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Abstract

As AI systems become increasingly autonomous, reliably aligning their decision-making
to human preferences is essential. Inverse reinforcement learning (IRL) offers a promis-
ing approach to infer preferences from demonstrations. These preferences can then
be used to produce an apprentice policy that performs well on the demonstrated task.
However, in domains like autonomous driving or robotics, where errors can have se-
rious consequences, we need not just good average performance but reliable policies
with formal guarantees. But obtaining sufficient human demonstrations for reliability
guarantees can be costly. Active IRL addresses this challenge by strategically selecting
the most informative scenarios for human demonstration. We introduce PAC-EIG, an
information-theoretic acquisition function that directly targets probably-approximately-
correct (PAC) guarantees for the learned policy – providing the first such theoretical
guarantee for active IRL with imperfect expert demonstrations. Our method maximises
information gain about immediate regret, efficiently identifying which states require
further demonstration to ensure reliable apprentice behaviour. We also present an alter-
native method for scenarios where learning the reward itself is the primary objective.
We prove convergence bounds, illustrate failure modes of prior heuristic methods, and
demonstrate our approach experimentally.

1 Introduction

Stuart Russell suggested three principles for the development of beneficial artificial intelligence: its
only objective is realizing human preferences, it is initially uncertain about these preferences, and its
ultimate source of information about them is human behavior (Russell, 2019). Apprenticeship learning
via Bayesian inverse reinforcement learning (IRL) can be understood as a possible operationalization
of these principles: Bayesian IRL starts with a prior distribution over reward functions representing
initial uncertainty about human preferences. It then combines this prior with demonstration data from
a human expert acting approximately optimally with respect to the unknown reward, to produce a
posterior distribution over rewards. In apprenticeship learning, this posterior over rewards is then
used to produce a policy that should perform well with respect to the unknown reward function.

However, getting human demonstrations requires scarce human time. Also, many risky situations
where we would wish AI systems to behave especially reliably may be rare in naturally occurring
demonstration data. Bayesian active learning can help with both by giving queries to a human
demonstrator that are likely to bring the most useful information about the reward.
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(a) Ground-truth rewards.
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(b) Current belief over rewards. (c) Reward EIG of each initial state.

Figure 1: Illustration of the active IRL task. (a) shows a gridworld and its true rewards. The lower
left corner has a "jail" state with negative reward from which an agent cannot leave. The starred green
state is the terminal "goal" state with a large positive reward. The brown, blue, and red states are
"mud", "water", and "lava" type states respectively, whose rewards are unknown to the IRL agent.
The IRL agent tries to learn the rewards of these three state types from expert demonstrations. (b)
shows current distributions over the rewards of the "mud", "water", and "lava" state types respectively,
at some particular step of the active learning process. These learned reward distributions are used to
calculate an acquisition function (here the reward EIG) of obtaining another expert demonstration
starting from each given state, shown in (c). In this case, a demonstration starting in the bottom right
state gives the most information about the unknown reward parameters.

Most prior methods for active IRL (Lopes et al., 2009; Brown et al., 2018; Metelli et al., 2021)
queried the expert for action annotations of particular isolated states. However, in domains such as
autonomous driving with a high frequency of actions, it can be much more natural for the human
to provide whole trajectories – say, to drive for a while in a simulator – than to annotate a large
collection of unrelated snapshots. There is one previous paper on active IRL with full trajectories
(Kweon et al., 2023) suggesting a heuristic acquisition function whose shortcomings can, however,
completely prevent learning, as we will demonstrate. We instead suggest using the principled tools of
Bayesian active learning for the task.

The article provides the following contributions:

1. We explain and demonstrate failure modes of existing heuristic methods for active IRL when
the goal is to produce a well-performing apprentice policy. In particular, most previous methods
are limited to querying for only a single state annotation, as opposed to whole trajectories.
Furthermore, we show that the only prior method designed for querying whole trajectories can
result in repeatedly querying a single uninformative state forever.

2. We propose PAC-EIG, an acquisition function based on expected information gain that directly
targets probably approximately correct (PAC) guarantees for the apprentice policy – providing the
first such theoretical guarantee for active IRL with imperfect expert demonstrations.

3. We also present Reward-EIG as an alternative when learning the reward function itself is the
primary objective.

4. We prove convergence bounds showing the number of expert demonstrations needed to achieve
PAC guarantees.

5. We illustrate the performance of our methods in a set of gridworld experiments, demonstrating
their effectiveness compared to prior heuristic approaches.
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2 Task formulation

Let M = (S,A, p, r, γ, tmax, ρ) be a parameterized Markov decision process (MDP), where S and
A are finite state and action spaces respectively, p : S ×A → P(S) is the transition function where
P(S) is a set of probability measures over S, r : S × A → R is an (expected) reward function,1

γ ∈ (0, 1) is a discount rate, tmax ∈ N∪{∞} is the time horizon, and ρ is the initial state distribution.
We assume the learner has full knowledge of the MDP except for the reward.

We assume we are initially uncertain about the reward r, and our initial knowledge is captured
by a prior distribution p(r) over rewards, which is a distribution over R|S||A| – a space of vectors
representing the reward associated with each state-action pair. We also have access to an expert that,
given an initial state s0 of the MDP, can produce a trajectory τi =

(
(si0, a

i
0), . . . , (s

i
ni
, aini

)
)
, where

si0 ∼ ρ, st+1 ∼ p(·|st, at), and

πE(at|st) =
exp(βQ∗(st, at))∑

a′∈A exp(βQ∗(st, a′))
, (1)

which is called a Boltzmann-rational policy, given the optimal Q-function Q∗ and a coefficient β
expressing how close to optimal the expert behaviour is (where β = 0 corresponds to fully random
behaviour and β → +∞ would yield the optimal policy). We assume β is known as is usual in
related IRL literature (Ramachandran & Amir, 2007; Chan & van der Schaar, 2021; Kweon et al.,
2023; Bajgar et al., 2024). We will also denote by πEr the hypothetical expert policy that would
correspond to a reward r.

The task of Bayesian active inverse reinforcement learning is to sequentially query the expert to
provide demonstrations from initial states ξ1, . . . , ξN ∈ S to gain maximum information about the
unknown reward.2 We start with a (possibly empty) set of expert trajectories D0 and then, at each step
of active learning, we choose an initial state ξi for the MDP, from which we get the corresponding
expert trajectory τi. We then update our demonstration dataset to Di = Di−1 ∪ {τi}, and the
distribution over rewards to p(r|Di), which we again use to select the most informative environment
setup ξi+1 in the next step. We repeat until we exhaust our limited demonstration budget N .

This can be done with one of two possible objectives in mind.

The first, which we call the reward-learning objective, is relevant when our primary interest is in the
reward itself, e.g. when using IRL to understand the motivations of mice in a maze (Ashwood et al.,
2022) or the preferences of drivers (Huang et al., 2022). In the active setting, we operationalize this
objective as trying to minimize the entropy of the posterior distribution over rewards, once all expert
demonstrations have been observed. This is equivalent to maximizing the log likelihood of the true
parameter value in expectation, or to maximizing the mutual information between the demonstrations
and the reward.

The second objective, which we term the apprenticeship-learning objective, uses the final posterior
p(r|DN ) to produce an apprentice policy

πA
N := argmaxπEr|DN

[Eτ [
∑

st,at∈τ

γtr(st, at)]] ,

where τ is a trajectory with s0 ∼ ρ, st+1 ∼ p(·|st, at) and at = πA
N (st). The argmax can be resolved

by solving the forward planning problem for finding the optimal policy for the expected reward with
respect to the learner’s current posterior over rewards (e.g. using generalized policy iteration (Sutton
& Barto, 2018)). Going forward, we generally assume a deterministic apprentice policy, i.e. the class

1Our formulation permits the reward to be stochastic. However, our expert model (1) depends on the rewards only via
the optimal Q-function, which in turn depends only on the expected reward. Thus, the demonstrations can only ever give us
information about the expectation. Throughout the paper, the learnt reward function can be interpreted either as modeling a
deterministic reward, or an expectation of a stochastic reward.

2Since the queries ξi in this paper are limited to the choice of the initial state s0, ξ and s0 are used somewhat interchangeably
throughout the paper.
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of policies we search over is the set of mappings π : S → A, though stochastic policies could easily
be included as well. The apprentice will thus be distinct from the stochastic (Boltzmann rational)
expert policy and with enough knowledge can have higher expected return, since the expert gives
non-zero probability to sub-optimal actions.

