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Summary

Learning in non-stationary environments can be difficult. Although many algorithmic ap-
proaches have been developed, often methods struggle with different forms of non-stationarity
such as gradually changing versus suddenly changing contexts. Luckily, humans can learn
effectively under a variety of conditions and using human learning could be revealing. In the
present work, we investigated if a stateless variant of the IDBD algorithm (Mahmood et al.,
2012; Sutton, 1992), which has previously shown success in bandit-like tasks (Linke et al.,
2020), can model human exploration. We compared stateless IDBD to two algorithms that are
frequently used to model human exploration (a standard Q-learning algorithm and a Kalman
filter algorithm). We examined the ability of these three algorithms to fit human choices and
to replicate human learning within three different bandits: (1) non-stationary volatile which
changed suddenly, (2) non-stationary drifting which changed gradually, and (3) stationary. In
these three bandits, we found that stateless IDBD provided the best fit of the human data and
was best able to replicate different aspects of human learning. We also found that when fit to
the human data, differences in the hyperparameters of stateless IDBD across the three bandits
may explain how humans learn effectively across contexts. Our results demonstrate that state-
less IDBD can account for different types of non-stationarity and model human exploration
effectively. Our findings highlight that taking inspiration from algorithms used with artificial
agents may provide further insights into both human learning and inspire the development of
algorithms for use in artificial agents.

Contribution(s)

1. Our work is the first to investigate a light-weight, meta-learning algorithm from reinforce-
ment learning (IDBD) as a potential computational model of human exploration. Recovery
of IDBD parameters and simulation results from our human data provides suggestive evi-
dence that people modulate their learning rates in a similar manner to IDBD.

Context: Our work may be limited to the bandit setting, as human data in multi-stage
decision making tasks is typically modelled using hybrid model-free/model-based (e.g.,
successor representation) approaches (Momennejad et al., 2017).

2. Although prior work has shown IDBD-based agents can automatically and continually adapt

step-sizes to improve performance in simulation, we are the first to show IDBD can do the
same with human exploration data (i.e., a sequence of actions and rewards generated by
people performing bandit tasks).
Context: IDBD-inspired agents have been used in supervised learning tasks (Sutton, 1992;
Mahmood et al., 2012), bandit tasks (Linke et al., 2020), MDPs (Mcleod et al., 2021; Kear-
ney et al., 2018; Javed et al., 2024; Jacobsen et al., 2019), and even to help predict data from
real robots (Mahmood et al., 2012; Kearney et al., 2018; Jacobsen et al., 2019)

3. Our analysis indicates that IDBD matches human data better when compared to a Q-learning

and a Kalman filter algorithm which were used as baselines (Daw et al., 2006; Hassall et al.,
2019).
Context: Our results are limited to three tasks and a moderate number of human par-
ticipants. It is always possible that different tasks or a larger number of participants could
produce different conclusions. We did not exhaustively study all computational models pro-
posed in the literature, but instead focused on two: a Q-learning algorithm (Hassall et al.,
2019) and a Kalman filter algorithm (Daw et al., 2006)
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Abstract

Learning in non-stationary environments can be difficult. Although many algorithmic
approaches have been developed, methods often struggle with different forms of non-
stationarity such as gradually changing versus suddenly changing contexts. Luckily, hu-
mans can learn effectively under a variety of conditions so using human learning could
be revealing. In the present work, we investigated if a stateless variant of the IDBD
algorithm (Mahmood et al., 2012; Sutton, 1992), which has previously shown success
in bandit-like tasks (Linke et al., 2020), can model human exploration. We compared
stateless IDBD to two algorithms that are frequently used to model human exploration
(a standard Q-learning algorithm and a Kalman filter algorithm). We examined the
ability of these three algorithms to fit human choices and to replicate human learning
within three different bandits: (1) non-stationary volatile which changed suddenly, (2)
non-stationary drifting which changed gradually, and (3) stationary. In these three ban-
dits, we found that stateless IDBD provided the best fit of the human data and was best
able to replicate different aspects of human learning. We also found that when fit to
the human data, differences in the hyperparameters of stateless IDBD across the three
bandits may explain how humans learn effectively across contexts. Our results demon-
strate that stateless IDBD can account for different types of non-stationarity and model
human exploration effectively. Our findings highlight that taking inspiration from algo-
rithms used with artificial agents may provide further insights into both human learning
and inspire the development of algorithms for use in artificial agents.

