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Summary
While sequential decision-making environments often involve high-dimensional observa-

tions, not all features of these observations are relevant for control. In particular, the observa-
tion space may capture factors of the environment which are not controllable by the agent, but
which add complexity to the observation space. The need to ignore these “noise” features in
order to operate in a tractably-small state space poses a challenge for efficient policy learning.
Due to the abundance of video data available in many such environments, task-independent
representation learning from action-free offline data offers an attractive solution. However, re-
cent work has highlighted theoretical limitations in action-free learning under the Exogenous
Block MDP (Ex-BMDP) model, where temporally-correlated noise features are present in the
observations. To address these limitations, we identify a realistic setting where representation
learning in Ex-BMDPs becomes tractable: when action-free video data from multiple agents
with differing policies are available. Concretely, this paper introduces CRAFT (Comparison-
based Representations from Action-Free Trajectories), a sample-efficient algorithm leveraging
differences in controllable feature dynamics across agents to learn representations. We provide
theoretical guarantees for CRAFT’s performance and demonstrate its feasibility on a toy ex-
ample, offering a foundation for practical methods in similar settings.

Contribution(s)
1. We present a provably sample-efficient algorithm, CRAFT, that can learn high-accuracy

latent state encoders under the Ex-BMDP model, when provided with two sets of of-
fline observation trajectories, without action labels, that are collected by two agents with
sufficiently-distinct policies.
Context: Misra et al. (2024) has shown that efficient representation learning in Ex-BMDPs
using a single offline dataset without action labels is in general not possible. This work
therefore represents to our knowledge the first positive theoretical result for this problem.
The Ex-BMDP model was introduced by Efroni et al. (2022), who propose a provably
sample-efficient algorithm for online representation learning in this model. Efroni et al.
(2022) assume near-deterministic latent-state dynamics, while we make a strict determin-
ism assumption on latent-state dynamics. However, the negative result given by Misra et al.
(2024) applies even to the full-determinism variant.

2. We prove the correctness of CRAFT and prove sample-complexity bounds.
Context: None.

3. We demonstrate the feasibility of CRAFT on a toy problem, and present the results.
Context: None.
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Abstract

While sequential decision-making environments often involve high-dimensional obser-
vations, not all features of these observations are relevant for control. In particular, the
observation space may capture factors of the environment which are not controllable by
the agent, but which add complexity to the observation space. The need to ignore these
“noise” features in order to operate in a tractably-small state space poses a challenge
for efficient policy learning. Due to the abundance of video data available in many such
environments, task-independent representation learning from action-free offline data of-
fers an attractive solution. However, recent work has highlighted theoretical limitations
in action-free learning under the Exogenous Block MDP (Ex-BMDP) model, where
temporally-correlated noise features are present in the observations. To address these
limitations, we identify a realistic setting where representation learning in Ex-BMDPs
becomes tractable: when action-free video data from multiple agents with differing
policies are available. Concretely, this paper introduces CRAFT (Comparison-based
Representations from Action-Free Trajectories), a sample-efficient algorithm leverag-
ing differences in controllable feature dynamics across agents to learn representations.
We provide theoretical guarantees for CRAFT’s performance and demonstrate its feasi-
bility on a toy example, offering a foundation for practical methods in similar settings.

1 Introduction

Many sequential decision-making settings, such as robotic navigation environments, involve high-
dimensional observations with many uncontrollable noise features. In order to efficiently learn poli-
cies for many downstream tasks, techniques for task-independent representation learning have been
proposed. These techniques learn encoders that map the large observation space into a much smaller
set of learned latent states, which can then be used to learn policies for downstream objectives more
efficiently than learning from observations directly.

In some such settings, such as social navigation, large amounts of offline video data are available,
collected either with similar robots or with human agents. In video data, observations are available,
but action labels are not. Past work has shown that this offline data can be used to learn encodings
that can be leveraged for downstream tasks (Ma et al., 2023; Nair et al., 2023; Seo et al., 2022).

However, in recent work, Misra et al. (2024) has shown an important theoretical limitation to this
approach: for some important classes of environments, efficient action-free representation learning
is not possible. In particular, the Exogenous Block MDP (Ex-BMDP) model (Efroni et al., 2022) de-
scribes a class of environments where observations depend both on a deterministic, action-controlled
latent state, and a potentially high-dimensional temporally-correlated noise factor, which is action-
independent. The goal of representation learning in the Ex-BMDP setting is to learn a mapping from
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the observation space to the much-smaller space of action-controlled latent states, while ignoring the
noise factor. Misra et al. (2024) show that, even with high coverage over latent states, representa-
tion learning from Ex-BMDPs is not possible in general. This property of Ex-BMDPs is in contrast
to Block MDPs, where the observation noise is not time-correlated, and which Misra et al. (2024)
demonstrates are amenable to efficient action-free representation learning. At a high level, Misra
et al. (2024)’s hardness result stems from the fact that, without action labels, action-controllable fea-
tures are indistinguishable from uncontrollable features. (For example, if the observations capture
both the controllable ego-agent’s state and other uncontrollable “background” agents’ states, it is
ambiguous what state should be encoded in the learned representation.)

In this work, we describe a realistic setting where representation learning for Ex-BMDPs is in fact
tractable, and propose a provably sample-efficient algorithm for this setting. Specifically, we con-
sider cases where videos are available of multiple distinct agents operating in the same environment.
Intuitively, the idea is that controllable latent features will differ in their dynamics between datasets
collected by different agents, while uncontrollable features will have the same dynamics in the two
datasets. Our main result is that, if two agents’ policies sufficiently differ at every latent state, then,
under assumptions similar to those in Misra et al. (2024) and Efroni et al. (2022), sample-efficient
representation learning from offline action-free data collected by the two agents is possible.

To show this fact, we propose a provably sample-efficient algorithm for Ex-BMDP representation
learning without action labels, which we call Comparison-based Representations from Action-Free
Trajectories, or CRAFT. CRAFT enjoys a sample complexity that depends only on the size of,
and coverage assumptions on, the controllable latent states of the environment, and, logarithmically,
on the size of the encoder hypothesis class. The sample complexity has no explicit dependence of
the size of the space of exogenous noise. At a high level, CRAFT works by clustering sequential
observation-pairs together based on how likely the pairs are to have been observed by each agent.

In this work, we introduce CRAFT, prove its correctness and sample-complexity, and validate its use
on a toy example problem. To our knowledge, this is the first work to propose a provably sample-
efficient algorithm for action-free offline representation learning in the Ex-BMDP setting. While this
work is theoretical in nature due to some restrictive assumptions on the setting (which are inherited
from the prior work upon which we build; see discussion in Section 6), we expect that the CRAFT
algorithm can inspire practical methods that rely on the same principle of comparing action-free
video datasets from diverse agents, in order to extract controllable feature representations.

2 Background

In this section, we define notation, formally introduce the action-free offline Ex-BMDP setting, and
state our technical assumptions.

2.1 General Notation

We use [N ] to denote the set {1, ..., N}. For a sequence x1, ..., xN , we use xi:j to denote the
subsequence xi, xi+1..., xj . For multisets A, B, we use A ⊎ B to denote the union of the two
multisets, with multiplicities added.

2.2 Ex-BMDP Framework

The Ex-BMDP model describes a class of sequential decision-making environments where an
agent’s actions only operate on a hidden latent state, while the observations that the agent receives
are also functions of a temporally-correlated exogenous “noise” factor, in addition to this control-
lable latent state. Following Efroni et al. (2022), we consider the finite horizon variant of this model,
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and also assume that the controllable latent dynamics are deterministic.1 Formally, a (reward-free)
Ex-BMDP can be described as a tuple, M = ⟨H,A,X1:H ,S∗

1:H , E1:H ,Q1:H , T2:H , T e
2:H , s∗1, P

e
1 ⟩,

where H is the horizon (the number of steps per episode). At each timestep h ∈ [H], the observation
xh ∈ Xh is determined by two latent factors, s∗h ∈ S∗

h and eh ∈ Eh. We assume that S∗
h is finite,

while the Eh and the observation space Xh may be continuous.

The controllable latent state s∗h evolves deterministically, depending on the action ah taken by the
agent: s∗h+1 = Th+1(s

∗
h, ah), where Th+1 ∈ S∗

h ×A → S∗
h+1 is a deterministic function, and A is

the set of possible actions, which we assume to be finite. Note that s∗1 is a constant. (Each episode
starts at the same controllable latent state, so S∗

1 = {s∗1}.)

By contrast, the exogenous (noise) state evolves stochastically as a Markov chain, independent of
actions. The initial exogenous state e1 is sampled from the distribution P e

1 ∈ P(E1), and subsequent
observations are sampled as eh+1 ∼ T e

h+1(eh), where T e
h+1 ∈ Eh → P(Eh+1). We can refer to

the distribution of exogenous states eh at time h as P e
h = T e

h (T e
h−1(...T e

2 (P
e
1 )...)), and the joint

distribution of exogenous states eh and eh+1 as P e
h:h+1.2

The observation xh is then sampled as xh ∼ Qh(s
∗
h, eh), where Qh ∈ S∗

h × Eh → P(Xh) is the
emission function. Under the Ex-BMDP model, we assume that the latent variables s∗h and eh can
always be inferred from xh: that is, Qh has a deterministic inverses ϕ∗

h and ϕe
h, such that if xh is

sampled from Qh(s
∗
h, eh), then ϕ∗

h(xh) = s∗h and ϕe
h(xh) = eh. (This assumption is the block

assumption referred to in the name “Exogenous Block MDP.”)

The agent does not have access to s∗h, eh, or the “ground-truth” encoders ϕ∗
h, ϕ

e
h; instead, it only

has access to the observations xh. The goal of representation learning is to learn an encoder ϕh :
Xh → N for each timestep h, that approximates ϕ∗

h, up to label permutation. (We are not interested
in learning the exogenous encoder ϕe

h, because it is assumed that this noise factor is irrelevant for
control, and may be very large.)

2.3 Action-Free, Offline Setting

In this work, we consider a setting where the learner has access to multiple sets of offline trajectories
collected by different agents, but where only the observations xh, and not the actions at, are avail-
able. For simplicity, in this work we assume that there are only datasets from two distinct agents,
but the proposed method could be straightforwardly generalized to support more agents.

We refer to the two trajectory datasets as τA and τB . Each trajectory in τA (or τB) is a se-
quence of observations x1:H . We use (τA)h:h+i to refer to the multiset of tuples of observations
(xh, xh+1, ..., xh+i) for each trajectory in τA, and use τA[{i, i′, i′′}] to refer to the subset con-
sisting of three trajectories (indexed i, i′ and i′′) in τA. We use D∗

A(s
∗
h, s

∗
h+1) to refer to the

multiset consisting of all observation pairs (xh, xh+1) ∈ (τA)h:h+1 such that ϕ∗
h(xh) = s∗h and

ϕ∗
h+1(xh+1) = s∗h+1; and D∗(s∗h, s

∗
h+1) := D∗

A(s
∗
h, s

∗
h+1) ⊎ D∗

B(s
∗
h, s

∗
h+1). We also define D∗(s∗h)

as the multiset of observations in xh ∈ (τA)h ⊎ (τB)h such that ϕ∗
h(xh) = s∗h.

2.4 Technical Assumptions: Data Collection Method

As in previous works in offline representation learning in the Ex-BMDP setting (Misra et al., 2024;
Islam et al., 2023; Levine et al., 2024; Lamb et al., 2023), we assume that the agents’ actions ah
are chosen independently of the observations x1:h, given the controllable latent states s∗1:h. In other
words, roughly speaking, we assume that the agents used to collect the offline data choose actions
based only on the controllable latent state, not on the full observation. Misra et al. (2024) justifies
this assumption by positing that the offline data are likely collected by expert agents which “would
not make decisions based on noise.” We discuss this assumption further in Section 6.

1Efroni et al. (2022) presents an algorithm for efficient online representation learning of Ex-BMDPs with near-
deterministic latent dynamics: the controllable latent state deviates from deterministic behavior with frequency ≪ one time
per episode. See Section 6 for further discussion.

2Note that in general, P e
h:h+1 ̸= P e

h × P e
h+1.
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Beyond sharing this noise-independence assumption, our technical assumptions on the data-
collection policies are otherwise significantly weaker that those in Misra et al. (2024). While Misra
et al. (2024) assumes that each trajectory is generated by a Markovian policy (i.e, that ah ∼ π(s∗h),
for some π ∈ S∗

h → P(A)), and furthermore that the policies used to generate each trajectory are
chosen i.i.d., we make neither such assumption. In other words, we allow for both non-Markovian
behavioral policies – for example, we could have a policy in the form ah ∼ π(s∗1:h) – and non-i.i.d.
sampling of behavioral policies between episodes – for example: the data collector could evolve
over time between episodes, in order to, for instance, maximize the diversity of visited latent states.

