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Summary
Deep reinforcement learning (RL) has shown remarkable success in complex domains,

however, the inherent black box nature of deep neural network policies raises significant chal-
lenges in understanding and trusting the decision-making processes. While existing explain-
able RL methods provide local insights, they fail to deliver a global understanding of the
model, particularly in high-stakes applications. To overcome this limitation, we propose a
novel model-agnostic framework that bridges the gap between explainability and interpretabil-
ity by leveraging Shapley values to transform complex deep RL policies into transparent rep-
resentations. The proposed approach, SILVER (Shapley value-based Interpretable poLicy Via
Explanation Regression) offers two key contributions: a novel approach employing Shapley
values to policy interpretation beyond local explanations, and a general framework applica-
ble to off-policy and on-policy algorithms. We evaluate SILVER with three existing deep RL
algorithms and validate its performance in three classic control environments. The results
demonstrate that SILVER not only preserves the original models’ performance but also gener-
ates more stable interpretable policies.

Contribution(s)
1. This paper presents a novel framework to derive interpretable policies from explainable

methods.
Context: Prior work focused on generating explanations in Reinforcement Learning with-
out deriving an interpretable policy from it. (Beechey et al., 2023)

2. This framework generates highly transparent, interpretable policies while maintaining
model performance.
Context: It overturns the conventional assumption that there must be a trade-off between
interpretability and performance.

3. This model-agnostic framework is applicable to both off-policy and on-policy reinforcement
learning algorithms.
Context: Prior works are mostly model-specific, limiting their ability to generalize across
diverse RL scenarios.
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Abstract
Deep reinforcement learning (RL) has shown remarkable success in complex domains,
however, the inherent black box nature of deep neural network policies raises signif-
icant challenges in understanding and trusting the decision-making processes. While
existing explainable RL methods provide local insights, they fail to deliver a global
understanding of the model, particularly in high-stakes applications. To overcome this
limitation, we propose a novel model-agnostic framework that bridges the gap between
explainability and interpretability by leveraging Shapley values to transform complex
deep RL policies into transparent representations. The proposed approach SILVER
(Shapley value-based Interpretable poLicy Via Explanation Regression) offers two key
contributions: a novel approach employing Shapley values to policy interpretation be-
yond local explanations, and a general framework applicable to off-policy and on-policy
algorithms. We evaluate SILVER with three existing deep RL algorithms and validate
its performance in three classic control environments. The results demonstrate that
SILVER not only preserves the original models’ performance but also generates more
stable interpretable policies.

1 Introduction

Reinforcement learning (RL) is an important machine learning technique that learns to make deci-
sions with the best outcomes defined by reward functions (Sutton & Barto, 2018). Recent advances
in RL have shown remarkable performance when integrating RL with deep learning to solve chal-
lenging tasks with human-level or superior performance in, e.g., AlphaGo (Silver et al., 2017), Atari
games (Mnih et al., 2015a), and robotics (Gu et al., 2017). These successes are largely due to the
powerful function approximation capabilities of deep neural networks (DNNs), which excel at fea-
ture extraction and generalization. However, the use of DNNs also introduces significant challenges
as these models are often considered “black boxes", making them difficult to interpret (Zahavy et al.,
2016). They are often complex to train, computationally expensive, data-hungry, and susceptible to
biases, unfairness, safety issues, and adversarial attacks (Henderson et al., 2018; Wu et al., 2024;
Siddique et al., 2020). Thus, an open challenge is to provide quantitative explanations for these
models such that they can be understood to gain trustworthiness.

Explainable reinforcement learning (XRL) has become an emerging topic that focuses on addressing
the aforementioned challenges, aiming at explaining the decision-making processes of RL models
to human users in high-stakes, real-world applications. XRL employs the concepts of interpretabil-
ity and explainability, each with a distinct focus. Interpretability refers to the inherent clarity of a
model’s structure and functioning, often achieved through simpler models like decision trees (Bas-
tani et al., 2018; Silva et al., 2020a) or linear functions that make a policy “self-explanatory" (Hein
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et al., 2018). On the other hand, explainability is related to the use of external, post-hoc methods
to provide insights into the behavior of a trained model, aiming to clarify, justify, or rationalize
its decisions. Examples include employing Shapley values to determine the importance of state
features (Beechey et al., 2023) and counterfactual states to gain an understanding of agent behav-
ior (Olson et al., 2021).

