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Summary

Energy-based policies offer a flexible framework for modeling complex, multimodal be-
haviors in reinforcement learning (RL). In maximum entropy RL, the optimal policy is a Boltz-
mann distribution derived from the soft Q-function, but direct sampling from this distribution
in continuous action spaces is computationally intractable. As a result, existing methods typ-
ically use simpler parametric distributions, like Gaussians, for policy representation limiting
their ability to capture the full complexity of multimodal action distributions. In this paper, we
introduce a diffusion-based approach for sampling from energy-based policies, where the nega-
tive Q-function defines the energy function. Based on this approach, we propose an actor-critic
method called Diffusion Q-Sampling (DQS ) that enables more expressive policy representa-
tions, allowing stable learning in diverse environments. We show that our approach enhances
sample efficiency in continuous control tasks and captures multimodal behaviors, addressing
key limitations of existing methods.

Contribution(s)

1. We develop a novel actor-critic reinforcement learning algorithm such that the policy sam-
ples actions from the Boltzmann distribution of the Q-function. We achieve this by using
a diffusion model to parameterize the policy that explicitly learns the score function of the
target Boltzmann density.
Context: Boltzmann policies are a popular choice in discrete action spaces. However, sam-
pling from these policies in continuous action spaces is generally intractable. Prior work
(Psenka et al., 2023) used Langevin sampling to address this challenge. Other applications
of diffusion models (Wang et al., 2024) backpropagate the gradient through the entire dif-
fusion chain to maximize Q-values. To the best of our knowledge, our method is the first to
use diffusion models to explicitly sample from Boltzmann policies.

2. Experiments on continuous control tasks demonstrate improved sample efficiency of our
method compared to relevant baselines.
Context: We observe higher returns with fewer number of environment interactions (com-
pared to our baselines) on a majority of tasks.

3. We demonstrate that our proposed method can learn multimodal behaviors in maze naviga-
tion tasks.
Context: Our setup consists of a maze with two possible goals. Multimodality in this con-
text refers to the ability of an agent to reach both goals from some initial state, and discover
multiple paths (if they exist) to a goal. We qualitatively examine the trajectories of a trained
agent and compare them with respect to goal coverage and diversity of paths.
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Abstract

Energy-based policies offer a flexible framework for modeling complex, multimodal
behaviors in reinforcement learning (RL). In maximum entropy RL, the optimal pol-
icy is a Boltzmann distribution derived from the soft Q-function, but direct sampling
from this distribution in continuous action spaces is computationally intractable. As a
result, existing methods typically use simpler parametric distributions, like Gaussians,
for policy representation — limiting their ability to capture the full complexity of mul-
timodal action distributions. In this paper, we introduce a diffusion-based approach for
sampling from energy-based policies, where the negative Q-function defines the energy
function. Based on this approach, we propose an actor-critic method called DIFFUSION
Q-SAMPLING (DQS) that enables more expressive policy representations, allowing
stable learning in diverse environments. We show that our approach enhances sample
efficiency in continuous control tasks and captures multimodal behaviors, addressing
key limitations of existing methods.

1 Introduction

Deep reinforcement learning (RL) is a powerful paradigm for learning complex behaviors in diverse
domains, from strategy-oriented games (Silver et al., 2016; Berner et al., 2019; Schrittwieser et al.,
2020) to fine-grained control in robotics (Kober et al., 2013; Siinderhauf et al., 2018; Wu et al.,
2023). In the RL framework, an agent learns to make decisions by interacting with an environment
and receiving feedback in the form of reward. The agent aims to learn a policy that maximizes the
cumulative sum of rewards over time by exploring actions and exploiting known information about
the environment’s dynamics.

The parameterization of the policy is a crucial design choice for any RL algorithm. Under the con-
ventional notion of optimality, under full observability, there always exists an optimal deterministic
policy that maximizes the long-term return (Sutton & Barto, 2018). However, this is only true when
the agent has explored sufficiently and has nothing to learn about the environment. Exploration
requires a stochastic policy to experiment with different potentially rewarding actions. Moreover,
even in the exploitation phase, there may be more than one way of performing a task, and we might
be interested in mastering all of them. This diversification is motivated by the robustness of the
resulting policy to environment changes; if certain pathways for achieving a task become infeasible
due to a change of the dynamics or reward, some may remain feasible, and the agent has an easier
time in adapting to this change by exploiting and improving the viable options. This argument also
suggests that such policies can serve as effective initialization for fine-tuning on specific tasks.