Explicitly, our only assumption on the data-collection mechanism is that the process which generates
action sequences a1:H – and therefore, equivalently, controllable latent-state sequences s∗1:H – is
independent from observation noise over both entire datasets. Formally, for a dataset τ that consists
of trajectories x1:H , let ϕ∗(τ) denote the corresponding set of controllable latent state trajectories
s∗1:H , and ϕe(τ) denote the corresponding set of exogenous state trajectories e1:H . Then, our only
requirement on the data collection mechanism is that it ensures:

Pr(τA, τB) = Pr(ϕ∗(τA), ϕ
∗(τB))

· Pr
P e

1 ,T e
(ϕe(τA)) · Pr

P e
1 ,T e

(ϕe(τB)) · Pr
Q
(τA|ϕ∗(τA), ϕ

e(τA)) · Pr
Q
(τB |ϕ∗(τB), ϕ

e(τB)).
(1)

To see why Equation 1 is a sufficiently strong assumption to allow for useful analysis despite
its apparent generality, fix any two latent states s∗h, s

∗
h+1 ∈ S∗

h:h+1, and consider the multiset
D∗

A(s
∗
h, s

∗
h+1) as defined in Section 2.3; also let n := |D∗

A(s
∗
h, s

∗
h+1)|. Then the marginal distri-

bution of D∗
A(s

∗
h, s

∗
h+1) can be described as:

D∗
A(s

∗
h, s

∗
h+1) ∼ [(Q(s∗h, eh),Q(s∗h+1, eh+1))|eh, eh+1 ∼ P e

h:h+1]
n. (2)

We see that D∗
A(s

∗
h, s

∗
h+1) consists of i.i.d. samples from a fixed, policy-independent distribution.

Consequently, this property will frequently allow us to use standard concentration bounds in our
analysis, while still allowing for a wide class of non-Markovian, non-i.i.d. behavioral policies.

While we do not require the behavioral policies to be Markovian, it will be useful to refer to the
“empirical policies” πemp.

A and πemp.
B , defined as:

πemp.
A (s∗h+1|s∗h) :=

|D∗
A(s

∗
h, s

∗
h+1)|∑

s′∈S∗
h+1

|D∗
A(s

∗
h, s

′)|
, (3)

and likewise for πemp.
B . This is the empirical likelihood in the provided data that agent A (respec-

tively, B) chooses an action that results in a transition from s∗h to s∗h+1.

2.5 Technical Assumptions: Coverage, Policy Diversity, and Realizability

In order to learn accurate latent state encoders ϕ1:H , we need to ensure adequate coverage over all
latent states sh. For all timesteps h, and all pairs of latent states (s∗h, s

∗
h+1) ∈ S∗

h × S∗
h+1 such that

s∗h+1 = Th+1(s
∗
h, a) for some action a, we require that

|D∗(s∗h, s
∗
h+1)|

|τA|+ |τB |
≥ ν, (4)

for some known lower-bound ν. This coverage assumption is presented in terms of the actually
realized offline datasets τA and τB . By contrast, Misra et al. (2024) assumes that trajectories in the
offline dataset are sampled i.i.d., and makes coverage assumptions on the policies used sample them.

We also require that the two agents, which produced datasets τA and τB , behaved sufficiently differ-
ently so that we can infer the latent dynamics from their differences. In particular, for some known
lower bound α > 0, we require that, ∀h ∈ [H − 1],∀s∗h ∈ S∗

h, and for any two successor states
s∗h+1, s

′∗
h+1 ∈ S∗

h+1, such that s∗h can transition to either s∗h+1 or s′∗h+1 under Th+1, we have, either:
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eα ·
πemp.
B (s′∗h+1|s∗h)

πemp.
B (s∗h+1|s∗h)

≤
πemp.
A (s′∗h+1|s∗h)

πemp.
A (s∗h+1|s∗h)

, or, eα ·
πemp.
A (s′∗h+1|s∗h)

πemp.
A (s∗h+1|s∗h)

≤
πemp.
B (s′∗h+1|s∗h)

πemp.
B (s∗h+1|s∗h)

. (5)

In other words, the relative likelihood of transitioning to s′∗h+1, versus transitioning to s∗h+1, is dif-
ferent in τA and τB by a multiplicative factor of at least eα.

Finally, we also require that the difference in total state coverage between τA and τB for any pair of
sequential latent states (s∗h, s

∗
h+1) is not too extreme. We require that, for a known lower-bound η:

|D∗
A(s

∗
h, s

∗
h+1)|

|D∗(s∗h, s
∗
h+1)|

≥ η, (6)

and likewise for D∗
B(s

∗
h, s

∗
h+1). Our sample-complexity bound also depends on an additional param-

eter ν′, which does not need to be known a priori. This is the minimum single-state coverage ratio:

ν′ := min
h∈[H],s∗h∈S∗

h

|D∗(s∗h)|
|τA|+ |τB |

. (7)

Function Approximation Assumptions. We assume access to hypothesis classes of encoder func-
tions Φ1:H , as well as binary classification functions Gh ⊆ Xh → {0, 1}. We make standard realiz-
ability assumptions (in brief, ϕ∗

h ∈ Φh, and ∀s∗h, s′∗h ,∃g ∈ Gh such that g can perfectly distinguish
between observations of s∗h and those of s′∗h ) and assume access to training oracles. See Appendix A
for further information about these assumptions. We use |Φ| to denote maxh |Φh|. We also assume
a known upper-bound Ns on maxh |Sh|; that is, the maximum output range of any encoder in Φh.

3 Method

In this section, we describe the CRAFT algorithm. First, however, we motivate its design by exam-
ining a simpler version of the problem setting and of the algorithm.

3.1 Intuition: Single-step, Binary Action Case

In this section, we present a toy algorithm for an extremely simplified version of the Ex-BMDP
representation learning problem: an explanation of the toy algorithm captures some of the intu-
itions of CRAFT, while the limitations of the toy algorithm will motivate some of the less-intuitive
algorithmic details. We can call this naive, “first draft” form of the CRAFT algorithm “DRAFT.”

We first consider the Ex-BMDP model with H = 2 and |A| = |S∗
2 | = 2. In this setting, the

representation learning problem reduces to the task of learning to distinguish the two latent states s∗2
and s′∗2 ∈ S∗

2 that can occur at h = 2. (See Figure 1a.)

s∗1

s∗2

s′∗2

(a) Latent-state transition graph. (b) Composition of the datasets (τA)2 and (τB)2.

Figure 1: Dynamics and composition of the two-step Ex-BMDP example in Section 3.1.

We will also assume that |τA| = |τB | = m. Then, (τA)1 and (τB)1 both consist entirely of m i.i.d.
samples of the same distribution Q(s∗1, P

e
1 ). The structures of (τA)2 and (τB)2 are (slightly) more
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complex. If we let γA := πemp.
A (s∗2|s∗1) and γB := πemp.

B (s∗2|s∗1), then we see that the dataset (τA)2
consists of m · γA i.i.d. samples of the distribution Q(s∗2, P

e
2 ) and m · (1− γA) i.i.d. samples of the

distribution Q(s′∗2 , P
e
2 ), while (τB)2 consists of m · γB i.i.d. samples of the distribution Q(s∗2, P

e
2 )

and m · (1− γB) i.i.d. samples of the distribution Q(s′∗2 , P
e
2 ). (See Figure 1b.)

Now, by assumption, the agents generating datasets τA and τB are not behaviorally identical: this
means that γA ̸= γB . Without loss of generality, assume that γA > γB . Our key insight is that, in
the limit as m → ∞, the Bayes optimal classifier to distinguish a sample x2 selected from (τA)2
from a sample x2 selected from (τB)2 is in fact (up to label permutation) the latent state encoder
ϕ∗
2(x2). Concretely, consider a classifier ϕ′

2 trained to minimize the 0-1 classification loss between
(τA)2 and (τB)2. In the limit of infinite data, we can define this classification loss function as:

Lpop(ϕ2) := lim
m→∞

E
x∈(τA)2

ϕ2(x) + E
x∈(τB)2

1− ϕ2(x), (8)

From Equation 8 and the composition of the datasets:

Lpop(ϕ2) = γA E
x∼Q(s∗2 ,P

e
2 )
ϕ2(x) + (1− γA) E

x∼Q(s′∗2 ,P e
2 )
ϕ2(x)

+ γB E
x∼Q(s∗2 ,P

e
2 )
(1− ϕ2(x)) + (1− γB) E

x∼Q(s′∗2 ,P e
2 )
(1− ϕ2(x))

= (γA − γB)[ E
x∼Q(s∗2 ,P

e
2 )
ϕ2(x) + E

x∼Q(s′∗2 ,P e
2 )
1− ϕ2(x)] + C

= −(γA − γB)(Pr(ϕ2(x) = 0|ϕ∗(x) = s∗2) + Pr(ϕ2(x) = 1|ϕ∗(x) = s′∗2 )) + C

(9)

where C is independent of ϕ2. Under the mapping (0 → s∗2, 1 → s′∗2 ), we see that Lpop(ϕ2) scales
linearly with the rate that ϕ2 produces incorrect encodings, with a δ-increase in Lpop corresponding
to an O((γA − γb) · δ) increase in encoder failure. In particular, Lpop is uniquely minimized by the
ground-truth encoder ϕ∗

2. We now examine how this simple algorithm functions with finite datasets:

Algorithm 1 “DRAFT” algorithm for H = 2 Ex-BMDPs.
Require: Datasets τA, τB with H = 2, hypothesis class Φ2 ∈ X2 → {0, 1}.

Let ϕ′
1 := X1 → 0, and ϕ′

2 := argminϕ2∈Φ2
L(ϕ2), where:

L(ϕ2) :=
1

|τA|
∑

x∈(τA)2

ϕ2(x) +
1

|τB |
∑

x∈(τB)2

1− ϕ2(x). (10)

Return: ϕ′
1, ϕ

′
2

With finite m, our main concern is overfitting: if Φ2 is large enough such that some ϕ′
2 ∈ Φ2 can

perfectly distinguish the samples that happen to fall into (τA)2 from those in (τB)2, then this ϕ′
2 will

attain a lower empirical loss than ϕ∗
2, while being bad at distinguishing Q(s∗2, P

e
2 ) from Q(s′∗2 , P

e
2 )

in general. However, as long as |Φ2| is controlled, we can use standard concentration inequalities to
limit this overfitting. In particular,

|L(ϕ2)− Lpop(ϕ2)| ≈ O(1/
√
m). (11)

By combining Equations 11 and 9, we can determine how quickly ϕ′
2 = argminL(·) will approach

ϕ∗
2 = argminLpop(·) as m increases, in terms of accuracy as a latent state encoder. To ensure ϕ′

2

approximates ϕ∗
2 with a failure rate of at most ϵ, we need m ≈ O

(
1

(γA−γb)2ϵ2

)
samples. Intuitively,

the smaller the difference between behavior policies of the two agents (γA − γB), the more samples
are required to attain a given accuracy of encoder.

3.1.1 “DRAFT” doesn’t generalize easily to the long-horizon setting

A naive first attempt to extend “DRAFT” to the H > 2 case might be to apply it recursively. That
is, once the two distinct latent states at h = 2 can be decoded, we can extract from (τ)A and (τ)B
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the trajectories which contain (say) s∗2, and then run DRAFT again on these samples, to obtain
an encoder that can separate the two states into which s∗2 can transition.3 We can then repeat this
procedure for s′∗2 . If s′∗2 and s∗2 both transition to the same latent state (say s′∗3 ), we can easily detect
this situation by attempting to learn binary classifiers between the observations of each state that
succeeds s∗2 and each state that succeeds s′∗2 : if it is impossible distinguish these observations better
than by random chance, then the two successor states are the same:

Run DRAFT

Run DRAFT

Run DRAFT

Merge if 
indistinguishable

Merge if 
indistinguishable

Merge if 
indistinguishable

Merge if 
indistinguishable

Figure 2: Illustration of recursive use of the “DRAFT” algorithm.

However, it turns out that it is difficult (and may be impossible) to prove an efficient sample-
complexity bound for this recursive algorithm. This is for two reasons:

1. After the first timestep, the input datasets to subsequent applications of DRAFT are corrupted
by mis-classified samples, such that the datasets are no longer mixtures of i.i.d. samples from
distributions Q(s∗, P e

h) for multiple values of s∗ ∈ S∗
h.

2. DRAFT is highly sensitive to small changes in its input dataset.

To see (1), note that the encoder ϕ′
2 returned by the first application of DRAFT will misclassify some

O(
√
m/(γA − γB)) samples. Moreover, these misclassified samples will not be chosen uniformly:

the encoder ϕ′
2 may rely on some spurious features of the observations x2, which depend on e2,

to classify these observations. Consequently, because e3 also depends on e2, the exogenous noise
distributions of the observations x3 of state s′∗3 (for instance, in the dynamics example in Figure 2)
present in the datasets for the recursive DRAFT instances associated with s∗2 and s′∗2 will differ
from each other, and each will differ from Q(s′∗3 , P

e
h), in a way that depends on the choice of ϕ′

2.
Moreover, because ϕ′

2 is trained to distinguish τA from τB , this distribution shift may have different
effects on the distributions of observations from the two agents.

