t ≤

⌈m
2

⌉
Ber

(
1

2
+

m− t

m
.ε

)
if i = 1, t >

⌈m
2

⌉
.

(24)

We apply the non-stationary change of measure inequality stated in Lemma 12 to the instances ν and
ν′ with a choice of Z = N1/m, the play fraction of the arm that is underplayed in ν, but is optimal in
ν′.

We first upper bound the LHS before plugging it into the inequality:

K∑
i=1

m∑
t=1

KL
(
νi,t, ν

′
i,t

)
Eν [1 {ALG(t) = i}]

(a)
=

m∑
t=1

KL
(
ν1,t, ν

′
1,t

)
Eν [1 {ALG(t) = 1}]

=

⌈m
2 ⌉∑

t=1

KL

(
Ber

(
1

2

)
, Ber

(
1

2
+

t− 1

m
.ε

))
Eν [1 {ALG(t) = 1}] +

m∑
t=⌈m

2 ⌉+1

KL

(
Ber

(
1

2

)
, Ber

(
1

2
+

m− t

m
.ε

))
Eν [1 {ALG(t) = 1}]

≤
⌈m

2 ⌉∑
t=1

KL

(
Ber

(
1

2

)
, Ber

(
1 + ε

2

))
Eν [1 {ALG(t) = 1}] +

m∑
t=⌈m

2 ⌉+1

KL

(
Ber

(
1

2

)
, Ber

(
1 + ε

2

))
Eν [1 {ALG(t) = 1}] (25)

=KL

(
Ber

(
1

2

)
, Ber

(
1 + ε

2

)) m∑
t=1

Eν [1 {ALG(t) = 1}] ≤ ε2.Eν [N1] . (26)

The (a) is due to the fact that all arms other than arm 1 are identical in both the instances, i.e., for all
time-steps t ∈ [m] and arms i ∈ A \ {1}, we have KL

(
νi,t, ν

′
i,t

)
= 0.

The Equation (25) upper bounds the information gathered about the distinguishability of the arm 1
(from stationary arm 1 with Ber (1/2) rewards in instance ν) as if it were statinonary with Ber

(
1+ε
2

)
rewards at all times t ∈ [m] in ν′.
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We now plug the Equation (26) into Equation (21) with a choice of Z = N1/m to get

ε2Eν [N1] ≥ KL

(
Ber

(
Eν [N1]

m

)
, Ber

(
Eν′ [N1]

m

))
(a)
≥ 2

(
Eν [N1]

m
− Eν′ [N1]

m

)2

(By Pinsker’s Inequality)

=⇒
√

1

2
.ε2Eν [N1] ≥

Eν′ [N1]

m
− Eν [N1]

m

=⇒ Eν′ [N1]

m
≤ Eν [N1]

m
+

√
1

2
.ε2Eν [N1]

(b)
≤ 1

K
+

√
1

2
.ε2.

m

K
.

Here, (a) is by Pinsker’s inequality, and (b) is due to Eν [N1] ≤ m/K. By fixing ε =
√

K/8m, we get
Eν′ [N1]

m ≤ 1/K + 1/4 ≤ 3/4, since K ≥ 2. Thus, the sub-optimal arms in instance ν′ are played for
more than a constant fraction of times in expectation, i.e.,

∑
i∈A\{1} Eν′ [Ni] ≥ m/4. In instance ν′,

let these sub-optimal arms be played by ALG at time steps t1, t2, . . . , tx for some x ≥ m/4. Then,
the expected regret in the block (denoted by Rb(ALG)) is

Eν′
[
Rb(ALG)

]
=

x∑
i=1

µ∗
ti − µALG(ti),ti =

x∑
i=1

µ1,ti − µ2,ti ,

where the second equality is because arm 1 is optimal throughout the block and the reward mean of
any sub-optimal arm is identical to that of arm 2.