While exploration, diversity and robustness motivate stochastic policies, representing such policies
in continuous action spaces remains challenging. As a result, stochasticity is often introduced by
noise injection (Lillicrap et al., 2015b) or using an arbitrary parametric family (Schulman et al.,
2015) which lacks expressivity. Orthogonal to the difficulty of representing such policies is their
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n(a | 5) = N (u(s), X(s)) n(a | 5) « exp(Q(s, a))
(s, a) N s, a)

Figure 1: Illustration comparing Gaussian and Boltzmann policies.

training objective; policies are often optimized to maximize the Q-function, and stochasticity is
introduced to encourage exploration as an afterthought. However, our argument for stochasticity
favours multi-modal policies; instead of learning the single best way to solve a task, we want to
learn all reasonably good ways to solve the task.

We address both of these issues by explicitly sampling from energy-based policies of the form,
7(a | 5) oc exp(Q7 (s, a)).

This is also known as the Boltzmann distribution of the Q-function. The optimal policy in the max-
imum entropy RL framework is also known to be of this form, except it uses the soft Q-function
(Haarnoja et al., 2017). Such a policy has several benefits. First, it offers a principled way to bal-
ance exploration and exploitation in continuous action spaces. By sampling from this distribution,
the policy still prioritizes actions with high Q-values but also has a non-zero probability of sam-
pling sub-optimal actions. While the use of Boltzmann policies is common in the discrete setting,
it is challenging in continuous spaces. This sampling problem is often tackled with Markov Chain
Monte Carlo (MCMC) techniques, which can be computationally expensive and suffer from expo-
nential mixing time. Second, this formulation naturally incorporates multimodal behavior, since
the policy can sample one of multiple viable actions at any given state. However, such policies are
generally intractable to sample from in continuous action spaces, requiring approximations in policy
parameterization often at the cost of expressivity.

Diffusion models offer a potential solution to the policy parameterization problem since they are
expressive and can produce high-quality samples from complex distributions. Indeed, they have been
extensively applied to solve sequential decision-making tasks, especially in offline settings where
they can model multimodal datasets from suboptimal policies or diverse human demonstrations. A
few studies have applied these models in the online setting, focusing on deriving training objectives
for policy optimization via diffusion. Yang et al. (2023) uses the gradient of the Q-function to refine
actions sampled from a diffusion policy; however, the exact form of the policy is unspecified, and it
is unknown what distribution the diffusion models sample from. Psenka et al. (2023) samples from
the Boltzmann distribution of the Q-function using Langevin dynamics, which may suffer from
insufficient mode coverage in high dimensions. Wang et al. (2024) uses diffusion policy within the
maximum entropy framework, where the entropy is approximated using a mixture of Gaussians. In
contrast, our approach directly samples from exp(Q7 (s, a)) by constructing a diffusion process that
estimates the score of this target Boltzmann density at different noise scales.

Our contributions in this work are as follows:

* We propose a novel actor-critic algorithm, DIFFUSION Q-SAMPLING (DQS), for sequential
decision-making using diffusion models for sampling from energy-based policies.

* We show that DQS approximately samples from the Boltzmann density of the Q-function.

* We demonstrate that DQS is more sample efficient compared to both classical actor-critic meth-
ods and more recent diffusion-based methods in continuous control tasks.

* We demonstrate that DQS can learn multimodal behaviors in maze navigation tasks.
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2 Related work

Our work is related to two distinct sub-areas of reinforcement learning: the relatively new and
actively explored line of work on applying diffusion models in the RL setting, and the classical
maximum entropy RL framework.

Diffusion models in RL. Early work on applying diffusion models for RL was focused on behav-
ior cloning in the offline setting (Chi et al., 2023). This setting more closely matches the original
purpose of diffusion models - to match a distribution to a given dataset. Janner et al. (2022); Ajay
et al. (2023) use a diffusion model trained on the offline data for trajectory optimization, while Reuss
et al. (2023); Jain & Ravanbakhsh (2024) apply diffusion models to offline goal-reaching tasks by
additionally conditioning the score function on the goal. Within the behavior cloning setting, there
is some existing work on learning a stochastic state dynamics model using diffusion (Li et al., 2022).

Beyond behavior cloning, offline RL methods incorporate elements from Q-learning to learn a value
function from the offline dataset and leverage the learned Q-function to improve the diffusion policy.
A large body of work exists in this sub-field, where the most common approach is to parameterize the
policy using a diffusion model and propose different training objectives to train the diffusion policy.
Wang et al. (2023); Kang et al. (2024) add a Q-function maximizing term to the diffusion training
objective, and Hansen-Estruch et al. (2023) use an actor-critic framework based on a diffusion policy
and Implicit Q-learning (Kostrikov et al., 2021). Lu et al. (2023) take an energy-guidance approach,
where they frame the problem as using the Q-function to guide the behavior cloning policy to high
reward trajectories.

