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Summary
Recent work has shown that, under certain assumptions, zero-shot reinforcement learn-

ing (RL) methods can generalise to any unseen task in an environment after reward-free pre-
training. Access to Markov states is one such assumption, yet, in many practical applications,
the Markov state is only partially observed via unreliable or incomplete observations. Here, we
explore how the performance of standard zero-shot RL methods degrades when subjected to
partially observability, and show that, as in single-task RL, memory-based architectures are an
effective remedy. We evaluate our memory-based zero-shot RL methods in domains where we
simulate unreliable states by adding noise or dropping them randomly, and in domains where
we simulate incomplete observations by changing the dynamics between training and testing
rewards without communicating the change to the agent. In these settings, our proposals show
improved performance over memory-free baselines, which we pay for with slower, less stable
training dynamics.

Contribution(s)
1. We explore the empirical failure modes of state-of-the-art zero-shot RL methods (specifi-

cally forward-backward representations, or FB) given partially observed (noisy) states.
Context: None

2. We present a new architecture called FB with memory (FB-M) which has a memory-based
forward model F , backward model B and policy π. Though we develop our method within
the FB framework, our proposals are fully compatible with other zero-shot RL methods.
Context: Prior zero-shot RL methods, including FB (Touati & Ollivier, 2021) and USF-
based HILP (Borsa et al., 2018; Park et al., 2024b), are memory-free.

3. We show that, in aggregate, FB-M outperforms memory-free FB and HILP, as well as a
naïve observation-stacking baseline, in domains where the states are noisy or randomly
dropped, or where there is a change in dynamics function between training and testing.
Context: None

4. We report better performance when the memory model is a GRU than when it is a trans-
former or S4d model.
Context: This aligns with Morad et al. (2023)’s finding that GRUs were the most perfor-
mant memory model on POPGym, a partially observed single-task RL benchmark.
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Abstract

Recent work has shown that, under certain assumptions, zero-shot reinforcement learn-
ing (RL) methods can generalise to any unseen task in an environment after reward-free
pre-training. Access to Markov states is one such assumption, yet, in many real-world
applications, the Markov state is only partially observable. Here, we explore how the
performance of standard zero-shot RL methods degrades when subjected to partially
observability, and show that, as in single-task RL, memory-based architectures are an
effective remedy. We evaluate our memory-based zero-shot RL methods in domains
where the states, rewards and a change in dynamics are partially observed, and show
improved performance over memory-free baselines. Our code is open-sourced via the
project page: https://enjeeneer.io/projects/bfms-with-memory/.

1 Introduction

Large-scale unsupervised pre-training has proven an effective recipe for producing vision (Rombach
et al., 2022) and language (Brown et al., 2020) models that generalise to unseen tasks. The zero-shot
reinforcement learning (RL) problem setting (Touati et al., 2023) requires us to produce sequential
decision-making agents with similar generality. It asks, informally: can we pre-train agents from
datasets of reward-free trajectories such that they can immediately generalise to any unseen reward
function at test time? A family of methods called behaviour foundation models (BFMs) (Touati &
Ollivier, 2021; Jeen et al., 2024; Pirotta et al., 2024) theoretically solve the zero-shot RL problem
under certain assumptions (Touati & Ollivier, 2021), and empirically return near-optimal policies
for many unseen goal-reaching and locomotion tasks (Touati et al., 2023).

These results have assumed access to Markov states that provide all the information the agent re-
quires to solve a task. Though this is a common assumption in RL, for many interesting problems,
the Markov state is only partially observed via unreliable or incomplete observations (Kaelbling
et al., 1998). Observations can be unreliable because of sensor noise or issues with telemetry (Meng
et al., 2021). Observations can be incomplete because of egocentricity (Tirumala et al., 2024), oc-
clusions (Heess et al., 2015) or because they do not communicate a change to the environment’s task
or dynamics context (Hallak et al., 2015).

How do BFMs fare when subjected to partial observability? That is the primary question this paper
seeks to answer, and one we address in three parts. First, we expose the mechanisms that cause
the performance of standard BFMs to degrade under partial observability (Section 4.1). Second,
we repurpose methods that handle partial observability in single-task RL for use in the zero-shot
RL setting, that is, we add memory models to the BFM framework (Section 4.2, Figure 1). Third,
we conduct experiments that test how well BFMs augmented with memory models manage partially
observed states (Section 5.2) and partially observed changes in dynamics (Section 5.3). We conclude
by discussing limitations and next steps.

https://enjeeneer.io/projects/bfms-with-memory/
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Figure 1: BFMs with memory. In the case of FB, the forward model F and backward model B condition on
the output of memory models that compress trajectories of observations and actions. According to standard FB
theory, their dot product predictsMπz (τLt , τ

L
+), the successor measure fromL-length trajectory τLt toL-length

future trajectory τL+ , from which a Q function can be derived. Figure 8 in Appendix C illustrates memory-free
FB for comparison.

2 Related Work

2.1 Zero-shot RL

Offline RL An important part of the zero-shot RL problem is that agents must pre-train on static
datasets (Section 3). This is the realm of offline RL (Lange et al., 2012; Levine et al., 2020), where
regularisation techniques (Kumar et al., 2020; Kidambi et al., 2020; Fujimoto & Gu, 2021) are
used to minimise the distribution shift between the offline data and online experience (Kumar et al.,
2019b). In this work, we only train on high-coverage datasets to isolate the problem of partial
observability, so do not require such regularisation, but past work has repurposed these for zero-shot
RL (Jeen et al., 2024). Standard offline RL methods are trained with respect to one downstream
task, so cannot generalise to new tasks at test time, as specified by the zero-shot RL problem.