However, maximising expected return may not be sufficient in safety-critical domains. We may
instead require a reliable apprentice policy that performs well with high probability – formally, one
that is probably approximately correct (PAC). This motivates active learning strategies that efficiently
gather the information needed to provide such guarantees, which we develop in this work.

When working with a fixed set of demonstrations in IRL, these objectives are generally closely
connected – learning the best possible reward function enables learning a good apprentice policy.
However, in the active setting, they can come apart – for instance, once we know an action a leads to
lower return than a′ in a particular state, we may no longer need to gather further information about
rewards in these states for the apprenticeship learning objective as we already know to choose the
better one, while the reward-learning objective may motivate further queries to further reduce the
uncertainty.

Stemming from a common inspiration in Bayesian active learning, we will present an acquisition
function tailored to each of these objectives.

Notation By V π
r we denote the state-value function of policy π with respect to reward r. V ∗

r

is then the value function of the optimal policy with respect to r. A lack of subscript, as in V ∗,
indicates (optimal) value with respect to the true reward (since the true reward is not known by the
learner, this generally needs to be treated as random variable). By Gr(τ) we denote the return of
trajectory τ with respect to r. By Rπ

r (s0) we denote the regret of policy π starting from state s0, i.e.
Rπ

r (s0) := V ∗
r (s0)− V π

r (s0), and Rπ
r := Es0∼ρR

π
r (s0). We also call immediate regret the quantity

R∗
π,r(s) = V ∗(s)−Q∗(s, π(s)) and also denote by R∗

π,r(s, a) = max{0, Q∗(s, a)−Q∗(s, π(s))}
the immediate regret relative to action a in state s.

3 Related work

IRL was first introduced by Russell (1998), preceded by the closely related problem of inverse
optimal control formulated by Kalman (1964). See Arora & Doshi (2021) and Adams et al. (2022)
for recent reviews of the already extensive literature on IRL. In our work we build upon the Bayesian
formulation of the problem introduced by Ramachandran & Amir (2007).

We will now summarize prior work on active IRL in particular. We first describe a number of methods
which query for single state annotations (which can be cast into our framework from Section 2
as trajectories of length one), and then describe the one previous method which queries for whole
trajectories. Lastly, we review a few other works for setups not directly comparable to ours.

3.1 Active learning with single action annotations

The concept of active IRL was first introduced by Lopes et al. (2009). The authors propose an
acquisition function equal to the entropy of the posterior predictive distribution about the Boltzmann
expert policy, i.e. they query a state maximizing αLopes

n (s) = H(Πs|Dn) where Πs is the vector of
expert action probabilities in state s (according to the posterior predictive distribution).

An issue with this approach is that H(Πs|Dn) does not take into account the effect of improved
knowledge on the apprentice policy. For example, we may know the optimal action in a particular
state, but with high uncertainty about the exact action probabilities, while another state may have
uncertainty about the optimal action, but lower entropy about exact probabilities of actions. Then,
αLopes
n (s) would prioritize the latter, which may be suboptimal from the apprenticeship learning

perspective. See Appendix A for a full example.



PAC Apprenticeship Learning with Bayesian Active IRL

Brown et al. (2018) query the expert by maximising the δ-value-at-risk of the policy loss (i.e. regret)
of the current apprentice policy starting from the given initial state, computed as

αBrown
n (s) = VaRδ

(
V π∗

(s)− V πA
(s)|Dn

)
. (2)

This is a risk-aware approach: the states with a high risk of the apprentice action being much worse
than the expert’s action are queried. A limitation of this approach is that regret attributed to some
initial state s may be due to a choice made further along the trajectory where an expert query would
be more informative as shown in Appendix A.

3.2 Active learning with full trajectories

Kweon et al. (2023) query full trajectories with a starting state s0 chosen to maximise

αKweon
n (s0) = Eτ∼π̂Dn

E

[∑
st∈τ

α̃n(st)|s0
]
, (3)

where
α̃n(s) := H(π̂Dn

E (a|s)) :=
∑
a

−π̂Dn

E (a|s) log π̂Dn

E (a|s),

is the entropy of π̂Dn

E , the posterior predictive distribution over the expert actions at state s, estimated
from demonstration data Dn.

However, note that this action entropy can remain high even in states where we have perfect knowledge
but multiple actions are equally good, so the Boltzmann rational policy chooses them with equal
probabilities, thus resulting in high action entropy. However, querying for extra demonstrations in
such states will bring no useful knowledge. In fact, this can result in learning getting completely
stuck, sometimes right at the beginning, preventing any learning from taking place. We give an
example of this in Section 6.

3.3 Other settings

Instead of querying at arbitrary states, Losey & O’Malley (2018) and Lindner et al. (2022) synthesize
a policy that explores the environment to produce a trajectory which subsequently gets annotated
by the expert. We instead let the expert produce the trajectory. Buening et al. (2024) query full
trajectories in the context of IRL, where the active component arises in the choice of a transition
function from a set of transition functions at each step. Büning et al. (2022) also query full trajectories
in a different context involving two cooperating autonomous agents. In Sadigh et al. (2017), the
expert is asked to provide a relative preference between two sample trajectories synthesized by the
algorithm. While this generally provides less information per query than our formulation, it is a
useful alternative for situations where providing high-quality demonstrations is difficult for humans.

On the side of theoretical sample complexity of (active) IRL, all prior work assumes a perfectly
rational expert policy, which is a stronger assumption than our Boltzmann rationality. In particular,
seeing each state once is enough to determine the optimal policy. The first lower bound on the
complexity of IRL was given by Komanduru & Honorio (2021) for the case of a β-separable finite
set of candidate rewards. Metelli et al. (2021); Lindner et al. (2022); Metelli et al. (2023) then focus
on recovering a feasible reward set in settings where also the transition dynamics are only estimated,
and address the problem of the transferrability of the learnt reward to environments with different
dynamics.

4 Method

We propose PAC-EIG, an acquisition function based on expected information gain (EIG) that aims to
produce a probably approximately correct (PAC) apprentice policy. Our approach builds on principled
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Bayesian experimental design (Rainforth et al., 2023) to efficiently identify which states require
further expert demonstrations to ensure the apprentice policy meets PAC criteria. We then also show
how EIG can be adapted to the reward-learning objective, resulting in the Reward-EIG acquisition
function.

4.1 PAC-EIG: Information Gain for Reliable Policies

Our goal is to produce an apprentice policy that is probably approximately correct – that is, with high
probability (1− δ), the policy’s regret is bounded by ϵ. To achieve this efficiently, we need to identify
states where the current apprentice policy might be making poor decisions.

We define the immediate regret of the apprentice policy πA in state s as:

R∗
πA,r(s) = V ∗

r (s)−Q∗
r(s, π

A(s)) (4)

which captures how much value we lose by following the apprentice policy in state s compared
to optimal behavior. This can be decomposed per action as R∗

πA,r(s, a) = max{0, Q∗
r(s, a) −

Q∗
r(s, π

A(s))}, representing the regret relative to choosing action a instead of the apprentice’s choice.
This regret is unknown to us, so we need to treat it as a random variable. We build on the intuition that
learning about the immediate regret in various states allows us to identify high-regret states where the
apprentice policy can be improved.

For computational tractability and theoretical analysis, we discretize the immediate regret into a
ternary variable Es,a that indicates whether the action a in state s is approximately correct or not:

Es,a =


“correct” if R∗

πA,r(s, a) = 0

“approximately correct” if 0 < R∗
πA,r(s, a) ≤ ϵ(1− γ)

“not approximately correct” if R∗
πA,r(s, a) > ϵ(1− γ)

(5)

Our acquisition function then maximizes the expected information gain about these discretized regret
values:

αPAC-EIG
n (s0) := I(τ ;E|s0,Dn) (6)

where E = (Es,a)s∈S,a∈A represents the discretized regret across all state-action pairs, and τ is the
expert trajectory starting from s0. Note that if the apprentice policy is approximately correct in all
states with probability at least 1 − δ in the immediate regret sense, then we also satisfy the PAC
criterion globally.

4.2 Computing PAC-EIG

To compute PAC-EIG in practice, we leverage our Bayesian IRL posterior over Q-values. Given Qn,
a set of M samples from p(Q∗|Dn), we can:

1. For each Q-value sample, compute the discretized regret values Es,a for all state-action pairs.
Note that multiple Q-value samples may map to the same discretized configuration E, so we
obtain at most ME ≤ M distinct samples of E.