The application of diffusion models has been relatively less explored in the online setting (Ding &
Jin, 2023). DIPO (Yang et al., 2023) modifies actions in the replay buffer based on the gradient of
the Q-function, then trains a diffusion model on the modified actions. QSM (Psenka et al., 2023)
directly trains a neural network to match the gradient of the Q-function, then uses Langevin diffusion
for sampling. In contrast, our method models the policy as a Boltzmann distribution using a diffusion
model that can represent complex distributions.

Maximum entropy RL. In contrast to standard RL, where the goal is to maximize expected re-
turns, in the maximum entropy RL framework, the value function is augmented by Shannon entropy
of the policy. Ziebart et al. (2008) applied such an approach in the context of inverse reinforcement
learning and Haarnoja et al. (2017) generalized this approach by presenting soft Q-learning to learn
energy-based policies. A follow-up work, Haarnoja et al. (2018a), presented the well-known soft
actor-critic (SAC) algorithm. This line of work proposes to learn a soft value function by adding the
entropy of the policy to the reward. The optimal policy within this framework is a Boltzmann dis-
tribution, where actions are sampled based on the exponentiated soft Q-values. Some recent works
use diffusion models within this framework, such as DACER (Wang et al., 2024), which uses a dif-
fusion policy to represent a maximum entropy policy and estimates the entropy using a mixture of
Gaussians. A recent work (Ishfaq et al., 2025) uses Langevin Monte Carlo to improve critic learning
through uncertainty estimation over policy optimization.

A separate but related line of work on generative flow networks (GFlowNets), originally defined in
the discrete case (Bengio et al., 2021; 2023), learns a policy that samples terminal states proportional
to the Boltzmann density corresponding to some energy function. They have been extended to
the continuous setting (Lahlou et al., 2023) and under certain assumptions, they are equivalent to
maximum entropy RL (Tiapkin et al., 2024; Deleu et al., 2024). They can effectively sample from
the target distribution using off-policy exploration, however, they encounter challenges in credit
assignment and exploration efficiency (Malkin et al., 2022; Madan et al., 2023; Rector-Brooks et al.,
2023; Shen et al., 2023). Our approach is distinct as we sample the action at each step from the
Boltzmann density of the Q-function, instead of the terminal states based on the reward.
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3 Preliminaries

3.1 Reinforcement learning

We consider a finite-horizon Markov Decision Process (MDP) denoted by the tuple (S, .4, P, r,~),
where the state space S and action space A are continuous. P : S x A x S — [0, 1] denotes the
transition probability of the next state s; 1 € S given the current state s, € S and action a; € A.
The reward function 7 : S X A — R is assumed to be bounded (s, a) € [Fmin, max]- ¥ € [0, 1] is
the discount factor.

A policy 7 : § — A produces an action for every state s € S. In the standard RL
framework, the objective is to learn a policy that maximizes the expected sum of rewards

Zt Eat"’ﬂ'("vst)75t+1N’P("St,at) [’ytr(st, at)]'

The actor-critic framework is a commonly used approach for learning such policies. It involves
optimizing a policy (the actor) to choose actions that maximize the action value function, also known
as the Q-function (the critic). The Q-function is defined as the sum of expected future rewards
starting from a given state-action pair, and thereafter following some policy 7 until terminal time
step T":

Q7 (s,a) =E,

T
Z'yk_tr(sk,ak) | st =s,a, = a} .

k=t
The optimal policy is defined as the policy that maximizes the sum of rewards along a trajectory:

thr(st,at)] )

t=0

7 = argmax E,
™

3.2 Diffusion models

Denoising diffusion. Denoising diffusion (Dinh et al., 2016; Ho et al., 2020; Song et al., 2021)
refers to a class of generative models which relies on a stochastic process which progressively trans-
forms the target data distribution to a Gaussian distribution. The time-reversal of this diffusion
process gives the generative process which can be used to transform noise into samples from the
target data distribution.

The forward noising process is a stochastic differential equation:
dz, = —a(T)zdr + g(7)dw, | (1

where w, denotes Brownian motion. In this paper, we consider the Variance Exploding (VE) SDE
where the decay rate, a, is set to a(7) = 0. This noising process starts with samples from the target
density 29 ~ po and progressively adds noise to them over a diffusion time interval 7 € [0, 1].
The marginal probability distribution at time 7 is denoted by p, and is the convolution of the target
density po with a normal distribution with a time-dependent variance, o2. For the VE setting we
consider, these marginal distributions are given by:

pr(y) = / Pol20)N (2y: 20, 02)do @)
0

where the variance is related to the diffusion coefficient, g(7) via 02 = fOT g(&)2de.

