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Summary
Agent modeling is a critical component in developing effective policies within multi-agent

systems, as it enables agents to form beliefs about the behaviors, intentions, and competencies
of others. Many existing approaches assume access to other agents’ episodic trajectories, a
condition often unrealistic in real-world applications. Consequently, a practical agent modeling
approach must learn a robust representation of the policies of the other agents based only on
the local trajectory of the controlled agent. In this paper, we propose TransAM, a novel
transformer-based agent modeling approach to encode local trajectories into an embedding
space that effectively captures the policies of other agents. We evaluate the performance of the
proposed method in cooperative, competitive, and mixed multi-agent environments. Extensive
experimental results demonstrate that our approach generates strong policy representations,
improves agent modeling, and leads to higher episodic returns.

Contribution(s)
1. We eliminate the need for access to other agents’ trajectories at inference time by learning a

latent policy representation derived solely from the local trajectory of the controlled agent.
Context: It is common for agent modeling methods to assume access to other agent infor-
mation at execution time (He & Boyd-Graber, 2016; Grover et al., 2018; Jing et al., 2024).

2. By treating the local trajectory of the controlled agent as a temporal sequence, we use a
transformer to model long-range dependencies and identify key moments that characterize
interactions with other agents. This is in contrast to previous methods that rely on MLPs or
RNNs without attention over extended time horizons.
Context: Other methods typically construct either an MLP-based agent model (He &
Boyd-Graber, 2016), or a recurrent agent model (Papoudakis et al., 2021), which do not
take into account the full context of the agent’s trajectory throughout the episode.

3. To address the data demands of transformers, we train the agent model and the controlled
agent’s policy jointly in an online setting, ensuring access to a diverse dataset for enhanced
performance.
Context: Other promising transformer-based agent modeling approaches, such as (Jing
et al., 2024) are based on an offline reinforcement learning setting wherein a pretraining
phase is used to learn an initial prior for the task. In contrast, we aim to train the agent
model and the policy jointly from scratch.
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Abstract

Agent modeling is a critical component in developing effective policies within multi-
agent systems, as it enables agents to form beliefs about the behaviors, intentions, and
competencies of others. Many existing approaches assume access to other agents’
episodic trajectories, a condition often unrealistic in real-world applications. Conse-
quently, a practical agent modeling approach must learn a robust representation of the
policies of the other agents based only on the local trajectory of the controlled agent.
In this paper, we propose TransAM, a novel transformer-based agent modeling ap-
proach to encode local trajectories into an embedding space that effectively captures
the policies of other agents. We evaluate the performance of the proposed method in
cooperative, competitive, and mixed multi-agent environments. Extensive experimental
results demonstrate that our approach generates strong policy representations, improves
agent modeling, and leads to higher episodic returns.

1 Introduction

Recent advances in multi-agent systems have led to significant progress in domains such as
games (Nowé et al., 2012), traffic control (Wiering et al., 2000), and autonomous driving (Cao
et al., 2012). A key challenge in these systems is that the actions of all agents influence the overall
system’s transitions. Therefore, effectively reasoning about the optimal actions requires modeling
the behavior of other agents. This process, known as agent modeling, focuses on inferring concealed
information about other agents to inform the policy of a controlled agent. In this work, we explore
the role of agent modeling in multi-agent systems and its impact on decision-making strategies.

A primary challenge in agent modeling arises from the need to design agents that can adapt to var-
ious agent policies using only the information available during execution. This challenge becomes
particularly difficult in scenarios where no direct information about the other agents is accessible,
requiring the agent to infer others’ behaviors based solely on its own local information. Moreover,
since agent policies may appear indistinguishable on the basis of a single transition, it is essential to
consider the temporal context for disambiguation. Therefore, an effective agent modeling approach
must learn robust representations of agent policies while accounting for their temporal dynamics
and long-term effects.

Although recent advances in deep learning have led to various approaches for agent modeling (He &
Boyd-Graber, 2016; Grover et al., 2018; Papoudakis et al., 2021; Jing et al., 2024), existing methods
often face two key limitations: (1) reliance on access to agent trajectories and (2) inadequate use of
the sequence of actions of the controlled agent as a valuable source of information. Inspired by the
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success of decision transformers (Chen et al., 2021) and their multi-agent variants (Wen et al., 2022),
we propose reframing agent modeling as a sequence modeling task using a transformer architecture.

