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Summary
We address the challenge of switching among multiple learned policies in reinforcement

learning control systems, where conventional value function–based methods can lead to chat-
tering in the presence of small measurement noise. Our goal is to design a switching logic that
assures asymptotic stability and maintains a robustness margin so that rapid switching is pre-
vented under bounded measurement noise. To this end, we propose a timer-based hybrid super-
visor that integrates a resettable timer that enforces a minimum dwell time on the active policy.
This dwell time is adaptively adjusted by predicting the evolution of the state of the system,
ensuring that a switch occurs only when a significantly better alternative is predicted. We de-
rive sufficient conditions under which the hybrid supervisor is guaranteed to exhibit non-Zeno
behavior and render a compact set robustly globally asymptotically stable in the presence of
bounded measurement noise. Simulation results on representative decision-making problems
demonstrate that our hybrid supervisor is robust under noisy conditions where a conventional
switching strategy fails.

Contribution(s)
1. This paper presents a hybrid supervisor that maintains the asymptotic stability properties of

the underlying policies and prevents chattering between the policies under bounded mea-
surement noise. The hybrid supervisor deploys a timer-based mechanism to predict and
enforce a dwell period between policy switches. Sufficient conditions are presented under
which the hybrid supervisor is guaranteed to exhibit non-Zeno behavior and render a com-
pact set robustly globally asymptotically stable in the presence of bounded measurement
noise.
Context: Chattering refers to the phenomenon of a system rapidly switching its decision
due to measurement noise that results in inefficient or destabilizing behavior. Existing
chattering-mitigation strategies in RL rely on partitioning the state space into overlapping
regions to define switching conditions, with the overlap situated where chattering is ob-
served. Defining these overlapping regions necessitates some insight into their expected
location, making this approach more suitable when such prior knowledge is available. Al-
ternative timer-based approaches that may prevent chattering impose a fixed lower bound
on the time between switches. These methods are not designed to address chattering under
measurement noise and thus lack formal guarantees that bounded disturbances will not in-
duce chattering.
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Abstract

We address the challenge of switching among multiple learned policies in reinforcement
learning control systems, where conventional value function–based methods can lead to
chattering in the presence of small measurement noise. Our goal is to design a switching
logic that assures asymptotic stability and maintains a robustness margin so that rapid
switching is prevented under bounded measurement noise. To this end, we propose a
timer-based hybrid supervisor that integrates a resettable timer that enforces a minimum
dwell time on the active policy. This dwell time is adaptively adjusted by predicting
the evolution of the state of the system, ensuring that a switch occurs only when a
significantly better alternative is predicted. We derive sufficient conditions under which
the hybrid supervisor is guaranteed to exhibit non-Zeno behavior and render a compact
set robustly globally asymptotically stable in the presence of bounded measurement
noise. Simulation results on representative decision-making problems demonstrate that
our hybrid supervisor is robust under noisy conditions where a conventional switching
strategy fails.

1 Introduction

In many real-world decision-making problems, a reinforcement learning (RL) agent is faced with
a choice among multiple strategies or actions, each with its own advantages and trade-offs. Such
problems arise not only in control systems and robotics (Hwangbo et al., 2019), but also in areas
as diverse as financial portfolio management (Bartram et al., 2021), cybersecurity (Alpcan & Baar,
2010), and video game strategy selection (Yannakakis & Togelius, 2018). In these settings, the
agent must evaluate limited, often noisy information in order to select the best course of action,
balancing short-term rewards against long-term objectives. This dynamic, multi-strategy decision-
making process is inherently challenging, particularly in RL, where the optimal strategy may not be
immediately apparent and can depend on subtle aspects of the current state or adversarial influences
in the environment.

One particularly challenging phenomenon in this context is the tendency for the system to “chatter”
between strategies (Prieur et al., 2007; Mayhew et al., 2011; de Priester et al., 2022; 2024). Chatter-
ing occurs when an agent rapidly switches its decision—often due to small measurement errors or
environmental perturbations—resulting in inefficient or even destabilizing behavior. For example,
in video game scenarios, a player or AI might oscillate between aggressive, defensive, and resource-
gathering strategies in response to transient changes in the game state. Although such switching
might appear adaptive in the short term, it can prevent the full exploitation of a promising strategy,
ultimately leading to suboptimal performance. Furthermore, in competitive environments, adver-
saries can deliberately manipulate the situation to induce premature or frequent switching, thereby
exploiting the hesitation or uncertainty of the decision maker (de Priester et al., 2022; 2024).
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Existing chattering-mitigation strategies in RL rely on partitioning the state space into overlapping
regions to define switching conditions, with the overlap situated where chattering is observed. Defin-
ing these overlapping regions necessitates some insight into their expected location, making this
approach more suitable when such prior knowledge is available (de Priester et al., 2022; 2024).
In contrast, our proposed method addresses scenarios where these switching regions are not easily
determined. We achieve this by leveraging value function-based switching conditions, comple-
mented by a timer-based mechanism to predict and enforce a minimum dwell period between policy
switches. While there exist alternative timer-based approaches that may prevent chattering by im-
posing a fixed lower bound on the time between switches (Greene et al., 2020; Makumi et al., 2023;
Chemingui et al., 2025), these methods are not designed to address chattering under measurement
noise and thus lack formal guarantees that bounded disturbances will not induce chattering.

Motivated by these challenges, we propose a novel predictive timer-based hybrid supervisor that
prevents chattering between policies. In Section 4, we provide a formal analysis of the proposed hy-
brid supervisor, establishing properties such as non-Zeno behavior and robustness to measurement
noise. In Section 5, we validate our approach through numerical simulations on a representative
decision-making problem.1 Section 3 further motivates our work by presenting a detailed problem
formulation and an illustrative example of the chattering issues observed with conventional switch-
ing strategies.

2 Preliminaries

2.1 Notation and Definitions

The following notation is used throughout the paper. The n-dimensional Euclidean space is denoted
by Rn; the real numbers by R; the nonnegative reals by R≥0 := [0,∞); the positive reals by
R>0 := (0,∞); the natural numbers including zero by N := {0, 1, 2, ...}; and the positive natural
numbers by N>0 := {1, 2, ...}. The empty set is denoted by ∅. For a set S, int (S) denotes its
interior and ∂S its boundary. The closed unit ball in the Euclidean norm, of appropriate dimension
and centered at the origin, is denoted by B. For a vector x and a nonempty set S, |x| is its Euclidean
norm, and |x|S := infy∈S |x− y| is its distance to S. The domain of a map f is dom f . The signum
function is sgn(χ) := −1 if χ < 0, and 1 if χ ≥ 0. The tangent cone to a set S ⊂ Rn at χ ∈ Rn

is TS(χ), defined as the set of all vectors w ∈ Rn for which there exist sequences χi ∈ S, τi > 0
with χi → χ, τi ↘ 0, and w = limi→∞

χi−χ
τi

. A set-valued map F is outer semicontinuous (OSC)
if for any sequence xi → x in dom F with yi ∈ F (xi) and yi → y, it holds that y ∈ F (x).

2.2 Reinforcement Learning Framework

Markov decision processes (MDPs) are used as a formalism for RL (Puterman, 1994). In an MDP,
the learner/controller is referred to as the agent and interacts with an environment. The state of the
agent z ∈ Z , where Z ⊂ Rn is a set of states, evolves according to the continuous-time dynamics

ż = f(z, u), (1)

where f : Z×U → Z is Lipschitz and u ∈ U ⊂ Rm is the control input from a set of actions U . The
set of solution pairs t 7→ (z(t), u(t)), where t ∈ R≥0 is the ordinary time parameter, to (1) starting
from a set X0 ⊂ Z is denoted by S(X0). Given a solution pair (z, u) ∈ S to (1), the discounted
reward functional V : S → R maps solutions of (1) to the discounted reward and is defined as

V(z, u) :=
∫ sup dom (z,u)

0

e−ρtR(z(t), u(t)) dt, (2)

1All simulation files are available at https://github.com/JPriester/Timer-Value-Supervisor.

https://github.com/JPriester/Timer-Value-Supervisor
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where ρ ∈ R>0 is the discount rate and R : Z × U → R is the reward function. The value function
for a Lipschitz continuous policy π : Z → U is given by

Vπ(z0) = V(z, π(z)) =
∫ sup dom z

0

e−ρtR(z(t), π(z(t))) dt (3)

where (z, π(z)) ∈ S(z0) is the unique solution pair to the closed-loop system ż = f(z, π(z))
starting from z0 ∈ X0.