Goal-conditioned RL For goal-reaching tasks, zero-shot goal generalisation can be achieved with
goal-conditioned RL (GCRL) (Schaul et al., 2015; Andrychowicz et al., 2017). Here, policies are
trained to reach any goal state from any other state. Past work has focused on constructing useful
goal-space encodings, with contrastive (Eysenbach et al., 2022), state-matching (Ma et al., 2022),
and hierarchical representations (Park et al., 2024a) proving effective. However, GCRL methods
do not reliably generalise to dense reward functions that cannot be codified by a goal state,1 and so
cannot be said to solve the general zero-shot RL problem.

Behaviour foundation models To date, BFMs have shown the best zero-shot RL performance be-
cause they provide a mechanism for zero-shot generalising to both goal-reaching and dense reward
functions.2 They build upon successor representations (Dayan, 1993), universal value function ap-
proximators (Schaul et al., 2015), successor features (Barreto et al., 2017) and successor measures
(Blier et al., 2021). State-of-the-art methods instantiate these ideas as either universal successor
features (USFs) (Borsa et al., 2018; Park et al., 2024b) or forward-backward (FB) representations
(Touati & Ollivier, 2021; Touati et al., 2023; Jeen et al., 2024). No works have yet explored the
zero-shot RL performance of these methods under partial observability.

2.2 Partial Observability

States Most past works assume it is the state that is partially observed. This is usually the result
of noisy (Meng et al., 2021), occluded (Heess et al., 2015), aliased (Whitehead & Ballard, 1990),
egocentric (Tirumala et al., 2024) or otherwise unreliable observations. Standard solutions methods
use histories of observations and actions to compute beliefs over the true state via (approximate)

1Examples include any locomotion task e.g. Walker-run in the DeepMind Control Suite.
2A formal justification of this statement is left for Section 3.
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Bayesian inference (Cassandra et al., 1994; Kaelbling et al., 1998) or via memory-based architec-
tures (Schmidhuber, 1990; Bakker, 2001; Hausknecht & Stone, 2015; Ha & Schmidhuber, 2018).

Dynamics Sometimes, parameters that modulate the underlying dynamics change and are not com-
municated to the agent via the state. Given sets of training and testing dynamics parameters, gener-
alisation is a measure of the agent’s average-case performance on the test set (Packer et al., 2018;
Cobbe et al., 2019). If the agent trains and tests on the same set of dynamics, robustness is a mea-
sure of the agent’s worst-case performance on this set (Nilim & El Ghaoui, 2005; Morimoto & Doya,
2005; Mankowitz et al., 2019). Generalisation can be improved via regularisation (Farebrother et al.,
2018), data augmentation (Tobin et al., 2017; Raileanu et al., 2020; Ball et al., 2021), or dynamics
context modelling (Seo et al., 2020; Lee et al., 2020). Robustness can be improved with adversarial
dynamics selection (Rajeswaran et al., 2016; Jiang et al., 2021; Rigter et al., 2023).

Rewards In some cases, the utility of an action for a task may only be partially reflected in the
standard one-step reward (Minsky, 1961; Sutton, 1984). Such a situation arises when the reward
signal is delayed (Arjona-Medina et al., 2019) or is dependent on the entire trajectory (i.e. episodic)
(Liu et al., 2019). These have traditionally been handled with sophisticated techniques that learn
surrogate reward functions (Raposo et al., 2021; Arjona-Medina et al., 2019), tune discount factors
(Fedus et al., 2019), or utilise eligibility traces (Xu et al., 2020), among other methods.

Each of the above methods were developed for a specific form of partial observability, but memory-
based architectures are, in principle, general enough to solve all of them (Kaelbling et al., 1998).
Indeed, Ni et al. (2021) find that a standard, but well-implemented, recurrent policy and critic can
outperform methods specialised for each setting. Our proposed method (Section 4.2) is heavily
informed by this finding, and is designed to be agnostic to the specific way in which partial observ-
ability arises.

3 Preliminaries

POMDPs A partially observable Markov decision process (POMDP) P is defined by
(S,A,O, R, P,O, µ0, γ), where S is the set of Markov states, A is the set of actions, O is the
set of observations, and µ0 is the initial state distribution (Åström, 1965; Kaelbling et al., 1998). Let
st ∈ S denote the Markov state at time t. When action at ∈ A is executed, the state updates via
the transition function st+1 ∼ P (·|st, at), and the agent receives a scalar reward rt+1 ∼ R(st+1)
and observation ot+1 ∼ O(·|st+1, at). The observation provides only partial information about
the underlying Markov state. The agent samples actions from its policy at ∼ π(·|τLt ), where τLt =
(at−L, ot−L+1, . . . , at−1, ot) is a trajectory of the precedingL observations and actions. We use T L

to denote the set of all possible trajectories of length L. The policy is optimal in P if it maximises
the expected discounted future reward i.e. π∗ = argmaxπ E[

∑
t≥0 γ

tR(st+1)|s0, a0, π], where
E[·|s0, a0, π] denotes an expectation over state-action sequences (st, at)t≥0 starting at (s0, a0) with
st ∼ P (·|st−1, at−1) and at ∼ π(·|τLt ), and γ ∈ [0, 1] is a discount factor.

Partially observable zero-shot RL In the standard zero-shot RL problem setting, states are fully
observed. For pre-training, the agent has access to a static offline dataset of reward-free transi-
tions D = {(si, ai, si+1)}|D|

i=1, generated by an unknown behaviour policy. At test time, a task
Rtest is revealed by labelling a small number of states in D to create a new dataset Dlabelled =
{(si, Rtest(si))}ki=1 where typically k ≤ 10, 000. The agent must return a policy for this task with
no further planning or learning.