Transformers have recently been applied in reinforcement learning (RL) and demonstrated remark-
able success, from feature extraction to end-to-end policy learning (Agarwal et al., 2023). Build-
ing on this, we propose a transformer-based agent modeling approach that encodes the controlled
agent’s local trajectory into an embedding space that captures the influence of other agent policies.
The model is trained to reconstruct the other agents’ trajectories using only the local embedding, en-
abling the controlled agent to model others without requiring access to their trajectories at execution.
This allows the RL policy to condition its decisions solely on the local trajectory embeddings.

Our contributions are as follows.

1. Agent Modeling from Local Information: We eliminate the need for access to other agents’
trajectories at inference time by learning a latent policy representation derived solely from the
local trajectory of the controlled agent.

2. Local Trajectory as a Sequence Modeling Task: By treating the local trajectory of the con-
trolled agent as a temporal sequence, we use a transformer to model long-range dependencies
and identify key moments that characterize interactions with other agents.

3. Online Joint Training of Agent Model and Policy: Unlike prior agent modeling methods that
pretrain a transformer encoder, we train the agent model and the controlled agent’s policy jointly
in an online setting.

We evaluate the proposed approach on cooperative, competitive, and mixed cooperative-competitive
multi-agent RL tasks. Our results demonstrate that the proposed method outperforms baseline ap-
proaches in agent modeling accuracy, provides robust agent policy representation, and achieves
superior episodic returns.

2 Related Work

2.1 Agent Modeling

When operating in a decentralized multi-agent system, it is important to incorporate information
about other agents to determine the best response to a given state. In conventional centralized train-
ing with decentralized execution (CTDE) approaches, such as MADDPG (Lowe et al., 2017) and
MAPPO (Yu et al., 2022), a centralized critic is trained using the joint observations of all agents,
and this information is implicitly distilled into the actor policy. Agent modeling is an alternative
approach that explicitly learns to model concealed agent information. There is a large body of work
on agent modeling in multi-agent settings (Albrecht & Stone, 2018). He & Boyd-Graber (2016) fo-
cused on competitive settings and learned to predict opponent Q values and opponent actions given
opponent observations. Raileanu et al. (2018) introduced a model that learns to infer the opponent’s
goal using itself. Grover et al. (2018) implemented a general purpose encoder-decoder architecture
using imitation learning and a contrastive triplet loss to both learn to accurately reconstruct agent
policies and correctly identify the agent policy within the embedding space. Building on the work
of Grover et al. (2018), Papoudakis et al. (2021) also used an encoder-decoder architecture to re-
construct agent policies. However, they model this reconstruction using the controlled agent’s local
trajectory only. Zhang et al. (2023) introduced an approach that adapts to changing policies, similar
to our problem setting. However, agents in this work can change policies within an episode, so the
model must learn to quickly adapt. Xing et al. (2023) studied ad hoc teamwork in which an agent
must learn to cooperate with other agents who may switch to different goal-oriented policies. In
this work, the agent learns both to identify the type of policy of its teammates and to generalize
the types of policies to unseen sets of teammates. Finally, Ma et al. (2024) learned an agent policy
representation directly from the controlled agent’s local observations using contrastive learning.



Transformer-Based Agent Modeling for Multi-Agent Systems

2.2 Transformers in RL

Transformers were originally intended as replacements for RNNs in machine translation language
modeling tasks (Vaswani et al., 2017). However, they have been applied to seemingly every sub-
field of machine learning, including computer vision Dosovitskiy et al. (2021) and more recently
for reinforcement learning (Agarwal et al., 2023). The original transformer model consists of an en-
coder that maps an input sequence to a latent space and a decoder that generates an output sequence
conditioned on the input sequence and the latent embeddings of the input sequence. Reinforce-
ment learning problems have incorporated both parts of the transformer model to pose the problem
in different terms. Parisotto et al. (2020) used a modified encoder architecture as a replacement for
RNNs in RL policies. Alternatively, Chen et al. (2021) proposed offline RL as a generative sequence
modeling task using a GPT-style decoder architecture (Radford et al., 2018). More recently, multi-
agent reinforcement learning has been reimagined as a sequence-to-sequence task (Wen et al., 2022)
where the model maps input sequences of observations to output sequences of actions. Similarly to
our problem setting, Jing et al. (2024) introduced a transformer architecture to learn opponent policy
representations from offline datasets. In this paper, we are interested in learning latent representa-
tions of the other agents’ policies as a function of the controlled agent’s local trajectory.