In this work, we apply value iteration to obtain an approximate value function V̂π : Z → R that
approximates the true value function Vπ defined in (3). We represent V̂π using a multi-layer percep-
tron (MLP) with L layers and continuously differentiable activation functions, such as the sigmoid
or hyperbolic tangent function. The approximate value function is given by

V̂π(z; θ) = WL h
(
WL−1 h

(
· · · h

(
W1z + b1

)
· · ·

)
+ bL−1

)
+ bL, (4)

where θ = {W1,W2, . . . ,WL, b1, b2, . . . , bL} denotes the collection of weights and biases,
and h : R → R is a continuously differentiable activation function. For conciseness, we omit the
explicit dependency on the network parameters θ in the remainder of the paper. The value iteration
algorithm implemented is analogous to the training of the critic network in actor-critic methods,
such as Proximal Policy Optimization (PPO) (Schulman et al., 2017).2

2.3 Hybrid Systems

A hybrid system H = (C,F,D,G) is defined as

H :

{
ẋ = F (x) x ∈ C

x+ = G(x) x ∈ D
(5)

where x ∈ Rn denotes the state variable, x+ the state variable after a jump, F : C → Rn

is a function referred to as the flow map, C ⊂ Rn is the set of points referred to as the flow
set, G : D → Rn the jump map, and D ⊂ Rn is the jump set. When the state is in the flow set, the
state is allowed to evolve continuously and is described by the differential equation defined by the
flow map. When the state is in the jump set, the state is allowed to be updated using the difference
equation defined by the jump map. In this way, with some abuse of notation, the solution to (5) is
given by a function (t, j) 7→ x(t, j) defined on a hybrid time domain, which properly collects values
of the ordinary time variable t ∈ R≥0 and of the discrete jump variable j ∈ N. The hybrid system H
allows for the combination of continuous-time behavior (flow) with discrete-time behavior (jumps).
For more details on hybrid dynamical systems, see Goebel et al. (2012); Sanfelice (2021).

3 Motivation

3.1 Problem Definition

We consider systems described by the dynamics in (1). The control input to this system is provided
by a continuous policy πq ∈ Π := {π1, π2, . . . , πN}, πq : Z → U selected from a policy bank Π,
where each policy πq maps states to control actions and N ∈ N>0 is the number of policies in the
policy bank Π. Furthermore, each policy asymptotically stabilizes a compact set. A continuously
differentiable approximate value function V̂q : Z → R of the form (4) is obtained for each
policy πq ∈ Π for q ∈ Q := {1, 2, . . . , N} via RL. The problem to solve is defined as follows:

Problem (⋆) Design a value function-based switching logic that prevents chattering under measure-
ment noise by guaranteeing a nonzero robustness margin ε > 0 while preserving the properties of
the individual policies when they are applied to (1).

2For details on the implementation of the value iteration algorithm, see the GitHub link in footnote 1.
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Figure 1: Left, the approximate value function V̂1, in blue, and V̂2, in green, for the policies π1

and π2, respectively. Right, the resulting control policy by applying the supervisory policy Q∗. The
setpoints Z∗ are denoted by the red stars.

A straightforward switching logic that selects the value of q corresponding to the highest value
function V̂q for the current state z, though it preserves the properties induced by the individual
policies, may not be robust against measurement noise, as illustrated in the following example.

Example 1 (Stabilizing two disconnected points on a line). We consider a system evolving on a
line with the state z ∈ Z ⊂ R and dynamics ż = u, where u ∈ [−1, 1] is the control input. The
problem to solve consists of robustly globally asymptotically stabilizing the set Z∗ := {z∗1 , z∗2} :=
{−1, 1} ⊂ Z , which consists of two disconnected setpoints, by designing a supervisory policy to
select between the two available policies, π1 and π2, based on the observation vector

o(z +m) =

[
z +m− z∗1
z +m− z∗2

]
, (6)

where m ∈ R represents the measurement noise. The policies are given by

πq(z) = z∗q − z, (7)

for each z ∈ Z and each value of the logic variable q ∈ {1, 2} := Q. It can be shown that each pol-
icy in (7) globally asymptotically stabilizes one of the setpoints, namely, π1 globally asymptotically
stabilizes z∗1 and π2 globally asymptotically stabilizes z∗2 . The value iteration algorithm is applied
to find the approximate value functions V̂q for q ∈ Q subject to the reward function

R(z) = −c1|z|Z∗ , (8)

which has a global maximum for z = z∗, where c1 ∈ R>0 is a constant, discount rate ρ =
− 1

∆t ln 0.9,3 sampling time of ∆t = 0.05 seconds, and a horizon of 100 time steps.

The supervisory policy Q∗ : Z → Q that maps the state z to the logic variable q is given by

Q∗(z) := {q ∈ Q : V̂q(z) = max
q̄∈Q

V̂q̄(z)} (9)

namely, the value of q corresponds to the highest approximate value function V̂q for the current
state z.4 For the value function V̂q′ , where q′ ∈ Q∗(z), corresponding to deploying the supervisory
policy Q∗, it follows by the definition of Q∗ that V̂q′(z) ≥ V̂q(z) for all z ∈ Z . Figure 1 shows
the approximate value function V̂1 and V̂2 for the policies π1 and π2, respectively, and the resulting
control policy by applying the supervisory policy Q∗. Figure 1 shows that in the region z ∈ [z∗1 , z

∗
2 ],

the supervisory policy Q∗ selects the logic variable q corresponding to the closest setpoint: pol-
icy π1 (q = 1) when z ≤ 0 to stabilize z∗1 , and policy π2 (q = 2) when z > 0 to push solutions
towards z∗2 . Conversely, in the regions z ∈ [−3,−1.6)∪ (1.6, 3], the supervisory policy Q∗ opts for
opposing policies: policy π2 (q = 2) when z < −1.6, and policy π1 (q = 1) when z > 1.6. This
exploitative selection can be attributed to the opposing policies in these regions yielding a larger
control input than the corresponding policies while maintaining the same sign of the control input.

3The chosen discount rate corresponds to a discrete-time discount factor of 0.9.
4For certain states, multiple maximizers may exist for the value functions in the policy bank.
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(a) Noise magnitude ε = 0.
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Figure 2: The solutions to the closed-loop system using the supervisory policy Q∗ plotted over the
approximate value function V̂1, in blue, and V̂2, in green, for the policies π1 and π2, respectively, and
over time under the measurement noise signal (10) of magnitude ε ∈ {0, 0.3}, for Example 1. The
solutions plotted over the value functions are displayed by the dashed red lines with initial conditions
denoted by the circles and terminal conditions by the crosses. The setpoints Z∗ are denoted by the
red stars.