1 Introduction

Often algorithms struggle to deal with non-stationary contexts. While many approaches have been
developed to deal with non-stationary contexts (Gupta et al., 2011; Garivier & Moulines, 2011;
Mcleod et al., 2021; Linke et al., 2020; Padakandla et al., 2020; Padakandla, 2021; Jain et al., 2024;
Khetarpal et al., 2022; Chandak, 2022), one problem is that they may be unable to handle differ-
ent types of non-stationary contexts. For example, consider a context which is slowly changing —
which may require consistent but slow rates of exploration — in comparison to an context which
changes suddenly — which would require exploration and a sudden increase in learning rate when
the context changes. However, humans are excellent at learning in non-stationary contexts like these
(e.g., (Soltani & Izquierdo, 2019; Lee et al., 2023; Payzan-Lenestour & Bossaerts, 2011). Taking
inspiration from human learning capabilities could be useful for both deciding which algorithmic
directions are promising and focus future algorithm refinement. One ability which allows us to
engage in meta-learning is solving the explore-exploit dilemma (Cohen et al., 2007). Specifically,
one example of meta-learning in humans is the tuning of hyperparameters in algorithms of learning
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and exploration depending on context (Griffiths et al., 2019). While the development of models
of human learning under uncertainty (that is, non-stationarity) has been successful (e.g., (Behrens
etal., 2007; Daw et al., 2006), much of the focus has been on contexts which only show one form of
non-stationarity (e.g., a suddenly changing world or a gradually changing world). If researchers are
to take inspiration from human learning, then validating algorithms which can handle different types
of non-stationarity should be of importance. As such, the use of light-weight, meta-learning models
— which may not require the tuning of numerous hyperparameters — provides one step forward.

Luckily, work in artificial agents provides one such family of light-weight meta-learning algorithms.
The Incremental Delta-Bar-Delta (IDBD) algorithm employs a simple update rule and was able to
learn within a non-stationary context through adjusting individual step-size parameters for every
input (Sutton, 1992). IDBD has been extended to have no sensitive hyperparameters — known as
Autostep — where it was able to solve different non-stationary problems and did not require exten-
sive tuning (Mahmood et al., 2012). Autostep works by increasing the step-size parameter of an
input (in the case of a bandit task, each bandit arm) when learning is progressing (i.e., the predic-
tion error of an input is in a consistent direction) while decreasing the step-size parameter when
learning is not progressing (i.e., the prediction error is not consistent) through a memory trace of
prior prediction errors. Autostep/IDBD has been successfully applied to bandit-like tasks which re-
quired the individual tracking of multiple arms each with their own step-size parameter (Linke et al.,
2020). The application of a light-weight meta-learning algorithms like Autostep/IDBD (hereinafter:
stateless IDBD) to human learning data across contexts may be useful.

We examined both human and artificial agent performance across different learning contexts. Specif-
ically, we examined performance within: (1) a non-stationary bandit where the best arm (i.e., the
arm that produced the highest reward) would change suddenly across time-steps, (2) a non-stationary
bandit where the best arm would change gradually across time-steps, and (3) a stationary bandit
where the best arm remained consistent. The different levels of non-stationarity provide an appro-
priate paradigm for testing learning across contexts. We collected a large sample of human partic-
ipants (n = 204) who each completed two of the bandit contexts. The primary algorithm we were
interested in was the stateless IDBD algorithm. Stateless IDBD has not been formally validated for
use with humans in a multi-arm bandit so we conducted two steps to validate the algorithm for use in
humans: "parameter recovery” and "model recovery" (Wilson & Collins, 2019). We ran parameter
recovery to determine whether the hyperparameters had distinct effects on task performance. We
ran model recovery to determine whether the algorithm made distinct behavioural predictions in our
tasks compared to two baseline algorithms. Specifically, to compare stateless IDBD to other algo-
rithms, we examined two popular algorithms often used to model exploration in humans: a simple
Q-learning algorithm which relies on a static step-size for all arms (Hassall et al., 2019; Ferguson
et al., 2023), and a Kalman filter model where the step-size can change (Daw et al., 2006; Speeken-
brink & Konstantinidis, 2015). To compare our three algorithms, we examined how well each of
them fit human choices in the bandits and how well they could simulate human learning.