For (2), consider the (single step) DRAFT algorithm with some small number ϵbad · m of samples
from X2 arbitrarily introduced to the datasets (τA)2 and (τB)2. For concreteness, we will replace
some of the samples in (τA)2 for which ϕ∗

2(x) = s′∗2 with “bad” samples for which it still holds
that ϕ∗

2(x
′
bad) = s′∗2 , but which are not drawn i.i.d. from Q(s′∗2 , P

e
2 ). Instead, we assume that these

samples belong to some part of the support of Q(s′∗2 , P
e
2 ) which is typically sampled with negligible

probability; we can call their distribution D′
bad. Similarly, we replace ϵbad ·m samples of (τB)2 for

which ϕ∗
2(x) = s∗2 with “bad” samples for which ϕ∗

2(xbad) = s∗2, but which are drawn from Dbad.
We consider the infinite-dataset limit. From Equation 8 and the composition of the datasets:

Lpop(ϕ2) = γA E
x∼Q(s∗2 ,P

e
2 )
ϕ2(x) + (1− γA − ϵbad) E

x∼Q(s′∗2 ,P e
2 )
ϕ2(x) + ϵbad E

x∼D′
bad

(ϕ2(x))

+ (1− γB) E
x∼Q(s′∗2 ,P e

2 )
(1− ϕ2(x)) + (γB − ϵbad) E

x∼Q(s∗2 ,P
e
2 )
(1− ϕ2(x)) + ϵbad E

x∼Dbad

(1− ϕ2(x))

= −(γA − γB + ϵbad)
(
Pr(ϕ2(x) = 0|x ∼ Q(s∗2, P

e
2 )) + Pr(ϕ2(x) = 1|x ∼ Q(s′∗2 , P

e
2 ))
)

− ϵbad
(
Pr(ϕ2(x) = 1|x ∼ Dbad) + Pr(ϕ2(x) = 0|x ∼ D′

bad)
)
+ C

3Here, we are continuing to assume |A| = 2, and that the two actions have different effects from each other in each state.
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Note that the ground-truth encoder ϕ∗
2 has loss Lpop(ϕ

∗
2) = −(γA−γB+ϵbad)+C. However, we can

construct an encoder ϕ′
2 that incorrectly encodes all samples in Dbad as belonging to s′∗2 (i.e., returns

1 on these samples), and incorrectly encodes all samples in D′
bad as belonging to s∗2. Furthermore, we

can construct this ϕ′
2 to also have an accuracy of only 1−ϵbad/(γA−γB+ϵbad) on the samples in the

“natural” distributions Q(s∗2, P
e
2 ) and Q(s′∗2 , P

e
2 ). Surprisingly, by the above expression for Lpop,

we see that this less-accurate encoder also has loss Lpop(ϕ
′
2) = −(γA−γB + ϵbad)+C. Therefore,

if this encoder ϕ′
2 is included in the hypothesis class Φ2, then the ERM step of Algorithm 1 may just

as easily return ϕ′
2 rather than ϕ∗

2. (Furthermore, the realizability assumption does not guarantee that
any lower-loss “third option” encoders exist.) Consequently, the misclassification rate can “blow up”
from ϵbad to ϵbad/(γA − γB + ϵbad), that is, by a multiplicative factor of 1/(γA − γB + ϵbad) – even
before accounting for finite datasets.

We can now see that DRAFT both (1) can make non-uniformly-distributed encoding errors, and (2)
given as input a dataset with (non-uniform) errors, can produce output “next-state” datasets with
a multiplicatively-increased error rate. Therefore, it seems difficult to derive a sample-complexity
analysis of “recursive DRAFT” that does not require a number of samples exponential in the Ex-
BMDP horizon H .4 In the next section, we present our CRAFT algorithm, which is intention-
ally designed to solve the multiple-agent action-free Ex-BMDP representation learning problem
while avoiding recursively training state classifiers on datasets derived from the output of previous-
timestep state classifiers. We then can sidestep the issues with “Recursive DRAFT” shown here.

Note that, for Ex-BMDPs with deterministic latent dynamics, the issues with recursion seen here
are unique to the offline, action-free setting. In the online setting, as in Efroni et al. (2022), once
the dynamics up to timestep h have been learned, “fresh” samples of any given latent state s∗h can
then be constructed via closed-loop planning: there are no issues with compounding error.5 The
action-free offline setting thus presents a new set of issues requiring a novel algorithmic solution.

3.2 CRAFT: High-Level Description of Method

Here, we give a high-level overview of the CRAFT algorithm. The complete algorithm is presented
as Algorithm 2 in Appendix C. See also Figure 3 for a pictorial overview of the approach.

In CRAFT, we initially treat each trajectory as a sequence of observation pairs: (x1, x2), (x2, x3),
... (xH−1, xH). (See Figure 3-a.) For each timestep-pair (h, h+ 1), we train a model fh to predict,
given a sample (xh, xh+1), whether the pair was collected by agent A or agent B: that is, whether
(xh, xh+1) was selected from (τA)h,h+1 or (τB)h,h+1. However, unlike in “DRAFT”, we do not
treat this problem as hard binary classification. Instead, we train fh(xh, xh+1) to predict the log-
odds ratio between the two possibilities, for a given (xh, xh+1). That is, we train fh to predict

ln

(
Pr[(xh, xh+1) ∈ (τA)h,h+1|(xh, xh+1) ∈ (τA ⊎ τB)h,h+1]

Pr[(xh, xh+1) ∈ (τB)h,h+1|(xh, xh+1) ∈ (τA ⊎ τB)h,h+1]

)
. (12)

To accomplish this task, we can train fh to minimize the following loss function:

L(fh) :=
∑

(xh,xh+1)∈(τA)h,h+1

ln(1+ e−f(xh,xh+1))+
∑

(xh,xh+1)∈(τB)h,h+1

ln(1+ ef(xh,xh+1)). (13)

Note that in the limit of infinite data, the fh that minimizes this loss will return

f∗
h(xh, xh+1) → ln

( |D∗
A(ϕ

∗
h(xh), ϕ

∗
h+1(xh+1))|

|D∗
B(ϕ

∗
h(xh), ϕ∗

h+1(xh+1))|

)
. (14)

4We are not claiming that “Recursive DRAFT” actually does require exponential samples in H , simply that there are
clear obstacles to proving that it does not.

5Even with offline data, if action labels are available and the latent dynamics up to timestep h are known perfectly (which
is achievable if the latent dynamics are deterministic), then “error-free” datasets can still be constructed for timestep h+ 1.
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Figure 3: Schematic of the CRAFT algorithm. See text of Section 3.2.

Consequently (for sufficiently-large datasets) we expect the values of fh(xh, xh+1) of all
observation-pairs (xh, xh+1) corresponding to the same latent-state pair (ϕ∗

h(xh), ϕ
∗
h+1(xh+1)) =

(s∗h, s
∗
h+1) to “cluster together” around the same value (See Figure 3-b): this effect can be quantified

using standard concentration arguments. Note that the training of models fh and resulting “cluster-
ing” of observation-pairs can be carried out simultaneously and independently for all time-steps h:
there is no “recursion” here, and so each model fh is trained on an “untainted” dataset.

Side note on realizability and discretization: To ensure that an fh can be found that minimizes
Equation 13, we need fh to be chosen from a sufficiently-expressive hypothesis class Fh. We can
construct such an Fh as Φh × Φh+1 × (N2

s → R): by the realizability assumptions on Φh and
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Φh+1, we are ensured that this class contains the optimal predictor in Equation 14. However, the
(N2

s → R) component of this hypothesis class makes it non-finite. In order to allow for a simple
finite-hypothesis analysis, we instead construct Fh as Φh × Φh+1 × (N2

s → Ξ), where Ξ is a
discrete space (roughly, every (α/4)-th interval on a range determined by η). It turns out that this
discretization still ensures that a function “close enough” to f∗

h will always exist, and additionally
greatly simplifies the identification of “clusters” in the output distribution of fh on finite data.

While we expect the values of fh(xh, xh+1) to cluster for sets of observations-pairs with the same
latent-state-pair, it does not immediately follow that the values of fh(xh, xh+1) and fh(x

′
h, x

′
h+1)

will differ if (sh, sh+1) ̸= (s′h, s
′
h+1). In fact, this is not true in general: two distinct “clusters” may

overlap entirely. This is where the assumption given in Equation 5 becomes useful: from Equation 5
and algebra, we can see that for any fixed s∗h and distinct s∗h+1, s

′∗
h+1 which can both follow s∗h that:∣∣∣∣ln( |D∗

A(s
∗
h, s

∗
h+1)|

|D∗
B(s

∗
h, s

∗
h+1)|

)
− ln

( |D∗
A(s

∗
h, s

′∗
h+1)|

|D∗
B(s

∗
h, s

′∗
h+1)|

)∣∣∣∣ ≥ α. (15)

In other words, the “clusters” associated with two pairs (s∗h, s
∗
h+1) and (s′∗h , s

′∗
h+1) are guaranteed to

be distinct if s∗h = s′∗h . One consequence is that the observation-pairs (x1, x2) associated with each
possible latent-state pair (s∗1, s

∗
2) must form distinct, well-separated clusters (because these pairs

all share the same initial latent state s∗1). Therefore, datasets of observations associated with each
latent state s2 can be immediately identified (as shown in green in Figure 3-b; note that we omit the
asterisk, to indicate that these are inferred, rather than ground-truth, latent states.).

CRAFT then continues “recursively”: once the trajectories which contain a particular s′2 ∈ S are
known, we can then examine the spectrum of values of f2(x2, x3) for only observation pairs (x2, x3)
from this subset of trajectories (referred to in Algorithm 2 as pairs(s′2)). Because these observation-
pairs all (up to an error factor) share the same initial state s′∗2 , we expect to see well-separated clusters
for each latent state which can succeed s′2. Note that we do not retrain f2 on only these samples in
pairs(s′2). Therefore, any errors (missing or extra trajectories) in the construction of pairs(s′2) can
only substantially affect the outcome of this step by compromising CRAFT’s ability to recognize
distinct clusters in the precomputed values of f2(x2, x3). Due to the discretization of the range of
Fh, this “cluster identification” is robust to even adversarial errors affecting a bounded number of
trajectories. The total number of misclassified trajectories then grows only linearly with H . (In
Figure 3-c, we show the spectrum of values of f2(x2, x3) for each subset pairs(s2), pairs(s′2), and
pairs(s′′2 ); Figure 3-d shows the result of the cluster identification: the observation-pairs (x2, x3)
corresponding to each state in S3 which can succeed each of s2, s′2, and s′′2 have been identified).

Once we identify each latent state that can succeed each s′2 ∈ S2 individually, we now determine
whether or not any of these successor states to distinct states s2, s′2 are in fact the same latent state
s3 ∈ S3. This can be accomplished easily, by attempting to learn binary classifiers between the ob-
servations x3 which are part of the observation-pair sets. If these observations are indistinguishable,
then the sets of observation-pairs represent the same latent state; if they are perfectly distinguish-
able, then they represent different latent states. Figure 3-e illustrates this process. Note that while
there may be errors in these observation sets, each binary-classifier training ultimately produces a
boolean result (either the sets are distinguishable, or they are not) with a substantial allowance for
error in the input sets: there is (with high probability) no accumulation of errors due to this process.

Finally, the observations corresponding to each unique latent state S3 have been identified. (See
Figure 3-f). We can then continue to timestep h = 4, and so on. As mentioned above, both the
cluster-identification and state-merging processes are robust to bounded errors in their input data, so
the total number of misclassified states grows only linearly in H . As a final step, the encoders ϕ′

h

are trained on the assembled datasets for each timestep h.

3.3 Guarantees

We prove the following polynomial sample-complexity guarantee for CRAFT in Appendix C:
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Theorem 3.1. Assume that CRAFT (Algorithm 2 in the Appendix) is given datasets τA and τB such
that the assumptions given in Equations 1, 4,5, and 6 all hold. Then there exists an

f

(
H, |Φ|, Ns,

1

δ
,
1

ϵ0
,
1

ν
,
1

ν′
,
1

η
,
1

α

)
∈ O∗

(
H2(ln(|Φ|/δ) +N2

s )

νη2α4
·max

(
1

ν2
,

1

ϵ20ν
′2

))
, (16)

where O∗(f(x)) := O(f(x) logk(f(x))), such that for any given δ, ϵ0 ≥ 0, if ∀s∗h, s∗h+1 such that s∗h
can transition to s∗h+1, |D∗(s∗h, s

∗
h+1)| ≥ f

(
H, |Φ|, Ns,

1
δ ,

1
ϵ0
, 1
ν ,

1
ν′ ,

1
η ,

1
α

)
, then, with probability

at least 1− δ, the encoders ϕ′
h returned by the algorithm will each have accuracy on at least 1− ϵ0,

in the sense that, under some bijective mapping σh : Sh → S∗
h,

∀s∗ ∈ S∗
h, Pr

x∼Q(s∗,P e
h)
(ϕ′

h(x) = σ−1
h (ϕ∗

h(x))) ≥ 1− ϵ0. (17)

4 Simulation Results

Table 1: Results of toy environment simulation, with H = 30,M = 128, averaged over 20 random
seeds. See text of Section 4, and Appendix D for further details.