Specifically, π2(z) > π1(z) for all z ∈ [−3,−1.6) and π1(z) < π2(z) for all z ∈ (1.6, 3], as can
be seen in Figure 1. Hence, solutions evolve towards z∗ quicker under the exploitative selection.5

Figure 1 shows that the resulting control policy by applying the supervisory policy Q∗ is piecewise
continuous. In particular, the resulting control policy changes its decision for a small change in
the state z near zc := 0, referred to as a critical state. Recall that ż = u, hence near this critical
state, ż > 0 for z ∈ (zc, z

∗
2) and ż < 0 for z ∈ (z∗1 , zc). To highlight the issue near zc, suppose the

system is in the region z ∈ (zc − ε, zc), where ε > 0. Without measurement noise, the supervisory
policy Q∗ selects policy π1 as the system is in the subset of the region z ∈ (z∗1 , zc). However, with
a small perturbation m = ε, the measured state is in the region z + m ∈ (zc, zc + ε), placing it
in the subset of the region z ∈ (zc, z

∗
2) and causing the supervisory policy Q∗ to select policy π2.

At the next sampling interval, that is, when the supervisory policy Q∗ makes its next decision, the
system moves to the region z ∈ (zc, zc+ε) due to the previous selection of policy π2. This time, with
a perturbation m = −ε, the measured state is z + m ∈ (zc − ε, zc), resulting in the supervisory
policy Q∗ selecting policy π1 and pushing the system back into the region (zc − ε, zc). Repetition
of this pattern causes the system to chatter around the critical state zc.6 Figure 2b illustrates this
chattering behavior. In Figure 2, the solutions to the closed-loop system using the supervisory
policy Q∗ are shown for various initial conditions in the presence of the measurement noise signal
given by

m(t) = εmsgn(t), (10)

where ε ∈ R≥0 is the magnitude of the measurement noise and msgn is a function that changes its
sign at every sampling time interval ∆t = 0.05 and is given by msgn(t) = sgn

(
cos

(
πt
∆t

))
for all

t ∈ R≥0, where sgn is the signum function. While Figure 2a shows that all the considered solutions
converge to the set Z∗ without measurement noise, Figure 2b illustrates that the measurement noise
signal in (10) causes the solutions starting near zc to chatter around z = zc, thereby preventing
those solutions from converging to the set Z∗.

To address the issue of chattering in the supervisory policy, we propose a value function-based
switching approach that ensures the resulting hybrid closed-loop system is robust to measurement
noise and preserves the properties of the individual policies.

5The supervisory policy Q∗ is not necessarily the optimal switching strategy; however, it is probably better or equal to a
non-switching strategy.

6The decision of the supervisory policy Q∗ changes near z ∈ {−1.6, 1.6} as well; however, as both policies have an
equal sign for these points, chattering does not occur at these points.
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4 Hybrid Supervisor

In this section, we first define a class of systems and establish value function-based conditions that
characterize critical areas, where multiple policies appear equally “good”, and small perturbations
can trigger undesired chattering behavior and performance degradation. Using these conditions, we
then propose a hybrid supervisor that deploys a timer-based mechanism to predict and enforce a
dwell period between policy switches.

4.1 Class of Systems

The focus is on systems where certain regions of the state space, termed critical areas, feature
multiple locally equally optimal policies. In these critical areas, system decisions become highly
sensitive to small perturbations in observations, which can lead to rapid switching between decisions,
resulting in undesired chattering behavior and performance degradation. From a value function-
based perspective, these critical areas are more formally identified using the following conditions,
given a policy bank Π with Lipschitz policies πq : Z → U for q ∈ Q, continuously differentiable
approximate value functions V̂q : Z → R of the form (4), and continuous-time dynamics as in (1)
with Z closed, critical areas are identified by the following conditions:

(◦) for each z ∈ M∗ ⊂ Z , there exist q, p ∈ Q∗(z), q ̸= p, such that

V̂q(z) = V̂p(z), (11)

⟨∇V̂q(z), f(z, πq(z)⟩ > 0 and ⟨∇V̂p(z), f(z, πp(z)⟩ > 0, (12)

⟨∇V̂q(z), f(z, πp(z)⟩ < 0 and ⟨∇V̂p(z), f(z, πq(z)⟩ < 0. (13)

Therefore, the set M∗ is defined as

M∗ := {z ∈ Z :∃q ∈ Q∗(z), p ∈ Q∗(z) \ {q} : V̂p(z) = V̂q(z),

⟨∇V̂q(z), f(z, πq(z)⟩ > 0, ⟨∇V̂p(z), f(z, πp(z)⟩ > 0,

⟨∇V̂q(z), f(z, πp(z)⟩ < 0, ⟨∇V̂p(z), f(z, πq(z)⟩ < 0}.

(14)

The conditions in (◦) can be interpreted as follows. Condition (11) identifies states z where mul-
tiple policies πq and πp are equally optimal, allowing a supervisory policy to select either q or p.
Condition (12) indicates that the value functions V̂q and V̂p increase locally when following their
respective policies πq and πp. Conversely, condition (13) shows that the value functions decrease
when following the opposing policies πp and πq , respectively. Together, these conditions are used
to define the following partitions of the state space Z near the critical areas M∗.

Lemma 1. Under the conditions in (◦), there exists δ > 0 such that the set M∗ satisfies⋃
q∈Q′

Zq = Z ∩ (M∗ + δB) , (15)

where Q′ :=
⋃

z∈M∗ Q∗(z) ⊂ Q and, for each q ∈ Q′, the partition

Zq :=
⋂

p∈Q′\{q}

{z ∈ Z ∩ (M∗ + δB) : V̂q(z)− V̂p(z) ≥ 0} (16)

satisfies

(A1) Zq is closed for each q ∈ Q′;

(A2) V̂q(z) > V̂p(z) for all z ∈ int (Zq) and p ∈ Q′ \ {q}; and

(A3) int (Zq) ∩ int (Zp) = ∅ for all q, p ∈ Q′, p ̸= q.
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The proof of Lemma 1 can be found in the supplementary material.

By Lemma 1, there exists δ > 0 such that the neighborhood M∗ + δB is partitioned into regions Zq

with disjoint interiors, where each Zq corresponds to a region where V̂q is strictly larger than V̂p for
all q, p ∈ Q′, p ̸= q. Suppose, without loss of generality, that z ∈ Zq for some q ∈ Q′. Then, due
to the properties in Lemma 1, every point z ∈ M∗ + δB is δ close to some boundary between Zq

and Zp. Therefore, there exists a perturbation m ∈ δB, for which the perturbed state z+m belongs
to Zp. Consequently, even though z initially lies in Zq , the perturbation leads to the selection of
policy πp. Since z +m is in M∗ + δB, conditions (12) and (13) ensure that if p is chosen in Zq , V̂p

increases while V̂q decreases, effectively making M∗ attractive. That is, the system is "pulled" back
toward the critical area. Subsequent perturbations can then induce a switch back to q, leading to
chattering between policies near the critical area.

4.2 Timer-based Hybrid Supervisor

The hybrid supervisor employs a timer to prevent chattering near critical areas. This timer-based
approach sets a dwell time parameter based on the value functions and a noise-free model of the
system dynamics, ensuring a minimum waiting period before another policy switch is allowed.

The hybrid closed-loop system H = (C,F,D,G) models the continuous evolution (flow) and dis-
crete updates (jumps) of its state, which consists of the system state z of (1), a timer τ ∈ R≥0, the
logic variable q ∈ {1, 2, . . . , N} =: Q, where N ∈ N>0 is the number of policies in the policy
bank, and an adjustable dwell time parameter δd ∈ R>0. The adjustable dwell time parameter δd
dictates the amount of time that needs to elapse before the applied policy can be changed, namely,
to change q. The state is defined as x = (z, τ, q, δd) ∈ X := Z ×R≥0×Q×R≥0. The flow map F
governs the continuous evolution of each state component, the flow set C specifies the conditions
under which the state components can flow, the jump map G governs the discrete updates, and the
jump set D defines the conditions under which the state components can jump.