In this work, we consider the extended problem setting of partially observable zero-shot RL. Here,
the agent has access to an offline pre-training dataset of reward-free length-L trajectories, D =

{τLi }
|D|
i=1, each of which is a sequence of partial observations and actions. As before, a task Rtest is

revealed at test time, for which the agent must return a policy. The task is specified by a small dataset
of reward-labelled observation-action trajectories, where the reward is assumed to be a function of
the final Markov state in the trajectory, Dlabelled = {(τLi , Rtest(s

L
i ))}ki=1.
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Behaviour foundation models We build upon the forward-backward (FB) BFM which predicts
successor measures (Blier et al., 2021). The successor measure Mπ(s0, a0, ·) over S is the cumu-
lative discounted time spent in each future state st+1 after starting in state s0, taking action a0, and
following policy π thereafter. Let ρ be an arbitrary state distribution and Rd be an embedding space.
FB representations are composed of a forward model F : S × A × Rd → Rd, a backward model
B : S → Rd, and set of polices π(s, z)z∈Rd . They are trained such that:

Mπz (s0, a0, X) ≈
∫
X

F (s0, a0, z)
⊤B(s)ρ(ds) ∀ s0 ∈ S, a0 ∈ A, X ⊂ S, z ∈ Rd, (1)

π(s, z) ≈ argmax
a

F (s, a, z)⊤z ∀ (s, a) ∈ S ×A, z ∈ Rd, (2)

where F (s, a, z)⊤z is the Q function (critic) formed by the dot product of forward embeddings with
a task embedding z. During training, candidate task embeddings are sampled from Z , a prior over
the embedding space. During evaluation, the test task embeddings are inferred from Dlabelled via:

ztest ≈ E(s,Rtest(s))∼Dlabelled [Rtest(s)B(s)], (3)

and passed as an argument to the policy.3

4 Zero-Shot RL Under Partial Observability

In this section, we adapt BFMs for the partially observable zero-shot RL setting. In Section 4.1, we
explore the ways in which standard BFMs fail in this setting. Then, in Section 4.2, we propose new
methods that address these failures. We develop our methods in the context of FB, but our proposals
are fully compatible with USF-based BFMs. We report their derivation in Appendix B for brevity.

4.1 Failure Mode of Existing Methods

FB solves the zero-shot RL problem in two stages. First, a generalist policy is pre-trained to max-
imise FB’s Q functions for all tasks sampled from the prior Z (Equation 1). Second, the test task is
inferred from reward-labelled states (Equation 3) and passed to the policy. The first stage relies on
an accurate approximation of F (s, a, z) i.e. the long-run dynamics of the environment subject to
a policy attempting to solve task z. The second stage relies on an accurate approximation of B(s)
i.e. the task associated with reaching state s. If the states in F are replaced by observations that
only partially characterise the underlying state, then the BFM will struggle to predict the long-run
dynamics, Q functions derived from F will be inaccurate, and the policy will not learn optimal se-
quences of actions. We call this failure mode state misidentification (Figure 2, middle). Likewise,
if the states inB are replaced by partial observations, and the reward function depends on the under-
lying state (Section 3), then the BFM cannot reliably find the task z associated with the set of states
that maximise the reward function. We call this failure mode task misidentification (Figure 2, left).
The failure modes occur together when both models receive partial observations (Figure 2, right).

4.2 Addressing Partial Observability with Memory Models

In principle, all forms of partial observability can be resolved with memory models that compress
trajectories into a hidden state that approximates the underlying Markov state (see Section 2 of Ni
et al. (2021)). A memory model is a function f that outputs a new hidden state ht given a past
hidden state ht−L−1 and trajectory τLt :

ht = f(τLt , ht−L−1). (4)

3Equation 3 assumes Dlabelled is drawn from the same distribution as D, that is, it assumes both datasets are produced
by the same, exploratory behaviour policy. Deploying a different policy to collect Dlabelled is possible (e.g. one learned via
Equation 2), but requires minor amendments to Equation 3. We refer the reader to Appendix B.5 of Touati & Ollivier (2021)
for further details.
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Figure 2: The failure modes of BFMs under partial observability. FB’s average (IQM) all-task return
on Walker when observations are passed to its respective components. Observations are created by adding
Gaussian noise to the underlying states. (Left) Observations are passed as input to B causing FB to misidentify
the task. (Middle) Observations are passed as input to F and π causing FB to misidentify the state. (Right)
Observations are passed as input to F , π and B causing FB to misidentify both the task and state.

Note that by setting L = 0, we recover the standard one-step formulation of a recurrent neural
network (RNN) (Elman, 1990; Hochreiter & Schmidhuber, 1997; Cho, 2014). RNNs are common
choice in past works (Wierstra & Schmidhuber, 2007; Zhang et al., 2016; Schmidhuber, 2019), but
more recent works explore structured state space sequence models (S4) (Deng et al., 2023; Lu et al.,
2024) and transformers (Parisotto et al., 2020; Grigsby et al., 2023; 2024). In model-based partially
observable RL, state misidentification is resolved with memory-based dynamics models, and task
misidentification is resolved with a memory-based reward models (Hafner et al., 2019a;b; 2020;
2023). In model-free partially observable RL, the agent does not disentangle the state from the task,
so task and state misidentification are resolved together by memory-based critics and policies (Ni
et al., 2021; Meng et al., 2021).