Technique Avg. Encoder Acc. (|τA| = |τB | = 500) " " 1000 " " 5000
CRAFT 86.4% 97.7% >99.9%

Single-obs. classification 67.8% 68.7% 69.7%
Paired-obs. classification 87.4% 86.1% 82.1%

We test CRAFT on a toy environment which captures CRAFT’s ability to distinguish controllable
features in the observation space from time-correlated uncontrollable features. In the environment,
s∗1 = 0,A = S∗

h>1 = {0, 1} and s∗h+1 = ah; in other words, the agent can simply set the next latent
state using the action. The exogenous state consists of M − 1 factors: e = (e1, e2, ..., eM−1). Each
exogenous factor is a two-state Markov Chain: for e2, ...eM−1, the initial state distribution and state
transition probabilities are arbitrary parameters chosen uniformly at random for each chain, while e1

has Pr(e11 = 0) = 0.5 and transition probabilities of zero. The observation xh ∈ {0, 1}M consists
of s∗h concatenated with (s∗h XOR eih), for each i ∈ [H − 1]. Additionally, at each timestep, the
order of s∗h and the other factors is permuted by some arbitrary permutation which depends on h.
The hypothesis classes are Φh := {(xh) → (xh)i|i ∈ [M ]}. The representation learning problem is
then to determine, for each h, which of the M components of the observation xh is the controllable
factor s∗h (or, failing at that, to find a component corresponding to a (s∗h XOR eih) where eih is low-
entropy, so the encoder imperfect but still useful). Agent A selects actions uniformly at random,
while for agent B, Pr(ah = s∗h) = 3/4.

Results are shown in Table 1. The setting is designed to prevent various “shortcuts” to learning an
encoder from working. Simply choosing the component of xh that best predicts the policy ("Single-
observation classification" in Table 1) will not work, because at any sufficiently large timestep h,
the latent state distributions of the two policies are essentially identical (with a total-variation gap
of 2−h). Furthermore, given observations of a pair of sequential timesteps (xh, xh+1), choosing
the components of xh and xh+1, respectively, that together best predict the agent also will not
work ("Paired-observation classification"). In particular, the “distractor” features (s∗h XOR e1h) and
(sh+1 XOR e1h+1) are, taken together, about as informative about the agent’s identity as s∗h and
s∗h+1, but provide no information about the latent state s∗h or s∗h+1. In Table 1, we see that, given
sufficient data (≥ 1000 trajectories for each agent), CRAFT is capable of learning highly-accurate
encoders in this setting, while these two “shortcut” techniques are not. In particular, while the
“Paired-observation classification" shortcut is about as effective as CRAFT in the very-low data
regime, its performance plateaus (and even seems to drop) as more data becomes available. (The
drop in performance is likely because the adversarially-designed “distractor” features (s∗h XOR e1h)
and (s∗h+1 XOR e1h+1) are more likely to be chosen by this method as more data becomes available.)
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5 Related Works

Action-free representation learning Many prior works have tackled action-free representation
learning in practical scenarios, demonstrating empirically-validated methods. Common approaches
utilize observation reconstruction losses (Seo et al., 2022) or temporal contrastive losses (Nair et al.,
2023). Some of these works infer “latent actions” by finding a compact representation that is highly
informative for predicting forward dynamics (Edwards et al., 2019; Menapace et al., 2021; Ye et al.,
2023; Schmidt & Jiang, 2024) Another line of work augments large action-free offline datasets with
significantly smaller action-labeled datasets. For example, an offline dataset action-free dataset can
be used to train a goal-conditioned value function (Xu et al., 2022; Ma et al., 2023; Ghosh et al.,
2023; Park et al., 2023). Alternatively, an inverse-dynamics model can be learned from the action-
labelled data to “fill in” missing actions (Schmeckpeper et al., 2021; Zheng et al., 2023; Baker et al.,
2022). By contrast, in this work we are interested in provable sample-efficiency of representation
learning, and assume no access to action-labeled data during pretraining.

Learning in Ex-BMDPs. As discussed throughout this work, numerous prior works consider the
Ex-BMDP model (Efroni et al., 2022; Mhammedi et al., 2024), including in the offline setting (Islam
et al., 2023; Lamb et al., 2023; Levine et al., 2024). Misra et al. (2024) in particular demonstrates
a hardness result: that Ex-BMDP latent representations cannot be learned in general from offline
action-free data. In this work, we demonstrate a special case where this representation learning
problem is in fact tractable: the case where offline data from multiple diverse agents are available.

6 Discussion and Limitations

One major assumption of this work (as well as Misra et al. (2024); Islam et al. (2023) and other
prior works) is that offline data are collected by a policy which acts independently of observation
noise. This assumption stems from the fact that, if noise features influence the behavioral policy,
they (indirectly) influence the latent-state dynamics of the agent: these noise features may then be
erroneously captured in the learned representation. However, in real-world settings, it may actually
be beneficial to capture such features in the learned representation: if “expert” agents are relying
on some uncontrollable feature, this feature may be relevant to the expert agents’ reward functions,
and may therefore also be relevant to downstream tasks for which our learned representations will
be used. Therefore, the noise-independent policy assumption might not be necessary in practice.

An additional restrictive assumption of this work is that the latent dynamics are deterministic, and
that each episode starts at the same latent state s∗1. However, this assumption is also essentially
present even in the best-known result for provably sample-efficient Ex-BMDP representation learn-
ing in the online episodic setting (Efroni et al., 2022) – that work does allow for rare departures
from deterministic dynamics, however, and it may be possible to adapt the analysis of CRAFT to
that setting as well, although we have focused on the strictly-deterministic case here for ease of
presentation. Mhammedi et al. (2024) proposes an online algorithm for learning Ex-BMDPs with
nondeterministic latent dynamics, but that work assumes “simulator access”: the ability to reset
the environment to any previously-visited observation. Several works (Lamb et al., 2023; Levine
et al., 2024; Islam et al., 2023) consider learning Ex-BMDPs from offline data (with action labels)
without assuming restarts to s∗1: these works are “practical” algorithms that do not provide sample-
complexity guarantees. A similar “practical” algorithm for the action-free, multiple-agent setting
based on the ideas presented in this work may also be possible.

The assumption that two policies differ substantially at every latent state may also be impractical.
One direction for future work may be to leverage data from several agents, such that it is more likely
that some agent has a distinct behavior at each latent state.

While access to training oracles is a common assumption in representation learning (Agarwal et al.,
2020; Efroni et al., 2022; Uehara et al., 2022), the optimization of Equation 13, on a discretized
domain, may be troublesome in practice. Additionally, the sample complexity bounds in Equation
16, while polynomial, may not be optimal: these issues are potential directions for future work.
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A Hypothesis Classes and Realizability Assumptions

As mentioned in Section 2.5, we assume access to hypothesis classes of encoder functions Φ1:H .
We make a realizability assumption: that is, the true encoder ϕ∗

h ∈ Φh. Moreover, we assume
that for any arbitrary permutation σ, σ(ϕ∗

h(x)) ∈ Φh – this allows us to train an encoder in Φh on
datasets of observations representing each latent state without knowing the “correct” ordering of the
latent states. Similar realizability assumptions are common in representation learning literature for
structured MDPs (Du et al., 2019; Efroni et al., 2022; Misra et al., 2020; 2024; Uehara et al., 2022;
Agarwal et al., 2020).

We use a second set of hypothesis classes, Gh ⊆ Xh → {0, 1}, for which, for any pair of latent states
s∗h, s

′∗
h , there exists some g ∈ Gh that can perfectly distinguish observations of s∗h from observations

of s′∗h . In our sample-complexity results, we assume that |Gh| ≤ |Φh|. In this work, we are chiefly
concerned with sample-complexity: we make use of training oracles for a variety of loss functions
which may not be tractable to optimize in practice. See Section 6 for further discussion.

B Algorithm

The full CRAFT algorithm is presented as Algorithm 2.

C Proofs

In this section, we prove the correctness and sample complexity bounds of CRAFT presented in
Theorem 3.1. First, though, we prove various lemmas the will be helpful in proving the final result.

C.1 Preliminary Note

Recall Equation 1 in the main text:

Pr(τA, τB) =Pr(ϕ∗(τA), ϕ
∗(τB)) · Pr

P e
1 ,T e

(ϕe(τA)) · Pr
P e

1 ,T e
(ϕe(τB))

·Pr
Q
(τA|ϕ∗(τA), ϕ

e(τA)) · Pr
Q
(τB |ϕ∗(τB), ϕ

e(τB))

Throughout our proofs, we will make use of this assumption in the following way: we will treat the
controllable latent state trajectories ϕ∗(τA), ϕ

∗(τB) as fixed but arbitrary, not as random variables,
and treat the exogenous noise Markov chains ϕe(τA), ϕ

e(τB) and the emission function Q as the
only random variables. Then, if the algorithm succeeds with high probability for any such fixed,
arbitrary ϕ∗(τA), ϕ

∗(τB), we can conclude by the independence assumption that it also succeeds
with high probability under any data-generating process for which Equation 1 holds.

C.2 Concentration Lemmas

In this section, we present concentration bounds on the loss functions used in Algorithm 2. We start
with the log-odds loss given in Equation 13:

Lemma C.1. . Given m distributions D1, ...,Dm ∈ P(X ), each with two corresponding positive
integers ai, bi, for i ∈ [m], let Ai ∼ Dai and Bi ∼ Dbi be two multi-sets consisting of ai and bi i.i.d.
samples from Di, respectively. Then, for any ξ > 0 and nΞ ∈ N+ such that ∀i, | ln(ai/bi)| ≤ nΞξ

2 ,
let Ξ = {−nΞξ

2 ,−nΞξ
2 + ξ,−nΞξ

2 + 2ξ, ..., nΞξ
2 }. Further, let c̄i ∈ Ξ be the smallest value in
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Algorithm 2 CRAFT
Require: Trajectory datasets τA, τB , known lower-bounds α, η, and ν, encoder function classes Φh ⊆ Xh →

Ns and classification function class Gh ⊆ Xh → {0, 1}.
1: α← min(1, α).
2: Let ξ := α/4; nΞ := ⌈8 ln(η−1 − 1)/α⌉.
3: η ← 1/(1 + enΞα/8).
4: Let Ξ := {−nΞξ

2
,−nΞξ

2
+ ξ,−nΞξ

2
+ 2ξ, ..., nΞξ

2
}.

5: Initialize S1 := {s1}, DA,1(s1) := [|τA|], DB,1(s1) := [|τB |]. \\ First timestep should
have a single state rep., associated with every trajectory index.

6: Let ϕ′
1 := X1 → 0.

7: for h ∈ {1, 2, ..., H − 1} do
8: Initialize Sh+1 := {}.
9: Let the inverse-actor-prediction function class Fh ⊆ X ×X → Ξ be composed as Fh = Φh×Φh+1×

(N2
s → Ξ).

10: Find the fh ∈ Fh which minimizes Equation 13.
11: Let qthresh. := hν

8H
.

12: for spred ∈ Sh do
13: Initialize merged_already(s) := False for all s ∈ Sh+1.
14: Initialize Snew := {}
15: Let pairs(spred) := (τA)h:h+1[DA,h(spred)] ∪ (τB)h:h+1[DB,h(spred)]. \\ All

transitions which start at sprev.
16: ∀j ∈ {0, ..., nΞ}, Let pred_succ[j] := {(xh, xh+1) ∈ pairs(spred)|f(xh, xh+1) = jξ − nΞξ

2
}.

17: Initialize j := 0
18: while j ≤ nΞ do
19: if |pred_succ[j]| ≥ qthresh.(|τA|+ |τB |) then
20: Let j′ be the minimum integer > j such that |pred_succ[j′]| < qthresh.(|τA| + |τB |), or nΞ if

no such integer exists.
21: Let Dnew_pairs := {x′|(x, x′) ∈

⊎j′

k=max(0,j−1) pred_succ[k]}, Dnew := {x′|(x, x′) ∈
Dnew_pairs}

22: Initialize new_state? ← True.
23: for s ∈ Sh+1, such that merged_already(s) == False do
24: Let Ds := (τA)h+1[DA,h+1(s)] ⊎ (τB)h+1[DB,h+1(s)]
25: Train a classifier g ∈ G to distinguish Dnew and Ds, with loss L(g) given in Equation 53.
26: if the loss L(g) on Dnew and Ds is > 0.5 then
27: Append to DA,h+1(s) indices of trajectories in τA that observations in Dnew are from.
28: Append to DB,h+1(s) indices of trajectories in τB that observations in Dnew are from.
29: merged_already?(s)← True
30: new_state? ← False
31: break.
32: end if
33: end for
34: if new_state? then
35: Add new state snew to Snew

36: Initialize DA,h+1(snew) as indices of trajectories in τA that observations in Dnew are from.
37: Initialize DB,h+1(snew) as indices of trajectories in τB that observations in Dnew are from.
38: end if
39: j ← j′ + 2
40: else
41: j ← j + 1
42: end if
43: end while
44: Sh+1 := Sh+1 ∪ Snew

45: end for
46: ϕ′

h+1 := argminϕ∈Φh+1

∑
s∈Sh+1

[
1

|Ds|
∑

x∈Ds
(1− 1(ϕ(x)=s))

]
, where Ds :=

(τA)h+1[DA,h+1(s)] ⊎ (τB)h+1[DB,h+1(s)]
47: end for
48: Return: ϕ′

1, ...ϕ
′
H
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Ξ greater than or equal to ln(ai/bi), and ci ∈ Ξ be the largest value in Ξ less than or equal to
ln(ai/bi). Also, assume that ∀i, ai+bi∑m

i′=1
ai′+bi′

≥ ν.