During flows, the state z evolves according to its dynamics (1) under the selected policy πq from the
policy bank. Furthermore, the policy decision stored in q and the adjustable dwell time parameter δd
do not change during flows. On the other hand, the timer τ evolves linearly with a constant rate of
one so as to count ordinary time. The flow map F that captures this behavior is given by

ż
τ̇
q̇

δ̇d

 = F (x) :=


f(z, πq(z))

1
0
0

 x ∈ C. (17)

The system flows whenever the timer τ is less than or equal to the adjustable dwell time parameter δd,
or when the logic variable q corresponds to the highest value function for the current value of the
state z, leading to the flow set C := C0 ∪ C1, where

C0 := {x ∈ X : τ ≤ δd};
C1 := {x ∈ X : q ∈ Q∗(z)},

(18)

where Q∗ is given by (9). The jump map G is given by
z+

τ+

q+

δ+d

 ∈ G(x) :=


z
0{[

q′

min
(
T (z, q′) ∪

{
δ̄d
})] : q′ ∈ Q∗(z)

}
 x ∈ D, (19)

where

T (z, q) :=
{
η ∈ [0, δ̄d] :

max
q̄∈(Q\{q})

V̂q̄ (χ(η))− V̂q (χ(η))

|V̂q (χ(η)) |+ ϵ
≥ µ,

where χ̇ = f (χ, πq(χ)) , χ(0) = z
}
,

(20)
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where ϵ ∈ R>0 is a very small constant (e.g., ϵ ≪ 1) used to avoid division by zero, µ ∈ R>0

is a constant, and δ̄d ∈ R>0 is the maximum value of the dwell time parameter. The set-valued
map T : Z ⇒ [0, δ̄d] gathers all time horizons up to δ̄d at which a significant relative improvement
(as determined by µ) over the current optimal policy q′ is predicted. To clarify the construction of
the ratio in (20), suppose that, for some q ∈ Q and for some η ∈ [0, δ̄d], we have V̂q(χ(η)) > 0.
Then, the ratio in (20) can be written as

V̂q̄(χ(η)) ≥ µ(|V̂q(χ(η))|+ ϵ) + V̂q(χ(η)) > (1 + µ)V̂q(χ(η)), (21)

where q̄ ∈ Q\{q}. This inequality indicates that the policy with index q̄ yields a return that is more
than 1+µ times the return of policy q at η seconds in the future. Next, suppose that, for some q ∈ Q
and for some η ∈ [0, δ̄d], we have V̂q(χ(η)) < 0. In this case, the ratio in (20) can be written as

V̂q̄(χ(η))− V̂q(χ(η)) ≥ µ(|V̂q(χ(η))|+ ϵ) > µ|V̂q(χ(η))|, (22)

where again q̄ ∈ Q\{q}. Here, the inequality shows that the difference in return between the policy
with index q̄ and the policy with index q is greater than µ times the return of policy q at η seconds
in the future. Notice that the absolute value in the term |V̂q(χ(η))| is essential. To illustrate this,
suppose again that, for some q ∈ Q and for some η ∈ [0, δ̄d], we have V̂q(χ(η)) < −ϵ. In this case,
if we were to omit the absolute value, the ratio in (20) would be written as

V̂q̄(χ(η)) ≤ µ
(
V̂q(χ(η)) + ϵ

)
+ V̂q(χ(η)) = (µ+ 1)V̂q(χ(η)) + µϵ. (23)

Since V̂q(χ(η)) < −ϵ, the sum V̂q(χ(η)) + ϵ is negative, which makes the right-hand side of (23)
negative as well. This means that the inequality would hold even if the return of policy q̄ is actually
worse than 1 + µ times the return of policy q at η seconds in the future. By including the absolute
value, we ensure a meaningful comparison of returns regardless of the sign of V̂q(χ(η)).

The constant ϵ > 0 ensures the ratio is well-defined even when V̂q(χ(η)) is close to zero. In (20), the
trajectory χ(η) with χ(0) = z is a solution of χ̇ = f(χ, πq(χ)) for η ∈ [0, δ̄d]. For each alternative
policy πq̄ with q̄ ∈ Q \ {q}, we compare V̂q(χ(η)) with V̂q̄(χ(η)). Whenever the resulting ratio
meets or exceeds the threshold µ, the corresponding η is included in T (z, q). In (19), it can be seen
that, at jumps, the state z remains unchanged, and the logic variable q is updated to correspond to the
index of one of the value functions with largest value, that is q is reset to a point in Q∗(z), therefore
the system inherits the properties of the corresponding individual controller during the subsequent
period of flow. The timer τ is reset to 0, and the adjustable dwell time parameter δd is reset to
the minimum between the smallest time horizon in T (z, q) or to the maximum dwell time δ̄d. If
the set T (z, q) is empty, which is possible when no significant improvement is observed over the
current optimal policy within the time horizon δd, then δd is reset to δ̄d.

The system jumps whenever the state is in the jump set D, which is defined as

D := {x ∈ X : τ ≥ δd , q ∈ Q \Q∗(z)}. (24)

In (24), it can be seen that the jump in (19) occurs whenever the timer is greater than or equal to the
adjustable dwell time parameter δd and the logic variable q does not correspond to a value function
with the largest value.

Next, the key properties of the hybrid closed-loop system H in (17)-(24) are discussed. The first
property, namely the hybrid basic conditions, is a set of mild conditions on the data (C,F,D,G) of
the hybrid closed-loop system H. These conditions are required to ensure that asymptotically stable
compact sets of the hybrid closed-loop system H are robust against disturbances.

Proposition 1. The hybrid closed-loop system H in (17)-(24) satisfies the hybrid basic conditions
if, for each q ∈ Q, the approximate value function V̂q : Z → R in (4) is continuous and the pol-
icy πq : Z → U and f : Z × U → Z are Lipschitz continuous.
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The proof of Proposition 1 can be found in the supplementary material.

The following proposition shows that under mild continuity and Lipschitz conditions, the hybrid
closed-loop system H in (17)-(24) has nontrivial solutions for every initial state in the flow or jump
set. Without this guarantee, the algorithm could get stuck, preventing further progress.

Proposition 2. Suppose, for each q ∈ Q, the approximate value function V̂q : Z → R in (4) is
continuous and the policy πq : Z → U and f : Z × U → Z are Lipschitz continuous. Then, for
each x◦ ∈ C∪D, there exists a nontrivial solution x to the hybrid closed-loop system H in (17)-(24)
with x(0, 0) = x◦. Furthermore, every maximal solution x to H is complete and not Zeno, and every
bounded solution x to H has jump times that are uniformly lower bounded by a positive constant,7

that is, for each bounded solution x to H there exists β > 0 such that tj+1 − tj ≥ β for all j ≥ 1,
where tj denotes the time at jump j.

The proof of Proposition 2 can be found in the supplementary material.

The following theorem demonstrates that, under mild assumptions, the hybrid closed-loop system H
in (17)-(24) solves problem (⋆). This implies the hybrid supervisor not only maintains the global
asymptotic stability properties of the underlying policies but also prevents chattering between the
policies when subjected to small, bounded measurement noise. This robustness to chattering stems
from the enforced separation of switching boundaries and the regularity of the flow map (17).

Theorem 1. Suppose, for each q ∈ Q, the approximate value function V̂q : Z → R in (4) is
continuous and the policy πq : Z → U and f : Z × U → Z are Lipschitz continuous. Furthermore,
each policy πq ∈ Π globally asymptotically stabilizes8 a compact set Z∗

q , where Z∗ : =
⋃

q∈Q Z∗
q ,

and, for each q ∈ Q, the corresponding value function V̂q attains its global maximum at Z∗
q and

strictly decreases as the distance from Z∗
q increases. Then, the hybrid closed-loop system H in (17)-

(24) solves Problem (⋆).

The proof of Theorem 1 can be found in the supplementary material.