While explainability can provide valuable insights that build user trust, we argue that in high-stakes
and real-world applications, explainability alone is insufficient. (Kohler et al., 2024; Langosco et al.,
2022; Delfosse et al., 2024) For instance, Shapley values (Shapley, 1953)—a well-known explain-
able model—provide local explanations by assigning numerical values that indicate the importance
of individual features in specific states. Although such explanations can help users build trust by
aligning with human intuition and prior knowledge when enough states are covered, they fail to en-
able users to fully reproduce or predict agent behavior. This is because these local explanations do
not provide a comprehensive, global understanding of the model’s functionality, leaving critical as-
pects of the decision-making process in the dark. In contrast, interpretability offers full transparency
and intuitive understanding which is essential for critical applications where trust and comprehen-
sibility are essential. However, the trade-off between simplicity and performance in interpretable
models often results in reduced model performance.

Despite its limitations, explainability remains a valuable tool for uncovering insights into model
behavior. It can facilitate the development of interpretable policies by abstracting key information
from explanations and guiding policy formulation. In this paper, we propose a model-agnostic ap-
proach named SILVER to generate interpretable policies by leveraging insights from explainability
techniques in RL environments. SILVER aims at balancing transparency and high performance,
ensuring that the resulting models are both understandable and effective.

Contributions. In this paper, we present SILVER that bridges the gap between explainable and
interpretable reinforcement learning.1 Our main contribution is the development of SILVER that
leverages insights from explainable models to derive interpretable policies. In particular, instead of
focusing on the local explanations provided by explainable models, the proposed model-agnostic
approach aims to achieve highly transparent and interpretable policies without sacrificing model
performance. Additional contributions include the application of SILVER to both off-policy and
on-policy RL algorithms and the creation of three adaptations to deep RL methods that learn inter-
pretable policies using insights from model explanation. Finally, we evaluate the effectiveness of
SILVER in three environments to demonstrate its effectiveness in generating interpretable policies.

2 Related Work

One popular approach used in explainable artificial intelligence (XAI) is to use Shapley values
that provide a quantitative measure of the contributions of features to the output (Štrumbelj &
Kononenko, 2010; 2014). In Ribeiro et al. (2016), a method, called LIME, was proposed based
on local surrogate models that approximate the predictions made by the original model. In Wachter
et al. (2017), the counterfactual is introduced into XAI by producing a perturbation input to change
the original prediction to study the intrinsic causality of the model. In Lundberg & Lee (2017),
the idea of SHAP was proposed to unify various existing feature attribution methods under a sin-
gle theoretical framework based on Shapley values, providing consistent and theoretically sound
explanations for a wide range of machine learning models.

Most existing explainable methods in RL adopt similar concepts from deep learning via framing the
observation as input while the action or reward is the output. In Beechey et al. (2023), on-manifold
Shapley values were proposed to explain the value function and policy that offers more realistic and
accurate explanations for RL agents. In Olson et al. (2021), the counterfactual state explanations
were developed to examine the impact of altering a state image in an Atari game to understand how

1Code available at: https://github.com/PeilangLi/SILVER

https://github.com/PeilangLi/SILVER
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these changes influence action selection. As RL possesses some unique challenges, such as sequen-
tial decision-making under a reward-driven framework, specialized methods have been considered
for its explanation. For example, in Juozapaitis et al. (2019), reward decomposition was proposed to
break down a single reward into multiple meaningful components, providing insights into the factors
influencing an agent’s action preferences. Moreover, understanding the action selection in certain
critical states of the entire sequence can enhance user trust (Huang et al., 2018). A summary of
important yet not similar sets of states (trajectories) can provide a broader and more comprehensive
view of agent behavior (Amir & Amir, 2018).