The generative process corresponding to the corresponding to Equation (1) is an SDE with Brownian
motion w,, given by:

dr, = [~a(1T)z, — g(7)*V log p, (z,))dT + g(7)dw, . 3)

Therefore, to be able to generate data, we need to estimate the score of the intermediate distributions,
\Y log pr (l' T ) .
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Iterated Denoising Energy Matching. Recently, Akhound-Sadegh et al. (2024) proposed an al-
gorithm known as iDEM (Iterated Denoising Energy Matching) for sampling from a Boltzmann-type
target distribution, po(x) x exp(—&(x)), where £ denotes the energy. iDEM is a diffusion-based
neural sampler, which estimates the diffusion score, V log p, using a Monte Carlo estimator. Given
the VE diffusion path defined above, iDEM rewrites the score of the marginal densities as:

_ J Vexp(=E(@o) )N (2+; 20, 07)dao

VR = (€ (o)) N (s 70, 02)do
_ Bin(ar o2 [V exp(—€(x)]
Eon(o, 02) | exp(—E(2)]

“4)

By observing that the above equation can be written as the gradient of a logarithm leads to the
K -sample Monte-Carlo estimator of the score:

K
Sk(wr,7) = Vo, log Y exp (- E@EY)), D~ N(z,,02). 5)
=1

A score-network, f, is trained to regress to the MC estimator, Si. The network is trained using
a bi-level iterative scheme: (1) in the outer-loop a replay buffer is populated with samples that are
generated using the model and (2) in the inner-loop the network is regressed Sy (x ., 7) where ., are
noised samples from the replay buffer.

4 An actor-critic algorithm for Boltzmann policies

Our objective is to learn general policies of the form 7(a | s) x exp(—&(s,a)), where £ represents
an energy function which specifies the desirability of state-action pairs. By setting the Q-function,
Q(s, a) as the negative energy, we get what is known as the Boltzmann policy:

exp(7Q(s, a))
[, exp(7Q(s,a))da
Choosing such a policy gives us a principled way to balance exploration and exploitation. Specif-
ically, by scaling the energy function with a temperature parameter 7' and annealing it to zero, we

get a policy that initially explores to collect more information about the environment and over time
exploits the knowledge it has gained.

m(a|s;T) = (6)

4.1 Diffusion Q-Sampling

We propose an off-policy actor-critic algorithm, which we call DIFFUSION Q-SAMPLING (DQS),
based on the above formulation. Being an off-policy method means DQS can reuse past interactions
with the environment by storing them in a replay buffer D, improving sample efficiency.

Let Q¢ denote the Q-function and 7, a parametric policy, where 6, ¢ represent the parameters of a
neural network. The Q-function is learned using standard temporal difference learning:

N 2
J(0) = E(s, a,)~D |:<Q9(St,at) - Q(Smat)) ] ) (7

where

Q(St’ at) = T(Sh at) + 7E5t+1~73,at+1~‘ﬂ'¢ [Qé(StJrl? at+1)} :

The target Q-values, Q make use of a target Q-network denoted by 5, where the parameters
are usually an exponentially moving average of the Q-network parameters . Also, in practice, the
expectation over next states s, is estimated using only a single sample.

We parameterize the policy using a diffusion process and use iDEM (Akhound-Sadegh et al., 2024)
to sample actions from the target density 7(+|s;) o exp(Qg(s¢, at)).
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Algorithm 1: Diffusion Q-Sampling (DQS)
Initialize: Initialize Q-function parameters 6, policy parameters ¢, target network 6 < 6,
replay buffer D

for each iteration do

// Environment Interaction

for each environment step do
Observe state s; and sample action a, via reverse diffusion using fy4
Execute a;, observe reward 7; and next state s,
Store transition (s, a;, r¢, S¢41) in D

end

// Parameter Updates

for each gradient step do

Sample minibatch B = {(s;, as, 7+, St4+1)} from D

// Update Q-function parameters 6

Compute target Q-values: Q; = ¢ + 7YQy(St41,ar11), App1 ~ Ty (St+1)
N2

Update 6 by minimizing: J(#) = ﬁ o5 (Qg (s¢,ar) — Qt)

// Update policy parameters ¢

for each (s¢,a;) in B do

Sample diffusion time 7 ~ [0, 1]

Sample noisy action a; , ~ N (a;, 02I)

Sample {a\”1X | where a\” ~ N (ay.,,o2I)

Estimate score: S; = V,, _log Zfil exp (Q@(St, aﬁ“))

Update ¢ by minimizing: J(¢) = || f4 (s, a7, 7) — St

end
// Update target network
Update 0 < n6+ (1 —n)6

end

end

Forward process. Given (s;,a;) € S x A, we progressively add Gaussian noise to the action
following some noise schedule. Let a; . denote the noisy action at diffusion step 7 € [0, 1], such
that:

ag 0 = at; ag r NN(at70'72_I).