In the present work, we provide five key findings. First, stateless IDBD showed strong parameter
recovery and model recovery, suggesting that it is a good candidate to be applied to human learning.
Second, we found that stateless IDBD provided the best fit of the majority of the human participants
across all three bandit contexts. Third, we found stateless IDBD best replicated human learning
compared to our two baseline algorithms. Fourth, we found that stateless IDBD provided the best
evidence of transfer learning compared to our two baseline algorithms. Fifth, we found that stateless
IDBD’s best-fitting hyperparameters based on the human choices differed depending on the bandit
context, which may be tied to human meta-learning. In sum, we found that stateless IDBD algorithm
was more successful at modelling human exploration than our two baselines. Our findings have
implications both for research on human learning and for algorithm development in artificial agents.
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2 Problem Setting: Human Bandit Tasks

In the present work, we had agents complete two of three multi-arm bandits (Figure 1). Each of
the bandits required completing 300 total time-steps. For the two non-stationary bandits, agents
completed three blocks of 100 time-steps. For the stationary bandit, agents completed six blocks
of 50 time-steps. Agents completed all blocks of one bandit followed by all blocks of the second
bandit.
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Figure 1: The three multi-arm bandits used in the present work. The reward distributions show the
reward values of the four arms for an example block of each bandit that agents encountered.

We believe that when humans completed our learning task, they were completing a multi-arm bandit
and not a Markov decision problem. First, there was no additional contextual (state) information to
help them solve the task and the task was designed to focus their attention on the immediate block.
When completing the task, they saw the four bandit arms represented as different coloured squares,
were required to select a bandit within 2000 ms on each time-step, and all participants completed
the tasks within 50 minutes. Second, the task was not a sequential decision-making task and choices
did not involve future discounted reward. That is, all the rewards of the four arms were independent
of each other and of the next time-step (or block/task).

For the non-stationary drifting bandit, we used a task where the reward values of the four arms
changed across time-steps randomly and independently (Daw et al., 2006). On each block, the
rewards were randomized for each of the four arms, and followed a random walk that drifted towards
50 points on each time step. Specifically, the rewards for each time-step were drawn from a Gaussian
distribution with a mean (y4;1) and a standard deviation which was equal to three. To calculate the
mean of the Gaussian distribution for each arm (k) and time-step (), the point values of the arms
were updated using a Gaussian random walk: ;1% = Aj + (1 — A)0 + v, where X is a decay
parameter equal to 0.9836, 6 is the decay center (equal to 50), and v is a diffusion noise parameter.
On each time-step, the diffusion noise parameter is sampled from a Gaussian distribution with a
mean of zero and a standard deviation of 2.8.

For the non-stationary volatile bandit, we developed a bandit where the reward values of the four
arms would change suddenly. For each block, one arm’s mean was initialized to be between 30 and
90 points, while the other arms had their means shifted by: -8, -16, and -24 points relative to the first
arm. On each time-step, the values of each of the arms were sampled from a Gaussian distribution
with the specified mean values and standard deviation equal to three. Following the completion of
between 20 to 30 time-steps, the mean reward of each arm were shifted by between 10 and 15 points.

For each block in the stationary bandit, the first arm’s mean was set to be between 30 and 90 points,
while the other three arms had their means shifted -5, -10, and 5 points relative to the first arm. For
the stationary bandit, the reward on each time-step was drawn from a Gaussian distribution using
the means specified above and a standard deviation of three.
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Human Participants We collected data from 204 people. 107 people completed both the drifting
and volatile bandit, while 97 people completed both the volatile and the stationary bandit (see 6
for the instructions participants received). Participants were recruited from the local institution,
compensated with course credit, and completed a consent form. All experiments were conducted
with the approval of the local institution’s research ethics board.