3 Background

3.1 Partially Observable Stochastic Games

Partially observable stochastic games (POSGs) (Hansen et al., 2004) are a common formulation for
multi-agent settings. They are described by a set of agents i ∈ {0, . . . , N} and a finite set of states
s ∈ S. For each agent i, there is a finite action space Ai where A = A0 × . . .×AN represents the
joint action space of all agents. Similarly, for each agent i, there is a finite observation space Oi,
where O = O0× . . .×ON is the joint observation space of all agents. In addition to the observation
space, an agent has an observation function Oi: A× S ×Oi → [0, 1] given by 1

∀a ∈ A,∀s ∈ S :
∑

oi∈Oi

O(a, s, oi) = 1. (1)

In addition to the action and observation spaces, each agent has a reward function Ri : S×A×S →
R. Finally, similar to the observation function, the game has a state transition probability function
P : S ×A× S → [0, 1] given by 2

∀a ∈ A,∀s ∈ S :
∑
s′∈S

P (s, a, s′) = 1, (2)

where s′ is the next state as a result of taking the joint action a in the previous state s.

Agent i selects an action ai ∈ Ai given an observation oi ∈ Oi according to a policy πi(ai|oi),
which is a probability distribution over the set of actions Ai. The goal of an agent is to learn a policy
π such that the expected cumulative reward, or the agent’s return, is maximized:

max
π

E

[
L∑

t=1

γtrt+1 | π
]

(3)

where L is the length of the episode and γ ∈ [0, 1) is the discount factor. The action value function
Qπi

(s, ai) for agent i defines the expectation of the return given the state s when taking action ai

following policy πi. Similarly, the value function V πi

(s) describes the value of being in state s for
agent i following policy πi. In actor-critic methods, such as A2C (Mnih et al., 2016), the actor πi

and the critic V πi

(s) are used to calculate the advantage function Aπi

(s, ai) = Qπi

(s, ai)−V πi

(s).
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Figure 1: TransAM architecture. We embed the controlled agent’s previous reward, previous
action, and current observation into embedding tokens, T (r,a,o)

t , and transform them into an output
sequence of embedding vectors, E(r,a,o)

t . The embedding vectors are used to both condition the
controlled agent’s policy and reconstruct the other agents’ trajectories as a function of the local
trajectory only.

3.2 Transformers

Transformers consist of an encoder and a decoder and can use either the encoder, the decoder, or
both depending on the applications. Generalizing, encoder-decoder models are used for machine
translation tasks (Raffel et al., 2020). Decoder-only models are useful for generative sequence tasks
(Radford et al., 2018). Encoder-only models are good for sequence understanding tasks (Devlin
et al., 2019). We make use of an encoder-only model for our problem, and hence will focus on this
portion of the model. The encoder takes as input a sequence of embedding tokens {Tt, . . . , Tt+K}
with context length K and transforms them into representation embedding vectors {Et, . . . , Et+K}.
The model is composed of several layers of transformer blocks. Each block contains a multi-head
self-attention layer and a feed-forward layer, connected by a residual connection with layer normal-
ization at the output of the block. The self-attention function below uses three linear layers to map
the input sequence of the ith block into query Qi, key Ki, and value Vi matrices which are used to
create the output as follows

Zi = softmax
(QiKT

i√
dk

)
Vi, (4)

where dk is the dimension of the input token vectors. By combining the input tokens into sequence
matrices Q, K, and V the self-attention function attends to the whole sequence, allowing the model
to extract relevant information throughout the sequence.