-
We choose a geometric noise schedule 0, = oy ( g'“"_“) , where onin and opn,x are hyperparame-
min

ters. We found it sufficient to set i, = 107° and oyax = 1.0 for all our experiments.

Reverse process. Given noisy action samples, we iteratively denoise them using a learned score
function to produce a sample from the target action distribution 7 (+|s;) o< exp(Q7(s¢, -)). We train
a neural network, fs to match iDEM’s K-sample Monte Carlo estimator of the score, defined in
Equation (5), by setting the negative Q-function as the energy function. The score function takes as
input the noisy action and diffusion time, while also being conditioned on the current state. The loss
function is given by:

K 2
fo(st,80,r,7) — Va, log Y exp(Qo(se, &)

i=1

J(@) = Es, a)~D,r~U0,1],

at,,rNN(amUiI)

where &\ ~ N(ay ,, 021).
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Summarizing, to sample an action a, for the current state s, such that 7, (a.|s;) o exp(Q™ (s, at)),
we first sample noise from the prior (corresponding to diffusion time 7 = 1) a; ; ~ N(0,0%). We
then use Equation (3) in the VE setting (i.e. a(7) = 0) by using the trained score function fy in
place of V log p; to iteratively denoise samples produce the action sample a;. The full algorithm is
presented in Algorithm 1.

Temperature. We can incorporate the temperature parameter 7' from Equation (6) within our
framework by simply scaling the Q-function in Equation (8) and regressing to the estimated score
of the temperature-scaled Boltzmann distribution. To enable the score network to model this tem-
perature scaling accurately, we additionally condition fg on the current temperature. Generally,
the temperature is set to a high value initially, and is annealed over time such that at ¢ — oo, we
have T — 0. In practice, the temperature is annealed to a sufficiently small value for large time
steps. This ensures that the policy explores initially and as it collects more information about the
environment, starts exploiting more and more as time passes.

4.2 An illustrative experiment

In this section, we aim to answer the question: does DQS effectively learn a Boltzmann policy?

Since the policy learning is based on iDEM, one may assume that simply optimizing Equation (8)
should produce a policy that samples from the Boltzmann distribution of @Q(s,a). However, the
learning dynamics in the interactive setting are fundamentally different from the sampling setting.

In the sampling case, the diffusion model is trained to sample from a known, fixed energy function.
This means that the target score in Equation (8) corresponds to a static function. In the actor-critic
algorithm described above, the diffusion policy tracks the Q-function of the current policy. Since
this Q-function is learned simultaneously along with the policy, it is a moving target, hence it is not
immediately obvious whether the proposed algorithm leads to stable learning.

Ground truth samples DQS terminal samples exp(Q(s, a)) da

DQS logJ

-0 -20 o 20

Maximum Mean Discrepancy

. —o— DQs
08| | —e— SAC

L / A A
Nt AAS

1
Timesteps x10°

Figure 2: Ground truth, DQS, and SAC terminal samples for the Gaussian mixture experiment. The
right panels show the log partition function based on the learned Q-functions for DQS and SAC, with
contours showing the ground truth density for reference. We evaluate the samples using maximum
mean discrepancy (MMD) with the ground truth samples (bottom left).
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We test DQS in a controlled setting where we can qualitatively and quantitatively compare with
a known ground truth distribution. Consider 2-dimensional state space (z,y), an action space
(Az, Ay) with the actions normalized to be unit length, and an episode length of 100 steps. The
reward function is the log likelihood of samples under a mixture of 40 Gaussian distributions. We
train a Q-function and diffusion policy using DQS (Algorithm 1) and measure the Maximum Mean
Discrepancy (MMD) between the final policy samples and the ground truth samples. Figure 2 plots
the final samples at the end of the episode and the log partition function log Z = log fa Q(st,a)da.
To demonstrate the benefit of using a diffusion-based policy, we use soft actor-critic (SAC) with a
Gaussian policy as a representative baseline. We observe that DQS approximates the ground truth
samples more closely and covers most modes, which is also corroborated by a lower MMD com-
pared to SAC.