3 Model Fitting & Algorithms

To find the best fitting parameters of each algorithm from the human choices, we applied the
Bayesian optimization algorithm from the PyBADS package (Version 1.0.5) in Python (Version
3.9). Algorithm parameters were optimized individually for each participant within each of the
three bandits (each participant ended up with three sets of parameters; one set per bandit). Using the
Softmax choice probabilities of each of the algorithms, we applied a posteriori estimation based on
the minimization of the negative log-likelihood across all time-steps (t) and blocks (b) per the input
set of hyperparameters (Daw, 2011).

The goal is to select hyperparameters for each algorithm that would most likely recreate the choices
in the human data. Assume we pick hyperparameter set w which generates a sequence of corre-
sponding softmax probabilities F; ; ., for block ¢ and time-step j. Then we compute the negative
log-likelihood of the observed actions aj, which is the selected arm on each block and time-step.

b t
lw) == P ju(ak) (1)
i=1 j=1

The actual loss given to the Bayesian optimizer is the AIC = 2p + 2{(w) where p is the number
of hyperparameters. We use the AIC, instead of the negative log-likelihood, to penalize model
complexity.

Stateless IDBD The stateless IDBD algorithm relies on Autostep (Mahmood et al., 2012) which
has been successfully applied to non-stationary bandit-like tasks (Linke et al., 2020). The stateless
IDBD algorithm involves the calculation of an individual step-size parameter for each of the arms,
which changes on each time-step per the sign of the prediction error (see Algorithm 1 in 7).

The meta-learning rate parameter () determines how quickly the individual step-size parameters
change. Because of the low number of time-steps, the meta-learning rate parameter did not have
any appreciable effect on performance, and we chose to keep it constant (.15) across each of the
bandits. While we found that this meta-learning rate parameter maximized performance across
10000 simulations, there was little effect on performance overall.

For stateless IDBD, we updated value estimates using model-free reinforcement learning (Sutton &
Barto, 2018). Specifically, we had the value estimates updated for chosen arms on each time-step by
multiplying the prediction error of the chosen arm by a step-size parameter (). On each time-step,
the value estimates for the selected arm (k) were updated by: ¢; j4+1.x = ¢ijk + k X 0; 5, Where
oy, is the step-size for an arm and §; ; is the prediction error: §; ; = r; j — ¢, 1, and 7; ; is the reward
obtained from the selected arm. For the stateless IDBD algorithm, we fit three hyperparameters per
person and per bandit: the inverse temperature parameter of the softmax policy, the initial Q value
for each block, and the initial step-size parameters for each block.

Q-Learning Baseline For the Q-learning baseline, the algorithm relied on the Q-update as in
Stateless IDBD. However, we instead fit a single step-size («) for all arms. We initialized each
of the arm values (q) optimistically on each block as 100. We note that while we attempted to fit
the initial Q values for this algorithm, we were unable to successfully recover the initial Q value
estimates — a point we will return to in the discussion. For the Q-learning baseline algorithm, we
fit two hyperparameters per person per bandit: the inverse temperature parameter from the softmax
policy, and the single step-size parameter for all arms.
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Kalman Filter Baseline For a second baseline, we examined a Kalman filter algorithm (Kalman,
1960). The Kalman Filter algorithm used approximate Bayesian updating for changing the agent’s
value estimates across time-steps. In comparison to Q-learning, the Kalman filter incorporates a
variable step-size (the Kalman Gain) which changes across time. On each time-step the value es-
timate (g; initialized to 100 on each block) and the variance estimate (v; initialized to 100 on each
block) of for each arm are updated by:

9i,j+1,k = i jk + KGi,j,k(riJ — Qi,j,k) (2)
Vi jr1,k = (1 — KGj jx)vi gk + O‘?. 3)

The Kalman Gain was updated by

vi i ko2 . .
% if k = selection
KGi,jvk = Ul,.]ykJrU{JrUé ’ (4)
0 otherwise

where ag is the innovation variance parameter and o2 is the error variance parameter. These two
variance parameters determine how the Kalman Gain updates on each time-step. Only one of these
two noise parameters can typically be recovered successfully from human choices, because it is
the ratio of the two parameters that determines how arms are selected and how values are updated
(Piray & Daw, 2024). Thus, the only free parameter was the error variance parameter while we
set the innovation variance parameter to a constant value of five (similar to previous work - (Daw
et al., 2006). For the Kalman Filter baseline algorithm, we fit two hyperparameters: the inverse
temperature parameter from the softmax policy, and the error variance parameter.