In contrast to the XRL, research in interpretable RL usually focuses on the transparency of the
decision-making processes via, e.g., a simple representation of policies that are understandable to
non-experts. The corresponding studies can be divided into direct and indirect approaches (Glanois
et al., 2024). The direct approach aims to directly search a policy in the environment using the pol-
icy deemed interpretable by the designer or user. Examples of the direct methods include the use
of a decision tree (Silva et al., 2020b) or a simple closed-form formula (Hein et al., 2018) to repre-
sent the policy. The direct approach usually requires a prior expert knowledge for initialization to
achieve good performance, often for small-scale problems. On the other hand, the indirect approach
provides more flexibility by employing a two-step process: (1) train a non-interpretable policy with
efficient RL algorithms, and (2) convert this non-interpretable policy into an interpretable one. For
instance, Bastani et al. (2018) proposed VIPER, a method to learn high-fidelity decision tree poli-
cies from original DNN policies. Similarly, Verma et al. (2018) proposed PIRL, a method that
presents a way to transform the neural network policy into a high-level programming language.
SILVER can be categorized into indirect interpretable approaches using Shapley values to transform
original policies into simpler but rigorous closed-form function policies. Distinguishing ourselves
from existing indirect interpretation approaches, we uniquely incorporate the Shapley value expla-
nation method to generate more accurate and generalizable interpretable policy without relying on
predefined interpretable structures.

3 Background

3.1 Reinforcement Learning

In Reinforcement Learning, an agent interacts with its environment, which is modeled as a Markov
Decision Process (MDP) defined by the tuple (S,A,P, r, γ, d0), where S is the set of states and
A is the set of possible actions, P : S × A × S → [0, 1] is the transition probability function,
r : S × A → R is the reward function, γ ∈ [0, 1] is discount factor, and d0 : S → [0, 1] specifies
the initial state distribution. At time step t, the agent observes the current state st ∈ S and performs
an action at ∈ A. In response, the environment transitions to a new state st+1 ∼ P(·|st, at) and
provides a reward rt+1. The agent’s objective is to learn a policy (i.e., strategy) π that maximizes
the expected return Eπ[Gt], where Gt =

∑∞
n=t γ

nrn+1. In RL, policies can be deterministic π :
S → A or stochastic π : S × A → [0, 1]. consider an environment with n state features, where
S = S1 × ...× Sn, and each state can be represented as an ordered set s = {si|si ∈ Si}ni=1. Using
N = {1, ..., n} to represent the set of all state features, a partial observation of the state can be
denoted as the ordered set sC = {si|i ∈ C} where C ⊂ N .

3.2 Shapley Values in Reinforcement Learning

The Shapley value (Shapley, 1953) is a method from cooperative game theory that distributes credit
for the total value v(N) earned by a team N among its players. It is defined as

ϕi(v) =
∑

C⊆N\{i}

|C|!(n− |C| − 1)!

(n!)
[v(C ∪ {i})− v(C)], (1)

where v(C) represents the value generated by a coalition of players C. The Shapley value ϕi(v) is
the average marginal contribution of player i when added to all possible coalitions C.
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In RL, the state features {s1, ..., sn} can be treated as players, and the policy output π(s) can be
viewed as the total value generated by their contributions. To compute the Shapley values of these
players, it is essential to define a characteristic function v(C) that reflects the model’s output for a
coalition of features sC ⊆ s1, . . . , sn.

As the trained policy is undefined for partial input sC , it is important to correctly define the charac-
teristic function for accurate Shapley values calculation. Following the on-manifold characteristic
value function (Frye et al., 2021; Beechey et al., 2023), we account for feature correlations rather
than assuming independence.

For a deterministic policy π : S → A, which outputs actions, the characteristic function is defined
as

vπ(C) := πC(s) =
∑
s′∈S

pπ(s′|sc)π(s′), (2)

where s′ = sC ∪ s′
C̄

and pπ(s′|sC) is the probability of being in state s′ given the limited state
features sC is observed following policy π. Similarly, for a stochastic policy π : S × A → [0, 1],
which outputs action probabilities, the characteristic function is defined as

vπ(C) := πC(a|s) =
∑
s′∈S

pπ(s′|sc)π(a|s′). (3)

4 Method

In this section, we present SILVER in two main parts. First, Shapley vectors analysis focuses on ex-
tracting and capturing the underneath patterns provided by Shapley values. Secondly, interpretable
policy formulation focuses on utilizing these patterns to construct interpretable policies with com-
parable performance. The complete algorithm is provided in Algorithm 1.

4.1 Shapley Vectors Analysis

Given a well-trained policy π(s) (deterministic) or π(a|s) (stochastic) in RL, Shapley values provide
a way to explain the policy’s behavior by quantifying the contributions of state features to the RL
policy. Following the Shapley values methods (Beechey et al., 2023), we substitute (2) or (3) into
the Shapley value formula, namely, (1), to compute ϕi(v

π), i.e., the contribution of feature i to the
policy under state s.