3.3 Problem Formulation

We consider a modified POSG with one learning agent under our control and a set of agents to
interact with, which can utilize one of several fixed policies. To be specific, we assume that each
individual agent i adopts a policy πi, whose collection forms the joint agent policy π−1. We consider
the set of M fixed, pre-trained joint policies Π = {π−1,m|m = 1, . . . ,M}, composed of agents
trained via heuristic and reinforcement learning strategies. For clarity, we refer to the controlled
agent without a superscript and to all other agents with superscript -1. Thus, the controlled agent has
an action space A and an observation space O, while other agents have joint spaces A−1 and O−1.
Our goal is to learn a policy πθ parameterized by θ that maximizes the expected return averaged
over all joint policies Π by optimizing Equation 5:
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argmax
θ

Eπθ,π−1,m∼U(Π)

[
L∑

t=1

γtrt+1

]
, (5)

where π−1,m is uniformly sampled from Π at the beginning of each episode. The agent policy type
m is concealed from the controlled agent throughout the episode. This occluded information can
either be incorporated into the policy implicitly by simply attempting to maximize the average return
for all agent policies, or it can be modeled explicitly and used to condition the policy on which policy
m is currently being modeled. In this work, we focus on the latter and introduce a transformer-based
approach to modeling such agent policies.

4 Method

4.1 TransAM

We format agent modeling as a sequence modeling task through the lens of episodic trajectories.
Consider the tuple (rt−1, at−1, ot) where rt−1 ∼ R is the previous reward, at−1 ∼ A is the previous
action, and ot ∼ O is the current observation of the controlled agent. The local episodic trajectory of
the agent can be viewed as a sequence of these tuples T = (r0, a0, o1, . . . , rL−1, aL−1, oL). Simi-
larly, other agent trajectories are represented as T i,m = (ri,m0 , ai,m0 , oi,m1 , . . . , ri,mL−1, a

i,m
L−1, o

i,m
L ).

Our goal here is to learn a representation of the joint agent policy π−1,m such that this repre-
sentation can be used as an inductive bias for the controlled agent policy. Inspired by the recent
success of transformers in such problems, we built a transformer encoder model, which we refer
to as Transformer-based Agent Modeling (TransAM), to encode these sequences into a compact
representation. Our proposed architecture can be seen in Figure 1.

We learn a linear mapping from rt, at, ot+1 to token embeddings T r
t , T a

t , and T o
t+1, respec-

tively. Considering the three modalities, we use a context window of 3K tokens as a subset
of the agent’s local trajectory Tt+K = (T r

t−1, T
a
t−1, T

o
t , . . . , T

r
t+K−1, T

a
t+K−1, T

o
t+K). Using

the encoder, we encode this token sequence into a representation embedding sequence Et+K =
(Er

t−1, E
a
t−1, E

o
t , . . . , E

r
t+K−1, E

a
t+K−1, E

o
t+K). We use only observation embeddings for down-

stream tasks, as reward/action embeddings offer marginal empirical benefit. This embedding vector
Eo

t+K , in addition to observation ot+K , is used to condition the policy πθ(at+K |ot+K , Eo
t+K). We

posit that this incorporation of information is necessary for the agent policy to accurately determine
the best response to the current joint agent policy.

Generative Loss To learn an informative representation of the joint agent policy, we introduce an
agent trajectory reconstruction head. It decodes the embedding vector Eo

t into the joint observations
o−1,m
t = (o0,mt , . . . , oN−1,m

t ) and actions (a0,mt , . . . , aN−1,m
t ) of the other agents. We use the mean

squared error loss, LMSE , to learn the observations of the agent and the mean cross-entropy loss
LCE for all actions of the agents N − 1. In total, the agent modeling loss is given by Equation (6)

LAM = LMSE(ô
−1,m
t , o−1,m

t ) +
1

N − 1

N−1∑
i=0

LCE(â
i,m
t , ai,mt ), (6)

where ô−1,m
t is the predicted joint agent observation and âi,mt is the action for agent i. The recon-

struction head is only used during training to learn the representation Eo
t . During execution, we only

use the encoder, which does not need access to the occluded information of other agents.