2. Given a Q-value sample Q∗
i , sample expert trajectories τ starting from s0 using the Boltzmann

policy corresponding to Q∗
i .

3. Estimate the expected information gain using the standard Monte Carlo estimator as

αPAC-EIG
n (s0) ≈

1

M

M∑
i=1

[
log p(τ (i)|E(i), s0)− log p(τ (i)|s0)

]
(7)

where the trajectory probability given E can be computed as p(τ |E, s0) =
∏

(st,at)∈τ p(at|st, E)
(omitting the transition probabilities since they would cancel out in the log-ratio). To compute
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p(at|st, E), we average the expert action probabilities over all Q-value samples that map to the
same discretized configuration: p(at|st, E) = 1

|QE |
∑

Q∗∈QE
p(at|st, Q∗), where QE denotes

the set of Q-value samples corresponding to the discretized regret configuration E.

For computational efficiency with larger state spaces, we can restrict attention to the discretized
regret values for states near the trajectory, as regret values for distant states have minimal impact on
the expert’s behaviour along the sampled trajectory. See Appendix C for additional implementation
details.

4.3 Reward EIG: When Learning the Reward is the Goal

While our primary focus above has been on producing reliable apprentice policies, in some applica-
tions the reward function itself is of intrinsic interest – for instance, when using IRL to understand
animal behavior (Ashwood et al., 2022) or human preferences (Huang et al., 2022). For these cases,
we can still use the EIG framework, but instead maximize the expected information gain about the
reward:

αReward-EIG
n (s0) := I(τ ; r|s0,Dn) (8)

where τ is treated as a random variable representing the expert’s trajectory that would be produced
starting from s0.

This acquisition function aims to reduce posterior uncertainty about the reward parameters, which
may query different states than PAC-EIG. For example, it might seek to precisely estimate reward
values in states that the apprentice already knows to avoid, whereas PAC-EIG would consider such
queries unnecessary.

The reward EIG can be computed as:

αReward-EIG
n (s0) = Er|Dn

[
Eτ |r,s0 [log p(τ |r, s0)− log p(τ |s0;Dn)]

]
(9)

where the inner expectation is tractable to compute from the Q-values that are usually obtained as a
by-product of a Bayesian IRL algorithm.

See Appendix D for a detailed discussion of alternative acquisition functions and the theoretical
connections between different formulations.

5 Producing a PAC Policy

Our PAC-EIG acquisition function is designed to efficiently produce a probably-approximately-
correct (PAC) apprentice policy. We say that a policy is (ϵ, δ)-PAC with respect to the current
posterior if, with probability at least 1− δ, its regret is less than ϵ.

We will show that PAC-EIG leads to such a policy by establishing bounds on the expected number of
expert demonstrations needed. The analysis proceeds through three key steps (with formal results
and proofs in Appendix B):

1. If no apprentice policy satisfies the PAC condition, there must exist a state where there is a
significant chance that any apprentice policy makes a significantly suboptimal choice – specifically:

Pr|Dn

[
V ∗
r (s)−Q∗

r(s, π
A(s)) ≥ (1− γ)ϵ

]
≥ δ

|S|
(Lemma B.2).

2. In such a state, there is both a chance that an appropriately constructed apprentice policy is close
to optimal and that it is significantly suboptimal (as defined in step 1). Since these two options
would result in a sufficiently different expert policies in this state, we can gain a lower-bounded
expected amount of information by observing the expert in that state.

3. Since we gain at least this minimum information per query while the PAC condition is unmet, and
our initial uncertainty is finite, we must eventually achieve the PAC condition. The number of
steps is bounded by the ratio of initial entropy to the minimum information gain per step.
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These insights translate into the following two theorems:

Theorem 5.1. For ϵ > 0 and δ ∈ (0, 1
2 ], assume that no policy π is (ϵ, δ)-probably-approximately-

correct, i.e., P[Rπ
r ≥ ϵ] > δ, ∀π. Then, there exists a state s ∈ S such that observing a new expert

demonstration at s has an expected information gain of at least

EIGmin(ϵ, δ) =
δ(1− e−β(1−γ)ϵ)2

8|A|3|S|
. (10)

Then, we can translate this into the following result on the expected number of steps to reach the PAC
criterion:

Theorem 5.2. Let hmax be an upper bound on the entropy of the prior distribution over the PAC-EIG
discretized regret values. Then, the expected number of steps needed to reach the PAC condition is
upper bounded by

hmax

EIGmin(ϵ, δ)
=

8hmax|A|3|S|
δ(1− e−β(1−γ)ϵ)2

. (11)

For the binary discretization used in PAC-EIG, hmax ≤ log(3)|S||A|, giving a concrete bound on
sample complexity.

Extension to trajectory queries. While the theorems establish a lower bound for single-state
queries, this naturally extends to a trajectory-based version of our PAC-EIG acquisition function.
When querying for a trajectory starting from state s0, the information gained is at least as large
as querying any single state visited along the trajectory. In practice, trajectories typically visit
multiple informative states, potentially providing substantially more information than the theoretical
lower bound suggests. However, an improved theoretical bound would need to build on additional
assumptions about the environment and the prior.

6 Experiments

We evaluated the performance of the two proposed acquisition functions in a set of gridworld
experiments with respect to both objectives introduced earlier: the reward learning objective, measured
by the entropy of the posterior distribution over rewards, and the apprenticeship learning objective,
measured by the regret. We also track the posterior distribution over regrets which directly relates to
the PAC criterion.

We evaluate across three types of environment:

1. Structured gridworld: Features fewer reward parameters than states. It includes a known goal
state with a reward of +100, neutral states with a reward of -1, and three obstacle types with
unknown negative rewards with a uniform prior between -100 and 0 independently for each
obstacle type. This was meant as an illustrative example (Figure 1) and a counterexample to the
only prior method designed for collecting full trajectories, action entropy (Kweon et al., 2023),
by including a jail state where all actions are equivalent and which always gets selected by this
baseline, thus preventing any useful learning.

2. 10x10 random gridworld with 2 initial states: Each state has a random reward drawn from the
prior, N (0, 3), with only two possible initial states to test the ability of methods to recognize only
relevant parts of the state space. Here we use β = 4 so the expert behaves closely to optimal.

3. 8x8 random gridworld with fully uniform intial states: Each state has a random reward drawn
from the prior, N (0, 3), and the initial state distribution is uniform across all states. We use β = 2
so the expert is fairly stochastic.

We evaluate both the setting where each query results in a full expert trajectory, where we compare
against the only prior method (Kweon et al., 2023) as well as random sampling, and the setting where
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Figure 2: Results of the experiments on the environment with 3 cell types and a jail state with
full-trajectory demonstrations.
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Figure 3: Results of the experiments with single state annotations (i.e. |τ | = 1) on the 10x10 fully
random gridworld with two initial states. In the barplot (b), results with zero regret are visualized
below the horizontal axis to make their presence clearer.

each query results in a single state-action annotation, where we also evaluate against the methods by
Lopes et al. (2009) and Brown et al. (2018).

Each experiment type was run with with 16 different random reward functions, different terminal
states (except for the jail environment) and different 2 initial states in the 10x10 environment. The
plots display the mean and the standard error across these 16 random instances.

6.1 Results

Results on the simple environment from Figure 1 illustrate a crucial failure mode of the action entropy
(Kweon et al., 2023) acquisition function – it always queries the jail state and thus fails to learn
anything useful, while both reward and regret EIG learn an optimal policy within 10 steps in all 16
instances with similar posterior entropies.

Figure 3 shows the results on the 10x10 gridworld with 2 random initial states and single-state
annotations, Figure 4 shows the results for querying single-state annotations on the 8x8 gridworld
with a uniform initial state distribution, and Figure 5 results on the 8x8 environment when querying
trajectories of maximum length 5.

In the case of only 2 initial states on the 10x10 gridworld, we can see our regret-focused PAC-EIG
acquisition function to do much better in terms of both actual and posterior regret, reaching a zero
true regret, as well as 0.1-0.1-PAC apprentice policy, by step 50. ActiveVaR remains competitive
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Figure 4: Results of the experiments with single state annotations (i.e. |τ | = 1) on the 8x8 fully
random gridworld.
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Figure 5: Results of the experiments with expert trajectories of maximum length |τ | = 5 on the 8x8
fully random gridworld.

with RewardEIG in terms of the reward-learning objective (entropy of the rewardposterior), but both
fall behind PAC-EIG in terms of true and posterior regret.