Given any function f ∈ X → Ξ, define:

L(f) :=
m∑
i=1

[∑
x∈Ai

ln(e−f(x) + 1) +
∑
x∈Bi

ln(ef(x) + 1)

]
. (18)

Further, define:

Lref :=

m∑
i=1

[
min

ci∈{c̄i,ci}
ai ln

(
e−ci + 1

)
+ bi ln (e

ci + 1)

]
, (19)

and let η := (enΞξ/2 + 1)−1. For any ϵ and δ, if:

∀i ∈ [m], ai + bi ≥
50 ln(2/δ) ln2(1/η)

νϵ2η2ξ4
(20)

then the probability that both L ≤ Lref, and:

∃i ∈ [m] :
∣∣∣{x ∈ Ai ⊎Bi|f(x) ̸∈ {ci, c̄i}

∣∣∣ > ϵ(ai + bi) (21)

is at most δ.

Proof. We can define

Li
ref := min

ci∈{c̄i,ci}
ai ln

(
e−ci + 1

)
+ bi ln (e

ci + 1) , (22)

So that Lref =
∑m

i=1 Li
ref, and also define

Li
pop(f) := ai

(
E

x∼Di

ln(e−f(x) + 1)

)
+ bi

(
E

x∼Di

ln(ef(x) + 1)

)
(23)

and Lpop :=
∑m

i=1 Li
pop.

First, we consider the “population loss” for each distribution:

Li
pop(f) = ai

(
E

x∼Di

ln(e−f(x) + 1)

)
+ bi

(
E

x∼Di

ln(ef(x) + 1)

)

= ai

∑
ζ∈Ξ

Pr
x∼Di

(f(x) = ζ) · ln(e−ζ + 1)


+ bi

∑
ζ∈Ξ

Pr
x∼Di

(f(x) = ζ) · ln(eζ + 1)


=
∑
ζ∈Ξ

Pr
x∼Di

(f(x) = ζ) ·
(
ai ln(e

−ζ + 1) + bi ln(e
ζ + 1)

)
=
∑
ζ∈Ξ

Pr
x∼Di

(f(x) = ζ) · ai
((

1 +
bi
ai

)
ln(eζ + 1)− ζ

)

(24)

We can define hγ(ζ) :=
(
1 + γ−1

)
ln(eζ + 1)− ζ, so that

Li
pop(f) = ai

∑
ζ∈Ξ

Pr
x∼Di

(f(x) = ζ) · hai/bi
(ζ) (25)
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Now, note that:

h′
γ(ζ) =

(
1 + γ−1

) eζ

eζ + 1
− 1 (26)

and

h′′
γ(ζ) =

(
1 + γ−1

) eζ

(eζ + 1)2
. (27)

Then, we see that hγ(ζ) is a convex function, with a global minimum at ζ = ln(γ), and second-
derivative at least (

1 + γ−1
) enΞξ/2

(enΞξ/2 + 1)2

(
=
(
1 + γ−1

) e−nΞξ/2

(e−nΞξ/2 + 1)2

)
(28)

everywhere on the interval [−nΞξ/2, nΞξ/2].

Due to the convexity of hai/bi
(ζ), we have, ∀j > 0,

ai·hai/bi
(ln(ai/bi)) ≤ min(ai·hai/bi

(c̄i), ai·hai/bi
(ci)) (= Li

ref ) ≤ ai·hai/bi
(c̄i) < ai·hai/bi

(c̄i+jξ)

and, similarly, ∀j > 0:

ai·hai/bi
(ln(ai/bi)) ≤ min(ai·hai/bi

(c̄i), ai·hai/bi
(ci)) (= Li

ref ) ≤ ai·hai/bi
(ci) < ai·hai/bi

(ci−jξ).

In particular, by a second-order Taylor bound, we have that, for j > 0:

Li
ref ≤ ai · hai/bi

(c̄i + jξ)− ai ·
(
1 + (ai/bi)

−1
) enΞξ/2

(enΞξ/2 + 1)2
· (jξ)

2

2

≤ ai · hai/bi
(c̄i + jξ)− (ai + bi)

enΞξ/2

(enΞξ/2 + 1)2
· ξ

2

2

(29)

and similarly for ai · hai/bi
(ci − jξ):

Li
ref ≤ ai · hai/bi

(ci − jξ)− (ai + bi)
enΞξ/2

(enΞξ/2 + 1)2
· ξ

2

2
. (30)

In particular, by Equation 25,

Li
pop(f) ≥ Li

ref + Pr
x∼Di

(f(x) ̸∈ {ci, c̄i}) · (ai + bi)
enΞξ/2

(enΞξ/2 + 1)2
· ξ

2

2
. (31)

In terms of η, this is:

Li
pop(f) ≥ Li

ref + Pr
x∼Di

(f(x) ̸∈ {ci, c̄i}) · (ai + bi) (η − η2) · ξ
2

2

≥ Li
ref + Pr

x∼Di

(f(x) ̸∈ {ci, c̄i}) · (ai + bi) ·
ηξ2

4

(32)

where we use the fact that η ≤ 1/2 in the last inequality. This gives us:

Pr
x∼Di

(f(x) ̸∈ {ci, c̄i}) ≤
4(Li

pop(f)− Li
ref )

(ai + bi)ηξ2
(33)

Because Li
pop − Li

ref ≥ 0, this implies:

∀i ∈ [m],

(ai + bi) · Pr
x∼Di

(f(x) ̸∈ {ci, c̄i}) ≤
4(Li

pop(f)− Li
ref )

ηξ2
≤

4
∑m

i=1(Li
pop(f)− Li

ref )

ηξ2

=
4(Lpop(f)− Lref )

ηξ2

(34)
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Meanwhile, from Equations 18 and 23 applying (one-sided) Hoeffding’s lemma gives us, with prob-
ability at least 1− δ/2:

L(f)− Lpop(f) +

√√√√ m∑
i=1

(ai + bi) ln(1/η)
√

2 ln(2/δ) ≥ 0. (35)

which implies, by assumption:

∀i, L(f)− Lpop(f) +
√

ai + bi
√

1/ν ln(1/η)
√

2 ln(2/δ) ≥ 0. (36)

Combining Equations 34 and 36 gives, with probability at least 1− δ/2, we have that ∀i ∈ [m],

(ai + bi) Pr
x∼Di

(f(x) ̸∈ {ci, c̄i}) ≤
4(L(f)− Lref )

ηξ2
+

4(
√
ai + bi) ln(1/η)

√
2 ln(2/δ)√

νηξ2
. (37)

Then, with probability at least 1− δ/2, the condition L(f) ≤ Lref implies:

∀i ∈ [m], (ai + bi) Pr
x∼Di

(f(x) ̸∈ {ci, c̄i}) ≤
4
√
ai + bi ln(1/η)

√
2 ln(2/δ)√

νηξ2
. (38)

We can apply Hoeffding’s lemma once for each i ∈ [m], to the binary variable of whether on not
f(x) ∈ {ci, c̄i}, where x is sampled (ai+bi) times to produce the dataset Ai∪Bi. By union bound,
we have, with probability at least 1− δ, L(f) ≤ Lref implies:

∀i ∈ [m],
∣∣∣{x ∈ Ai ∪Bi|f(x) ̸∈ {ci, c̄i}

∣∣∣ ≤√
(ai + bi) ln(2m/δ)/2 +

4
√
ai + bi ln(1/η)

√
2 ln(2/δ)√

νηξ2
≤

√
(ai + bi)

√
2

(√
ln(2m/δ)

2
+

4
√

ln(2/δ) ln(1/η)√
νηξ2

)
≤

√
(ai + bi)

√
2
ln(1/η)

ηξ2

(√
ln(2/δ)

2
+

√
ln(m)

2
+

4
√
ln(2/δ)√
ν

)
,

(39)

where in the last line, we used triangle inequality and the fact that η = 1/(enΞξ/2+1) ≤ 1/(eξ/2+1),
which in turn implies:

ln(1/η)

ηξ2
≥ (eξ/2 + 1) ln(eξ/2 + 1)

ξ2
> 1 (∀ξ > 0). (40)

Note that, because each ai + bi contains at least a ν-fraction of the total
∑m

i ai + bi, we must have
m ≤ 1/ν. Then:√

ln(m)

2
≤
√
ln(1/ν)

2
≤ 1

2
√
e
√
ν
≤ 1

2
√
e
√

ln(2)

√
ln(2/δ)√

ν
≤
√
ln(2/δ)

2
√
ν

(41)

Therefore (and noting ν < 1), we can combine terms in Equation 39 to conclude:

∀i ∈ [m],
∣∣∣{x ∈ Ai ∪Bi|f(x) ̸∈ {ci, c̄i}

∣∣∣ ≤ 5
√

2(ai + bi) ln(2/δ) ln(1/η)√
νηξ2

. (42)

Now, to ensure ∀i ∈ [m],
∣∣∣{x ∈ Ai ∪Bi|f(x) ̸∈ {ci, c̄i}

∣∣∣ ≤ ϵ(ai + bi), we need,

∀i ∈ [m],
5
√

2(ai + bi) ln(2/δ) ln(1/η)√
νηξ2

≤ ϵ(ai + bi) (43)



Reinforcement Learning Journal 2025

or:

∀i ∈ [m],
50 ln(2/δ) ln2(1/η)

νϵ2η2ξ4
≤ ai + bi (44)

as provided by Equation 20. Note that because the implication

L(f) ≤ Lref → ∀i ∈ [m],
∣∣∣{x ∈ Ai ∪Bi|f(x) ̸∈ {ci, c̄i}

∣∣∣ ≤ ϵ(ai + bi) (45)

holds with probability at least (1− δ), this implication can only be broken, by the case that

L(f) ≤ Lref ∧ ∃i ∈ [m] :
∣∣∣{x ∈ Ai ∪Bi|f(x) ̸∈ {ci, c̄i}

∣∣∣ > ϵ(ai + bi) (46)

with probability at most δ.

Corollary C.2. Let D∗(s∗h, s
∗
h+1) be the multiset of observation pairs (xh, xh+1) from both

τA and τB in Algorithm 1, such that ϕ∗
h(xh) = s∗h and ϕ∗

h+1(xh+1) = s∗h+1, and let
D∗

A(s
∗
h, s

∗
h+1) and D∗

B(s
∗
h, s

∗
h+1) be the elements of D∗(s∗h, s

∗
h+1) originating from τA and τB

respectively. Further, let c̄s∗h,s∗h+1
∈ Ξ be the smallest value in Ξ greater than or equal to

ln(|D∗
A(s

∗
h, s

∗
h+1)|/|D∗

B(s
∗
h, s

∗
h+1)|), and cs∗h,s∗h+1

∈ Ξ be the largest value in Ξ less than or equal
to ln(|D∗

A(s
∗
h, s

∗
h+1)|/|D∗

B(s
∗
h, s

∗
h+1)|).

Further, assume the realizability condition that ϕ∗
h ∈ Φh and ϕ∗

h+1 ∈ Φh+1.

If ∀s∗h, s∗h+1, such that s∗h can transition to s∗h+1,

|D∗(s∗h, s
∗
h+1)| ≥

50(ln(2|Φ|2/δ) +N2
s ln(nΞ + 1)) ln2(1/η)

νϵ2η2ξ4
(47)

then with probability at least 1 − δ, the function f(·) found in Line 10 of Algorithm 2 will be such
that, ∀s∗h, s∗h+1, such that s∗h can transition to s∗h+1,∣∣∣{x ∈ D∗(s∗h, s

∗
h+1)|f(x) ̸∈ {cs∗h,s∗h+1

, c̄s∗h,s∗h+1
}
∣∣∣ ≤ ϵ

∣∣∣D∗(s∗h, s
∗
h+1)

∣∣∣. (48)

Proof. By application of Lemma C.1 with δ′ := δ/(|Φ|2 · (nΞ + 1)(N
2
s )) ≤ δ/|Fh|, we have that,

for any fixed hypothesis f ′, the probability that L(f ′) ≤ Lref and Equation 48 is violated is at most
δ/|Fh|. Then by union bound, the probability that any such f ′ exists in Fh is at most 1−δ. However,
by the realizability assumption, we know that an f∗ exists in F which achieves loss L(f∗) = Lref

and also that respects Equation 48. (In particular, this f∗ is simply (ϕ∗
h, ϕ

∗
h+1) composed with a

mapping from the representations corresponding to each (s∗h, s
∗
h+1) to the corresponding cs∗h,s∗h+1

or
c̄s∗h,s∗h+1

which minimizes Equation 22.) Therefore with probability at least 1− δ, the f ∈ Fh which
minimizes L(f) must respect Equation 48.