Softmax Policy To ensure our algorithms could be easily compared, we used a softmax policy.
The softmax policy involves probabilistic random exploration, where agents usually select the high-
est estimated value arm, while occasionally exploring the other arms in decreasing probability de-
pending on their estimated value. The inverse temperature parameter (7) determines how often

3 3 1 . — eXp(TXqi,;‘,k)
exploration occurs. The softmax policy relies on the formula: P; ;(ax) = m.

4 Experimental Results

Below we provide the main results. First, stateless IDBD was validated for use in humans as the
algorithm demonstrated good parameter and model recovery. Second, stateless IDBD was the best-
fitting algorithm across all bandits. Third, stateless IDBD was best able to simulate human learning
curves. Fourth, we demonstrate stateless IDBD was also best able to simulate transfer performance
across contexts. Fifth, the best fitting hyperparameters of stateless IDBD differed across bandits.

Model Validation of Stateless IDBD To validate stateless IDBD for use in humans, we ensured
that the three hyperparameters could be recovered effectively. This was true for the volatile ban-
dit (all r > .88), the drifting bandit (all » > .83) and the stationary bandit (all » > .83). We also
found strong model recovery across all three of our bandits. Specifically, stateless IDBD showed
good model recovery in the volatile bandit (90%), the drifting bandit (90%), and the stationary ban-
dit (96%). Please see the supplemental materials for additional details and figures for parameter
recovery (8) and model recovery (9).

Best Fitting Algorithms Across Bandits To determine which algorithm provided the best fit of
the human data, we computed each of the algorithm’s AIC values on a participant-by-participant
basis for the three bandits. We found that the stateless IDBD bandit provided the best fit of 64%
(130/204) of participants in the volatile bandit, 59% (63/107) of participants in the drifting bandit,
and 88% (85/97) of participants in the stationary bandit.
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Learning Curve Simulation To adjudicate between algorithms, we investigated whether three
algorithms could replicate the learning behaviour of humans (Figure 2)'. To determine how well
the algorithms could replicate human performance, we selected the best fitting parameters for each
participant within each bandit. We then used those best fitting parameters to simulate performance
by having each algorithm make choices and obtain rewards in each of the three bandits. To determine
how well each algorithms learned compared to the humans, we examined four measures: (1) optimal
arm choice (i.e., how often the agent selected the highest value arm), (2) switching (how often the
agent switched), (3) win-stay behaviour (how often the agent stayed following a win), and (4) lose-
switch behaviour (how often the agent switched following a loss).
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Figure 2: Human (blue dotted line) and algorithm (solid lines) learning curves. Shaded regions
indicate 95% confidence intervals.

Overall, stateless IDBD was best able to simulate performance across three of our four measures.
Generally, the algorithms attained similar levels of performance in terms of optimal arm selection in
both of the non-stationary bandits. However, in the stationary bandit, the Kalman filter algorithm was
most similar to the human optimal arm curve. For switching, the stateless IDBD algorithm attained
performance most closely aligned with human switching. For win-stay and lose-shift behaviour, the
stateless IDBD algorithm simulated curves most like the humans although it tended to stay following
wins at a higher rate and shift following losses at a lower rate. In contrast, the two baselines tended
to stay following wins at a lower rate and switch following loses at a higher rate.

