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Summary
For reinforcement learning agents to be deployed in high-risk settings, they must achieve

a high level of robustness to unfamiliar scenarios. One approach for improving robustness is
unsupervised environment design (UED), a suite of methods that aim to maximise an agent’s
generalisability by training it on a wide variety of environment configurations. In this work,
we study UED from an optimisation perspective, providing stronger theoretical guarantees for
practical settings than prior work. Whereas previous methods relied on guarantees if they
reach convergence, our framework employs a nonconvex-strongly-concave objective for which
we provide a provably convergent algorithm in the zero-sum setting. We empirically verify
the efficacy of our method, outperforming prior methods on two of three environments with
varying difficulties.

Contribution(s)
1. We provide a reformulation of UED that is strongly concave in the adversary’s strategy,

allowing for easier convergence.
Context: Dennis et al. (2020)’s initial UED work PAIRED uses a nonconvex-nonconcave
objective, which is known to be unstable in training (Wiatrak et al., 2020). Moreover,
follow-up works such as (Chung et al., 2024) that improve PAIRED’s level generator with
generative models maintain this property.

2. We provide convergence guarantees for any score function that is a zero-sum game over the
policy’s negative return (e.g. regret or negative return).
Context: Prior works in UED (Dennis et al., 2020; Jiang et al., 2021a) assert guarantees if
the UED game reaches a saddle point, but fail to guarantee convergence to one. We propose
a method that provably converges.

3. We provide an empirical evaluation of our methods on current UED benchmarks, using
relevant optimisation heuristics and by introducing a new score function that generalises
the work of Rutherford et al. (2024) to general deterministic RL environments.
Context: Learnability (Rutherford et al., 2024) requires a binary-outcome environment.



An Optimisation Framework for Unsupervised Environment Design

An Optimisation Framework for Unsupervised Envi-
ronment Design

Nathan Monette1, †, ∗, Alistair Letcher2, Michael Beukman2, Matthew T.
Jackson2, Alexander Rutherford2, Alexander D. Goldie2, Jakob N. Foerster2

†nmonette@uci.edu

1University of California Irvine
2FLAIR, University of Oxford
∗Work undertaken while visiting FLAIR.

Abstract
For reinforcement learning agents to be deployed in high-risk settings, they must
achieve a high level of robustness to unfamiliar scenarios. One approach for improving
robustness is unsupervised environment design (UED), a suite of methods that aim to
maximise an agent’s generalisability by training it on a wide variety of environment con-
figurations. In this work, we study UED from an optimisation perspective, providing
stronger theoretical guarantees for practical settings than prior work. Whereas previ-
ous methods relied on guarantees if they reach convergence, our framework employs
a nonconvex-strongly-concave objective for which we provide a provably convergent
algorithm in the zero-sum setting. We empirically verify the efficacy of our method,
outperforming prior methods on two of three environments with varying difficulties.1

1 Introduction

Training reinforcement learning (RL) agents that are robust to a variety of unseen scenarios is an
important and long-standing challenge in the field (Morimoto & Doya, 2000; Tobin et al., 2017).
One promising approach to addressing this problem is Unsupervised Environment Design (UED),
where an adversary automatically proposes a diverse range of training tasks for an agent to learn
on, based on its current capabilities (Dennis et al., 2020; Jiang et al., 2021a). In this way, the agent
gradually progresses from easy tasks (also called levels) to more difficult ones.

UED is generally posed as a two-player game between a level-selecting adversary and a level-solving
agent. Most current methods use a variation of the minimax regret approach, in which levels with
high regret—meaning an agent performs far from optimal—are selected by an adversary for the
agent to learn in (Dennis et al., 2020; Jiang et al., 2021b;a; 2022; Parker-Holder et al., 2023). Us-
ing regret as a score function is intuitive, since it shows how suboptimal a policy is on a specific
level, i.e., how much it can still improve. However, despite some empirical success (Dennis et al.,
2020; Jiang et al., 2021b), more recent works have presented a number of issues with the minimax
regret formulation (Jiang et al., 2022; Beukman et al., 2024; Rutherford et al., 2024), motivating the
creation of new ways of determining the score of a level. The canonical formulation of UED faces
several other challenges, including lack of convergence guarantees and instability when searching
for useful levels in a large space.