We now give two simple results for classification under corrupted data. First though, we prove a
minor claim, which is simply some “deferred algebra” for the lemmas which follow:

Proposition C.3. Consider a multiset Z = {z1, ..., zm} of items zi ∈ [0, 1], and a modified multiset
Z ′, also consisting of items in [0, 1], such that the symmetric difference between Z and Z ′ has size
at most k (that is, Z ′ can be constructed from Z by inserting and/or removing a total of at most k
items). Then ∣∣∣∣∣∑

Z

z

|Z|
−
∑
Z′

z′

|Z ′|

∣∣∣∣∣ ≤ k

m
(49)
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Proof. Define Zremoved,Zadded, and Zkept such that Z = Zkept + Zremoved, and Z ′ = Zkept +
Zadded. Note that k = |Zremoved| + |Zadded| and m = |Zremoved| + |Zkept|. We first as-
sume that |Z| ≥ |Z ′|. In other words, we assume |Zremoved| ≥ |Zadded|. Then we can con-
struct Z ′ from Z by (1) removing some arbitrary subset Z ′

removed ⊆ Zremoved from Z , such that
|Z ′

removed| = |Zadded|; then (2) inserting the samples Zadded; and then finally (3) removing the
multiset Z ′′

removed = Zremoved \ Z ′
removed. Let the intermediate set constructed after step (2) be

Z ′′ := (Z \ Z ′
removed) ⊎ Zadded = Z ′ ⊎ Z ′′

removed. Note that |Z| = |Z ′′|, and∣∣∣∣∣∑
Z

z

|Z|
−
∑
Z′′

z′′

|Z ′′|

∣∣∣∣∣ =
∣∣∣∣∣∑

Z

z

|Z|
−
∑
Z′′

z′′

|Z|

∣∣∣∣∣ =
1

|Z|

∣∣∣∣∣∑
Z

z −
∑
Z′′

z′′

∣∣∣∣∣ = 1

|Z|

∣∣∣∣∣ ∑
Z′

removed

z −
∑

Zadded

z

∣∣∣∣∣ ≤ |Zadded|
|Z|

(50)

Additionally, note that:∣∣∣∣∣∑
Z′′

z′′

|Z ′′|
−
∑
Z′

z′

|Z ′|

∣∣∣∣∣ = 1

|Z ′′|

∣∣∣∣∣∑
Z′′

z′′ −
|Z ′′|

∑
Z′ z′

|Z ′|

∣∣∣∣∣ =
1

|Z|

∣∣∣∣∣ |Z ′|
∑

Z′ z′

|Z ′|
+

|Z ′′
removed|

∑
Z′′

removed
zr

|Z ′′
removed|

−
|Z ′′|

∑
Z′ z′

|Z ′|

∣∣∣∣∣ =
1

|Z|

∣∣∣∣∣ |Z
′′
removed|

∑
Z′′

removed
zr

|Z ′′
removed|

−
|Z ′′

removed|
∑

Z′ z′

|Z ′|

∣∣∣∣∣ =
|Z ′′

removed|
|Z|

∣∣∣∣∣
∑

Z′′
removed

zr

|Z ′′
removed|

−
∑

Z′ z′

|Z ′|

∣∣∣∣∣ ≤ |Z ′′
removed|
|Z|

(51)

Finally, by triangle inequality, we have that∣∣∣∣∣∑
Z

z

|Z|
−
∑
Z′

z′

|Z ′|

∣∣∣∣∣ ≤
∣∣∣∣∣∑

Z

z

|Z|
−
∑
Z′′

z′′

|Z ′′|

∣∣∣∣∣+
∣∣∣∣∣∑
Z′′

z′′

|Z ′′|
−
∑
Z′

z′

|Z ′|

∣∣∣∣∣
≤ |Zadded|

|Z|
+

|Z ′′
removed|
|Z|

≤ |Zadded|
|Z|

+
|Zremoved|

|Z|
≤ k

m

(52)

as desired. A similar argument can be made for the case of |Z| < |Z ′|.

We now give the classification lemmas:

Lemma C.4. Given a finite hypothesis class G ⊆ X → {0, 1}, and two datasets (multisets) A,B ⊂
X , let:

g′ := argmin
g∈G

L(g)

L(g) := 1

|A|
∑
a∈A

(1− g(a)) +
1

|B|
∑
b∈B

g(b).
(53)

Let n = min(|A|, |B|), and assume that A and B are constructed as follows:

• A′ ∼ D|A′|
A

• B′ ∼ D|B′|
B

• At most a total of m arbitrary (non-i.i.d.) samples are either added to or removed from A′ or B′,
or moved from A′ to B′ or vice-versa, to create A and B.
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Then, if

n ≥ 8m and n ≥ 128

7
ln(2|G|/δ) (54)

then with probability at least 1− δ,

• If DA = DB , then L(g′) > 1/2

• Conversely, if DA and DB have disjoint support, such that some g∗ ∈ G maps all elements in the
support of DA to 1 and all elements in the support of DB to 0, then L(g′) ≤ 1/2.

Proof. Define

Lclean(g) :=
1

|A′|
∑
a∈A′

(1− g(a)) +
1

|B′|
∑
b∈B′

g(b). (55)

Then, fix any g ∈ G. From some algebra (see Proposition C.3), it can be shown that

Lclean(g)−
2m

n
≤ L(g) ≤ Lclean(g) +

2m

n
(56)

Now, note that Lclean is the sum of |A′| random variables bounded on [0, 1/|A′|], and |B′| random
variables bounded on [0, 1/|B′|], all of which are i.i.d. Then, by Hoeffding’s Lemma and Equation
56, with probability 1− δ/|G|:

E[Lclean(g)]−

√(
1

|A′|
+

1

|B′|

)
ln(2|G|/δ)/2− 2m

n
< Lclean(g)−

2m

n
≤ L(g)

≤ Lclean(g) +
2m

n
< E[Lclean(g)] +

√(
1

|A′|
+

1

|B′|

)
ln(2|G|/δ)/2 + 2m

n

(57)

Because |A′|, |B′| ≥ n − m, and applying union bound over all g ∈ G, we have, with probability
1− δ:

∀g ∈ G, E[Lclean(g)]−
√

ln(2|G|/δ)
n−m

− 2m

n
< L(g) < E[Lclean(g)]+

√
ln(2|G|/δ)
n−m

+
2m

n
. (58)

Note that:
∀g ∈ G, E[Lclean(g)] = 1− Ex∈DA

[g(x)] + Ex∈DB
[g(x)]. (59)

If DA = DB , then ∀g ∈ G, E[Lclean(g)] = 1, so by Equation 58, we have, with probability 1− δ:

∀g ∈ G, 1−
√

ln(2|G|/δ)
n−m

− 2m

n
≤ L(g), (60)

and in particular:

1−
√

ln(2|G|/δ)
n−m

− 2m

n
< L(g′). (61)

Conversely, if DA and DB have disjoint support, such that some g∗ ∈ G maps all elements in the
support of DA to 1 and all elements in the support of DB to 0, then we have:

E[Lclean(g
∗)] = 1− Ex∈DA

[g∗(x)] + Ex∈DB
[g∗(x)] = 1− 1− 0 = 0. (62)

Then, with probability at least 1− δ:

L(g′) ≤ L(g∗) <
√

ln(2|G|/δ)
n−m

+
2m

n
. (63)

To complete the proof, we only need to show that√
ln(2|G|/δ)
n−m

+
2m

n
≤ 1

2
. (64)
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With m ≤ n/8, this condition becomes:√
8 ln(2|G|/δ)

7n
≤ 1

4
. (65)

or
n ≥ 128

7
ln(2|G|/δ) (66)

Lemma C.5. Given a finite hypothesis class Φ ⊂ X → N, and N datasets (multisets)
D1, D2, ...DN ⊂ X , let:

ϕ′ := argmin
ϕ∈Φ

L(ϕ)

L(ϕ) :=
N∑
i=1

[
1

|Di|
∑
x∈Di

(1− 1(ϕ(x)=i))

]
(67)

Let n = mini(|Di|), and assume that each Di is constructed as follows:

• ∀i, D′
i ∼ D|D′

i|
i

• At most a total of m arbitrary (non-i.i.d.) samples are arbitrarily moved between the datasets D′
i,

to create the datasets Di.

Additionally, assume that ∃ϕ∗ ∈ Φ : ∀i, x ∼ Di =⇒ ϕ∗(x) = i. Then, if

n ≥ 8m

ϵ
and n ≥ 64N ln(2|Φ|/δ)

7ϵ2
(68)

then with probability at least 1− δ,

∀i ∈ [N ], Pr
x∼Di

(ϕ′(x) = i) ≥ 1− ϵ. (69)

Proof. Define

Lclean(ϕ) :=

N∑
i=1

 1

|D′
i|
∑
x∈D′

i

(1− 1(ϕ(x)=i))

 . (70)

Then, fix any ϕ ∈ Φ. From Proposition C.3 (regarding each transfer of a sample as removing a
sample into one multiset D′

i, and inserting a new sample into another) we see that:

Lclean(ϕ)−
2m

n
≤ L(ϕ) ≤ Lclean(ϕ) +

2m

n
(71)

Now, note that Lclean is the sum of |D′
1| random variables bounded on [0, 1/|D′

1|], and |D′
2| random

variables bounded on [0, 1/|D′
2|], et cetera, all of which are i.i.d. Then, by Hoeffding’s Lemma and

Equation 71, with probability 1− δ/|Φ|:

E[Lclean(ϕ)]−

√√√√√
∑

i∈[N ]

1

|D′
i|

 ln(2|Φ|/δ)/2− 2m

n
< Lclean(ϕ)−

2m

n
≤ L(ϕ)

≤ Lclean(ϕ) +
2m

n
< E[Lclean(ϕ)] +

√√√√√
∑

i∈[N ]

1

|D′
i|

 ln(2|Φ|/δ)/2 + 2m

n

(72)
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Because ∀i, |D′
i| ≥ n − m, and applying union bound over all ϕ ∈ Φ, we have, with probability

1− δ, ∀ϕ ∈ Φ, :

E[Lclean(ϕ)]−

√
N ln(2|Φ|/δ)
2(n−m)

− 2m

n
< L(ϕ) < E[Lclean(ϕ)] +

√
N ln(2|Φ|/δ)
2(n−m)

+
2m

n
. (73)

Then we have:

E[Lclean(ϕ
′)] < L(ϕ′) +

√
N ln(2|Φ|/δ)
2(n−m)

+
2m

n
≤

L(ϕ∗) +

√
N ln(2|Φ|/δ)
2(n−m)

+
2m

n
< E[Lclean(ϕ

∗)] +

√
2N ln(2|Φ|/δ)

(n−m)
+

4m

n
=√

2N ln(2|Φ|/δ)
(n−m)

+
4m

n
.

(74)

Where we use the fact that, by the definition of ϕ′ as a minimizer, L(ϕ′) ≤ L(ϕ∗), as well as the
fact that, by definition, Lclean(ϕ

∗) = 0.

Also, note that by the definition of Lclean, we have that, for any ϕ,

E[Lclean(ϕ)] =
∑
i∈[N ]

1− Pr
x∼Di

(ϕ(x) = i) (75)

Then, for any particular i ∈ [N ], we have that 1 − Prx∼Di
(ϕ(x) = i) ≤ E[Lclean(ϕ)]. Then, by

Equation 74, we have, ∀i ∈ [N ]:

1− Pr
x∼Di

(ϕ′(x) = i) <

√
2N ln(2|Φ|/δ)

(n−m)
+

4m

n
. (76)

By algebra, our desired result (Equation 69) holds as long as:√
2N ln(2|Φ|/δ)

(n−m)
+

4m

n
≤ ϵ (77)

Which follows from the given conditions on n.

C.3 Main Proof of Theorem 3.1

Here, we present the proof of Theorem 3.1. We first split out correctness proof of the main recursive
step of the algorithm as a lemma:

Lemma C.6. In Algorithm 2, suppose that the ground-truth data coverage assumptions given in
Equations 4,5, and 6 all hold. Additionally, assume that the relative coverage lower-bound η can be
written in the form

η =
e−nΞα/8

1 + e−nΞα/8
(78)

for some non-negative integer nΞ. Further, assume that for each s∗ ∈ S∗
h, there exists some s ∈

Sh that represents approximately the same set of observations. In particular, each index in [|τA|]
appears in at most one set DA,h(s) for some s (and likewise for [|τB |] and DB,h(s)), and there
exists some bijective mapping σh : Sh → S∗

h, such that for most indices j in [|τA|]

j ∈ DA,h(σ
−1
h (ϕ∗

h((τA)h[j]))) (79)
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and for most indices j in [|τB |]

j ∈ DB,h(σ
−1
h (ϕ∗

h((τB)h[j]))), (80)

with at most a combined β(|τA|+ |τB |) indices in either dataset for which this does not hold.