5 Experiments

We perform experiments to answer the following major questions:

* Does DQS offer improved sample efficiency in continuous control tasks?

* Can DQS learn multimodal behaviors, i.e., learn multiple ways to solve a task?

Baselines. We test our method against a number of relevant methods. This includes classical RL
algorithms such as (1) Soft Actor-Critic (SAC) (Haarnoja et al., 2018a), a maximum entropy RL
method that is widely used for continuous state-action spaces; (2) Deep Deterministic Policy Gradi-
ents (DDPG) (Lillicrap et al., 2015a) which uses a deterministic policy and directly backpropagates
gradients through the Q-function; (3) Proximal Policy Optimization (PPO) (Schulman et al., 2017),
an on-policy policy gradient algorithm that uses a clipped objective for stable updates; and (4) Twin
Delayed DDPG (TD3) (Fujimoto et al., 2018), an off-policy actor-critic method that mitigates over-
estimation bias by training two critics and delaying policy updates.

We also compare against some recent diffusion-based RL algorithms, including (5) Q-Score Match-
ing (QSM) (Psenka et al., 2023), a diffusion-based approach that trains a score function to match the
gradient of the Q-function and uses this score function to sample actions; (6) Diffusion Actor-Critic
with Entropy Regulator (DACER) (Wang et al., 2024), which uses a diffusion-based maximum en-
tropy policy along with Gaussian mixture models to estimate entropy; and (7) Diffusion Policy
(DIPO) (Yang et al., 2023) which samples actions from a diffusion policy and performs gradient
ascent using Q-functions to improve the actions.

All methods were trained with 250k environment interactions and one network update per environ-
ment step. For a fair comparison, all policy/score networks are MLPs with two hidden layers of
dimension 256 each, and the learning rate for all networks is 3 x 10~*. We tune hyperparame-
ters for each baseline and select the one that gives the overall best performance across tasks. We
apply the double Q-learning trick, a commonly used technique, where two Q-networks are trained
independently and their minimum value is used for policy evaluation to avoid overestimation bias.

5.1 Continuous control tasks

Figure 3: Domains from DeepMind Control Suite considered in our experiments - cheetah, finger,
fish, reacher, hopper, quadruped and walker.
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Figure 4: Experimental results for classic RL algorithms on 8 tasks from different domains from
the DeepMind Control Suite. Each result is averaged over 100 evaluation episodes across 10 seeds,
with the shaded regions showing minimum and maximum values. For PPO, the x-axis represents
the number of network updates.

Table 1: Mean episode returns for 100 evaluation episodes for classic RL algorithms, averaged over
10 seeds. The highest mean values in each row are highlighted and values within one standard
deviation are underlined.

Task DQS (Ours) SAC DDPG PPO TD3
cheetah-run 492.61+30.99 216.88 +18.51  214.02 +64.55 273.52 +101.92 193.63 +68.43
finger-spin 826.00 +6.24  681.72 +68.96  0.36 +0.64 57747 +25.96  661.70 +61.30

g finger-turn_hard 253.72 +104.84 200.02 +£85.60 58.58 +119.76 ~ 91.15 +120.00  124.59 +32.54

2 fish-swim 22427 +38.96  69.31 +11.95  87.40 +53.15  83.86 +29.02  77.88 +7.69

= hopper-hop 0.33 +0.35 0.01 +o0.02 1.36 +2.62 0.50 +0.99 5.34 +7.47

= quadruped-run  199.26 +32.79  127.94 +32.06 220.66 +159.40 188.86 +85.45 191.11 +21.99
reacher-hard 914.15 +18.28  52.76 +50.88 107.20 +124.32  19.63 +46.40  437.10 +£138.98
walker-run 547.39 +32.58  226.52 +37.38  386.05 £98.73  285.89 +25.10 359.85 +158.52
cheetah-run 683.64 +18.51 588.91 +84.52 51491 +61.35 362.27 +145.64 592.13 +49.08
finger-spin 835.00 +61.36  854.04 +31.92  1.10 +1.12 620.32 +31.55 835.45 +71.52

2 finger-turn_hard 361.46 +179.32 169.58 +141.64 80.48 +80.64 82.34 +78.69 319.80 +75.90

£ fish-swim 221.67 +42.59 111.09 +35.72  69.33 +21.20  88.13 +39.20 106.06 +21.31

= hopper-hop 0.66 +0.08 56.47 +61.47  49.10 £44.49  2.00 +4.71 21.91 +12.10

& quadruped-run  277.63 +66.45 308.61 +216.94 292.94 +110.62 219.69 +86.76 381.84 +82.94
reacher-hard 974.05 +1.64  666.12 £230.56 288.54 +350.28 31.21 +88.40 883.55 +54.84

walker-run

679.17 +38.63

569.28 +50.41

525.64 +113.60

553.79 +26.28

548.09 +131.90

We evaluate the performance of DQS on several continuous control tasks via the DeepMind Control
Suite. We choose eight tasks from different domains to cover tasks of varying complexity and
dynamics. These tasks typically involve controlling the torques applied at the joints of robots to
reach a specific configuration or location, or for locomotion.