On the gridworld with fully uniform initial states, we observe that both our information theoretic
acquisition functions result in lower posterior reward entropy and lower regret than prior methods
except for ActiveVaR, which seems to roughly match their performance. Interestingly, the reward-
based acquisition function and the regret-based ones seem to perform similarly well on both objectives,
suggesting that there is a strong correlation between learning about the reward and learning about the
apprentice regret in this environment with uniform initial states.

The action entropy acquisition function still stops yielding significant improvements after about step
50 – it again gets stuck querying states that have high action entropy due to multiple actions being
similarly good, even if these states do not yield any more information.

7 Discussion and conclusion

In this paper we have proposed two new acquisition functions for active IRL, each geared toward
one of two possible objectives: learning about an unknown reward function, or producing a well-
performing apprentice policy. We have shown that across a set of gridworld experiments, our
acquisition functions outperform or at least match prior methods on their respective objective.
Furthermore, our PAC-EIG acquisition function is a first acquisition function with a regret bound in
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our setting. While we have so far tested the methods only in finite state spaces, both of them were
constructed to generalize also to continuous spaces, which will be addressed in future work.

Impact statement

Through this paper, we hope to contribute to more effective and reliable learning of human preferences
and values by AI systems, which aims to improve their alignment and facilitate their beneficial use.

References
Stephen Adams, Tyler Cody, and Peter A. Beling. A survey of inverse reinforcement

learning. Artificial Intelligence Review, February 2022. ISSN 0269-2821, 1573-7462.
DOI: 10.1007/s10462-021-10108-x. URL https://link.springer.com/10.1007/
s10462-021-10108-x.

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, meth-
ods and progress. Artificial Intelligence, 297:103500, August 2021. ISSN 00043702. DOI:
10.1016/j.artint.2021.103500. URL https://linkinghub.elsevier.com/retrieve/
pii/S0004370221000515.

Zoe Ashwood, Aditi Jha, and Jonathan W. Pillow. Dynamic Inverse Reinforcement Learning for Char-
acterizing Animal Behavior. Advances in Neural Information Processing Systems, 35:29663–29676,
December 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/hash/bf215fa7fe70a38c5e967e59c44a99d0-Abstract-Conference.
html.

Ondrej Bajgar, Konstantinos Gatsis, Alessandro Abate, and Michael A. Osborne. Walking the
Values in Bayesian Inverse Reinforcement Learning. In Proceedings of the 40th Conference on
Uncertainty in Artificial Intelligence, 2024.

Daniel S. Brown, Yuchen Cui, and Scott Niekum. Risk-Aware Active Inverse Reinforcement Learning.
In Proceedings of The 2nd Conference on Robot Learning, pp. 362–372. PMLR, October 2018.
URL https://proceedings.mlr.press/v87/brown18a.html. ISSN: 2640-3498.

Thomas Kleine Buening, Victor Villin, and Christos Dimitrakakis. Environment Design for In-
verse Reinforcement Learning. In Proceedings of the 41st International Conference on Machine
Learning, pp. 24808–24828. PMLR, July 2024. URL https://proceedings.mlr.press/
v235/kleine-buening24a.html. ISSN: 2640-3498.

Thomas Kleine Büning, Anne-Marie George, and Christos Dimitrakakis. Interactive Inverse Rein-
forcement Learning for Cooperative Games. In Proceedings of the 39th International Conference
on Machine Learning, pp. 2393–2413. PMLR, June 2022. URL https://proceedings.
mlr.press/v162/buning22a.html. ISSN: 2640-3498.

Alex J Chan and Mihaela van der Schaar. Scalable Bayesian Inverse Reinforcement Learning. ICLR
2021, 2021.

Simon Duane, A. D. Kennedy, Brian J. Pendleton, and Duncan Roweth. Hybrid Monte Carlo. Physics
Letters B, 195(2):216–222, September 1987. DOI: 10.1016/0370-2693(87)91197-X.

Matthew D Hoffman and Andrew Gelman. The No-U-Turn Sampler: Adaptively Setting Path Lengths
in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15:1593–1623, 2014.

Zhiyu Huang, Jingda Wu, and Chen Lv. Driving Behavior Modeling Using Naturalistic Human Driv-
ing Data With Inverse Reinforcement Learning. IEEE Transactions on Intelligent Transportation
Systems, 23(8):10239–10251, August 2022. ISSN 1558-0016. DOI: 10.1109/TITS.2021.3088935.
URL https://ieeexplore.ieee.org/abstract/document/9460807. Confer-
ence Name: IEEE Transactions on Intelligent Transportation Systems.

https://link.springer.com/10.1007/s10462-021-10108-x
https://link.springer.com/10.1007/s10462-021-10108-x
https://linkinghub.elsevier.com/retrieve/pii/S0004370221000515
https://linkinghub.elsevier.com/retrieve/pii/S0004370221000515
https://proceedings.neurips.cc/paper_files/paper/2022/hash/bf215fa7fe70a38c5e967e59c44a99d0-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/bf215fa7fe70a38c5e967e59c44a99d0-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/bf215fa7fe70a38c5e967e59c44a99d0-Abstract-Conference.html
https://proceedings.mlr.press/v87/brown18a.html
https://proceedings.mlr.press/v235/kleine-buening24a.html
https://proceedings.mlr.press/v235/kleine-buening24a.html
https://proceedings.mlr.press/v162/buning22a.html
https://proceedings.mlr.press/v162/buning22a.html
https://ieeexplore.ieee.org/abstract/document/9460807


Reinforcement Learning Journal 2025

R. E. Kalman. When Is a Linear Control System Optimal? Journal of Basic Engineering, 86(1):
51–60, March 1964. ISSN 0021-9223. DOI: 10.1115/1.3653115. URL https://doi.org/
10.1115/1.3653115.

Abi Komanduru and Jean Honorio. A Lower Bound for the Sample Complexity of Inverse Reinforce-
ment Learning. 2021.

Sehee Kweon, Himchan Hwang, and Frank C. Park. Trajectory-Based Active Inverse Reinforcement
Learning for Learning from Demonstration. In 2023 23rd International Conference on Control,
Automation and Systems (ICCAS), pp. 1807–1812, October 2023. DOI: 10.23919/ICCAS59377.
2023.10316798. URL https://ieeexplore.ieee.org/document/10316798. ISSN:
2642-3901.

David Lindner, Andreas Krause, and Giorgia Ramponi. Active Exploration for Inverse Rein-
forcement Learning. Advances in Neural Information Processing Systems, 35:5843–5853,
December 2022. URL https://proceedings.neurips.cc/paper/2022/hash/
26d01e5ed42d8dcedd6aa0e3e99cffc4-Abstract-Conference.html.

Manuel Lopes, Francisco Melo, and Luis Montesano. Active learning for reward estimation in
inverse reinforcement learning. In Wray Buntine, Marko Grobelnik, Dunja Mladenić, and John
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Figure 6: Two-state environment designed to illustrate failure mode of Lopes et al. (2009)

A Failure modes of prior methods

For each of the three prior methods for active IRL, we will now present an example of a simple
environment where the method makes a clearly suboptimal choice with respect to at least one of the
two objectives.

Policy entropy (Lopes et al., 2009) As a reminder, the policy entropy acquisition function is
αLopes = H(πE), i.e. the entropy of the expert policy with respect to the current posterior over
rewards (which induces a posterior over expert action probabilities). Consider an environment with
two states s0,1 each with two actions a1,2 as shown in Figure 6. We aim to illustrate a scenario where
αLopes can misallocate budget by focusing on states where the optimal action is already known, rather
than those where crucial information about optimality is missing.

To demonstrate this effect, we define a discrete prior distribution over rewards. This uncertainty in
rewards will, in turn, induce a prior over the possible action probabilities for an optimal policy.

Suppose in state s1 we have strong prior knowledge that a1 is the optimal action; however, we are
uncertain about the exact reward obtained by taking a1

P (Rs1,a1 = 5) = 0.5 , P (Rs1,a1 = 7) = 0.5 , (12)

and
P (Rs1,a2

= 1) = 1.0 . (13)

An optimal apprentice policy will always choose a1 in state s1. Despite this certainty, the uncertainty
in the exact reward for a1 means there is still uncertainty regarding the precise probability an optimal
policy would assign to a1 which leads to a high measure of policy uncertainty (as measured by
αLopes).