4.2 Policy Training

The goal of the controlled agent is to learn a policy that adapts to different joint agent policies
π−1,m. We train TransAM such that the embedding vector Eo

t is a good proxy for the true other
agent information. By incorporating this vector into the controlled agent policy, it allows the policy
to better adapt to varying joint agent policies. From here, any RL algorithm can be used to learn an
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Figure 2: Experimental environments. We use four environments (a) Predator-Prey, a competitive
pursuit environment (b) Cooperative Navigation, a cooperative navigation environment (c) Over-
cooked, a cooperative cooking environment (d) Level-Based Foraging a mixed resource allocation
environment.

optimal policy π conditioned on ot and Eo
t . In this paper, we use the advantage actor-critic (A2C)

algorithm (Mnih et al., 2016). Thus, the RL objective is given by Equation (7)

LA2C =E(ot,at,ot+1,rt+1)∼B [
1

2

(
rt+1 + Vϕ(ot+1, E

o
t+1)− Vϕ(ot, E

o
t )
)2

−Aπ(ot, at) log πθ(at|ot, Eo
t )− βH(πθ(at|ot, Eo

t ))],
(7)

where B is a batch of transitions, πθ is the policy parameterized by θ, Vϕ is the value function
parameterized by ϕ, Aπ is the advantage function under policy π, and H is the entropy function
weighted by the entropy coefficient β. We optimize Equations (6) and (7) jointly, sampling the set
of other agent policies per episode.

5 Experiments

5.1 Experimental Setup

To validate the effectiveness of our proposed approach, we performed experiments in a variety of
settings, including competitive, cooperative, and mixed environments. Specifically, we used Multi-
Agent Particle Environments (MPEs) from (Mordatch & Abbeel, 2017) that contain competitive
and cooperative scenarios, the cooperative Overcooked environment (Carroll et al., 2019), and the
mixed level-based foraging environment (Christianos et al., 2020). Each experiment presents a
unique scenario where cooperativeness, competitiveness, or a mixture of both plays a vital role and
must be modeled appropriately. Through rigorous analysis, we assessed the performance of our
approach in terms of modeling agent behavior and solving the final task. In all of our experiments,
we relied on the Advantage Actor-Critic (A2C) algorithm (Mnih et al., 2016) and used one LSTM
layer (Hochreiter & Schmidhuber, 1997) and one linear layer, both with a hidden dimension of
128. Furthermore, we used a transformer encoder that is made up of four transformer blocks with
four attention heads and a hidden dimension of 128. We trained the controlled agent policy for 10
million time steps and performed evaluations every 100 episodes. To ensure the reproducibility of
the results, we performed five different training runs with different random seeds and plotted the
average of the results to provide reliable evidence of our approach’s performance.

We compare our proposed method with several key baselines that represent a range of solutions
in this space. Some baselines employ an explicit agent model, while others are implicit. These
baselines can be categorized based on the amount of information available to the controlled agent
about the other agents:

• No Agent Modeling (NAM): This baseline only has access to the controlled agent’s current
observation and last action.

• Contrastive Agent Representation Learning (CARL): This baseline employs a recurrent en-
coder to embed the local information of the controlled agent into a vector space representing the
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Figure 3: Average task returns. (Top) Average episodic returns during training with 95% con-
fidence intervals across four experimental scenarios, evaluated over five random seeds. (Bottom)
Mean and standard deviation of episodic returns over 100 evaluation episodes, also averaged across
five random seeds.

joint policy. The encoder is trained using contrastive loss, specifically InfoNCE (Chen et al.,
2020).

• Conditional Agent Imitation Learning (CAIL): This baseline uses a recurrent backbone to
embed local information into a vector space, which is then used to condition a policy imitation
decoder.

• Local Information Agent Modeling (LIAM): This baseline from Papoudakis et al. (2021) em-
ploys a recurrent encoder-decoder architecture to encode the controlled agent’s local information
into an embedding space. The decoder reconstructs other agents’ observations and actions, but
only the encoder is used during inference, restricting access to the controlled agent’s information.

• Policy Embedding Learning (PEL): Originally proposed in Jing et al. (2024), this approach
uses a transformer-based architecture to encode an opponent’s trajectory into a policy embedding
space. It employs a generative loss for action reconstruction via conditional imitation learning and
a contrastive InfoNCE loss to differentiate policies. We adapt this by encoding only the controlled
agent’s trajectory.