The computed Shapley values ϕi(v
π) provide insight into how each state feature i influences action

selection. For example, in an environment with two discrete actions, a1 = −1 and a2 = 1. After
computing the Shapley value ϕi(v

π), a positive ϕi(v
π) indicates that the feature i encourages the

selection of a2, while a negative value suggests a preference for a1. Notably, Shapley values gen-
eralize across features; state features contributing equally to a decision will yield identical values,
revealing symmetry in policy reasoning. In this paper, we take this property of Shapley values as
their generalization ability.

To exploit this generalization, we represent each state s as a Shapley vector composed of contribu-
tions from all features given by

Φs = (ϕ1, ..., ϕn). (4)

This enables us to cluster the states with similar action selection behavior which further gives in-
sights into action-group boundaries.

4.1.1 Action K-Means Clustering.

To cluster states based on their Shapley vectors, we employ action K-means clustering. Given a
set of states (s1, s2, ..., sm), where each state is represented by a n-dimensional Shapley vector
(ϕ1, ϕ2, ..., ϕn), the algorithm partitions these states into k clusters A = A1, A2, . . . , Ak, where
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Algorithm 1 SILVER
Input: Shapley vectors (Φs1 ,Φs2 , ...,Φsm), Original states (s1, s2, ..., sm)
Parameter: Action numbers k
Output: Decision Boundary functions {fij} for each pair of actions (i, j)

1: Initialize empty set of boundary points B = {}
2: A = {A1, ..., Ak} ← Action KMeans({Φsi}mi=1, k)
3: for i = 1 to k do
4: µi ← 1

|Ai|
∑

Φ∈Ai
Φ

5: end for
6: for i = 1 to k − 1 do
7: for j = i+ 1 to k do
8: Xij ← argmin

X
(||X − µi||2 − ||X − µj ||2)

9: B ← B ∪ {Xij}
10: sij ← ϕ−1(Xij)
11: end for
12: end for
13: for each pair of clusters (i, j) do
14: fij(s)← Regression(sij)
15: end for
16: return {fij}

k is the number of discrete actions in the environment. The clustering objective is to minimize
inter-cluster variance given by

argmin
A

k∑
i=1

∑
Φs∈Ai

∥Φs − µi∥2 , (5)

where µi is the centroid of points in Ai, usually represented as µi =
1

|Ai|
∑

Φs∈Ai
Φs.

4.1.2 Boundary Point Identification.

Once clusters are formed, the boundaries between action regions can be identified using boundary
points. A boundary point X exists at the interface of two clusters Ai and Aj , where the policy is
equally likely to select either action. This condition arises when the policy is not sure which action
to take at the current state, and therefore can serve as a boundary decision. Formally, X is found by
minimizing the difference between distances to cluster centroids

argmin
X

(
||X − µi||2 − ||X − µj ||2

)
, (6)

where µi and µj are the centroid of points in Ai and Aj , respectively.
Property 1 (Existence and Uniqueness of Decision Boundaries). For a stationary deterministic
policy π within an MDP, characterized by a fixed state distribution dπ(s), there exists a unique
boundary surface in the Shapley vector space such that

1. the boundary separates the Shapley vectors associated with distinct discrete actions; and

2. the Euclidean distance from any action’s Shapley vector to this boundary remains constant across
all states under the stationary policy.

Proof. The efficiency property of Shapley values ensures that the sum of contributions from all
features equals the difference between the policy’s action value for state s and the expected action
value across states, i.e.,

n∑
i=1

ϕi = π(s)− ES(π(S)). (7)
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For states sp and sq that lead to different action selection π(sp) = ap and π(sq) = aq , where
ap ̸= aq , the difference between their action values defines a gap given by

|π(sp)− π(sq)| = |ap − aq| = ∆a. (8)

Given that the policy π is stationary with a fixed state distribution µ(s), the expected action value
converges to a fixed scalar value given by

ES∼µ[π(S)] =
1

|S|
∑
s∈S

π(s) = ā. (9)

By substituting (8) and (9) into the efficiency property (7), the Shapley value that sums for all states
satisfy a gap ∣∣∣∣∣

n∑
i=1

ϕi,sp −
n∑

i=1

ϕi,sq

∣∣∣∣∣ = ∆a,∀sp, sq ∈ S,

where π(sp) = ap ̸= π(sq) = aq . This implies that the gap ∆a exists between all states with
different action selections. Consequently, we defined the boundary surface B in the Shapley vector
space as

B =

{
v⃗ ∈ Rn

∣∣∣∣∣
n∑

i=1

vi = ā+
∆a

2

}
.