By design (in Equation (24)), the set of reward mean gaps, {|µ1,t − µ2,t|}t∈[m], throughout the
block [m] is {0, 0, ε

m , ε
m , 2ε

m , . . . , ε
2}. We lower bound

∑x
i=1 µ1,ti − µ2,ti with the least possible

sum of x ≥ m/4 values from the set of gaps as follows:

Eν′
[
Rb(ALG)

]
=

x∑
i=1

µ1,ti − µ2,ti

≥ 2.

m/8∑
i=1

(i− 1).ε

m
=

2ε

m

m/8−1∑
i=0

i

=
2ε

m
.
m2 − 8m

64
=

ε

32
.(m− 8)

(a)
=

√
K

8m
.
m− 8

32

=

√
k

64
√
2
.
(
m1/2 − 8/m1/2

)
= Ω

(√
Km

)
. (27)

The (a) is due to ε =
√

K/8m.

Also, at each time step in t ∈ [m], the maximum reward mean gap between any two arms is µ1,t −
µ2,t ≤ ε. So, the regret in the block is trivially upper bounded as follows:

Eν′
[
Rb(ALG)

]
≤ m.ε = m.

√
K/8m = O

(√
Km

)
. (28)

The following lemma is a consequence of Equations (27) and (28).

Lemma 13. For a block of time period m, there exists a bandit instance ν′ (as in expression 24)
such that, for any algorithm ALG, its expected regret Eν′

[
Rb(ALG)

]
is Θ(

√
Km).
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Next, we aggregate the regret across T/m blocks to get the overall regret. Note that the instances ν
and ν′ have a drift limit implication as follows:

δ ≥ ε

m
⇐⇒ δ ≥ K1/2

√
8.m3/2

⇐⇒ m
3/2 ≥ 1√

8
.
K1/2

δ
⇐⇒

√
m ≥ 1√

2
.
K1/6

δ1/3
.

(29)

Now, the total regret is lower bounded by the number of blocks multiplied by the lower bound of
regret within each block. Thus,

E [R(ALG)] =
T

m
×Θ(

√
Km) =

T.K1/2

Θ(
√
m)

(a)
≥ T.K

1/2.
√
2δ

1/3K
−1/6 = Ω

(
TK

1/3δ
1/3
)
,

where (a) uses Equation (29). This completes the proof of the Theorem 3.

E Additonal simulations

In this section, we plot supporting graphs that were not included in the main paper.

E.1 Problem Instances

We plot the problem instances whose regret plots were analysed in the main paper Section 6.

(a) (b)

Figure 4: Illustration of problem instances, i.e., the true reward means of the arms. In (a), the
arms are well separated with no change in optimal arm’s identity throughout. Here, the drift limit
δ = 1/10.c9. log T ≃ 0.000021. In (b), the arms experience short stretches of stationarity and drift
alternately. The optimal arm’s identity toggles with every drift. Here, we have a relatively large drift
limit δ = 1/c9. log T ≃ 0.00021. The choice of δs are arbitrary to well describe the differences in
instances.

E.2 Algorithmic Trajectories

In this subsection, we show two algorithmic trajectories (for two different instances) that can help
better understand the functioning of our algorithm SNR in Figs. 6 and 7.
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(a) (b)

Figure 5: Two sets of 4 structurally similar problems with varying drift limits δ. In (a), the instances
have common periods of stationarity and drift. The amount of drift varies with the corresponding δ =
a, 2a, 3a, 4a, for a = 1/c10 log T ≃ 0.000007 values. In (b), the instances have equal total cumulative
drift. To achieve that drift, the duration of drift varies with the corresponding δ = a, 2a, 3a, 4a, for
a = 1/c11 log T ≃ 0.000021 values. The choice of δs are arbitrary to well describe the differences in
instances.

Figure 6: Illustration of the trajectory of SNR for a problem instance whose gap, ∆2,t, and thus the
detectable gap, λ2,t (not shown in picture) increases with time t. One can observe that the statistical
test passes sooner (a shorter active phase [t2,i + 1, g2,i] of episode i) for larger observed gaps, λ̂s.
Also, the snooze period is more (a longer passive phase [g2,i + 1, t2,i+1]) for larger observed gaps.
The empirical means plotted are measured from the beginning of the episode till the current time-
step. Note that the empirical means of the sub-optimal arm remains unchanged during the passive
phase due to it not being played.
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Figure 7: Illustration of the trajectory of SNR for a problem instance with oscillating arms. Note
that episodes 1, 5, and 9 do not have a passive phase. Essentially, compared with the length of the
active phases, the gaps detected λ̂s were not sufficiently large to warrant snoozing the sub-optimal
arm. However, stretches of time where the arms are well separated enjoy substantial passive phases.