• Oracle: This baseline assumes full access to other agents’ trajectories, including observations
and actions. The controlled agent conditions on a joint vector comprising its local observation,
last action, and other agents’ observations and actions. With no ambiguity in the intentions or
strategies of the agents, this represents an upper performance baseline.

5.2 Experimental Environments

5.2.1 Predator-Prey (Tag)

We use a modified predator-prey environment from (Boehmer et al., 2020), consisting of two large
landmarks, three adversarial predator agents, and one controlled prey agent. The prey is faster,
providing a strategic advantage. The prey receives a reward of +1 if caught by a single adversary,
while all adversaries receive −1. If multiple adversaries capture the prey, the prey receives −1 and
the adversaries receive +1. Additionally, the agent incurs a penalty −10 for reaching the boundary.
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Figure 4: Agent action reconstruction accuracy. We compute the mean and standard deviation of
the other agents’ action reconstruction accuracy for the relevant methods for all four environments
averaged across five random seeds.

5.2.2 Cooperative Navigation (Spread)

We use the original cooperative navigation scenario from Mordatch & Abbeel (2017), where three
agents and three landmarks start from random positions. Agents must coordinate to cover all land-
marks while avoiding collisions. The team’s reward is based on the sum of the minimum distances
between agents and landmarks, with penalties for collisions.

5.2.3 Overcooked

We utilize the cramped room layout from the simplified Overcooked environment (Carroll et al.,
2019), where two chefs collaborate in a confined kitchen to prepare and serve onion soup. The task
requires executing a sequence of high-level actions, including placing onions in a pot (cooking for
20 timesteps), transferring soup to bowls, and serving. Each served soup grants both agents a reward
of 20, with the objective of maximizing the number of soups served within 400 timesteps. Efficient
coordination and multitasking are essential for optimal performance.

5.2.4 Level-Based Foraging

This scenario features a 20×20 gridworld with two agents and four food locations, each assigned
a skill level. An agent can capture food if its skill level exceeds that of the food, and agents can
also combine skill levels to capture higher-level food. This creates a mixed cooperative-competitive
dynamic, where agents may collaborate for higher rewards or act independently for easier gains.
Rewards are distributed based on each agent’s contribution to the total captured food. For instance,
if one agent captures food of level 1 while the other captures levels 2, 3, and 4, their rewards are
proportionally 1/(1 + 2 + 3 + 4) and (2 + 3 + 4)/(1 + 2 + 3 + 4), respectively.

5.3 Analysis

5.3.1 Task Returns

Figure 3 presents average evaluation returns. As expected, Oracle defines the upper performance
bound. Notably, TransAM matches or exceeds Oracle across all environments, with LIAM per-
forming similarly. Both benefit from encoding the controlled agent’s actions and observations into
more informative policy embeddings. NAM achieves moderate to low returns, likely due to the
absence of auxiliary objectives. CAIL underperforms in predator-prey and level-based foraging but
excels in cooperative navigation and Overcooked, highlighting the benefit of policy reconstruction
in cooperative tasks. CARL performs moderately overall, particularly in competitive settings. PEL
yields the lowest returns in most environments, suggesting that its combined generative and con-
trastive losses hinder final performance.
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Figure 5: Evolution of TransAM performance across an episode. We analyze the relationship
between cumulative reward ↑ (top), agent action reconstruction accuracy ↑ (middle), and agent
observation reconstruction accuracy as the mean-squared error ↓ (bottom) throughout an episode,
averaged over 100 episodes. Note: The spread environment rewards are strictly negative, so the
evolution of returns trends down. Error bars represent 95% confidence intervals across 5 seeds.

5.3.2 Agent Modeling

The agent modeling results for methods with action reconstruction capabilities are shown in Figure
4. TransAM consistently excels in reconstructing agent actions, outperforming all baselines in the
two cooperative tasks, achieving competitive accuracy in the competitive task, but underperforming
in the mixed setting. PEL matches or surpasses TransAM in three of four tasks, while CAIL
performs comparably but struggles in cooperative environments. Both PEL and CAIL incorporate
an imitation learning objective, with PEL additionally using a contrastive loss to better distinguish
agent policies. However, this improved agent modeling performance comes at the cost of final task
returns, suggesting a trade-off between policy reconstruction and maximizing the controlled agent’s
reward. This trade-off is evident in LIAM, which lags behind other baselines in agent modeling
but achieves significantly higher returns than PEL and CAIL. TransAM effectively balances both
objectives, demonstrating competitive agent modeling while achieving the highest returns. Notably,
TransAM is particularly well suited for strictly cooperative settings, where superior agent modeling
performance strongly correlates with high returns, even surpassing the Oracle in some cases.