Example 2 (Stabilizing two disconnected points on a line, revisited). The solutions of the hybrid
closed-loop system H in (17)-(24) are shown in Figure 3 for various initial conditions in the presence
of the measurement noise signal (10) of magnitude ε ∈ {0, 0.3}. Furthermore, the parameters in
the jump set (24) are chosen as µ = 0.1 and δ̄d = 0.5.9 Figure 3b shows that the hybrid closed-
loop system H in (17)-(24) is robust against the perturbation that caused the switching logic (9)
in Example 1 Figure 2b to chatter. Furthermore, the rapid policy switching that occurs near z ∈
{−1.5, 1.5} in Figure 2b is also prevented by the hybrid switching logic.

4.3 Design Considerations

The timer-based approach relies on predicting the system state using a dynamic model, which can
be computationally expensive. The maximum dwell time δ̄d in (19) sets the upper limit for the
prediction horizon. If δ̄d is set too low, the prediction horizon may be insufficient for the system
to exit critical areas, thereby reducing robustness; if it is set too high, the increased computational
cost—and, when combined with a high threshold parameter µ in (20), the potential for prolonged
adherence to a suboptimal policy—may degrade performance. The parameter µ serves as a safeguard
against rapid switching when the value functions of competing policies are nearly equal. Together, δ̄d
and µ balance the trade-off between computational efficiency, exploitative policy switching, and
robustness.

As a practical guideline, the maximum dwell time δ̄d should be selected such that the system has
sufficient time for its state z to move away from critical areas by an amount distinguishable from,
or ideally exceeding, the expected magnitude of measurement noise ε ∈ R≥0. Concretely, pick δ̄d

7Under the assumptions in Theorem 1, every maximal solution is bounded.
8“Globally asymptotically stabilizes” means that for each individual policy πq ∈ Π, the set Z∗

q is asymptotically stable
and its region of attraction is the entire state space Z .

9The design/choice of µ and δ̄d is discussed in Section 4.3.
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Figure 3: The solutions of the hybrid closed-loop system H in (17)-(24), where µ = 0.1 and δ̄d =
0.5, over the approximate value function V̂1, in blue, and V̂2, in green, for the policies π1 and π2,
respectively, and over time under the measurement noise signal (10) of magnitude ε ∈ {0, 0.3}, for
Example 1. The solutions plotted over the value functions are displayed by the dashed red lines with
initial conditions denoted by the circles and terminal conditions by the crosses. The setpoints Z∗

are denoted by the red stars.

such that
δ̄d >

ε

max(z,u)∈X |f(z, u)|
, (25)

where f : Z ×U → Z is given by (1) and X ⊂ Z ×U is a compact set. Additionally, the threshold
parameter µ should be chosen to exceed the worst-case fractional perturbation in the value function
caused by measurement noise. Specifically, pick µ such that

µ >
εLV̂

|V̂ref|
, (26)

where LV̂q
is the Lipschitz constant of the value function V̂q , satisfying |V̂q(z1) − V̂q(z2)| ≤

LV̂q
|z1 − z2| for all z1, z2 ∈ Z . Letting LV̂ := maxq∈Q LV̂q

, it follows that for measurement
noise m on state z with magnitude |m| = ε for which z + m ∈ Z , the value function perturba-
tion |V̂q(z + m) − V̂q(z)| is bounded by LV̂ ε. Thus, the term εLV̂ in (26) represents an upper
bound on this noise-induced perturbation for any V̂q .10 Furthermore, V̂ref ∈ R>0 serves as a positive
scaling factor representing a characteristic magnitude of the value function |V̂q(z)| for z ∈ Z . This
normalization is crucial because the magnitude of the measurement noise, such as ε = 1, might be
highly significant if the typical range of the value function is 0 to 1, but almost inconsequential if its
range is 0 to 1000. Thus, by normalizing εLV̂ with V̂ref in (26), µ can be interpreted as a threshold
for the fractional change in the value function. Common choices for V̂ref include the maximum or
average value of |V̂q(z)| for z ∈ Z .

5 Application

We consider a system evolving on a plane with the state z = (zx, zy) ∈ Z ⊂ R2,
with zx ∈ R and zy ∈ R being the coordinates along the x− and y−axes, respectively,
and dynamics ż = u, where u ∈ [−1, 1]2 is the control input. The problem to solve
consists of robustly globally asymptotically stabilizing the set Z∗ := {z∗1 , z∗2 , z∗3 , z∗4} :=
{(−1, 0.2), (−0.1, 1), (0.9,−0.1), (−0.4,−0.9)} ⊂ Z , which consists of four disconnected set-
points, by designing a supervisory policy to select between the four available policies, π1, π2, π3

and π4, based on the observation vector o(z + m) = z + m, where m ∈ R2 represents the mea-
surement noise. The policies are given by (7) for each z ∈ Z and each value of the logic vari-
able q ∈ {1, 2, 3, 4} := Q. It can be shown that each policy globally asymptotically stabilizes one
of the setpoints, namely, π1 globally asymptotically stabilizes z∗1 , π2 globally asymptotically stabi-
lizes z∗2 , π3 globally asymptotically stabilizes z∗3 , and π4 globally asymptotically stabilizes z∗4 . The

10Under the assumption that Z is a compact set.
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Figure 4: Visualization of the reward function (27) (located left in each sub-figure) and Q∗ (located
right in each sub-figure) without and with the periodic variations. The setpoints Z∗ are denoted by
the red stars.

value iteration algorithm is applied to find the approximate value functions V̂q for q ∈ Q subject to
the reward function

R(z) = −c1|z|Z∗

(
1 +

1

2
sin(c2zx) cos(c3zy)

)
, (27)

which has a global maximum for z ∈ Z∗, where c1, c2, c3 ∈ R>0 are constants, discount rate ρ =
− 1

∆t ln 0.9, sampling time of ∆t = 0.025 seconds, and a horizon of 100 time steps. The term 1 +
1
2 sin(c2zx) cos(c3zy) introduces periodic variations in the reward function, creating local minima
and maxima across the state space. As a result, following the shortest Euclidean path to a setpoint
is not necessarily optimal—certain indirect trajectories may yield a higher long-term return. This
makes determining the optimal regions for each policy—the regions where a given policy has the
highest corresponding value function, namely Q∗ (9)—nontrivial. Consequently, this leads to more
complex switching boundaries and decision regions, as shown in Figure 4.

Figure 5 compares the closed-loop system solutions under three different supervisors. The first row
shows the supervisory policy Q∗, given by (9); the second row illustrates a fixed-timer approach
with a dwell time of δ̄d equal to the maximum value of the dwell time parameter used by the timer-
based hybrid supervisor; and the third row depicts the timer-based hybrid supervisor. The timer-
based hybrid supervisor, introduced in Section 4.2, is given by (17)-(24) with parameters δ̄d = 0.5
and µ = 0.15. The trajectories are plotted over the optimal policy regions Q∗ and over time under
the influence of a measurement noise signal, given by

m(t) =
[
ε −ε

]⊤
msgn(t), (28)

where the noise magnitude is ε ∈ {0, 0.1}.11 The first row of Figure 5 shows that the supervisory
policy Q∗ is highly sensitive to measurement noise, leading to chattering and, in some cases, failure
to reach the target set Z∗. Notably, chattering occurs for at least one initial condition even in the
absence of noise. The second row indicates that while the fixed-timer supervisor proves robust
for most initial conditions, it can become trapped between regions near z = (−0.25, 0.25) and
z = (−0.25,−0.25), underscoring that a fixed dwell time does not necessarily guarantee global
asymptotic stability of the closed-loop system. In contrast, the third row demonstrates that the
hybrid supervisor successfully mitigates chattering and consistently guides the system to Z∗ for all
considered initial conditions, even under the same measurement noise that caused instability in Q∗.