For state s0, we set priors

P (Rs0,a1
= 2) = 0.1 , P (Rs0,a1

= 3) = 0.9 , (14)

and
P (Rs0,a2 = 2) = 0.1 , P (Rs0,a2 = 3) = 0.9 . (15)

such that the optimal action is uncertain. This policy faces true ambiguity with regards the best action,
and is therefore the state a good active IRL method focused on improving the apprentice policy should
query. However, since the acquisition function of Lopes et al. (2009) is formulated using entropy of
possible actions probabilities, examples of this type could have αLopes(s0) < αLopes(s1), resulting in
an inefficient use of budget. For example, given inverse temperature β = 2, we obtain values

αLopes(s0) = 0.860 , αLopes(s1) = 1.0 . (16)

Concretely, this acquisition function would query s1, where the policy already knows which action is
optimal, rather than s0 where there is key information to be gained. By contrast, assuming single-state
queries, our PAC acquisition function would choose s0, since in state the regret is already known to
be 0 for the current apprentice policy so there is no regret information to be gained there.
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Figure 7: Two state environment to demonstrate failure mode of Brown et al. (2018).

(Brown et al., 2018): Consider an environment with two states labelled s0,1 and two actions a1,2 as
shown in Figure 7. Both actions in state s0 lead to s1, one with reward +2 and the second with −2
(but we do not know which is which). In s1, both actions lead to a terminal state, and give a reward
of −10 and +10. Since the potential downside of any policy is maximal at s0 (−12), the acquisition
function would query s0. On the other hand, querying state s1 to distinguish the ±10 rewards would
yield a greater reduction in regret.

Consider an intermediate policy which knows the absolute values of all the rewards, but not the relative
signs: (i.e. (+2,−2) and (−2,+2) are equally likely for r(a1|s0), r(a2|s0), as are (+10,−10) and
(−10,+10) for r(a1|s1), r(a2|s1). We can easily computed

αBrown(s0) = 2 + γ10 , αBrown(s1) = 10 , (17)

such that for sufficiently large discount factor, state s0 would be queried by this acquisition function
argmaxs{αBrown(s)}. We can compute the reduction in expected regret after querying each of these
states. The initial expected total regret for the apprentice policy, averaged over a uniform initial state
distribution

E[R] =
1

2

(
V ∗(s0)− V π(s0)

)
+

1

2

(
V ∗(s1)− V π(s1)

)
=

1

2
(2 + γ10− 0) +

1

2
(10− 0) . (18)

The expected total regret after querying s0, s1 respectively:

E[R|s0] =
1

2

(
2+γ10−2

)
+
1

2

(
10−0

)
= (γ+1)5 , E[R|s1] =

1

2

(
2+γ10−γ10

)
+
1

2

(
10−10

)
= 1 .

(19)
We therefore observe that whilst Brown et al. (2018) would query s0, querying s1 yields a greater
reduction in expected regret.

(Kweon et al., 2023): Consider a situation where there is perfect knowledge of the action values
in a particular state, but a subset of actions at this state are equivalent (result in the same reward
and next state distribution) and tied as optimal. Then the policy will assign uniform probabilities
among these actions and due to high action entropy this state will be repeatedly queried. We offer
an extreme example of this in Figure 1 which renders this acquisition function useless since it will
only ever query the jail cell without gaining any information. Similarly, if in any environment, we
allow querying terminal states, the method always queries these since actions have no effect and thus
a Boltzmann rational policy would be uniform and thus have maximum entropy.

Uniform random sampling: Consider the single action annotation version of uniform random sampling.
Consider a set of n× n gridworlds with a constant number of states that can yield useful information.
A uniform random sampling algorithm will need O(n2) steps to visit all of these (so as n grows large,
would become unlikely to find a good apprentice policy in any given finite number of step) whereas
a method that targets the useful states, such as our methods, would remain O(1) independently of
growing n.
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B Theoretical Analysis

We will establish an upper bound on the expected number of expert demonstrations needed to find a
policy satisfying our PAC criterion. The proof strategy proceeds in three steps:

1. First, we show that if a policy has positive expected regret, there must exist a state where the
policy’s action is significantly suboptimal in terms of Q-values.

2. Building on this, we prove that if a policy is not (ϵ, δ)-PAC, then with probability at least δ,
there exists a state where the difference between optimal and apprentice policy’s Q-values is
lower-bounded by a function of ϵ.

3. Finally, we show that in such cases, observing an expert demonstration from an appropriately
chosen initial state provides a guaranteed minimum amount of information about the rewards.
Since we can only gain a finite amount of information (bounded by the entropy of our prior), this
leads to a bound on the number of demonstrations needed.

We begin with our first lemma, which connects policy regret to Q-value differences:

Lemma B.1. Let π be any policy, r any reward function, and

Rπ
r = Es0∼ρ0 [V

∗
r (s0)− V π

r (s0)] ≥ 0,

the regret of that policy. Then there exists a state s ∈ S such that

Q∗
r(s, π

∗(s))−Q∗
r(s, π(s)) ≥ (1− γ)Rπ

r .

Proof. Let us define
∆Q = max

s∈S
[Q∗

r(s, π
∗(s))−Q∗

r(s, π(s))] .

We will prove the lemma by showing that Rπ
r ≤ ∆Q/(1− γ).

Since Qπ
r (s, π(s)) ≤ Q∗

r(s, π(s)) (because Q∗
r is the optimal Q-function), we have

V ∗
r (s)− V π

r (s) = Q∗
r(s, π

∗(s))−Qπ
r (s, π(s))

≥ Q∗
r(s, π

∗(s))−Q∗
r(s, π(s))

≥ 0 .

Using the Bellman equation, for any state s ∈ S we can write

V ∗
r (s)− V π

r (s) = Q∗
r(s, π

∗(s))−Qπ
r (s, π(s))

= Q∗
r(s, π

∗(s))−Q∗
r(s, π(s)) +Q∗

r(s, π(s))−Qπ
r (s, π(s))

≤ ∆Q +
(
r(s, π(s)) + γEs′|s,π(s)[V

∗
r (s

′)]
)
−

(
r(s, π(s)) + γEs′|s,π(s)V

π
r (s′)]

)
= ∆Q + γEs′|s,π(s)[V

∗
r (s

′)− V π
r (s′)]

≤ ∆Q + γmax
s′

[V ∗
r (s

′)− V π
r (s′)].

Here, the first equality just replaces state values by the corresponding Q-values, the second line adds
and subtracts the same term, the third line uses the definition of ∆Q for the first term and expands the
latter two Q-values using the Bellman equation, the fourth just cancels out the repeated reward term.
The final inequality follows because the expectation over next states is bounded by the maximum.

Since this inequality holds for all s ∈ S, it holds also for the state maximizing the left-hand side, so
we get

max
s

[V ∗
r (s)− V π

r (s)] ≤ ∆Q + γmax
s′

[V ∗
r (s

′)− V π
r (s′)] (20)

which can be readily rearranged into

max
s

[V ∗
r (s)− V π

r (s)] ≤ ∆Q

1− γ
.
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Thus

Rπ
r = Es0∼ρ0

[V ∗
r (s0)− V π

r (s0)] ≤ max
s

[V ∗
r (s)− V π

r (s)] (21)

≤ ∆Q

1− γ
=

1

1− γ
max
s∈S

[Q∗
r(s, π

∗(s))−Q∗
r(s, π(s))] , (22)

which completes the proof.

Lemma B.2. Let π be the apprentice policy at step n. For any δ ∈ (0, 1
2 ], let Rπ

n,δ be the (1− δ)-
quantile of the regret distribution with respect to the current posterior distribution over rewards, i.e.,
Rπ

n,δ satisfies
Pr|Dn

(Rπ
r ≥ Rπ

n,δ) = δ.

Then, there exists a state s ∈ S such that

Pr|Dn

(
Q∗

r(s, π
∗
r (s))−Q∗

r(s, π(s)) ≥ (1− γ)Rπ
n,δ

)
≥ δ

|S|
.

Proof. Let us define the set of reward functions under which π has high regret:

H =
{
r : Rπ

r ≥ Rπ
n,δ

}
.

By definition of the quantile Rπ
n,δ , we have

Pr|Dn
(r ∈ H) = δ.