Since we are interested in evaluating the data efficiency of DQS , we limit the number of environ-
ment interactions to 250k steps. Figure 4 shows the performance of various classic methods on these
different tasks. On most tasks, DQS performs on par or outperforms the baseline methods. In par-
ticular, on five out of the eight tasks considered (cheetah-run, finger-spin, fish-swim, reacher-hard
and walker-run) DQS reaches higher reward much faster than competing methods, demonstrating
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Figure 5: Experimental results for diffusion-based RL algorithms on 8 tasks from different domains
from the DeepMind Control Suite. Each result is averaged over 100 evaluation episodes across 10
seeds, with the shaded regions showing minimum and maximum values.

Table 2: Mean episode returns for 100 evaluation episodes for diffusion-based RL methods, averaged
over 10 seeds. The highest mean values in each row are highlighted and values within one standard
deviation are underlined.

Task DQS (Ours) QSM DACER DIPO
cheetah-run 492.61 +30.99 313.34 +£55.38 221.14 +33.26  338.93 +37.90
finger-spin 826.00 +6.24  757.15 +59.20 366.06 +44.68 670.22 +£71.68

2 finger-turn_hard 253.72 +104.84 108.12 +100.52 36.04 +37.44 57.84 +48.80

2 fish-swim 22427 +38.96 81.73 +18.83  78.20 +14.72  72.12 +£3.86

= hopper-hop 0.33 +0.35 0.04 +o.01 0.48 +0.52 0.41 +o0.59

= quadruped-run ~ 199.26 £32.79  163.60 +32.42 221.39 +72.44 164.08 +5.37
reacher-hard 914.15 +18.28  557.12 +178.20 358.48 +£303.20 766.20 +53.16
walker-run 547.39 £32.58 413.53 +47.69 19530 +43.95 252.88 +134.23
cheetah-run 683.64 £18.51  607.16 +36.45 599.64 +123.50 650.98 +£71.03
finger-spin 835.00 +61.36 874.52 +19.38  486.66 +67.52  830.36 +27.16

2 finger-turn_hard 361.46 +179.32 297.66 +90.00 142.66 +47.16 113.32 +85.20

2 fish-swim 221.67 +42.59  204.20 +38.65 158.82 +37.19  129.76 +23.50

= hopper-hop 0.66 +0.08 40.97 +38.86  24.01 £26.32  0.00 +o0.01

& quadruped-run ~ 277.63 +66.45 293.12 +141.69 466.77 +169.98 126.09 +75.00
reacher-hard 974.05 +1.64  887.26 +54.04 821.88 +134.16 894.88 +79.32

walker-run

679.17 +£38.63

605.98 +52.12

602.12 +61.36

518.49 +162.78

improved exploration. From the numerical results in Table 1, we see that DQS particularly shines in
very low environment interaction budgets. When all agents are limited to 100k environment steps,
DQS is much more performant than other methods. Note that for PPO, the step number represents
the number of network updates.

We perform a similar analysis in Figure 5 and Table 2, where we compare the performance of
DQS with more recent diffusion-based RL methods. We describe these approaches in more detail in
Section 2. We observe a similar trend as the previous set of experiments, where QSM achieves higher
returns quicker than other methods on a majority of tasks, which is especially marked when con-
sidering performance at 100k environment steps. This improved sample efficiency could possibly a
result of better ability to handle exploration and exploitation, owing to the use of a Boltzmann pol-
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Figure 6: Trajectories for 100 evaluation episodes after 250k training steps. The starting states are
sampled from a Gaussian distribution centered at (0, 0)

icy that samples high Q-value actions while maintaining some probability of sampling exploratory
actions.

We use a single fixed temperature of 7' = 0.05 across tasks. Note that SAC and DACER use
automatic temperature tuning which allows them to influence the policy entropy over the course of
training. The performance of DQS may be further improved by fine-tuning the temperature schedule
on each individual task.

5.2 Goal reaching maze navigation

We use a custom maze environment to evaluate the ability of our method to reach multiple goals.
The agent is tasked with manipulating a ball to reach some unknown goal position in the maze. The
state consists of the ball’s (z,y) position and the velocity vector. The action is the force vector
applied to the ball.