Remark. The problem setup described mirrors many real-world multi-strategy decision-making
scenarios, which are often complicated by limited information, long-term trade-offs, and potential
adversarial actions designed to induce erroneous or inefficient switching, leading to suboptimal
performance. For instance, in strategic interactions like video games, an opponent might exploit
uncertainties to bait an agent into frequent, detrimental changes in tactics, for example, between
aggressive or defensive postures. Such complexities underscore the critical need for robust strategy
selection mechanisms in dynamic and potentially adversarial environments.

11This deterministic noise pattern can be thought of as an adversarial agent designed to induce chattering behavior.
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Figure 5: The solutions of the (hybrid) closed-loop system using the supervisory policy Q∗ (first
row), the fixed-timer supervisor (second row), and the timer-based hybrid supervisor from Sec-
tion 4.2 (third row), plotted over Q∗, and over time under the measurement noise signal (28) of
magnitude ε ∈ {0, 0.1}. The solutions plotted over the optimal regions for each policy are displayed
by the black dashed lines with initial conditions denoted by the circles and terminal conditions by
the crosses. The solutions plotted over time illustrate when the switches between policies occur. The
setpoints Z∗ are denoted by the red stars.

6 Conclusion

This paper presents a novel timer-based hybrid supervisor that leverages value functions for robust
switching among multiple policies. The supervisor predicts and enforces a minimum dwell time
between policy switches, thereby preventing chattering even under bounded measurement noise and
assuring asymptotic stability. Sufficient conditions are presented for non-Zeno behavior and ro-
bust asymptotic stability of the hybrid closed-loop system. Numerical simulations on representative
decision-making problems demonstrate that the supervisor effectively mitigates rapid switching and
drives the system toward the desired target set even under noisy conditions, where a conventional
switching strategy fails.
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Proof of Lemma 1. The proof consists of two main parts. First, we establish the equality in (15),
namely,

⋃
q∈Q′ Zq = Z ∩ (M∗ + δB). Second, we demonstrate that the partitions Zq satisfy the

conditions (A1)-(A3) for each q ∈ Q′.

To prove the equality in (15), we need to show that the following two set inclusions hold.

(I1)
⋃

q∈Q′ Zq ⊆ Z ∩ (M∗ + δB); and

(I2) Z ∩ (M∗ + δB) ⊆
⋃

q∈Q′ Zq .

To show that (I1) holds, pick any z◦ ∈
⋃

q∈Q′ Zq . By the definition of the union of sets, it holds
that there exists at least one index q◦ ∈ Q′ such that z◦ ∈ Zq◦ . By the definition of Zq in (16), any
element z◦ ∈ Zq◦ must satisfy the condition z◦ ∈ Z ∩ (M∗ + δB). Thus z◦ ∈ Z ∩ (M∗ + δB).
Since z◦ was picked as an arbitrary element from

⋃
q∈Q′ Zq , the inclusion in (I1) holds.

To show that (I2) holds, pick any z◦ ∈ Z ∩ (M∗ + δB). The set of indices Q′ = ∪z∈M∗Q∗(z) is a
subset of the finite set Q and is non-empty as the conditions in (◦) imply the existence of elements
in M∗, and for any z ∈ M∗, Q∗(z) is non-empty. Consider the finite set {V̂q′(z◦) : q′ ∈ Q′}
that must contain a maximum as Q′ is finite. Let q∗ ∈ Q′ be an index for which this maximum is
achieved, such that

V̂q∗(z◦) = max
q′∈Q′

V̂q′(z◦). (29)

The choice of q∗ in (29) implies that V̂q∗(z◦) ≥ V̂p(z◦) for each p ∈ Q′ \ {q∗}. Consequently, for
each p ∈ Q′ \ {q∗}, it holds that V̂q∗(z◦)− V̂p(z◦) ≥ 0. As we picked z◦ ∈ Z ∩ (M∗ + δB) and z◦
satisfies V̂q∗(z◦)− V̂p(z◦) ≥ 0 for each p ∈ Q′ \ {q∗}, z◦ fulfills all the conditions for membership
of the set Zq∗ as defined in (16). Therefore, z◦ ∈ Zq∗ , which implies that z◦ ∈

⋃
q∈Q′ Zq . As z◦

was picked as an arbitrary element from Z ∩ (M∗ + δB), the inclusion in (I2) holds.

As both the inclusions (I1) and (I2) hold, the equality in (15) is proven.

For each fixed q ∈ Q′, consider any p ∈ Q′ \{q}. Since both V̂q and V̂p are continuous, the function

gp(z) := V̂q(z)− V̂p(z) ∀z ∈ Z (30)

is continuous. Moreover, the set Z is closed, and since B is closed, the set M∗ + δB is closed as
well. The intersection of these two closed sets, which we denote by D := Z ∩ (M∗ + δB), is
therefore closed. Consequently, the set

Sp := {z ∈ D : gp(z) ≥ 0}, (31)

is also closed. To show that Sp is closed, note that the condition gp(z) ≥ 0 is equivalent to gp(z) ∈
R≥0. Since gp : Z → R is continuous and R≥0 is a closed subset of R, its preimage S′

p := {z ∈
Z : gp(z) ∈ R≥0} is closed in Z . The set Sp is then the intersection D ∩ S′

p. As both D and S′
p are

closed sets, their intersection Sp is also closed. Since Zq in (16) is an intersection of finitely many
closed sets, it follows that Zq is closed for each q ∈ Q′. Thus, condition (A1) is satisfied.

Furthermore, the set Zq can be written as

Zq =
⋂

p∈Q′\{q}

{z ∈ Z ∩ (M∗ + δB) : V̂q(z)− V̂p(z) ≥ 0} =
⋂

p∈Q′\{q}

Sp. (32)



A Timer-Based Hybrid Supervisor for Robust, Chatter-Free Policy Switching

The interior of Zq is therefore

int (Zq) = int

 ⋂
p∈Q′\{q}

Sp

 ; (33a)

=
⋂

p∈Q′\{q}

int (Sp); (33b)

=
⋂

p∈Q′\{q}

int ({z ∈ D : gp(z) ≥ 0}); (33c)

=
⋂

p∈Q′\{q}

{z ∈ int (D) : gp(z) > 0}; (33d)

=
⋂

p∈Q′\{q}

{z ∈ int (D) : V̂q(z)− V̂p(z) > 0}. (33e)

Hence, for each z ∈ int (Zq), it holds that V̂q(z) > V̂p(z), proving condition (A2).

Proceeding by contradiction, suppose that there exists a point

z ∈ int (Zq) ∩ int (Zp) (34)

for distinct q, p ∈ Q′. Then by (A2), since z ∈ int (Zq) we have

V̂q(z) > V̂p(z), (35)

and since z ∈ int (Zp) we have

V̂p(z) > V̂q(z). (36)

This contradiction shows that such a z cannot exist, so

int (Zq) ∩ int (Zp) = ∅. (37)

Thus, condition (A3) is satisfied.

Proof of Proposition 1. According to Sanfelice (2021, Theorem 2.20), H satisfies the hybrid basic
conditions if

(B1) C and D are closed subsets of X ;

(B2) F is outer semicontinuous and locally bounded relative to C, C ⊂ dom F , and F (x) is
convex for each x ∈ C;

(B3) G is outer semicontinuous and locally bounded relative to D, and D ⊂ dom G.

By definition, the flow set C in (18) and the jump set D in (24) are closed subsets of X , satisfying
condition (B1).

The flow map F in (17) is a single-valued map. By assumption, the policies πq and state dynamics f
are Lipschitz continuous for each q ∈ Q. Furthermore, the policies πq and state dynamics f are
defined for each z ∈ Z by assumption. These assumptions ensure that F is continuous on C.
Consequently:

• The domain of F satisfies C ⊂ dom F = X ;

• The continuity of F implies that F is outer semicontinuous;

• The continuity of F also guarantees that F is locally bounded relative to C;

• Since F is a single-value map, F (x) is trivially convex for each x ∈ C.
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Thus, condition (B2) is satisfied.