For each r ∈ H, applying Lemma B.1, we know there exists a state sr ∈ S such that

Q∗
r(sr, π

∗
r (sr))−Q∗

r(sr, π(sr)) ≥ (1− γ)Rπ
r ≥ (1− γ)Rπ

n,δ.

Now, consider the collection of states {sr : r ∈ H}. Since the state space S is finite with cardinality
|S|, by the pigeonhole principle, there must exist at least one state s ∈ S such that

Pr|Dn
(r ∈ H and sr = s) ≥ δ

|S|
.

For this state s, whenever r ∈ H and sr = s, we have

Q∗
r(s, π

∗
r (s))−Q∗

r(s, π(s)) ≥ (1− γ)Rπ
n,δ.

Therefore,

Pr|Dn

(
Q∗

r(s, π
∗
r (s))−Q∗

r(s, π(s)) ≥ (1− γ)Rπ
n,δ

)
≥ δ

|S|
,

which completes the proof.

This lemma extends our previous result to the probabilistic setting of Bayesian IRL. While Lemma B.1
showed that high regret implies the existence of a state with poor action choice, this lemma shows
that if our policy has a significant probability of high regret, there must be at least one state where it
has a significant probability of making a poor action choice.

Theorem 5.1. For ϵ > 0 and δ ∈ (0, 1
2 ], assume that no policy π is (ϵ, δ)-probably-approximately-

correct, i.e., P[Rπ
r ≥ ϵ] > δ, ∀π. Then, there exists a state s ∈ S such that observing a new expert

demonstration at s has an expected information gain of at least

EIGmin(ϵ, δ) =
δ(1− e−β(1−γ)ϵ)2

8|A|3|S|
. (10)
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Proof. For the purposes of this proof, let πA be the apprentice policy that in each state maximizes
the probability of being optimal, i.e., πA ∈ argmaxπP[π(s) = π∗

r (s)|Dn], ∀s ∈ S. To informally
outline our proof strategy: we will prove the theorem by showing that under its assumptions, there
exists a state s and an alternative action a∗ ̸= πA(s) that has a chance of being significantly better
than the apprentice action. If it is significantly better, it is significantly more likely to get selected
by the expert than if it is inferior to πA(s). Since the observation distributions in the two cases are
different, this allows us to put a lower bound on the expected information gained by observing the
expert.

Under the assumptions of this theorem and using Lemma B.2, there exists a state s such that

Pr|Dn

[
Q∗

r(s, π
∗
r (s))−Q∗

r(s, π
A(s)) ≥ (1− γ)ϵ

]
≥ δ

|S|
.

Let us denote by E the event
{
Q∗

r(s, π
∗
r (s))−Q∗

r(s, π
A(s)) ≥ (1− γ)ϵ

}
. This event can be parti-

tioned into events Ea = E ∩ {a = π∗
r (s)} for a ∈ A\ {πA(s)}. Let a∗ be the action whose partition

E∗ := Ea∗ has the highest probability under the posterior. Then P[E∗] ≥ δ
(|A|−1)|S| .

Let EA be the event of the apprentice action πA(s) being optimal, i.e.,

EA = {πA(s) = π∗
r (s)} = {Q∗

r(s, a)−Q∗
r(s, π

A(s)) ≤ 0, ∀a ∈ A}.

Since πA is defined as the policy maximizing the probability of being optimal, we have P[EA] ≥ 1
|A| .

Note that this event is disjoint from E∗. For completeness, we define EC as the complement of
E∗ ∪ EA, so EA, E∗, and EC form a partition of the event space.

Now, if we denote by A the action taken by the expert in state s seen as a random variable, we can
decompose the mutual information between A and E as

I(A;E) =
∑

E∈{E∗,EA,EC}

P[E] DKL(p(A|E)∥p(A)).

To finish the proof, we need to put a lower bound on this mutual information. We have already given
lower bounds on P[E∗] and P[EA]. We will now provide a lower bound on the corresponding KL
terms by first lower-bounding the total variation distance between p(A|E∗) and p(A|EA).

In the event EA, we have Q∗
r(s, π

A(s)) ≥ Q∗
r(s, a

∗), so under the Boltzmann-rational policy, we
have p(A = πA(s)|s;EA) ≥ p(A = a∗|s;EA).

On the other hand, in case of E∗, we have

p(πA(s)|s;E∗) =
1

Z
eβQ

∗
r(s,π

A(s)) ≤ 1

Z
eβ(Q

∗
r(s,a

∗)−(1−γ)ϵ)

= e−β(1−γ)ϵp(a∗|s;E∗)

= p(a∗|s;E∗)− (1− e−β(1−γ)ϵ)p(a∗|s;E∗).

Since under E∗, a∗ is the optimal action, it is also the most likely action under the Boltzmann expert
policy, so we have p(a∗|s;E∗) > 1

|A| , which gives us

p(a∗|s;E∗)− p(πA(s)|s;E∗) > (1− e−β(1−γ)ϵ)
1

|A|
. (23)
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We can use this to bound the total variation distance:

Dtotal
TV = DTV(p(A|EA), p(A)) +DTV(p(A|E∗), p(A))

≥ DTV(p(A|EA), p(A|E∗))

≥ 1

2

(
p(πA(s)|EA)− p(πA(s)|E∗) + p(a∗|E∗)− p(a∗|EA)

)
≥ 1

2

(
p(a∗|E∗)− p(πA(s)|E∗)

)
>

1

2
(1− e−β(1−γ)ϵ)

1

|A|

where we used the triangle inequality in the first step, the definition of total variation distance in the
second step (omitting non-negative terms corresponding to actions other than πA and a∗), the fact
that p(πA(s)|EA) ≥ p(a∗|EA) in the third step, and plugging in Equation (23) in the final step.

Since both TV terms on the left-hand side are non-negative, we have

max{DTV(p(A|EA), p(A)),

DTV(p(A|E∗), p(A))}

>
1

4|A|
(1− e−β(1−γ)ϵ).

Applying Pinsker’s inequality, this gives us

max{DKL(p(A|EA)∥p(A)),

DKL(p(A|E∗)∥p(A))}

>
1

8|A|2
(1− e−β(1−γ)ϵ)2.

This finally allows us to establish that

I(A;E) =
∑

E∈{E∗,EA,EC}

P[E]DKL(p(A|E)∥p(A))

≥ min{P[EA],P[E∗]}
×max{DKL(p(A|EA)∥p(A)), DKL(p(A|E∗)∥p(A))}

> min

{
1

|A|
,

δ

(|A| − 1)|S|

}
× 1

8|A|2
(1− e−β(1−γ)ϵ)2

=
δ

8|A|3|S|
(1− e−β(1−γ)ϵ)2.

The first inequality follows from the fact that all three terms in the sum are non-negative. The second
inequality just plugs in results previously derived in this proof. The final step resolves the minimum
as its second term using the assumption that δ ≤ 1

2 and |A| ≥ 2.

The mutual information I(A;E) computed above is the information gained about the partition of
reward space into events EA, E∗, and EC . Crucially, knowing which event holds tells us whether
there exists an action with immediate regret greater than (1− γ)ϵ compared to the apprentice action.
This is precisely the information needed to determine if the apprentice action is approximately correct
in the PAC sense. Therefore, this provides a lower bound on the information gain for any acquisition
function targeting PAC guarantees, including PAC-EIG which seeks to distinguish actions with
immediate regret above vs below the threshold (1− γ)ϵ.
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B.1 Information-Theoretic Bounds

To establish bounds on the number of steps needed, we align our analysis with the PAC-EIG
discretization. For any state s ∈ S and action a ∈ A, we define the immediate regret

R∗
s,a := Q∗

r(s, π
∗
r (s))−Q∗

r(s, a) (24)

to be the random variable capturing the immediate regret of action a in state s. We then define Es,a

as a ternary random variable that categorizes this regret:

Es,a =


“correct” if R∗

s,a = 0

“approximately correct” if 0 < R∗
s,a ≤ ϵ

“not approximately correct” if R∗
s,a > ϵ

(25)

where R∗
πA,r(s, a) = max{0, Q∗

r(s, a) − Q∗
r(s, π

A(s))} is the immediate regret of the apprentice
action relative to action a.

We then define
E := (Es,a)s∈S,a∈A (26)

to be the collection of all these binary variables across the state-action space.