The initial state of the ball is at the center of the maze, with some noise added for variability. We
define two potential goal states for the ball - the top left and the bottom right corners respectively.
The negative Euclidean distance between the desired goal and the achieved state gives the reward
function.

For DQS, we used temperature annealing with an initial temperature of 7' = 10, which is decayed
exponentially with the number of training steps to a value of 7" = 1 after 250k steps. SAC uses au-
tomatic temperature tuning (Haarnoja et al., 2018b), where the entropy co-efficient is automatically
tuned using gradient descent to maintain the desired level of entropy.

Figure 6 plots the trajectories of the ball over 100 evaluation episodes after 250k training steps.
As seen in Figure 6a, DQS learns to reach both goals, owing to the proposed sampling approach
which can effectively capture multimodal behavior. Moreover, it discovers both paths to reach the
top left goal. In contrast, SAC (Figure 6b), QSM (Figure 6¢), and DIPO (Figure 6e) can only reach
one of the goals. Since SAC models the policy using a Gaussian, there is little variability between
different trajectories. QSM produces slightly more varied behavior, since it uses Langevin sampling
to sample actions, but ultimately fails to learn distinct behaviors. DIPO, on the other hand, managers
to learn distinct paths to reach the same goal. DACER in Figure 6d discovers the second mode but
is heavily skewed towards one mode.

6 Discussion

In this work, we showcase the benefits of using energy-based policies as an expressive class of poli-
cies for deep reinforcement learning. Such policies arise in different RL frameworks, but their
application has been limited in continuous action spaces owing to the difficulty of sampling in
this setting. We alleviate this problem using a diffusion-based sampling algorithm, Diffusion Q-
Sampling (DQS ), can sample multimodal behaviors and improve sample efficiency, possibly owing
to better handling of the exploration-exploitation trade off.



Reinforcement Learning Journal 2025

While diffusion methods offer high expressivity, they often come with increased computation. This
is particularly true in the online RL setting, where using a diffusion policy means that each envi-
ronment step requires multiple function evaluations to sample from the diffusion model. There is a
growing body of work on efficient SDE samplers (Jolicoeur-Martineau et al., 2021), which aim to
reduce the number of function evaluations required to obtain diffusion-based samples while main-
taining high accuracy. Incorporating such techniques with Boltzmann policies can greatly reduce
the computational cost, especially in high-dimensional state-action spaces.

A crucial aspect of energy-based policies is the temperature parameter, which defines the shape of
the sampling distribution. Our method enables annealing of the temperature from some starting
value to lower values, as is typically done when applying Boltzmann policies in deep RL. However,
this temperature schedule has to be manually tuned. Haarnoja et al. (2018b) proposes an automatic
temperature tuning method for SAC, which maintains the temperature so that the entropy of the
current policy is close to some target entropy. While such an approach could be applied to DQS in
principle, it is computationally expensive to compute the likelihoods of samples under a diffusion
model.

Finally, as we argued in the introduction, Boltzmann policies based on their own value function are
attractive choices for pre-training of RL agents for later fine-tuning and multi-task settings. We hope
to investigate this exciting potential in the future.
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Implementation details

The score function is parameterized as an MLP with two hidden layers of 256 units each with the
ReLU activation function, except for the final layer. The MLP has skip connections as is typical for
denoising score functions. The input to the policy comprises the state, noised action, the diffusion
time step, and the temperature. The diffusion time step and the temperature are encoded using sinu-
soidal positional embeddings of 256 dimensions. The action is sampled following Equation (3) and
the tanh(-) function is applied to the sampled action followed by multiplication with the maximum
value of the action space to ensure the value is within the correct range. The Q-network is also an
MLP with two hidden layers of 256 units each with the ReLU activation function, except for the
final layer. We use two Q-networks for the double Q-learning technique, and take the minimum of
the two values.

The score function and the Q-network are trained for 250k environment steps with one mini-batch
update per environment step. Optimization is performed using the Adam optimizer (Kingma, 2014)
with a learning rate of 3 x 10~* and a batch size of 256.

Table 3: Hyperparameters.

Parameter Value
Number of hidden layers 2
Number of hidden units per layer 256
Sinusoidal embedding dimension 256
Activation function ReLU
Optimizer Adam
Learning rate 3-107%
Batch size 256
Replay buffer size 250000
Discount factor 0.99
Gradient updates per step 1
Target smoothing co-efficient 0.005
Target update period 1
Seed training steps 10*
Omin 0.00001
Omax 1
Number of Monte Carlo samples 1000

Number of integration steps 1000