The outer semicontinuity of the jump map G follows from the fact that each state component is
outer semicontinuous. Specifically, the z and τ components are trivially continuous and hence outer
semicontinuous. For the q component, given z ∈ Z , Q∗(z) in (9) can be written as

Q∗(z) = {q ∈ Q : ν(z, q) = 0}, (38)

where ν(z, q) := V̂q(z) − maxq̄∈Q V̂q̄(z). For each q ∈ Q, the function ν is continuous as V̂q is
assumed to be continuous, Q is a finite set, and the maximum over a finite number of continuous
functions is continuous. To show that Q∗ : Z ⇒ Q is outer semicontinuous, pick any z ∈ Z
and a sequence zi → z. We need to show that for the sequence yi → y, where yi ∈ Q∗(xi),
it holds that y ∈ Q∗(z). For each point zi, it holds that yi ∈ Q∗(zi) and thus ν(zi, yi) = 0.
As ν is a continuous function, it holds that limi→∞ ν(zi, yi) = 0 and ν(limi→∞(zi, yi)) = 0.
Hence, ν(z, y) = 0 and thus y ∈ Q∗(z).

For the δd component, given z ∈ Z and q ∈ Q, T (z, q) in (20) can be written as

T (z, q) =
{
η ∈ [0, δ̄d] : ϱ(χ(0), q, η) ≥ 0, where χ(0) = z

}
, (39)

where ϱ(χ(0), q, η) = max
q̄∈(Q\{q}), χ̇=f(χ,πq(χ))

V̂q̄ (χ(η)) − V̂q (χ(η)) − µ(|V̂q (χ(η)) | + ϵ). The

system dynamics f are Lipschitz continuous in χ and uniformly continuous in η, namely, ordinary
time, therefore by Khalil (2002, Theorem 3.5), the function ϱ has a continuous dependency on the
initial state χ(0) = z. Now, fix an arbitrary z ∈ Z and define

g(η) = ϱ(z, q, η) for η ∈ [0, δ̄d]. (40)

By definition, the inverse image of the closed set [0,∞) under g is

g−1([0,∞)) = {η ∈ [0, δ̄d] | g(η) ≥ 0}, (41)

which is exactly how T (z, q) is defined:

T (z, q) = {η ∈ [0, δ̄d] : ϱ(z, q, η) ≥ 0} = g−1([0,∞)). (42)

Since g is continuous (as ϱ is continuous in both z and η) and [0,∞) is closed, it follows from
standard topological results that g−1([0,∞)) is closed. Hence, T (z, q) is a closed subset of [0, δ̄d].
Next, we define the graph of the set-valued map T as

gph(T ) = {(z, q, η) ∈ Z ×Q× [0, δ̄d] : η ∈ T (z, q)}. (43)

Substituting the definition of T (z, q), we have

gph(T ) = {(z, q, η) ∈ Z ×Q× [0, δ̄d] : ϱ(z, q, η) ≥ 0}. (44)

Since ϱ(z, q, η) is continuous in both z and η, and [0,∞) is a closed subset of R, the set

{(z, q, η) ∈ Z ×Q× [0, δ̄d] : ϱ(z, q, η) ≥ 0} (45)

is the inverse image of the closed set [0,∞) under the continuous mapping (z, q, η) 7→ ϱ(z, q, η),
and is therefore closed. By Rockafellar et al. (2009, Theorem 5.7), a set-valued map whose graph is
closed is outer semicontinuous. Hence, the set-valued map T : Z × Q ⇒ [0, δ̄d] is outer semicon-
tinuous. To show that

δ+d = ς(z) = min(T (z, q′) ∪ {δ̄d}) (46)

is outer semicontinuous, pick any z ∈ Z , any q′ ∈ Q∗(z), and a sequence zi → z. Suppose that for
each zi we choose

yi = ς(zi) ∈ T (zi, q
′ ∪ {δ̄d}, (47)
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and that yi → y. We need to show that y = ς(z). Since T is outer semicontinuous, and yi ∈
T (zi) ∪ {δ̄d} for all i, it follows that y ∈ T (z, q′) ∪ {δ̄d}. Moreover, by definition, for each zi the
number yi is the minimum element of the set T (zi, q

′) ∪ {δ̄d}, namely,

yi ≤ η for all η ∈ T (zi, q
′ ∪ {δ̄d}. (48)

Taking the limit as i → ∞, and using the fact that inequalities are preserved in the limit, it follows
that

y ≤ η for all η ∈ T (z, q′) ∪ {δ̄d}. (49)

Thus, y is a lower bound of T (z, q′)∪{δ̄d}. Since ς(z) is defined as the minimum of T (z, q′)∪{δ̄d},
it holds that y = ς(z). Hence, the δd component is outer semicontinuous.

As discussed above, the state components z, τ , and δd are continuous on X , hence they are bounded
relative to D. The component q is also bounded relative to D as q takes values from a finite set Q.

Lastly, for the q component, by assumption, each V̂q is continuous and well-defined for all z ∈
Z , and since Q is finite and nonempty, the set Q∗(z) is nonempty, and thus the q component is
well-defined for all x ∈ X . For the δd component, by definition, δ̄d > 0. If T (z, q′) is empty,
the minimum is δ̄d, which is trivially defined. If T (z, q′) is nonempty, then min(T (z, q′)) exists
because T (z, q′) is a closed subset of [0, δ̄d] as discussed above. Hence, the δd is well-defined for
all x ∈ X . Since z remains z, τ resets to 0, each component of G(x) is well-defined for all x ∈ X ,
and D ⊂ X , it holds that D ⊂ X ⊂ dom G .

Thus, the condition (B3) is satisfied.

Proof of Proposition 2. According to Sanfelice (2021, Proposition 2.34), there exists a nontrivial
solution x to the hybrid closed-loop system H in (17)-(24) for each x◦ ∈ C ∪D with x(0, 0) = x◦
if

(B1) The hybrid closed-loop system H satisfies the hybrid basic conditions; and

(B2) For each x◦ ∈ C \D there exists a neighborhood U of x◦ such that for every x ∈ U ∩(C \D),

F (x) ∩ TC(x) ̸= ∅. (50)

As F is single-valued, (50) simplifies to

F (x) ∈ TC(x). (51)

Additionally, every maximal solution x to H is not Zeno, and every bounded solution x to H has
jump times that are uniformly lower bounded by a positive constant if the conditions (B1) and (B2)
hold and if

(B3) G(D) ∩D = ∅.

Lastly, every maximal solution x to H is complete if the conditions (B1) and (B2) hold, F is globally
Lipschitz on C, and

(B4) G(D) ⊂ C ∪D.

By Proposition 1, the hybrid closed-loop system H in (17)-(24) satisfies the hybrid basic conditions
under the assumptions and therefore condition (B1) is satisfied.

The strict flow set C \D is given by

C \D = {x ∈ X : τ < δd} ∪ {x ∈ X : τ ≥ δd, q ∈ Q∗(z)}. (52)

Since the set {x ∈ X : τ < δd} is open, every point x with τ < δd is an interior point. Consequently,
as such x, there are no constraints on the possible flow directions. For the set {x ∈ X : τ ≥ δd, q ∈
Q∗(z)}, the value of τ cannot decrease if τ = δd and the value of q cannot change as Q∗(z) is a finite
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subset of N. Hence, the q component of the tangent cone for the set {x ∈ X : τ ≥ δd, q ∈ Q∗(z)} is
equal to zero and the τ component is equal to R≥0 if τ = δd. The resulting tangent cone for C \D
is given by

TC\D(x) =


Rn+3 if τ < δd

Rn × {0} × R≥0 × R if τ = δd

Rn × {0} × R2 if τ > δd

. (53)

For the flow map F in (17) it holds that F (x) ∈ TC\D(x) for x ∈ C \D. Hence, condition (B2) is
satisfied.