In our work, we provide a reformulation of minimax regret as the expected regret when sampling
levels from a categorical distribution. Using this reformulation, we provide a gradient-based algo-
rithm that is provably convergent to a locally optimal policy, relying on recent results (Lin et al.,

1Our code is available at https://github.com/nmonette/NCC-UED.

https://github.com/nmonette/NCC-UED
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Figure 1: A visual representation of our training loop, which has simultaneous updates for the agent
x and the adversary y. The agent’s update is trained on levels λ sampled from y, and the adversary’s
update is computed with scores computed from the policy on all levels from level-buffer Λ. We use
the Craftax environment from Matthews et al. (2024) for illustration.

2020) in two-timescale gradient descent that ensure convergence when learning rates for minimiser
(agent) and maximiser (adversary) are separated. This stands in contrast to the existing paradigm
that only has theoretical guarantees if convergence is achieved.

Using regret as the score function is theoretically attractive because it maintains the zero-sum prop-
erty between the agent and the adversary, and therefore allows for stronger guarantees. However,
high-regret levels may not lead to efficient learning; moreover, computing regret is generally in-
tractable, as it requires an optimal policy for each level. Inspired by this, Rutherford et al. (2024)
use learnability (Tzannetos et al., 2023) as an effective scoring function, but their formulation is
limited to deterministic, binary-outcome domains. In our work, we generalise this score function to
arbitrary deterministic settings, using the interpretation of learnability as the variance of agent suc-
cess. We finally develop a practical UED algorithm, NCC (see Figure 1), using our reformulation
and generalised score function which obtains competitive results in three challenging domains. In
this work, we provide a stepping stone towards more robust RL algorithms by creating a theoretically
sound optimisation framework that offers competitive empirical results.

2 Background

2.1 Underspecified POMDP’s

The underlying theoretical framework behind UED is the Underspecified Partially Observable
Markov Decision Process (UPOMDP). The UPOMDP (Dennis et al., 2020) describes an environ-
ment with level space L, such that we train over some subset Λ ⊆ L, where each parametrisation
λ ∈ Λ represents a POMDP. A UPOMDP is defined by the tuple (L,S,O,A, r, P, ρ, γ), where
S is the state space, O is the observation space, and each o ∈ O is typically a limited view of
the global state of the environment. The action space is A, and the reward function is defined as
r : L × S × A → R. The transition probability function P has a varying definition depending
on the environment dynamics, but for the discrete-state case we write P : L × S × A → ∆(S),
where ∆(S) is the probability simplex of size equal to the cardinality of set S. Finally, γ denotes
the discount factor and ρ : L → ∆(S) denotes the initial state distribution function.
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Consider the agent’s parameter space X , and policy π : X × O → ∆(A), where the policy may
condition on a hidden state h in the partially observable setting. The expected discounted return of
the agent on a given level is J : L×X → R. Moreover, we define the general objective of our agent
to be the following, where Λ(y) is some distribution over levels parametrised by y:

max
x∈X

Eλ∼Λ(y)

[
J(πx, λ)

]
. (1)

2.2 Learning in Games

A game is a scenario where there are agents interacting with each other by taking actions, typically
under the assumption that each agent is trying to maximise their own utility.

Solutions of Games Learning a game generally involves optimising for an equilibrium point be-
tween the players. Typically, the hope is that the players will achieve a Nash Equilibrium (Nash,
1951, NE), which requires that neither player can unilaterally deviate their strategy to obtain a better
utility. In such equilibria, players are robust to changes to the opponent’s strategy. Hence, the ro-
bustness guarantees of prior UED works (Dennis et al., 2020; Jiang et al., 2021a) are derived under
an assumption that their systems have converged to a NE.

First-Order Nash Equilibria Following Nouiehed et al. (2019), we consider the solution concept
of the (ϵ-approximate) first-order Nash Equilibrium. For ϵ ≥ 0, unconstrained x, and y constrained
to Y , a first-order NE (x∗, y∗) of the objective minx maxy∈Y f(x, y), is defined by

∥∇xf(x
∗, y∗)∥ ≤ ϵ

max
y∈Y

⟨∇yf(x
∗, y), y − y∗⟩ ≤ ϵ s.t. ∥y − y∗∥ ≤ 1 . (2)

An interpretation of the first-order NE is more clear when fixes on variable: neither x or y are able
to further optimise w.r.t. f via first-order gradient dynamics except for by some (small) distance ϵ.