Transfer Performance In addition, we compared how well the algorithms could transfer perfor-
mance across bandits. To do this, we took the best fitting hyperparameters of the human learning
data from one bandit and used those parameters to simulate participants in the second bandit that a
participant completed. That is, we examined how well the algorithms fit to one bandit were able to
replicate human learning when made to complete a second bandit. To assess transfer performance,
we compared the algorithms to the human performance using the mean square deviation (Ahn et al.,

IThe confidence intervals on Figure 2 are standard normal 95% confidence intervals. This is true for all confidence
intervals in our work.



Human Exploration via IDBD

2008). Briefly, the mean square deviation was calculated by: MSD = %Zi(Phuman — Pyim)?.
Here, c is the three bandits, Phyman 1S the human participants’ performance averaged across all
blocks and time-steps for a bandit, and Ps;,, is the average simulated performance from the algo-
rithm from that same bandit. The lower the mean squared deviation, the better the algorithm’s ability
to simulate transfer performance. We compared the ability of algorithms to transfer performance us-
ing one-way analysis of variances (ANOVAs), and followed up with independent samples t-tests
(Benjamini-Hochberg corrected; (Benjamini & Hochberg, 1995)).

In terms of the ability of the algorithms to transfer performance (Figure 3) we found that stateless
IDBD performed best for three of our four measures. We found an effect of algorithm on optimal arm
choice (F'(1, 1170)= 9.14, p= 0.0001, 772 = 0.015). Stateless IDBD performed worse at replicating
the human optimal arm choices compared to both Q-learning (t(780) =2.24, p=0.03, d = 0.16) and
the Kalman filter (£(780) = 4.04, p < 0.0001, d = 0.29). In addition, the Kalman filter outperformed
Q-learning (¢(780) = 3.71, p < 0.03, d = 0.15). In terms of replicating human switching behaviour,
we again found an effect of algorithm type (F'(1, 1170) = 19.43, p = 5e-9, 7712) =0.032). The follow-
up t-tests revealed that stateless IDBD was better at replicating human switching compared to both
Q-learning (¢(780) = 3.52, p = 0.0007, d = 0.25), and the Kalman filter (¢(780) = 6.67, p = le-10,
d = 0.48). Interestingly, Q-learning replicated human switching behaviour better than the Kalman
filter (¢(780) = 2.65, p = .008, d = 0.19).

Optimal Arm % Switch % Win-Stay % Lose Shift %
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Figure 3: Mean square deviation across our four measures of performance - lower scores indicate the
algorithm was better able to simulate human performance. Error bars are 95% confidence intervals.

For replicating win-stay behaviour, we found an effect of algorithm type (£'(1, 1170)= 14.07, p =
9e-7, 775 = 0.023). This effect was primarily driven by the fact that stateless IDBD was better able to
replicate win-stay behaviour than both Q-learning (¢(780) = 4.07,p= 7e-5, d = 0.29) and the Kalman
Filter (t(780) = 5.68, p = 6e-8, d = 0.41). There was no difference between Q-learning and the
Kalman Filter (¢£(780) = 1.16, p = 0.24, d = 0.08). For lose-shift behaviour, again the algorithms
differed (F'(1, 1170) = 12.64, p = 3e-6, 7712, =0.021). Stateless IDBD outperformed both Q-learning
(t(780) =2.51, p = 0.02, d = 0.25) and the Kalman filter (£(780) = 5.26, p = 5e-7, d = 0.38). The Q-
learning algorithm outperformed the Kalman filter algorithm in terms of lose-shift behaviour (¢(780)
=242,p=0.02,d=0.17).

Hyperparameter Comparison For our final analysis, we compared the best-fit hyperparameters
of the stateless IDBD algorithm across bandits (Figure 4). For the comparison between the volatile
bandit to the stationary bandit, we found that all three hyper parameters differed. Specifically,
participants in the non-stationary volatile bandit had lower inverse temperature parameters (£(94)
=4.44, p = 2e-5, d = 0.64), higher initial Q values (¢(94) = 8.88, p = 4e-14, d = 1.15) and higher
initial step-size parameters (£(94) = 7.20, p = 1e-10, d = 1.03). When instead comparing the two
non-stationary bandits, we found that humans had a higher inverse temperature parameter (£(103) =
2.24,p=0.02, d = 0.27) and higher initial step-size values (¢(103) =2.72, p =0.008, d = 0.36) in the
volatile bandit compared to the drifting bandit. There was no difference in terms of initial Q values
(t(103) = 0.24, p = 0.80, d = 0.03).
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Figure 4: Best fit hyperparameters from the human data. Error bars are 95% confidence intervals.