5.3.3 Model Evaluation

To understand the mechanisms behind the success of TransAM, we analyze its behavior throughout
an episode in each test environment. Figure 5 illustrates the relationship between the accuracy of the
agent modeling and the cumulative reward. At the beginning of an episode, the model lacks context
about the joint policy with which it is interacting, resulting in a policy embedding Eo

t that provides
little additional information on the observation of the agent. However, as the episode progresses, the
embeddings become more informative, improving agent modeling accuracy and leading to higher
cumulative rewards.

This relationship is further evident when comparing how quickly the model converges on other
agents’ trajectories to its performance relative to other baselines. For example, in the overcooked
environment (Figure 5 (c)), TransAM converges the fastest, aligning with its highest reward margin
over the baselines (Figure 3(c)). In contrast, in the level-based foraging environment (Figure 5(d)),
TransAM struggles to model agent behavior, which is correlated with its difficulty in outperforming
other baselines (Figure 3(d)). These findings highlight the importance of designing adaptive agents
that effectively model policies in environments with complex reward structures.
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Table 1: Model architecture ablation study results. We test three variations of the model archi-
tecture on the cooperative navigation task and report the cumulative episodic return and the agent
action reconstruction accuracy. The best results are shown in bold.

Method Return Action Accuracy
TransAM −48.76 85.72
TransAM-pool −49.37 61.67
TransAM-fuse −48.94 78.68
TransAM-im −49.93 72.08

5.4 Model Architecture Ablation Study

We analyze three ablated variants of TransAM in the cooperative navigation environment to evalu-
ate the impact of its key architectural components: multimodal embeddings, embedding aggregation,
and auxiliary training task. We assess their effects on cumulative episodic reward and agent action
reconstruction accuracy.

• TransAM-fuse: Concatenates the rewards, actions, and observations of the controlled agent into
a single fused token embedding, rather than embedding the tokens separately for each modality.

• TransAM-pool: Uses average pooling to merge all trajectory embeddings instead of relying on
the most recent embedding.

• TransAM-im: Employs conditional imitation learning as the decoder, predicting only agent ac-
tions rather than both observations and actions.

The results of this analysis are presented in Table 1. First, we determine whether our local tra-
jectory representation is beneficial by comparing it against TransAM-fuse. This design achieves
comparable returns; yet suffers in agent modeling tasks–indicating that separate token embeddings
per modality are beneficial. Next, we consider the approach of pooling trajectory embeddings using
TransAM-pool as opposed to using the most recent embedding vectors to condition the controlled
agent’s policy. We observe that while this method incorporates information from the entire tra-
jectory, it leads to poor performance for both episodic returns and action reconstruction accuracy,
suggesting that recent transitions are more informative for identifying joint policies. Finally, we test
whether the conditional imitation learning decoder in TransAM-im provides a benefit over decoding
both the observations and actions of the agent. This produces the worst returns and second-lowest
modeling accuracy, reinforcing the importance of reconstructing both observations and actions.

6 Conclusion and Future Work

In this paper, we introduced TransAM, a transformer-based agent modeling architecture that op-
erates without access to other agents’ information at execution time, ensuring full decentralization
of the controlled agent. Using a transformer, TransAM effectively extracts and utilizes features
from the controlled agent’s episodic trajectory. We demonstrated its effectiveness across multiple
environments, including Predator-Prey and Cooperative Navigation from the multi-agent particle
environments, as well as Overcooked and Level-Based Foraging.

For future work, we aim to investigate the scalability of agent modeling techniques in larger multi-
agent systems. Additionally, we seek to explore recursive reasoning domains, where agents must
model others while accounting for the fact that their opponents are also performing agent modeling.
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