4.3 Behaviour Foundation Models with Memory

We now adapt methods from single-task partially observable RL for BFMs. Standard FB operates
on states (Equation 1) that are inaccessible under partial observability, so we amend its formulation
to operate on trajectories from which the underlying Markov state can be inferred with a memory
model. The successor measure Mπ(τL0 , ·) over T L is the cumulative discounted time spent in each
future trajectory τLt+1 starting from trajectory τL0 , and following policy π thereafter.4 The architec-
tures of the forward model F , backward model B, and policy π are unchanged, but now condition
on the hidden states of memory models, rather than on states and actions. They are trained such that

Mπz (τL0 , X) ≈
∫
X

F (fF (τ
L
0 ), z)

⊤B(fB(τ
L))ρ(dτL) ∀ τL0 ∈ T L, X ⊂ T L, z ∈ Rd,

π(fπ(τ
L), z) ≈ argmax

a
F (fF (τ

L), z)⊤z ∀ τL ∈ T L, z ∈ Rd. (5)

where fF , fB , fπ are separate memory models for F , B, and π respectively. Observation and action
sequences are zero-padded for all t−L−1 < 0; the first hidden state in a sequence is always initial-
ized to zero; and hidden states are dropped as arguments in Equation 5 for brevity (c.f. Equation 4).
At test time, task embeddings are found via Equation 3, but with reward-labelled trajectories rather
than reward-labelled states:

ztest ≈ E(τL,R(s))∼Dlabelled [Rtest(s)B(fB(τ
L)]. (6)

4Note that the forward model and backward model can in principle have different context lengths. This is helpful if, for
example, we know that the reward, as inferred via the backward model, depends on a shorter history length than would be
required to infer the full Markov state via the forward model.
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We refer to the resulting model as FB with memory (FB-M). The full architecture is summarised
in Figure 1, and implementation details are provided in Appendix C. Also note that our general
proposal is BFM-agnostic; we derive the USF-based BFM formulation in Appendix B.

5 Experiments

5.1 Setup

We evaluate our proposals in two partially observed settings: 1) partially observed states (i.e. stan-
dard POMDPs), and partially observed changes in dynamics (i.e. generalisation (Packer et al.,
2018)). The standard benchmarks for each of these settings only require the agent to solve one
task, and so do not allow us to evaluate zero-shot RL capabilities out-of-the-box. As a result, we
choose to amend the standard zero-shot RL benchmark, ExORL (Yarats et al., 2022), such that it
tests zero-shot RL with partially observed states and dynamics changes.

Partially observed states We amend two of Meng et al. (2021)’s partially observed state environ-
ments for the zero-shot RL setting: 1) noisy states, where isotropic zero-mean Gaussian noise with
variance σnoise is added to the Markov state, and 2) flickering states, where states are dropped (ze-
roed) with probability pflick.. We set σnoise = 0.2 and pflick. = 0.2 following a hyperparameter study
(Appendix A.2). We evaluate on all tasks in the Walker, Cheetah and Quadruped environments.

Partially observed changes in dynamics We amend Packer et al. (2018)’s dynamics generalisation
tests for the zero-shot RL setting. Environment dynamics are modulated by scaling the mass and
damping coefficients in the MuJoCu backend (Todorov et al., 2012). The agents are trained on
datasets collected from environment instances with coefficients scaled to {0.5×, 1.5×} their usual
values, then evaluated on environment instances with coefficients scaled by {1.0×, 2.0×}. Scaling
by 1.0× tests the agent’s ability to generalise via interpolation within the range seen during training,
and scaling by 2.0× tests the agent’s ability to generalise via extrapolation (Packer et al., 2018).

Baselines We use two state-of-the-art zero-shot RL methods as baselines: FB (Touati & Ollivier,
2021) and HILP (Park et al., 2024b). We additionally implement a naïve baseline called FB-stack
whose input is a stack of the 4 most recent observations and actions, following Mnih et al. (2015)’s
canonical protocol. Finally, we use FB trained on the underlying MDP as an oracle policy to give
us an upper-bound on expected performance. All methods inherit the default hyperparameters from
previous works (Touati et al., 2023; Park et al., 2024b; Jeen et al., 2024).

Datasets We train all methods on datasets collected with an RND behaviour policy (Borsa et al.,
2018) as these are the datasets that elicit best performance on ExORL. The RND datasets used in
the partially observed states experiments are taken directly from ExORL. For the partially observed
change in dynamics experiments, we collect these datasets ourselves by running RND in each of the
environments for 5 million learning steps. Our implementation and training protocol exactly match
ExORL’s.

Memory model We use a GRU as our memory model (Cho, 2014). GRUs are the most performant
memory model on POPGym (Morad et al., 2023) which tests partially observed single-task RL
methods. We find these results hold for partially observed zero-shot RL too, as discussed in Section
6.1. We set the context length L = 32; see Appendix C.2 for a hyperparameter study and further
discussion.

Evaluation protocol We evaluate the cumulative reward achieved by all methods across 5 seeds,
with task scores reported as per the best practice recommendations of Agarwal et al. (2021). Con-
cretely, we run each algorithm for 1 million learning steps, evaluating task scores at checkpoints of
20, 000 steps. At each checkpoint, we perform 10 rollouts, record the score of each, and find the
interquartile mean (IQM). We average across seeds at each checkpoint. We extract task scores from
the learning step for which the all-task IQM is maximised across seeds. Results are reported with
95% bootstrap confidence intervals in plots and standard deviations in tables. Aggregation across
tasks, domains and datasets is always performed by evaluating the IQM.
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Figure 3: Aggregate zero-shot task performance on ExORL with partially observed states. IQM of task
scores across all tasks on noisy and flickering variants of Walker, Cheetah and Quadruped, normalised
against the performance of FB in the fully observed environment. 5 random seeds.