By the definition of the jump map G in (19), q+ ∈ Q∗(z) and z+ = z for all x ∈ D. As the jump
set D in (24) requires q ∈ Q \Q∗(z), it holds that G(D) ∩D = ∅ and condition (B3) is satisfied.
Furthermore, by the definition of the flow set C in (18), G(D) ⊂ C as q+ ∈ Q∗(z), z+ = z,
and τ+ = 0. Hence, G(D) ⊂ C ∪D and condition (B4) is satisfied.

Proof of Theorem 1. To solve Problem (⋆), the hybrid closed-loop system H in (17)-(24) needs to:

(P1) Preserve the properties of the individual policies, namely, inducing asymptotic stability of the
compact set Z∗; and

(P2) Prevent chattering under measurement noise by guaranteeing a nonzero robustness margin ε >
0.

To prove condition (P1), we will construct a hybrid Lyapunov function and show a strict decrease
during flows and jumps unless the state of the system z is in the compact set A, for which the hybrid
Lyapunov function equates to zero. In particular, according to Sanfelice (2021, Definition 3.17), the
sets U ,A ⊂ X and the function L : X → R define a Lyapunov function candidate on U with respect
to A for the hybrid closed-loop system H = (C,F,D,G) if the following conditions hold:

(L1) (C ∪D ∪G(D)) ∩ U ⊂ dom L;

(L2) U contains an open neighborhood of A ∩ (C ∪D ∪G(D));

(L3) L is continuous on U and locally Lipschitz on an open set containing C ∩ U ; and

(L4) L is positive definite on C ∪D ∪G(D) with respect to A.

Consider the Lyapunov candidate function defined by

L(x) = −V̂q(z) + V̂q(z
∗
q ), (54)

where x = (z, q, τ, δd) ∈ X and z∗q ∈ Z∗
q is the (possibly nonunique) state at which V̂q attains its

global maximum. To obtain a global result, we choose U = X . Furthermore, the compact set that
we wish to globally asymptotically stabilize is defined as

A := Z∗ × R≥0 ×Q× R≥0 ⊂ X , with Z∗ =
⋃
q∈Q

Z∗
q . (55)

Condition (L1) is satisfied since (C ∪D∪G(D)) ⊂ X and domL = X . Similarly, because both A
and C ∪D ∪ G(D) are subsets of X , condition (L2) holds. By assumption, for each q ∈ Q, V̂q is
Lipschitz continuous on Z , which ensures that L is continuous on X and locally Lipschitz on an open
subset containing C ∩ X ; hence, condition (L3) is satisfied. Moreover, by assumption the reward
function in (3) attains its global maximum on Z∗ and is strictly decreasing as the distance from Z∗,
and hence from A, increases. Consequently, each value function V̂q attains its global maximum
at Z∗ and is negative definite with respect to Z∗. Therefore, by construction, for each q ∈ Q the
Lyapunov function in (54) is positive definite on X , and hence on C ∪D∪G(D), with respect to A,
so that condition (L4) is satisfied.
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Next, we use the Lyapunov candidate function in (54) to show that H globally asymptotically
stabilizes A. According to Sanfelice (2021, Theorem 3.19), given sets U ,A ⊂ X and a func-
tion L : X → R that defines a Lyapunov candidate on U with respect to A for the hybrid closed-loop
system H = (C,F,D,G) with state x ∈ X , the set A is asymptotically stable for H provided that A
is compact, H satisfies the hybrid basic conditions, every maximal solution x to H complete, and
the following two conditions hold during flows and jumps:

(L5) ⟨∇L(x), F (x) ∩ TC(x)⟩ < 0 for all x ∈ (C ∩ U) \ A; and

(L6) L(G(x))− L(x) < 0 for all x ∈ (D ∩ U) \ A.

By Proposition 1, the hybrid closed-loop system H satisfies the hybrid basic conditions under the
assumptions. Moreover, by Proposition 2, every maximal solution x to H is complete.

By assumption, for each q ∈ Q, the corresponding value function V̂q attains its global maximum
at Z∗

q and strictly decreases as the distance from Z∗
q increases. Moreover, since each policy πq ∈ Π

globally asymptotically stabilizes Z∗
q , the state z globally asymptotically converges toward Z∗

q along
flows, resulting in a strict increase in V̂q(z) while q remains constant. Consequently, the Lyapunov
candidate function in (54) strictly decreases along flows for all x ∈ X \ A, thereby satisfying
condition (L5).

Furthermore, by definition of the jump set D in (24), jumps occur only when q ∈ Q \ Q∗(z); the
jump map G in (19) then updates q to an element of Q∗(z). Since V̂q′(z) > V̂q̄(z) for all q′ ∈ Q∗(z)
and q̄ ∈ Q \ Q∗(z) for each z ∈ Z , it follows that the Lyapunov candidate function undergoes a
strict decrease at jumps, satisfying condition (L6).

As all the conditions above are satisfied, the hybrid closed-loop system H globally asymptotically
stabilizes the compact set A. This, in turn, renders the compact set Z∗ asymptotically stable, and
thus condition (P1) is satisfied.

Proposition 2 guarantees that, under its assumptions—that for each q ∈ Q the approximate value
function V̂q : Z → R is continuous and both the policy πq : Z → U and the dynamics f : Z × U →
Z are Lipschitz continuous—every maximal solution to the hybrid closed-loop system H in (17)-
(24) is complete, non-Zeno, and has jump times uniformly lower bounded by a positive constant.
Consequently, in the absence of measurement noise, arbitrarily fast switching, that is, chattering,
cannot occur.

Now, suppose that measurement noise m satisfying 0 < |m| ≤ ε is present such that z +m ∈ Z .
Then, it is possible that a policy q belongs to Q∗(z) while q /∈ Q∗(z+m); that is, the optimal policy
for the measured state z +m may differ from the optimal policy for the true state z. To prevent an
instantaneous switch in such cases, we must ensure that the dwell-time parameter δd is always reset
to a value greater than zero. Since the jump set (24) requires that τ ≥ δd and the timer τ is reset
to zero upon each switch, a positive reset value for δd guarantees that a nonzero time interval of at
least δd must elapse before another jump occurs.

To establish that δd is always positive, consider its update in (19). Two scenarios arise:

1. If the set T is empty, then by definition δd is reset to δ̄d > 0.

2. If T is non-empty, let η∗ denote the smallest time horizon in T , that is, the smallest η∗ > 0
for which the ratio in (20) reaches µ. By the definition of Q∗ in (9), for every z ∈ Z and
every q ∈ Q∗(z) we have

V̂q(z) ≥ V̂q̄(z) for all q̄ ∈ Q.

In particular, at η = 0 we obtain

max
q̄∈(Q\{q})

V̂q̄

(
χ(0)

)
− V̂q

(
χ(0)

)
|V̂q

(
χ(0)

)
|+ ϵ

< 0, (56)

for all q ∈ Q∗(χ(0)) and χ(0) ∈ Z . Moreover, as demonstrated in the proof of Proposition 1,
the ratio in (20) has a continuous dependency on the initial state χ(0). Therefore, there exists a
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smallest time η∗ > 0 such that

max
q̄∈(Q\{q})

V̂q̄

(
χ(η∗)

)
− V̂q

(
χ(η∗)

)
|V̂q

(
χ(η∗)

)
|+ ϵ

= µ. (57)

Since the ratio at η = 0 is strictly negative and η ∈ [0, δ̄d], it follows that η∗ > 0. Consequently,
the updated value of δd is always positive.

Thus, even in the presence of measurement noise, the requirement τ ≥ δd > 0 ensures that a
positive dwell time elapses between jumps, thereby preventing arbitrarily fast policy switching.
Hence, condition (P2) is satisfied.