The distance from any Shapley vector plane Φ to this boundary surface B is given by

dist(Φs,B) =
∑n

i=1 ϕi −
∑n

i=1 vi√
n

.

Therefore, for all states, sp, sq ∈ S, the distances from their Shapley vectors to the boundary remain
constant:

dist(Φsp ,B) = dist(Φsq ,B)
This proves the existence and uniqueness of the decision boundary in the Shapley vector space.

The constant distance between the boundary surface and Shapley vector plane lays the foundation
for an interpretable policy that maps each action region to its corresponding state region.

4.2 Interpretable Policy Formulation

With the decision boundary point’s identification in the Shapley vector space, the next step is to map
it back to the original state space to construct an interpretable policy.

4.2.1 Inverse Shapley Values.

To reconstruct the decision boundary in the state space, we model it as the Inverse Shapley Value
Problem ϕ−1

i : ϕi(v)→ {i}, where the goal is to recover the original state s corresponding to a given
Shapley vector Φs. We address this problem by systematically storing the original states with their
corresponding Shapley value vectors, enabling efficient inverse function operations. It allows us to
map Shapley value vectors back to their original states directly, facilitating precise reconstruction of
the decision boundary.

4.2.2 Decision Boundary Regression.

After the boundary state points sij are discovered using Shapley values, the decision can be drawn
accordingly. While a variety of regression techniques can be used, we use linear regression due to
its simplicity and interpretability. The resulting boundary functions fij define the action regions.

This policy is then reformulated by assigning actions based on the regions characterized by boundary
functions. Specifically, for a given state s, the action a is determined by the cluster in which s resides
relative to fij .
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Figure 1: Visualization of Shapley values and interpretable policy formulation in the CartPole. The
first row depicts the Shapley value vectors for DQN, PPO, and A2C, with clusters represented in
different colors and boundary points highlighted in red. The second row illustrates the corresponding
interpretable policy in the original state space, showing decision boundaries that separate the state
space into distinct action regions. (Due to the limitations of dimensional plotting, only the first three
features x, ẋ, θ are visualized in the figure)

Algorithm Decision Boundary

DQN f01 = −0.5x− 0.687ẋ− 1.09θ − θ̇ − 0.018

PPO f01 = −0.193x− 0.523ẋ− θ − θ̇ + 0.0014

A2C f01 = −0.4875x− 0.9811ẋ− 1.09θ − θ̇

Table 1: CartPole interpretable policy boundary

5 Experiments

To evaluate the effectiveness of SILVER, we performed experiments across three classical control
environments from Gymnasium (Towers et al., 2024): CartPole, MountainCar and Acrobot. These
environments were specifically chosen as they represent an important control problem where policy
interpretability is crucial for real-world deployment. To demonstrate the generality of SILVER,
we applied it to both off-policy and on-policy deep RL algorithms. Specifically, we applied it to
Deep Q-Network (DQN) (Mnih et al., 2015b) as an off-policy method, and Advantage Actor-Critic
(A2C) (Mnih et al., 2016) and Proximal Policy Optimization (PPO) (Schulman et al., 2017) as on-
policy methods. Our experimental results demonstrate that the interpretable policies generated by
SILVER perform competitively to those of deep RL algorithms, and also exhibit better stability and
broad applicability.

5.1 CartPole

The CartPole environment is a classic control problem in which an inverted pendulum is placed on
the movable cart. The state space in this environment consists of four features: position of cart x,
velocity of cart ẋ, angle between the pendulum and the vertical θ, and angular velocity of pendulum
θ̇. The action space includes two discrete actions, where the first action 0 means push the cart to the
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Figure 2: Performances of the interpretable policy with original algorithms—DQN, PPO, A2C in
different environments.

left, and the second action 1 means push to the right. A reward of +1 is assigned for each timestep
the pole remains upright. The goal in this environment is to balance the pendulum by applying
forces in the left and right direction on the cart.