5.2 Partially Observed States

Figure 3 compares the zero-shot performance of all algorithms on our noisy and flickering
variants of the standard ExORL environments. Note that these results are aggregated across all
tasks in each environment, and 5 random seeds. The performance of memory-free FB is always
far below that of an oracle policy trained on the underlying MDP (dotted line), reaching less than
50% of the oracle value in 5 out of 6 cases, and HILP performs similarly. Augmenting FB by
stacking recent observations mitigates the partial observability problem to some extent on Walker
and Quadruped, but it performs worse than memory-free FB on Cheetah . Our proposed approach
(FB-M) outperforms this baseline in all settings except Walker where it performs similarly. The
benefit of FB-M is most pronounced for the Quadruped environment where it achieves close to
oracle performance. The full results are reported in Table 3 in Appendix D.

5.3 Partially Observed Changes in Dynamics

Next, we consider the problem of partially observed dynamics changes in both the interpolation and
extrapolation settings. The results are summarised in Figure 4 and reported in full in Table 4 in Ap-
pendix D. First, we find that memory-free FB performs well in the interpolation setting, matching
the oracle policy in two of the three environments, but less well in the extrapolation setting where
it underperforms the oracle in all environments. As in Section 5.2, HILP is consistently the lowest
scoring method in all environments. In general, stacking recent observations (as in FB-stack) harms
performance, with scores lower than memory-free FB in 5 out of 6 environment/dynamics settings.
FB-M performs similarly to, or better than, all algorithms in all settings. The performance differ-
ence is most pronounced in the extrapolation setting on Cheetah and Quadruped where it slightly
outperforms the oracle policy. We think this is because the dataset collected under the extrapola-
tion dynamics (with doubled mass and damping coefficients) is less expressive than the standard
dynamics because the behaviour policy struggled to cover the state space. Relative differences in
the non-MDP results remain valid should this be the case.

6 Discussion and Limitations

6.1 Memory Model Choice

Our method uses GRUs as memory models, but much recent work has shown that transformers
(Vaswani et al., 2017) and structured state-space models (Gu et al., 2021) outperform GRUs in



Reinforcement Learning Journal 2025

Figure 4: Aggregate zero-shot task performance on ExORL with changed dynamics at test time. IQM of
task scores across all tasks when trained on dynamics where mass and damping coefficients are scaled to {0.5×,
1.5×} their usual values and evaled on {1.0×, 2.0×} their usual values, normalised against the performance of
FB in the fully observed environment. To solve the test dynamics with 1.0× scaling the agent must interpolate
within the training set; to solve the test dynamics with 2.0× scaling the agent must extrapolate from the training
set.

natural language processing (Brown et al., 2020), computer vision (Dosovitskiy et al., 2020), and
model-based RL (Deng et al., 2023). In this section, we explore whether these findings hold for
the zero-shot RL setting. We compare FB-M with GRU memory models to FB-M with transformer
and diagonalised S4 (S4d) memory models (Gu et al., 2022). We follow Morad et al. (2023) in
restricting each model to a fixed hidden state size, rather than a fixed parameter count, to ensure a
fair comparision. Concretely, we allow each model a hidden state size of 322 = 1024 dimensions.
Full implementation details are provided in Appendix C. We evaluate each method in the three
variants of Walker flickering used in Section 4.1 i.e. where only the inputs to F and πz are
observations, only inputs to B are observations, and where inputs to all models are observations.

Our results are reported in Figure 5. We find that the performance of FB-M is reduced in all cases
when a transformer or S4 memory model is used instead of a GRU. This corroborates Morad et al.
(2023)’s findings that the GRU is the most performant memory model for single-task partially ob-
served RL. Perhaps most crucially, we find that training collapses when both F and B are non-GRU
memory models, despite non-GRU memory models performing reasonably when added to only F or
B, suggesting that the combined representation M(τL, τL+) ≈ F (fF (τ

L))⊤B(fB(τ
L
+)) is degener-

ate. Better understanding this failure mode is important future work.

6.2 Datasets

As outlined in Section 5.1, we train all methods on datasets pre-collected with RND (Borsa et al.,
2018) which is a highly exploratory algorithm designed for maximising data heterogeneity. How-
ever, deploying such an algorithm in any real setting may be costly, time-consuming or dangerous.
As a result, our proposals are more likely to be trained on real-world datasets that are smaller and
more homogeneous. It is not clear how our specific proposals will interact with such datasets. If,
for example, the dataset only represents parts of the state space from which the dynamics cannot
be well-inferred, because it was collected from a robot with limited freedom of movement, then we
would expect our proposals to struggle. Indeed, with poor coverage of the state-action space, we
would expect to see the OOD pathologies seen in the single-task offline RL setting (Kumar et al.,
2019a; Levine et al., 2020). That said, the proposals of Jeen et al. (2024) for conducting zero-shot
RL from less diverse datasets could be integrated into our proposals easily, and may help.
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Figure 5: Aggregate zero-shot task performance of FB-M with different memory models. IQM of task
scores across all tasks on Walker flickering. (Left) Observations are passed only to a memory-based back-
ward model; the forward model and policy are memory-free. (Middle) Observations are passed only to the
forward model and policy; the backward model is memory-free. (Right) Observations are passed to all models.

7 Conclusion

In this paper, we explored how the performance of BFMs degrades when subjected to certain types of
partial observability. We introduce memory-based BFMs that condition F , B and πz on trajectories
of observation-action pairs, and show they go some way to remedying state and task misidentifi-
cation. We evaluated our proposals on a suite of partially observed zero-shot RL problems, where
the observations passed to the agent are noisy, dropped randomly or do not communicate a change
in the underlying dynamics, and showed improved performance over memory-free baselines. We
found the GRU to be the most performant memory model, and showed that transformers and s4
memory models cannot be trained stably at our scale. We believe our proposals represent a further
step towards the real-world deployment of zero-shot RL methods.
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A Experimental Details

A.1 ExORL

We consider 3 environments (three locomotion and one goal-directed) from the ExORL benchmark
(Yarats et al., 2022) which is built atop the DeepMind Control Suite (Tassa et al., 2018). Environ-
ments are visualised here: https://www.youtube.com/watch?v=rAai4QzcYbs. The domains
are summarised in Table 1.