5 Discussion

Implications for Human Learning The present work has several implications for understanding
human learning. First, we found that stateless IDBD is a well-behaved algorithm (per parameter
and model recovery) and can successfully model human learning. Thus, we no longer need to use
a single static step-size (the Q-learning algorithm), and can extend the benefit of the varying step-
size (the Kalman filter) to multiple actions. While it is unclear whether humans would maintain
separate step-size parameters for different options, combining brain imaging techniques like EEG
(which can detect neural signals tied to step-size changes; (Jepma et al., 2016) with the stateless
IDBD algorithm could provide an answer. Second, because we combined stateless IDBD with
Q learning, our work should be easily extended to study different aspects of exploration such as
directed exploration (Auer, 2002), or the positivity bias (Palminteri, 2022) providing directions for
future work. Third, typically initial Q values are not recovered from human data, although there are
some exceptions when using Hierarchical Bayesian approaches (Dubois et al., 2021). Being able to
recover the initial Q values means we can model how much humans value a context, providing a link
to foraging algorithms which model how good a forager thinks a context is (Avgar & Berger-Tal,
2022). Fourth, the hyperparameters of stateless IDBD varied across contexts which may suggest that
these parameters are related to cognitive processes involved in meta-learning (Wang, 2021). That is,
humans modulate their rate of probabilistic exploration, modify their assessments of context quality,
and increase or decrease their initial rate of learning, to learn across contexts.

Implications for Artificial Agents Our results also suggest meta-learning algorithms similar to
IDBD could be useful for developing continual reinforcement learning algorithms. Continual re-
inforcement learning algorithm development is still in its infancy. There is still little consensus
on problem formulations (Abel et al., 2023), empirical benchmarks to evaluate progress (Khetarpal
et al., 2022), or how hyperparameters should be dealt with (Mesbahi et al., 2024). However, our
results suggest two foci for future algorithm development. First, hyperparameter free algorithms
(or at least algorithms less sensitive to hyper choices) model human data well. Recent work has
shown that hyperparameter tuning in continual reinforcement learning is fundamentally different
compared with conventional reinforcement learning and that tuning in continual tasks can obfuscate
good directions for algorithmic progress (e.g., (Mesbabhi et al., 2024). Second, the vast majority of
deep reinforcement learning algorithms (including continual ones) make use of the Adam optimizer
(Kingma & Ba, 2015). The belief is that Adam eliminates step-size tuning and provides a vector
of step-sizes—one for each weight in the network. However, recent studies have shown counter-
examples where Adam degenerates into a single global step-size parameter (Degris et al., 2024) and
performs poorly (Elsayed & Mahmood, 2024). Our results provide yet another piece of evidence
suggesting that effective continual learning systems (in this case people) modulate a collection of
step-sizes based on meta learning and that approaches similar to, or inspired by, IDBD should be
developed and examined in continual reinforcement learning settings.
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Broader Impact Statement

As our work studies human exploration, it could be used by malicious actors to manipulate people
to explore (or not) as a benefit to the actor. We caution readers to not use this work for that purpose.
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6 Task Instructions

Participants were informed that their goal was to obtain as many points as possible by selecting the
arm that gave the most points on each time-step. In the two non-stationary bandits they were told
that the best option could change both between time-steps and between blocks. In the stationary
bandit, participants were told that the best option would stay consistent across a block but may
change between blocks. Participants were not compensated on the basis of performance. When
changing between bandit types (e.g., stationary to volatile; drifting to volatile), participants were
told they were switching environments and the points values of the task may show different patterns.
In addition, they were given the instructions mentioned above for the new bandit type.

See https://github.com/tomferg/RLC_2025 for data and experiment code.