For any ϵ such that:
ϵ <

ν

8
− β, (81)

and

ϵ+ β ≤ qthresh. <
ν(1− ϵ)

2
− β, (82)

where qthresh. is the threshold defined on Line 11 of the algorithm, assume that
∀s∗h, s∗h+1, such that s∗h can transition to s∗h+1,

|D∗(s∗h, s
∗
h+1)| ≥

12800(ln(4|Φ|2/δ) +N2
s ln(nΞ + 1)) ln2(1/η)

νϵ2η2α4
. (83)

Then, with high probability, for each s∗ ∈ S∗
h+1, there exists some s ∈ Sh+1 that represents ap-

proximately the same set of observations. In particular, each index in [|τA|] appears in at most one
set DA(s) for some s (and likewise for [|τB |] and DB(s)), and there exists some bijective mapping
σh+1 : Sh+1 → S∗

h+1, such that for most indices j in [|τA|]

j ∈ DA,h+1(σ
−1
h+1(ϕ

∗
h+1((τA)h+1[j]))) (84)

and for most indices j in [|τA|]

j ∈ DB,h+1(σ
−1
h+1(ϕ

∗
h+1((τB)h+1[j]))), (85)

with at most a combined (β+ ϵ)(|τA|+ |τB |) indices in either dataset for which this does not hold.

Proof. We first show that the datasets of observation pairs Dnew_pairs defined in Line 21 of the algo-
rithm each correspond uniquely to a pair of ground truth latent states in S∗

h×S∗
h+1, such that no pair

of observations is included in more than one such Dnew_pairs sets, and, with high probability, each
pair of observations x, x′ is included in the correct Dnew_pairs corresponding to (ϕ∗

h(x), ϕ
∗
h+1(x

′)),
with up to at most (β + ϵ)(|τA|+ |τB |) exceptions.

For any s∗pred ∈ S∗
h, consider any two distinct s∗, s′∗ ∈ S∗

h+1, such that
|D∗(s∗pred, s

∗)|, |D∗(s∗pred, s
′∗)| > 0.

Recall the assumption that, without loss of generality,

eα ·
πemp.
B (s′∗|s∗pred)
πemp.
B (s∗|s∗pred)

≤
πemp.
A (s′∗|s∗pred)
πemp.
A (s∗|s∗pred)

, (86)

Multiplying both sides by πemp.
A (s∗|s∗pred)/π

emp.
B (s′∗|s∗pred) yields

eα ·
πemp.
A (s∗|s∗pred)

πemp.
B (s∗|s∗pred)

≤
πemp.
A (s′∗|s∗pred)

πemp.
B (s′∗|s∗pred)

, (87)

From the definition of πemp., this is:

eα ·
|D∗

A(s
∗
pred, s

∗)|/|D∗
A(s

∗
pred)|

|D∗
B(s

∗
pred, s

∗)|/|D∗
B(s

∗
pred)|

≤
|D∗

A(s
∗
pred, s

′∗)|/|D∗
A(s

∗
pred)|

|D∗
B(s

∗
pred, s

′∗)|/|D∗
B(s

∗
pred)|

. (88)

Multiplying both sides by |D∗
A(s

∗
pred)|/|D∗

B(s
∗
pred)| and taking the logarithms yields:

α+ ln

(
|D∗

A(s
∗
pred, s

∗)|
|D∗

B(s
∗
pred, s

∗)|

)
≤ ln

(
|D∗

A(s
∗
pred, s

′∗)|
|D∗

B(s
∗
pred, s

′∗)|

)
. (89)



Reinforcement Learning Journal 2025

By the definitions of cs∗h,s∗h+1
and c̄s∗h,s∗h+1

in Corollary C.2, and the fact that ξ = α/4, we see that
there must be at least two values in Ξ between c̄s∗pred,s∗ and cs∗pred,s′∗ ; that is to say:

cs∗pred,s∗ ≤ c̄s∗pred,s∗ < c̄s∗pred,s∗ + ξ < cs∗pred,s′∗ − ξ < cs∗pred,s′∗ ≤ c̄s∗pred,s′∗ (90)

Therefore, by Corollary C.2 we have, with probability at least 1 − δ/2, for any s∗ such that
|D∗(s∗pred, s

∗)| > 0:

• At least (1 − ϵ)|D∗(s∗pred, s
∗)| of the samples in D∗(s∗pred, s

∗) will be mapped by f to cs∗pred,s∗
or c̄s∗pred,s∗

• for some choice of ĉs∗pred,s∗ ∈ {cs∗pred,s∗ , c̄s∗pred,s∗}, at least (1 − ϵ)/2 · |D∗(s∗pred, s
∗)| of the

samples in D∗(s∗pred, s
∗) will be mapped to ĉs∗pred,s∗ .

• By definition, {cs∗pred,s∗ , c̄s∗pred,s∗} ⊂ {ĉs∗pred,s∗ − ξ, ĉs∗pred,s∗ , ĉs∗pred,s∗ + ξ}.

• Furthermore, for no two states s∗, s′∗, with ĉs∗pred,s∗ ∈ {cs∗pred,s∗ , c̄s∗pred,s∗} and ĉs∗pred,s′∗ ∈
{cs∗pred,s′∗ , c̄s∗pred,s′∗} chosen arbitrarily, will the sets {ĉs∗pred,s∗ − ξ, ĉs∗pred,s∗ , ĉs∗pred,s∗ + ξ} and
{ĉs∗pred,s′∗ − ξ, ĉs∗pred,s′∗ , ĉs∗pred,s′∗ + ξ} overlap (By Equation 90).

• Recall that by assumption, |D∗(s∗pred, s
∗)| ≥ ν(|τA| + |τB |). Therefore, at least (ν(1 −

ϵ)/2)(|τA|+ |τB |) of the samples in D∗(s∗pred, s
∗) will be mapped to ĉs∗pred,s∗ .

• The total number of samples in D∗(s∗pred, s
′∗), over all choices of s′∗, which are not mapped by

f to a value in the respective set {ĉs∗pred,s′∗ − ξ, ĉs∗pred,s′∗ , ĉs∗pred,s′∗ + ξ}, is at most ϵ|D∗(s∗pred)|.

• ϵ|D∗(s∗pred)| ≤ ϵ(|τA|+ |τB |).

Therefore, as long as (ν(1− ϵ)/2) > ϵ, then among the pairs in D∗(s∗pred, ·) := ⊎s′∗D∗(s∗pred, s
′∗),

if there is any z ∈ Ξ such that > ϵ(|τA|+ |τB |) of the pairs are mapped by f to z, then we know that
the set of elements in D∗(s∗pred, ·) which are mapped to {z − 1, z, z + 1} contains at least (1 − ϵ)
of the elements of the set D∗(s∗pred, s

∗) for some s∗; furthermore, such a z exists for each possible
value of s∗ where |D∗(s∗pred, s

∗)| > 0, and, for distinct s∗ and s′∗, these values ({z − ξ, z, z + ξ}
and {z′ − ξ, z′, z′ + ξ}) are non-overlapping. Consequently, by identifying subsets of D∗(s∗pred, ·)
of size greater than ϵ(|τA|+ |τB |) that f maps to the same value, and expanding these subsets to the
elements in D∗(s∗pred, ·) mapped to adjacent values in Ξ, we can partition D∗(s∗pred, ·) into subsets
corresponding to each D∗(s∗pred, s

∗), with at most ϵ|D∗(s∗pred, ·)| errors.

Note however that we do not have access to D∗(s∗pred, ·), only to pairs(spred) (where σh(spred) =
s∗pred). However, by assumption, D∗(s∗pred, ·) and pairs(spred) differ (in terms of symmetric differ-
ence) by at most β(|τA|+ |τB |). Therefore, we claim that, if

ϵ+ β ≤ qthresh. <
ν(1− ϵ)

2
− β (91)

then, we can identify values of ĉs∗pred,s′∗ (for some s′∗) as those values jξ− nΞξ
2 for which (as shown

in Line 20 of Algorithm 2):

pred_succ[j] > qthresh.(|τA|+ |τB |), (92)

and, conversely, if

pred_succ[j] ≤ qthresh.(|τA|+ |τB |), (93)

then jξ − nΞξ
2 does not correspond to some c̄s∗pred,s′∗ or cs∗pred,s′∗ .

To validate this claim, note that if Equation 91 holds, then:
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# of samples (x, x′) in pairs(spred) such that f(x, x′) = z, if ̸ ∃s∗ : z ∈ {c̄s∗pred,s∗ , cs∗pred,s∗} ≤

# of samples (x, x′) in D∗(s∗pred) such that f(x, x′) = z, if ̸ ∃s∗ : z ∈ {c̄s∗pred,s∗ , cs∗pred,s∗}

+ |pairs(spred) \ D∗(s∗pred)| ≤
ϵ(|τA|+ |τB |) + |pairs(spred) \ D∗(s∗pred)| ≤

(Note this line:) ϵ(|τA|+ |τB |) + β(|τA|+ |τB |) ≤
qthresh.(|τA|+ |τB |) <

(ν(1− ϵ)/2)(|τA|+ |τB |)− β(|τA|+ |τB |) ≤
(ν(1− ϵ)/2)(|τA|+ |τB |)− |D∗(s∗pred) \ pairs(spred)| ≤

# of samples (x, x′) in D∗(s∗pred) such that f(x, x′) = z, if ∃s∗ : z ∈ {c̄s∗pred,s∗ , cs∗pred,s∗}

− |D∗(s∗pred) \ pairs(spred)| ≤
# of samples (x, x′) in pairs(spred) such that f(x, x′) = z, if ∃s∗ : z ∈ {c̄s∗pred,s∗ , cs∗pred,s∗}

Therefore, for any s∗pred, we can define:

D∗
new_pairs(s

∗
pred, j, j

′) := {(x, x′)|(x, x′) ∈
j′⊎

k=j−1

pred_succ∗[k]} (94)

where
pred_succ∗[k] := {(xh, xh+1) ∈ D∗(s∗pred, ·)|f(xh, xh+1) = kξ − nΞξ

2
}. (95)

If j and j′ are chosen as in Line 19 and 20 of Algorithm 2, then for any pair (s∗pred, s
∗) there

is a unique set D∗
new_pairs(s

∗
pred, j, j

′) containing at least a (1 − ϵ) fraction of the samples in
D(s∗pred, s

∗). Furthermore, note that by assumption, summing over all pairs (s∗pred, s
∗), the sets

D∗
new_pairs(s

∗
pred, j, j

′) and Dnew_pairs can differ by at most β(|τA| + |τB |) members in total (be-
cause all datasets D∗(s∗pred, ·) and pairs(spred) differ by at most this many members in total). There-
fore, we have shown that, with high probability, each pair of observations x, x′ is included in the
correct Dnew_pairs corresponding to (ϕ∗

h(x), ϕ
∗
h+1(x

′)), with up to at most (β + ϵ)(|τA| + |τB |)
exceptions. (Furthermore, different sets Dnew_pairs are non-overlapping by construction.) Then we
only need to show that, with high probability, Line 26 of Algorithm 2 will only merge two sets Dnew

if these sets correspond to the same latent state. By Lemma C.4, taking a union bound over all pairs
of latent-state sequential latent-state pairs, we have, with probability at least 1− δ/2 that, if

ν ≥ 8(β + ϵ) and |D∗(s∗h, s
∗
h+1)| ≥

128

7
ln(4 · (# of latent state pairs) · |Gh+1|/δ) (96)

then the classifiers trained in Line 25 will have loss greater than 1/2 if and only if the two datasets
being compared correspond to the same latent state. Also note that (# of latent state pairs) ≤ 1/ν;
then, under the assumption that |Gh+1| ≤ |Φ|(≤ |Φ|2), we have

128

7
ln(4 · (# of latent state pairs) · |Gh+1|/δ) ≤

128

7
(ln(4|Φ2|/δ) + ln(1/ν)). (97)

Note that by Equation 40 (and ξ = α/4), we have

16 ln(1/η)

ηα2
≥ 1, (98)

so we can write:

128

7
ln(4·(# of latent state pairs)·|Gh+1|/δ) ≤

128 · 256
7

(ln(4|Φ2|/δ) + ln(1/ν)) ln2(1/η)

η2α4
. (99)
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Also noting that ϵ ≤ 1, and ln(4|Φ|2/δ) ≥ ln(4) ≥ 1, and 1/ν ≥ {ln(1/ν), 1}, we have:

128

7
ln(4 · (# of latent state pairs) · |Gh+1|/δ) ≤

128 · 256
7

(ln(4|Φ2|/δ) + ln(4|Φ2|/δ)) ln2(1/η)
νϵ2η2α4

.

(100)
Then, because N2

s ln(nΞ + 1) > 0, and 128 · 256 · 2/7 ≤ 12800, we have

128

7
ln(4 · (# of latent state pairs) · |Gh+1|/δ) ≤

12800(ln(4|Φ2|/δ) +N2
s ln(nΞ + 1)) ln2(1/η)

νϵ2η2α4
.