Walker A two-legged robot required to perform locomotion starting from bent-kneed position. The
observation and action spaces are 24 and 6-dimensional respectively, consisting of joint torques and
positions. ExORL provides 4 tasks stand, walk, run and flip. The reward function for stand
motivates straightened legs and an upright torso; walk and run are supersets of stand including
reward for small and large degrees of forward velocity; and flip motivates angular velocity of the
torso after standing. Rewards are dense.

Quadruped A four-legged robot required to perform locomotion inside a 3D maze. The observation
and action spaces are 84 and 12-dimensional respectively, consisting of joint torques and positions.
We evaluate on 4 tasks stand, run, walk and jump. The reward function for stand motivates
a minimum torso height and straightened legs; walk and run are supersets of stand including
reward for small and large degrees of forward velocity; and jump adds a term motivating vertical
displacement to stand. Rewards are dense.

Cheetah A running two-legged robot. The observation and action spaces are 17 and 6-
dimensional respectively, consisting of positions of robot joints. We evaluate on 4 tasks: walk,
walk backward, run and run backward. Rewards are linearly proportional either a forward or
backward velocity–2 m/s for walk and 10 m/s for run.

A.2 POMDP Hyperparameters

The noisy and flickering amendments to standard ExORL environments (Section 5) have asso-
ciated hyperparameters σ and pf . Hyperparameter σ is the variance of the 0-mean Gaussian from
which noise is sampled before being added to the state, and pf is the probability that state s is
dropped (zeroed) at time t. In Figure 6 we sweep across three valued of each in {0.05, 0.1, 0.2}.
From these findings we set σ = 0.2 and pf = 0.2 in the main experiments

A.3 Computational Resources

We train our models on NVIDIA A100 GPUs. One run of FB, FB-stack and HILP on one domain
(for all tasks) takes approximately 6 hours on one GPU. One run of the FB-M on one domain (for
all tasks) on one GPU in approximately 20 hours. As a result, our core experiments on the ExORL
benchmark used approximately 65 GPU days of compute.

Table 1: ExORL domain summary. Dimensionality refers to the relative size of state and action spaces.
Type is the task categorisation, either locomotion (satisfy a prescribed behaviour until the episode ends) or
goal-reaching (achieve a specific task to terminate the episode). Reward is the frequency with which non-zero
rewards are provided, where dense refers to non-zero rewards at every timestep and sparse refers to non-zero
rewards only at positions close to the goal. Green and red colours reflect the relative difficulty of these settings.

Environment Dimensionality Type Reward

Walker Low Locomotion Dense
Quadruped High Locomotion Dense
Cheetah Low Locomotion Dense

https://www.youtube.com/watch?v=rAai4QzcYbs
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Figure 6: POMDP hyperparameter sweep. We evaluate the performance of standard FB on Walker when
the states are noised according to σ ∈ {0.05, 0.1, 0.2} and dropped according to pf ∈ {0.05, 0.1, 0.2}.

B Universal Successor Features with Memory

USFs require access to a feature map φ : S 7→ Rd that maps states into an embedding space in
which the reward is assumed to be linear i.e. R(s) = φ(s)⊤z with weights z ∈ Rd representing a
task (Barreto et al., 2017; Borsa et al., 2018). The USFs ψ : S × A × Rd → Rd are defined as the
discounted sum of future features subject to a task-conditioned policy πz , and are trained such that

ψ(s0, a0, z) = E

∑
t≥0

γtφ(st+1)|s0, a0, πz

 ∀ s0 ∈ S, a0 ∈ A, z ∈ Rd (7)

π(s, z) ≈ argmax
a

ψ(s, a, z)⊤z, ∀ s ∈ S, a ∈ A, z ∈ Rd. (8)

During training candidate task weights are sampled from Z; during evaluation, the test task weights
are found by regressing labelled states onto the features:

ztest ≈ argmin
z

Es∼Dtest [(Rtest(s)− φ(s)⊤z)2], (9)

before being passed to the policy. The features can be learned with Hilbert representations (Park
et al., 2024b), laplacian eigenfunctions, or contrastive methods (Touati et al., 2023).

We define memory-based USFs as the discounted sum of future features extracted from the memory
model’s hidden state, subject to a memory-based policy πz(fπ(τL):

ψ(τL0 , z) = E

∑
t≥0

γtφ(fψ(τ
L
t+1)) | τL0 , πz

 ∀ τL0 ∈ T , z ∈ Rd (10)

π(fπ(τ
L), z) ≈ argmax

a
ψ(fψ(τ

L), z)⊤z ∀ τL ∈ T , z ∈ Rd, (11)

where fψ and fπ are seperate memory models for ψ and π, and the previous hidden state ht−L−1 is
dropped as an argument for brevity (c.f. Equation 4). At test time, task embeddings are found via
Equation 9, but this time with reward-labelled trajectories rather than reward-labelled states:

ztest ≈ argmin
z

E(τL,R(s))∼Dlabelled [(Rtest(s)− φ(fψ(τ
L)⊤z)2], (12)

before being passed to the policy.
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Figure 7: Hyperparameter sweep over context length L. We evaluate the performance of FB-M with GRU
memory model on Walker noisy ((a) and (c) and Walker flickering ((b) and (d)). When we sweep over
the forward model’s context length, we pass states to the backward model and keep it memory-free; when we
sweep over the backward model’s context length we pass states to the forward model and policy and keep them
memory-free.