As explained in the method (Section 4), our goal is to obtain an interpretable policy for this problem.
To achieve this, we first train three deep RL methods, namely DQN, PPO, and A2C to obtain the
optimal policies. Once the models were trained, we evaluated their performance in the CartPole
environment and sampled state distributions from 100 trajectories for each algorithm. For each
sampled state, we computed the Shapley values of its features using Equation (1). With this step, we
construct a Shapley value vector Φs that represents the contribution of state features to this policy’s
decision. The first row of Figure 1, illustrates the Shapley value vectors for DQN, PPO, and A2C,
respectively. Using these Shapley values, we performed k-means clustering on the action space to
identify cluster centroids, where each cluster represents a distinct action region. Each cluster is
depicted in a different color. We then identified boundary points, which are shown in red in the first
row of Figure 1. These boundary points indicate the transition between action regions.

Next, we reconstructed the decision boundary in the original state space using the boundary points
identified in the Shapley vector space. The second row of Figure 1 shows these boundaries in
the state space for each algorithm. Finally, as described in the methodology, we applied linear
regression to derive an interpretable policy fij . The interpretable policies for DQN, PPO, and A2C
are summarized in Table 1. These policies are obtained through their boundaries which separate the
states into different action selection regions. In other words, the decision rule for these policies is:
if f01 > 0, select action 0; otherwise, select action 1. This interpretable policy framework is fully
transparent, enabling reproducibility and mitigating risks in high-stakes real-world applications.

To evaluate the performance of the interpretable policies, we tested them alongside the original deep
RL policies over 10 episodes. The results, shown in Figure 2a, demonstrate that the interpretable
policies consistently achieved the maximum reward of 500 across all algorithms. This indicates
that SILVER preserves the performance of the original deep RL algorithms while providing inter-
pretability. These results also highlight the generality and model-agnostic nature of the proposed
framework.

5.2 MountainCar

The MountainCar environment is another classic control problem where a car is placed at the bottom
of a sinusoidal valley. The state space for this environment consists of two features: car position
along the x-axis x and the velocity of the car ẋ. The actions space contains two discrete actions:
action 0 applies left acceleration on the car and action 1 applies right acceleration on the car. The
goal of this environment is to accelerate the car to reach the goal state on top of the right hill. A
reward of −1 is assigned for each timestep as punishment if the car fails to reach the goal state.

Following the proposed method (section 4), we perform the Shapley vectors analysis in three trained
deep RL methods DQN, PPO, and A2C in the MountainCar environment. The result is shown in
the first row of Figure 3. Each cluster represents a distinct action region, distinguished by a unique
color and boundary points are highlighted in red. By mapping these boundary points back to the
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Figure 3: Visualization of Shapley values and interpretable policy formulation in the MountainCar.
The first row depicts the Shapley value vectors for DQN, PPO, and A2C, with clusters represented in
different colors and boundary points highlighted in red. The second row illustrates the corresponding
interpretable policy in the original state space, showing decision boundaries that separate the state
space into distinct action regions.

Algorithm Decision Boundary

DQN f01 = 0.013x− ẋ+ 0.0033

PPO f01 = 0.35x− ẋ− 0.3

A2C f01 = 0.003x− ẋ− 0.12

Table 2: MountainCar interpretable policy boundary

original state space, we constructed the decision boundaries using linear regression, illustrated in
the second row of Figure 3 as blue lines. The detailed interpretable policies for DQN, PPO, and
A2C are in Table 2 and the decision rule is straightforward: when f01 > 0, action 0 is chosen,
otherwise, action 1 is chosen.

Performance of the interpretable policies alongside the original algorithms was evaluated over 10
episodes, with results presented in Figure 2b. Interestingly, interpretable policies derived from PPO
and A2C surprisingly outperformed their original algorithms, whereas the interpretable policy gen-
erated from DQN experienced a slight performance reduction. A notable observation is that all
interpretable policies achieved significantly smaller standard deviations compared to their original
counterparts, indicating more stable policy performance. This characteristic is particularly valuable
in real-world applications where consistent and predictable behavior is crucial.