This binary discretization captures precisely what PAC-EIG targets: for each state-action pair, whether
choosing that action instead of the apprentice’s choice would result in immediate regret exceeding
the PAC threshold. This allows us to work with standard entropy while directly connecting to the
PAC criterion.
Theorem 5.2. Let hmax be an upper bound on the entropy of the prior distribution over the PAC-EIG
discretized regret values. Then, the expected number of steps needed to reach the PAC condition is
upper bounded by

hmax

EIGmin(ϵ, δ)
=

8hmax|A|3|S|
δ(1− e−β(1−γ)ϵ)2

. (11)

Proof. The minimal expected information gain guaranteed by Theorem 5.1 is about the binary events
indicating whether actions have immediate regret exceeding (1−γ)ϵ. This is precisely the information
tracked by PAC-EIG’s binary discretization. Thus, at every step of active learning where we have
not yet achieved the PAC criterion, we can gain at least EIGmin(ϵ, δ) information about the PAC-EIG
discretization.

Let Hn denote the entropy of the PAC-EIG binary discretization (i.e., for each state-action pair,
whether the immediate regret exceeds (1− γ)ϵ) after n steps of active learning. By the properties of
entropy and information gain:

1. Hn ≥ 0 for all n (non-negativity of entropy)

2. H0 = hprior (initial entropy)

3. Hn+1 ≤ Hn − EIGmin(ϵ, δ) for all n where the PAC criterion is not met (guaranteed information
gain)

Let N be the number of steps needed to reach the PAC criterion. Then:

0 ≤ HN

≤ H0 −N · EIGmin(ϵ, δ)

= hprior −N · EIGmin(ϵ, δ)

Solving for N :

N ≤
hprior

EIGmin(ϵ, δ)
(27)

The result follows by substituting the expression for EIGmin(ϵ, δ) from Theorem 5.1.
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Corollary B.3. For any prior distribution over rewards, the expected number of steps to reach the
PAC condition is at most

log(2)|S||A|/EIGmin(ϵ, δ) =
8 log(2)|A|4|S|2

δ(1− e−β(1−γ)ϵ)2
. (28)

Proof. The PAC-EIG discretization uses |S||A| binary random variables (one per state-action pair),
so it can take at most 2|S||A| values. Thus, its maximum entropy is log(2|S||A|) = |S||A| log(2). The
result follows by plugging this maximum entropy into Theorem 5.2.

While we do not claim this bound is tight, it provides a useful characterization of how the sample
complexity scales with the problem parameters. In particular, it shows polynomial dependence on the
size of the state and action spaces, and inverse dependence on both the allowed suboptimality ϵ and
failure probability δ.

B.2 Notes on possible improvements

B.2.1 Tighter bound for large state spaces

Note that the bound from Lemma B.2 can be tightened if the state space is large and only a subset
is reachable within an effective horizon. In that case |S| can be replaced by the number of states
reachable from the initial states within 1/(1− γ) steps.

B.2.2 Static policy

The bound includes the entropy of each action in each state. In fact, it may be enough to focus on a
single action in each state, since we want to identify only a particular PAC policy, rather than reducing
entropy of all of the components of E(s) in every state. This should allow us to exclude a factor of
|A| from the bound on the expected number of steps to reach the PAC condition.

B.2.3 Generalization of Theorem 5.1

Note that the proof of Theorem 5.1 can be adapted to work with any policy that has a high probability
of taking a low-regret action, e.g. policies with

P[R∗
π(s, a) <

ϵ

2
] >

1

|A|
. (29)

In practice, the various notions of the "best" apprentice policy tend to correlate, so the lowest-
expected-regret policy is likely to satisfy this assumption, and if not, it can be adjusted by moving
additional necessary probability weight onto the most-likely-optimal action, in which case this active
learning strategy can guarantee the PAC condition for the lowest-expected-regret policy, which would
usually be the default one to use in practice.

C Resulting acquisition function and its computation

A practically useful acquisition function should account for one more important point: in order to
get a policy with low expected regret, we do not need to reduce the expected immediate regret of
all points, but just those that are likely to get visited by the apprentice policy πA. Let νA(s) :=
E[
∑∞

t=0 γ
tI[st = s]] be the discounted expected occupancy of state s. Then, we can set

α̃(s) := νA(s)I(As, Es). (30)

to be the acquisition function for querying single states.
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However, we also wish to have an acquisition function for collecting full trajectories. A naive
approach employed by some prior work (Kweon et al., 2023) would be summing the individual

α′
n(s0) := Er|Dn

[
Eτ |r

[∑
s∈τ

α̃(s)
]]

(31)

However, the sum in Eq. (31) neglects correlation between the regrets in different states (and, worse,
autocorrelation if a state is visited multiple times). We can instead estimate the full expected
information gain about our variable E from the new expert trajectory. Then, dropping the weighing
for the moment,

EIGE(s0) = Eτ,E

[
log p(τ |E)− log p(τ)

]
. (32)

We assume that the Bayesian IRL method we use to estimate this is able to give us samples from the
current posterior over Q-values. Given a Q-value and an initial state, we can sample the corresponding
hypothetical expert trajectories τ |Q. Also, E is a cheaply-computable function of Q, so we can also
easily convert the samples of Q into samples of E. Then, the only remaining challenge in computing
EIGE is estimating p(τ |E).

If the state space is small and we have a lot of Q samples, we can estimate p(τ |E) =
1

|QE |
∑

Q∈QE
p(τ |Q). However, note that for a given policy, there are 3|S| possible values of

Eπ , so even for a moderate size of the state space, the number of Q corresponding to each E could be
small. At the same time, the components of Eπ corresponding to states far away from the trajectory
are unlikely to share much mutual information with the trajectory. Thus we suggest using the bound

I(τ, E) ≥ I(τ, Eπ
τ ) (33)

where Eπ
τ :=

(
Es

)
s∈Sτ

for Sτ being some neighbourhood of τ in the state space, including all states
on the trajectory τ plus states that can be quickly reached from the trajectory.

To again add the weighing, we can note that since the transition probabilities are the same for both
components,

log p(τ |E)− log p(τ) =
∑
s,a∈τ

log p(a|s;E)− log p(τ |s) (34)

which naturally allows us to re-introduce the weights as∑
s,a∈τ

νπ(s, a)(log p(a|s;E)− log p(τ |s)) (35)

resulting in an acquisition function

EIGE(s0) = Eτ,E

[ ∑
s,a∈τ

νπ(s, a)(log p(a|s;Eτ )− log p(τ |s))
]
. (36)

D Alternative Acquisition Functions

In this appendix, we discuss alternative formulations of acquisition functions for active IRL and
explain the theoretical connections that led to our PAC-EIG approach.

D.1 From Apprentice Return to Regret

When the goal is to produce a well-performing apprentice policy (as opposed to learning the reward
for its own sake), a natural starting point is to directly optimize the apprentice’s expected return. This
suggests minimizing the loss:

Lret(ξ1, . . . , ξN ) = −Es0∼ρEτ |s0,πA
N
Gr(τ) (37)

where πA
N is the apprentice policy after observing N expert trajectories from initial states ξ1, . . . , ξN .
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Since the optimal value V ∗(s0) is independent of our choice of queries, minimizing Lret is equivalent
to minimizing the regret loss:

Lreg(ξ1, . . . , ξN ) = R
πA
N

r = Es0∼ρ

[
V ∗
r (s0)− V

πA
N

r (s0)
]

(38)

D.2 The Challenge of Direct Regret Optimization

Directly optimizing this regret loss is computationally intractable even in the greedy case. The
one-step acquisition function would be:

αreg
n (ξ) = −Er|Dn

Eτn+1|ξ,πE
r
R

πA
n+1

r (39)

Computing this requires: 1. For each possible reward r in our posterior 2. For each possible expert
trajectory τ from initial state ξ 3. Computing the updated posterior p(r|Dn ∪ {τ}) 4. Finding the
optimal apprentice policy for this updated posterior 5. Evaluating its regret

This nested optimization involving repeated Bayesian IRL updates is prohibitively expensive.

D.3 Information Gain About Regret

Following the approach in Bayesian optimization (Wang & Jegelka, 2017), rather than directly
optimizing the hard-to-compute expected improvement, we can instead maximize information gain
about the quantity of interest. This suggests the acquisition function:

αRegret-EIG
n (s0) = I(τ ;RπA

r |s0,Dn) (40)

However, this formulation has a critical flaw. Consider this example:

• In state s, the apprentice can take action a0 yielding return 0

• Actions a1 and a2 yield returns of +50 and -100, but we don’t know which is which

• With equal probability on both orderings, the apprentice chooses a0 (expected return 0 vs -25)

• The regret is known with certainty to be 50

• Since there’s no uncertainty about regret, Regret-EIG assigns zero value to querying this state

• Yet the apprentice is definitely choosing suboptimally!