C Implementation Details

C.1 FB-M

Memory Models fF (τL), fB(τL) and fπ(τL) FB-M has separate memory models for the forward
model fF , backward model fB and policy fπ following the findings of (Ni et al., 2021), but their
implementations are identical. Trajectories of observation-action pairs are preprocessed by one-
layer feedforward MLPs that embed their inputs into a 512-dimensional space. The memory model
is a GRU whose hidden state is initialised as zeros and updated sequentially by processing each
embedding in the trajectory. For the experiments in Section 6.1 we additionally use transformer
Vaswani et al. (2017) and s4 memory models Gu et al. (2021). Our transformer uses FlashAttention
(Dao et al., 2022) for faster inference, and we use diagonalised s4 (s4d) (Gu et al., 2022) rather than
standard s4 because of its improved empirical performance on sequence modelling tasks.

Forward Model F (fF (τL), z) The forward model takes the final hidden state from fF and con-
catenates it with a preprocessed embedding of the most recent observation-task pair (o, z), following
the standard FB convention Touati & Ollivier (2021). This vector is passed through a final feedfor-
ward MLP F which outputs a d-dimensional embedding vector.

Backward Model B(fB(τ
L)) The backward model takes the final hidden state from fB passed it

through a two-layer feedforward MLP that outputs a d-dimensional embedding vector.

Actor π(fπ(τL), z) The actor takes the final hidden state from fπ and concatenates it with a
preprocessed embedding of the most recent observation-task pair (o, z), following the standard FB
convention Touati & Ollivier (2021) This vector is passed through a final feedforward MLP which
outputs an a-dimensional vector, where a is the action-space dimensionality. A Tanh activation is
used on the last layer to normalise their scale. As per (Fujimoto et al., 2019)’s recommendations,
the policy is smoothed by adding Gaussian noise σ to the actions during training.

C.2 Context Lengths

The context lengthL of both the F/πz andB is an important hyperparameter. When adding memory
to actors or critics, it is standard practice to parallelise training across batched trajectories of fixed L
(zero-padded for all t < L), yet condition the policy on the entire episode history during evaluation
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Figure 8: BFMs without memory. FB is optimised in a standard actor critic setup (Konda & Tsitsiklis, 1999).
The policy π selects an action at conditioned on the current state st, and the task vector z. The Q function
formed by the USF ψ evaluates the action at given the current state st and task z.

with recurrent hidden states. If L is chosen to be less than the maximum episode length, as is often
required with limited compute, a shift between the training and evaluation distributions is inevitable.
Though this does not tend to harm performance significantly (Hausknecht & Stone, 2015), the aim
is generally to maximise L subject to available compute. The Markov states of different POMDPs
will require different L, but longer L increases training time and risks decreased training stability.
In Figure 7 we sweep across L ∈ {2, 4, 8, 16, 32} for both F/πz and B. In general, we see small
increases in performance for increased context length, and choose L = 32 for our main experiments.

C.3 FB and HILP

FB and HILP follow the implementations by (Park et al., 2024b) which follow (Touati et al., 2023),
other than the batch size which we reduce from 1024 to 512 to reduce the computational expense of
each run without limiting performance as per (Jeen et al., 2024). Hyperparameters are reported in
Table 2. An illustration of a standard FP architecture is provided in Figure 8, for comparison with
the FP with memory architecture in Figure 1.

Forward Model F (ot, at, z) / USF ψ(ot, at, z) Observation-action pairs (o, a) and observation-
task pairs (o, z) are preprocessed and concatenated before being passed through a final feedforward
MLP F / ψ which outputs a d-dimensional embedding vector.

Backward Model B(ot) / Feature Embedder φ(ot) Observations are preprocessed then passed
to the backward model B / feature embedder φ which is a two-layer feedforward MLP that outputs
a d-dimensional embedding vector.

Actor π(ot, z) Observations (ot) and observation-task pairs (ot, z) are preprocessed by one-
layer and concatenated before being passed through a final feedforward MLP which outputs a a-
dimensional vector, where a is the action-space dimensionality. A Tanh activation is used on the
last layer to normalise their scale. As per (Fujimoto et al., 2019)’s recommendations, the policy is
smoothed by adding Gaussian noise σ to the actions during training.

Misc. Layer normalisation (Ba et al., 2016) and Tanh activations are used in the first layer of all
MLPs to standardise the inputs.

C.3.1 z Sampling

BFMs require a method for sampling the task vector z at each learning step. (Touati et al., 2023)
employ a mix of two methods, which we replicate:

1. Uniform sampling of z on the hypersphere surface of radius
√
d around the origin of Rd,



Zero-Shot Reinforcement Learning Under Partial Observability

Table 2: Hyperparameters for all BFMs.

Hyperparameter Value

Latent dimension d 50
F / ψ dimensions (1024, 1024)
B dimensions (512, 512)
Preprocessor dimensions (512, 512)
Transformer heads 4
Transformer / S4d model dimension 32
GRU dimensions (512, 512)
Context length L 32
Frame stacking (FB & HILP) 4
Std. deviation for policy smoothing σ 0.2
Truncation level for policy smoothing 0.3
Learning steps 1,000,000
Batch size 512
Optimiser Adam (Kingma & Ba, 2014)
Learning rate 0.0001
Discount γ 0.98
Activations (unless otherwise stated) ReLU
Target network Polyak smoothing coefficient 0.01
z-inference labels 10,000
z mixing ratio 0.5
HILP representation discount factor 0.98
HILP representation expectile 0.5
HILP representation target smoothing coefficient 0.005

2. Biased sampling of z by passing states s ∼ D through the backward model z = B(s). This also
yields vectors on the hypersphere surface due to the L2 normalisation described above, but the
distribution is non-uniform.