(101)
Therefore, the number of observations of each latent state pair |D∗(s∗h, s

∗
h+1)| assumed in Equation

83 is sufficient to ensure that all datasets Dnew will be merged correctly. Then, by union bound, with
probability at least 1 − δ, the samples corresponding to the indices in DA,h+1(s) and DB,h+1(s)
will correspond to the observations of a unique latent state s∗, with up to at most (β+ϵ)(|τA|+ |τB |)
exceptions.

The following lemma is essentially Theorem 3.1, with a minor additional assumption:

Lemma C.7. Assume that Algorithm 2 is given datasets τA and τB such that the assumptions given
in Equations 1, 4,5, and 6 all hold. Additionally, assume that the relative coverage lower-bound η
can be written in the form

η =
e−nΞα/8

1 + e−nΞα/8
(102)

for some non-negative integer nΞ. Then, for any given δ, ϵ0 ≥ 0, if
∀s∗h, s∗h+1, such that s∗h can transition to s∗h+1,

|D∗(s∗h, s
∗
h+1)| ≥

819200H2(ln(8H|Φ|2/δ) +N2
s ln(nΞ + 1)) ln2(1/η)

νη2α4
·max

(
1

ν2
,

1

ϵ20ν
′2

)
,

(103)
then, with probability at least 1 − δ, the encoders ϕ′

h returned by the algorithm will each have
accuracy on at least 1− ϵ0, in the sense that, under some bijective mapping σh : Sh → S∗

h,

∀s∗ ∈ S∗
h, Pr

x∼Q(s∗,P e
h)
(ϕ′

h(x) = σ−1
h (ϕ∗

h(x))) ≥ 1− ϵ0. (104)

Proof. Note that the conclusion applies at timestep h = 1 vacuously: there is only one latent state,
and ϕ′

1 returns a constant value. Further, DA,1(s1) and DB,1(s1) contain exactly the sets of trajec-
tories in τA and τB which visit s∗1 at step 1.

For subsequent steps, we apply Lemma C.6 recursively, with:

• ϵ = min( ν
8H , ν′ϵ0

8H )

• β = (h− 1)ϵ

• δLemma C.6 := δ/(2H).

Note that the assumptions in Equations 81 and 82 are met, because:

ϵ = ϵ+ β − β = hϵ− β < Hϵ− β = Hmin(
ν

8H
,
ν′ϵ0
8H

)− β <
Hν

8H
− β <

ν

8
− β (105)

and

ϵ+ β = hmin

(
ν

8H
,
ν′ϵ0
8H

)
≤ hν

8H
= qthresh. (106)
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and

qthresh. =

qthresh. + β +
ϵν

2
− β − ϵν

2
=

hν

8H
+ (h− 1 + ν/2)min

(
ν

8H
,
ν′ϵ0
8H

)
− β − ϵν

2
≤

hν

8H
+

(h− 1 + ν/2)ν

8H
− β − ϵν

2
<

2Hν

8H
− ϵν

2
− β <

ν(1− ϵ)

2
− β.

(107)

Also, note that the assumption of Equation 83 is met (by comparison to Equation 103, with ϵ =

min( ν
8H , ν′ϵ0

8H ) and δLemma C.6 := δ/(2H).) Finally, the inductive hypothesis, that DA,h(s) and
DB,h(s) correspond to observations of some state s∗, with at most β(|τA| + |τB |) exceptions, can
be shown to hold. In particular, at iteration h ≥ 2, we have that the input dataset has at most
βh(|τA|+|τB |) = (βh−1+ϵ)(|τA|+|τB |) errors: we can confirm that βh = (h−1)ϵ = (h−2)ϵ+ϵ =
βh−1 + ϵ for all h ≥ 2, with β1 = 0 (because there are no errors in DA,1(s1) and DB,1(s1)).

Therefore, by induction and union bound, we can conclude that, with probability at least 1−δ/2, for
each h ∈ [H] and each s∗ ∈ S∗

h, there exists some s ∈ Sh that represents approximately the same
set of observations. In particular, each index in [|τA|] appears in at most one set DA(s) for some s
(and likewise for [|τB |] and DB(s)), and there exists some bijective mapping σh : Sh → S∗

h, such
that for most indices j in [|τA|]

j ∈ DA,h(σ
−1
h ((ϕ∗(τA)h[j]))) (108)

and for most indices j in [|τA|]

j ∈ DB,h(σ
−1
h (ϕ∗((τB)h[j]))), (109)

with at most a combined (H−1)min( ν
8H , ν′ϵ0

8H )(|τA|+ |τB |) indices in either dataset for which this
does not hold. Note in particular that fewer than ν′ϵ0

8 (|τA|+ |τB |) indices will be mis-categorized at
any timestep. Then, by application of Lemma C.5 with n ≥ ν′(|τA|+ |τB |), m = ν′ϵ0

8 (|τA|+ |τB |),
δLemma C.5 = δ/(2H) and ϵ = ϵ0, we have that as long as:

ν′(|τA|+ |τB |) ≥
64 ·maxi |Si| · ln(4H|Φ|/δ)

7ϵ20
, (110)

then, by union bound, with probability at least 1− δ, the encoders learned on line 46 of Algorithm 2
will each have accuracy at least 1− ϵ0 as in Equation 104, as desired. All that remains to be shown
is that Equation 110 holds. Note that this equation can be re-written as:

|τA|+ |τB | ≥
64 ·maxh |Sh| · ln(4H|Φ|/δ)

7ν′ϵ20
. (111)
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Then, we have:

|τA|+ |τB | ≥
|D∗(s∗h, s

∗
h+1)| ≥

819200H2(ln(8H|Φ|2/δ) +N2
s ln(nΞ + 1)) ln2(1/η)

νη2α4
·max

(
1

ν2
,

1

ϵ20ν
′2

)
≥

819200H2(ln(8H|Φ|2/δ) +N2
s ln(nΞ + 1)) ln2(1/η)

ϵ20ν
′2νη2α4

≥

(by Equation 98)
3200H2(ln(8H|Φ|2/δ) +N2

s ln(nΞ + 1))

ϵ20ν
′2ν

≥

(log. of integer ≥ 0)
3200H2 ln(8H|Φ|2/δ)

ϵ20ν
′2ν

≥

(By definition, (1/ν′ ≥ max
h

|Sh|)
3200H2 maxh |Sh| ln(8H|Φ|2/δ)

ϵ20ν
′ν

≥

64 ·maxh |Sh| · ln(4H|Φ|/δ)
7ν′ϵ20

(112)

completing the proof.

Finally, we prove Theorem 3.1:

Theorem 3.1. Assume that CRAFT (Algorithm 2 in the Appendix) is given datasets τA and τB such
that the assumptions given in Equations 1, 4,5, and 6 all hold. Then there exists an

f

(
H, |Φ|, Ns,

1

δ
,
1

ϵ0
,
1

ν
,
1

ν′
,
1

η
,
1

α

)
∈ O∗

(
H2(ln(|Φ|/δ) +N2

s )

νη2α4
·max

(
1

ν2
,

1

ϵ20ν
′2

))
, (16)

where O∗(f(x)) := O(f(x) logk(f(x))), such that for any given δ, ϵ0 ≥ 0, if ∀s∗h, s∗h+1 such that s∗h
can transition to s∗h+1, |D∗(s∗h, s

∗
h+1)| ≥ f

(
H, |Φ|, Ns,

1
δ ,

1
ϵ0
, 1
ν ,

1
ν′ ,

1
η ,

1
α

)
, then, with probability

at least 1− δ, the encoders ϕ′
h returned by the algorithm will each have accuracy on at least 1− ϵ0,

in the sense that, under some bijective mapping σh : Sh → S∗
h,

∀s∗ ∈ S∗
h, Pr

x∼Q(s∗,P e
h)
(ϕ′

h(x) = σ−1
h (ϕ∗

h(x))) ≥ 1− ϵ0. (17)

Proof. This final theorem follows close-to-directly from Lemma C.7, with the caveat that we no
longer assume that η = (e−nΞα/8)/(1 + e−nΞα/8) for some non-negative integer nΞ. To do this, it
is important to note that the provided η is a lower bound: if we replace η in the algorithm with any
arbitrary η′ ≤ η, then Lemma C.7 will still apply, with a sample-complexity in terms of η′ rather
than η. Similarly, α is a lower-bound, and so Lemma C.7 will apply for any smaller α′. Our task is
then to replace η and α with some η′ and α′, such that the asymptotic sample complexity as given
by Equation 16 still applies. For simplicity, we can write the sample-complexity given in Equation
103 as:

|D∗(s∗h, s
∗
h+1)| ≥

(C1 + C2 ln(nΞ + 1)) ln2(1/η′)

η′2α′4 , (113)

where C1 and C2 are independent of α, η, and nΞ. Now, we must choose η′ such that:

η ≥ η′ =
e−nΞα/8

1 + e−nΞα/8

(
=

1

1 + enΞα/8

)
. (114)

An obvious choice is to take (recalling that by definition, η ≤ 1/2, so ln(η−1 − 1) > 0):

nΞ := ⌈8 ln(η−1 − 1)/α⌉ (115)
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so that:
η′ =

1

1 + e⌈8 ln(η−1−1)/α⌉α/8 (116)

Then we have:
η ≥ η′ ≥ 1

1 + e(8 ln(η−1−1)/α+1)α/8
≥ η · e−α/8 (117)

so that we have sufficient samples for Lemma C.7 if:

|D∗(s∗h, s
∗
h+1)| ≥

(C1 + C2 ln(8 ln(η
−1 − 1)/α′ + 2))(ln(1/η) + α′/8)2eα

′/4

η2α′4 , (118)

Strictly speaking, Equation 118 with α′ = α satisfies the “big-O” asymptotic complexity given in
Equation 16 in terms of 1/α and 1/η as these quantities approach infinity. However, if we just take
α′ = α, notice that Equation 118 seems to require an exponentially large number of samples for
large α. Recall though that α is a lower bound, so we can simply select an arbitrarily lower α′ in
the case of large α. In particular, if we take α′ = min(1, α), then α′ ≤ α as needed, and (ignoring
lower-order polynomial terms and all logarithmic factors), the dependence of our sample complexity
on α becomes:

min(eα/4/α4, e1/4/14) = min(eα/4/α4, e1/4) ≤ C · 1/α4 (119)

so that the sample complexity is bounded even for large α.

These modifications to η and α are performed on Lines 1-3 of Algorithm 2, so the overall asymptotic
sample complexity given in Equation 16 holds for the algorithm overall, with the input α and η.

D Experiment Details

For the hyperparameters η, ν and α of CRAFT, we use the “population” values based on the ground-
truth dynamics and policy. In other words, we set:

eα = min
s∗h,s

∗
h+1,s

′∗
h+1

max

[(
PrπA

(s′∗h+1|s∗h)/PrπA
(s∗h+1|s∗h)

PrπB
(s′∗h+1|s∗h)/PrπB

(s∗h+1|s∗h)

)
,

(
PrπB

(s′∗h+1|s∗h)/PrπB
(s∗h+1|s∗h)

PrπA
(s′∗h+1|s∗h)/PrπA

(s∗h+1|s∗h)

)]
=

0.75/0.25

0.5/0.5
= 3

(120)

so α = ln(3), and

ν = min
s∗h,s

∗
h+1

PrπA
(s∗h, s

∗
h+1) + PrπB

(s∗h, s
∗
h+1)

2
=

1/4 + 1/16

2
=

5

32
, (121)

and

η = min
s∗h,s

∗
h+1

PrπB
(s∗h, s

∗
h+1)

PrπA
(s∗h, s

∗
h+1) + PrπB

(s∗h, s
∗
h+1)

=
1/16

1/4 + 1/16
=

1

5
. (122)

For the “Single observation classification” and “Paired observation classification” baselines, we se-
lect the feature ϕh (or feature-pair ϕh, ϕh+1) such that the mutual information between ϕh(xh)
(respectively, (ϕh(xh), ϕh+1(xh+1))) and the agent’s identity is maximized on the collected trajec-
tories.

The “Average Encoder Accuracy” was computed based on the “population” behavior of the envi-
ronment: that is, the accuracy of encoder ϕ′

h which extracts the feature (s∗h XOR eih) from xh is
computed as max(Pr(eih = 1),Pr(eih = 0)), which can be determined analytically from the param-
eters of Markov chain ei. For a given algorithm, this quantity was then averaged over timesteps for
the returned encoder.

For the “Paired observation classification” baseline, note that for timesteps h = 2 through h = H−1,
the suggested baseline could refer two distinct encoders: the encoder ϕh such that ϕh(xh) and some
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ϕh+1(xh+1) are together most informative at predicting the agent observing (xh, xh+1); or the
encoder ϕ′

h such that ϕ′
h(xh) and some ϕh−1(xh−1) are together most informative at predicting the

agent observing (xh−1, xh). In reporting the final encoder accuracies, took the average accuracy of
these two encoders.