D.4 Immediate Regret EIG

The solution is to decompose regret more finely. The total regret can be written as:

RπA

r = Eτ∼ρ,πA

∑
st,at∈τ

γt
[
V ∗
r (st)−Q∗

r(st, π
A(st))

]︸ ︷︷ ︸
R∗

πA,r
(st)

(41)

where R∗
πA,r(s) is the immediate regret – the value lost by following the apprentice policy in state s

without considering future consequences.

This can be further decomposed per action:

R∗
πA,r(s) = max

a
R∗

πA,r(s, a) (42)

where R∗
πA,r(s, a) = max{0, Q∗

r(s, a)−Q∗
r(s, π

A(s))}.

The Immediate Regret EIG acquisition function is then:

αIR-EIG
n (s0) = I(τ ;R∗|s0,Dn) (43)
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where R∗ = (R∗
πA,r(s, a))s∈S,a∈A.

This formulation correctly identifies informative states in our earlier example, as there is high
uncertainty about which action has higher immediate regret.

D.5 Discretization and Connection to PAC-EIG

For practical computation, the continuous immediate regret values must be discretized. Different
discretization schemes lead to different acquisition functions:

1. Multi-bucket discretization: Using buckets like [0, ϵ/2], [ϵ/2, ϵ], [ϵ, ∞) provides finer resolution
but becomes computationally expensive for trajectories due to exponential growth in the number
of possible configurations.

2. Two-bucket PAC discretization: Using just two buckets – acceptable regret [0, ϵ] and unaccept-
able regret (ϵ,∞) – directly captures what matters for PAC guarantees. This is precisely our
PAC-EIG formulation.

The PAC discretization is not only computationally more tractable but also theoretically motivated:
it focuses information gathering on exactly what we need to know to provide formal reliability
guarantees.

D.6 Summary

The progression from expected return optimization to PAC-EIG illustrates how principled information-
theoretic thinking, combined with practical computational constraints and theoretical objectives, leads
to an effective acquisition function. While IR-EIG with fine discretization might provide marginally
more information in some cases, PAC-EIG strikes the optimal balance between theoretical guarantees,
computational efficiency, and practical effectiveness.

E Experiment details

E.1 Basic parameter values

In the three environments (structured 6x6, random 8x8, and random 10x10) we used β = 4, 2, 4
respectively, γ = 0.9, and an infinite horizon (but all environments contained terminal states). We
started with an empty set of demonstrations (implemented as a single, uninformative observation of a
dummy sink state) and then ran active learning for 150 steps.

For ActiveVaR, we used δ = 0.05 (same as the original paper). For policy entropy, we used the
entropy of the discretized distribution for each action (as proposed by the authors) with K=10 buckets.
For our PAC-EIG acquisition function (1− γ)ϵ = 0.01 for the PAC condition.

E.2 Environments

The gridworld environments have 5 actions, corresponding to staying in place and moving in the four
directions. Furthermore, there is a probability of 0.1 of random action being executed instead of the
intended one. If an action would result in crossing the edge, the agent instead remains in place. The
gridworlds use a state-only reward (awarded upon executing any action in the given state).

The 8x8, and 10x10 fully random environments were generated as follows:

1. Each state was assigned a random reward drawn independently from N (0, 3) (i.e. mostly yielding
rewards between -10 and 10).

2. Each state was then marked as terminal with an independent probability of 0.1.
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3. The top 10% of states with highest reward were further marked as terminal (producing terminal
goal states, which may, however, sometimes be avoided by the optimal policy in favour of staying
forever in other positive states).

4. The initial state distribution is either uniform across the whole state space, or, in the case of the
10x10 gridworld, 2 non-terminal initial states were chosen randomly uniformly.3

E.3 Bayesian IRL methods

Our active learning uses a Bayesian IRL method as a key component. In our experiments, we used
two methods based on Markov chain Monte Carlo (MCMC) sampling: on the structured environment,
we used PolicyWalk (Ramachandran & Amir, 2007), while on the environment with a different
random reward in every state, we used the faster ValueWalk (Bajgar et al., 2024), which performs
the sampling primarily in the space of Q-functions before converting into rewards. We also tried a
method based on variational inference (Chan & van der Schaar, 2021), but we found its uncertainty
estimates unreliable for the purposes of active learning.

For MCMC sampling, we used Hamiltonian Monte Carlo (Duane et al., 1987) with the no-U-turns
(NUTS) sampler (Hoffman & Gelman, 2014) and automatic step size selection during warm-up
(starting with a step size of 0.1). At every step of active learning, we ran the MCMC sampling from
scratch using all demonstrations available up to that point. We ran for 100 warm-up steps and then
200, 500, and 1000 on the three environments respectively. For subsequent usage, we use every other
sample to reduce autocorrelation.

E.4 Metrics

On the first two environments, we use KNN entropy estimation to calculate posterior entropy with
K=5. This method is known to struggle in high dimensions, which we also observed in the case of
the 10x10 gridworld (which has a 100-dimensional reward space), so there, we estimate the entropy
by the entropy of a multivariate normal distribution with the mean and covariance matrix estimated
from the MCMC samples.

Regret was calculated relative to the expected return of the optimal policy, calculated using value
iteration with a tolerance of 1e-5. Posterior regret samples were similarly calculated relative to the
optimal return with respect to each of the posterior reward samples (which were calculated using the
optimal Q-value samples which get produced by the Bayesian IRL methods).

When aggregating true regret across environment instances, we also normalized the regret for each
random environment instance by the average regret across all methods across the first 32 steps of
active learning to account for the possibly different scales and different learning difficulties of the
random environments.

E.5 Implementation

The experiments were implemented using Python 3.10, PyTorch 2.5.1, and Pyro 1.8.6. We will
publish our full code for both the experiments and the associated result analysis on Github once the
anonymity requirement is lifted.

E.6 Timing

The computational time per step of active IRL is dominated by the time necessary to collect the
Bayesian IRL MCMC samples, which ranges between 5 seconds for the 100+200 samples on the
structured gridworld to about 5 minutes for the 100+1000 samples on the 10x10 gridworld in a single

3Note that the implementation allows the two initial states to collide, producing only a single initial state in 1/81 of the
cases, but this was not the case for any of our 16 random seeds.
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CPU thread. The overhead of all acquisition functions on top of that is below 0.03 and can thus be
considered negligible.

Reproducing all our experiments thus takes less than a day on a CPU with 128 threads (we used
AMD Ryzen Threadripper 3990X at 2.2GHz).

F Notation overview

Table 1: Summary of notation used throughout the paper. If reward is omitted from a symbol
otherwise depending on it, it means it is taken with respect to the true reward.

Symbol Meaning

S State space of the MDP
A Action space
P (s′ |s, a) Transition kernel
r : S ×A→R Expected reward function
γ∈(0, 1) Discount factor
tmax Maximum horizon (may be ∞)
ρ Initial-state distribution
πE Expert policy (Boltzmann-rational with coefficient β)
πE
r Hypothetical expert policy that would correspond to a reward r

β Boltzmann rationality coefficient
πA
n Apprentice policy after n queries

π⋆
r Reward-optimal policy for given r

Dn Demonstration data after n queries
τ = (s0, a0, . . . , sT ) Trajectory
ξ Query / initial state proposed to the expert
V π
r (s), Qπ

r (s, a) State- and action-value functions for policy π and reward r
Gr(τ) Return of trajectory τ under r
Gπ

r Expected (discounted) return of π under r
Rπ

r (s0) Regret of π from state s0
R⋆

π,r(s), R
⋆
π,r(s, a) Immediate regret (state / state–action)

I(τ ; r | s0,Dn) Mutual information between a trajectory and reward
EIG Expected information gain
αRewEIG
n Reward-EIG acquisition function

αRegEIG
n Regret-EIG acquisition function

αIR-EIG
n Immediate-regret EIG acquisition function

VaRδ δ-value-at-risk of a loss random variable
EIGmin(ϵ, δ) Per-step information-gain lower bound (Thm 3)
hmax Upper bound on posterior entropy of regret
ϵ, δ PAC accuracy / confidence parameters
|S|, |A| Cardinalities of state and action spaces