We sample z 50:50 from these methods at each learning step.

C.4 Code References

This work was enabled by: Python (Sanner et al., 1999), NumPy (Harris et al., 2020), PyTorch
(Paszke et al., 2017), Pandas (McKinney et al., 2011) and Matplotlib (Hunter, 2007).

D Extended Results

We report a full breakdown of our results summarised in Sections 5.2 and 5.3. Table 3 reports results
on our partially observed states experiments and Table 4 reports results on our changed dynamics
experiments.
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Table 3: Full results on partially observed states (5 seeds). For each dataset-domain pair, we report the score
at the step for which the all-task IQM is maximised when averaging across 5 seeds ± the standard deviation.

Environment Occlusion Task FB HILP FB-stack FB-M (ours) MDP

Cheetah

flickering

overall 182± 25 75± 19 109± 26 173± 51 474± 129

run 54± 14 31± 13 25± 16 75± 37 183± 59

run backward 52± 23 8± 5 31± 11 55± 15 176± 53

walk 279± 65 184± 66 186± 103 306± 175 726± 194

walk backward 293± 87 61± 21 178± 67 278± 70 812± 217

noisy

overall 213± 53 102± 59 116± 26 150± 59 474± 129

run 65± 9 28± 30 34± 11 34± 17 183± 59

run backward 68± 35 24± 23 41± 14 57± 28 176± 53

walk 340± 62 228± 98 186± 45 199± 88 726± 194

walk backward 415± 170 133± 99 214± 70 283± 142 812± 217

Quadruped

flickering

overall 117± 68 140± 75 345± 120 673± 19 729± 6

jump 174± 93 163± 142 377± 112 771± 29 737± 21

run 63± 151 95± 70 284± 114 478± 14 504± 13

Stand 65± 130 98± 115 460± 188 950± 14 955± 36

walk 34± 65 181± 81 291± 95 487± 51 749± 57

noisy

overall 155± 63 117± 68 522± 111 711± 21 729± 6

jump 219± 117 175± 92 517± 113 712± 20 737± 21

run 97± 95 63± 151 402± 83 512± 31 504± 13

stand 223± 158 65± 130 757± 178 899± 31 955± 36

walk 40± 109 35± 65 385± 97 721± 43 749± 57

Walker

flickering

overall 76± 32 82± 10 519± 37 511± 85 637± 60

flip 54± 11 57± 21 450± 60 400± 79 560± 35

run 27± 11 34± 6 250± 22 237± 34 359± 66

stand 189± 82 204± 35 712± 123 761± 77 871± 43

walk 32± 29 52± 9 693± 52 646± 204 772± 138

noisy

overall 339± 47 309± 78 427± 69 434± 23 637± 60

flip 220± 56 165± 72 340± 69 361± 45 560± 35

run 193± 49 143± 56 165± 44 183± 17 359± 66

stand 527± 157 509± 137 608± 73 731± 85 871± 43

walk 335± 78 387± 96 577± 112 486± 42 772± 138
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Table 4: Full results on ExORL changed dynamics experiments (5 seeds). For each dataset-domain pair,
we report the score at the step for which the all-task IQM is maximised when averaging across 5 seeds ± the
standard deviation.

Dynamics Environment Task FB HILP FB-stack FB-M (ours) MDP

Interpolation

Cheetah

overall 476± 77 67± 37 156± 55 453± 120 474± 129

run 167± 59 17± 11 59± 18 150± 68 183± 59

run backward 166± 21 6± 21 36± 38 192± 66 176± 53

walk 816± 280 84± 43 312± 52 483± 242 726± 194

walk backward 777± 71 160± 83 186± 226 956± 167 812± 217

Quadruped

overall 551± 82 186± 55 394± 76 767± 24 729± 6

jump 566± 128 291± 188 412± 69 787± 22 737± 21

run 360± 120 51± 27 251± 54 496± 17 504± 13

stand 842± 79 171± 186 521± 82 964± 9 955± 36

walk 434± 12 81± 68 358± 111 803± 84 749± 57

Walker

overall 637± 41 391± 107 603± 8 635± 19 637± 60

flip 452± 165 340± 89 459± 15 452± 44 560± 35

run 362± 33 161± 47 236± 23 298± 16 359± 66

stand 887± 18 752± 290 856± 4 890± 30 871± 43

walk 845± 29 316± 139 853± 28 886± 40 772± 138

Extrapolation

Cheetah

overall 369± 140 62± 33 178± 83 586± 144 516± 23

run 146± 92 16± 12 18± 23 223± 73 252± 65

run backward 225± 83 1± 0 70± 75 320± 128 157± 31

walk 366± 400 86± 90 59± 45 814± 121 819± 78

walk backward 743± 230 144± 50 312± 275 976± 292 632± 206

Quadruped

overall 333± 61 120± 47 263± 47 704± 31 645± 52

jump 309± 46 131± 81 272± 43 714± 79 615± 81

run 212± 42 42± 41 170± 33 474± 7 360± 29

stand 510± 121 275± 191 334± 39 957± 22 716± 117

walk 268± 60 62± 52 274± 78 723± 136 420± 50

Walker

overall 316± 80 146± 74 463± 15 478± 19 555± 89

flip 86± 18 107± 29 320± 10 336± 86 370± 48

run 218± 41 81± 31 283± 19 297± 42 301± 74

stand 475± 261 290± 190 624± 34 691± 64 715± 138

walk 501± 55 98± 74 632± 57 574± 77 476± 137
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