5.3 Acrobot

The Acrobot environment is a challenging classic control problem in which a two-link pendulum has
its second joint actuated. The state space in this environment consists of six features: cosine of the
first joint angle cos(θ1), sine of the first joint angle sin(θ1), cosine of the second joint angle cos(θ2),
sine of the second joint angle sin(θ2), angular velocity of the first joint θ̇1, and angular velocity of
the second joint θ̇2. The action space includes three discrete actions: action 0 for a torque of -1,
action 1 for a torque of 0, and action 2 for a torque of +1. A reward of -1 is assigned for each
timestep until the goal is achieved. The goal in this environment is to swing the end-effector of the
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Figure 4: Visualization of Shapley values and interpretable policy formulation in the Acrobot. The
first row depicts the Shapley value vectors for DQN, PPO, and A2C, with clusters represented in
different colors and boundary points highlighted in red. The second row illustrates the corresponding
interpretable policy in the original state space, showing decision boundaries that separate the state
space into distinct action regions (Due to the limitations of dimensional plotting, only the first three
features cos θ1, sin θ1, θ̇2 are visualized in the figure.).

Algorithm Decision Boundary

DQN f01 = 1.79cosθ1 − 1.86sinθ1 − 1.46cosθ2 + 0.28sinθ2 − 0.69θ̇1 − θ̇2 + 0.44

PPO f01 = 0.06cosθ1 − 0.43sinθ1 − 0.04cosθ2 − 0.01sinθ2 − 0.36θ̇1 − θ̇2 − 0.01

A2C f01 = 0.03cosθ1 − 0.19sinθ1 − 0.01cosθ2 − 0.54sinθ2 − 1.15θ̇1 − θ̇2 + 0.01

Table 3: Acrobot interpretable policy boundary

pendulum to a height where the condition− cos(θ1)−cos(θ1+θ2) > 1.0 is satisfied, at which point
the episode terminates; otherwise, the episode ends after 500 steps.

Shapley vectors analysis is performed on three trained deep RL methods DQN, PPO and A2C in the
Acrobot environment to find the action clusters, which is shown in the first row of Figure 4. We
then constructed the decision boundary using linear regression, represented as the hyperplanes in
the second row of Figure 4. The detailed interpretable policies are in Table 3 and the decision rule
is straightforward: when f01 > 0, action 0 is chosen, otherwise, action 1 is chosen.

Performance of the interpretable policies and original algorithms is presented in Figure 2c. Inter-
pretable policies derived from PPO and A2C outperformed the original algorithms with more stable
performance across the 10 episodes evaluations, while interpretable policy obtained from DQN ex-
perienced a slight performance reduction.

5.4 Fidelity Score

To evaluate the behavior difference between interpretable policy and original policy, we introduce a
straightforward fidelity function to quantify it:

F (πinterp, πorig) =
1

|S|
∑
s∈S

1{πinterp(s) = πorig(s)}, (10)
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where the πinterp is the interpretable policy, πorig represents the original policy and 1{·} is the
indicator function. This fidelity score is equivalent to the accuracy when treating the original policy
as the ground truth.

Fidelity Score (%) A2C PPO DQN

Cartpole 76.75± 1.70 83.70± 0.53 50.08± 0.01

MountainCar 98.14± 0.30 98.75± 0.03 89.47± 0.25

Acrobot 99.15± 0.06 96.93± 0.09 78.62± 0.39

Table 4: Fidelity scores by environments and algorithms

The fidelity scores across all environments and algorithms are shown in Table 4. The fidelity scores
highly correlated with the performance. For Cartpole environment, its intrinsic simplicity lowers
the requirement of fidelity scores, which means low fidelity score can still yield high performance.
For MountainCar and Acrobot, due to the high complexity in these environments, only high fidelity
scores can obtain high performance. In other words, interpretable policies derived from A2C and
PPO perform better than those derived from DQN.

6 Conclusions and Future Work

In this paper, we formalized and addressed the unsolved problem of extracting interpretable poli-
cies from explainable methods in RL. We propose SILVER that leverages Shapley values to gen-
erate transparent and interpretable policies for both off-policy and on-policy deep RL algorithms.
Through comprehensive experiments conducted in three classic control environments using three
deep RL algorithms, we demonstrated that SILVER achieves comparable performance while gener-
ating interpretable and stable policies.

Potential future work includes: (1) extending the current approach to continuous action spaces by
discretizing the action space, (2) conducting a scalability study of the proposed approach in more
complex environments with high-dimensional state feature spaces, and (3) exploring performance
differences across various regression methods.
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