7 Stateless IDBD Pseudocode

Below, we provide pseudocode for a stateless version of Autostep (Mahmood et al., 2012) adapted
from previous work (Linke et al., 2020). Autostep was designed for non-stationary environments and
has a separate step-size parameter for each input. For stateless IDBD, the step-size parameter can
thus change depending on the obtained rewards. As such, when learning is progressing the step-size
parameter of an arm should increase, but when learning is not progressing the step-size parameter of
an arm should decrease. This occurs through the computation of a memory trace (h) of the prediction
errors (9) across the task. If the predictions errors of an arm are all of the same sign then the step-
size parameter of that arm should increase but if the prediction errors are changing signs repeatedly
then the step-size parameter should decrease. The update of the step-size parameters depends on a
meta-learning rate parameter (3). However, because we had agents only complete a small number
of time-steps (100 time-steps for each block of each bandit), we found that the meta-learning rate
had little effect on performance when simulating agents within the bandits we used here.

Algorithm 1: Stateless IDBD Algorithm

Only the chosen arm (k) is updated

[ is the meta-learning rate parameter

n and h are scalar memory variables initialized to 1 and O

d; is the prediction error at time-step j and «, the step-size parameter of predictor &
Procedure Stateless IDBD

1. ng = max(|6;h|, ng + ﬁak(wjhu —ng))

2. ay, = min(agexp(s 5;&’“ ), 1)
3. hk = hk(l — Olk) + akéj

8 Parameter Recovery

To ensure that the stateless IDBD algorithm was stable and that its parameters had distinct effects on
behaviour, we conducted parameter recovery (Figure 5). Parameter recovery involves the generation
of a set number of simulated datasets (in our case, 50 datasets per bandit). To generate each dataset,
we first randomly selected a set of true (i.e., simulated) parameter values for the stateless IDBD
model and then had the model generate a dataset (i.e., make action choices and obtain rewards)
using those parameters within a bandit. Following this, we ran our parameter fitting procedure on
each of the simulated datasets. We then correlated the simulated parameters (which we input and
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Figure 5: Parameter recovery of the three hyperparameters for the stateless IDBD model across each
of the bandits

know) with the fitted parameters recovered from minimizing the negative log likelihood. This was
repeated for each bandit individually.

9 Model Recovery

We conducted model recovery (Figure 6) to determine whether our three chosen algorithms made
quantitatively distinct behavioural patterns in our bandits. Akin to our parameter recovery, we first
generated a set of 50 datasets from each algorithm using different random parameter values (n =
50 for each of the three algorithms; 150 total simulations). We next passed each of these simulated
datasets through our fitting procedure (i.e., minimizing the negative log-likelihood) for each of the
three algorithms individually. Following this, we transformed our negative log likelihood values into
Akaike Information Criterion values (AIC, (Akaike, 1973) to determine which algorithm provided
the best fit of each dataset.

We then generated a 3 x 3 confusion matrix for the three algorithms. To do this, we recorded each
time an algorithm provided the best fit of a simulated dataset. For the confusion matrix, the 3 rows
are the algorithms used to simulate the dataset and the 3 columns are the algorithms used to fit
those datasets. To be clear, each row saw the same 50 datasets (generated by a specific algorithm)
which were passed through the three algorithms fitting procedures, and we recorded which algorithm
provided the best fit within the cells of the 3 x 3 matrix. After this, we transformed those best fit



Reinforcement Learning Journal 2025

Volatile Drifting Stationary
IDBD IDBD IDBD
K]
kel
[o]
=
el
o Q-Learn Q-Learn Q-Learn
©
=
£
[2]
Kalman Kalman Kalman
IDBD  Q-Learn Kalman IDBD  Q-Learn Kalman IDBD  Q-Learn Kalman
Fitted Model Fitted Model Fitted Model

Figure 6: Model recovery confusion matrices across each of the bandits. The numbers indicate the
percentage of the simulated data best fit by each of the models.

numbers into percentages by dividing each cell by the number of datasets from that row (50). Within
the confusion matrix we expect to observe that the diagonal of the matrix would be where the largest
values are present as that is where the algorithm used to simulate the dataset matches up with the
model used to fit the dataset.