2.3 Game Theory and UED

Zero-sum UED Prior works frame UED as a zero-sum game between an agent (the policy in-
teracting with the environment) and a level-generating adversary (Dennis et al., 2020; Jiang et al.,
2021a). The adversary aims to maximise the agent’s score on the levels. A common score function
is regret, defined as Reg(πx, λ) = J(πλ

∗ , λ)− J(πx, λ), for a level λ ∈ Λ and its optimal policy πλ
∗ .

An agent that maximises its expected return on a given level is equivalently minimising its regret,
hence the a regret-maximising adversary is zero-sum with a return-maximising agent.

Minimax Regret PAIRED (Dennis et al., 2020), uses a generator parametrised by y as their ad-
versary. While not explicitly stated, the objective being optimised is

min
π

max
y

Eλ∼Λ(y)

[
Reg(π, λ)

]
. (3)

In their analysis, Dennis et al. (2020) construct a normal form game (i.e., a game represented by a
payoff matrix for each player), it is assumed that the action space of the agent is the (finite) set of
possible deterministic policies. Practically, however, PAIRED trains a stochastic neural network-
based policy via PPO (Schulman et al., 2017), and is not deterministic during training. In addition,
due to the use of nonlinear neural networks for both the policy and the generator, the objective is in
fact nonconvex-nonconcave. Hence, the normal-form construction (which is convex-concave) is not
a reasonable representation of the UED problem. Instead, we argue that UED should be viewed as a
min-max optimisation problem over the parameters of the agent and adversary.



Reinforcement Learning Journal 2025

The theoretical results of Dennis et al. (2020) results hold only at Nash Equilibrium, but there is
no guarantee that this NE will be reached. In fact, the system is unlikely to converge to a NE due
to the nonconvex-nonconcave objective, which is not well-understood in the optimisation litera-
ture without additional unmet structural assumptions (Mertikopoulos et al., 2019; Jin et al., 2020;
Cai et al., 2024). Secondly, the minimax theorem does not hold on the account of the nonconvex-
ity/nonconcavity of the optimised variables (Jin et al., 2020). We circumvent both issues by con-
structing a nonconvex-strongly-concave objective for UED and proving that the variables involved
converge to a first-order NE without needing to invoke the minimax theorem for analysis.

2.4 Choice of Score Function

Beyond issues with the theoretical framework of minimax regret, regret is often not a practically
viable choice as a score function. While regret incentivises the adversary to propose levels where
the agent has much capacity to improve, these levels may not lead to optimal learning, and in fact
may not be conducive to learning at all. Regret also relies on the optimal policy, which is generally
not available. There is also the regret stagnation problem (Beukman et al., 2024), where due to some
stochasticity or partial observability in an environment, the regret is not reducible below some non-
minimal value.2 When irreducible, regret is no longer representative of policy learning potential.

One prevailing alternative to regret is the learnability of a level (Rutherford et al., 2024). Assuming a
binary-outcome setting, where the return R(τ, λ) is in {0, 1} for all trajectories τ and levels λ, learn-
ability is defined as s(πx, λ) = p(1 − p), where p is the agent’s solve rate p = Eτ∼πx(λ) [R(τ, λ)].
For binary outcomes, this can be rewritten as the variance of returns as follows:

s(πx, λ) = Varτ∼πx(λ)

[
R(τ, λ)

]
. (4)

Learnability has a number of interpretations that are explored in Tzannetos et al. (2023) and Ruther-
ford et al. (2024), but the variance interpretation is intuitive in the sense that levels with low variance
of returns are either too difficult or too easy, and should not be prioritised during training.

3 Related Work

UED algorithms can generally be categorised into either sampling-based and generative-based ap-
proaches. The former assume access to some function that samples levels; often, this is the uniform
distribution over levels L. The latter instead learn a level-generating model (either via RL (Dennis
et al., 2020) or self-supervised learning (Garcin et al., 2024)).

The simplest UED method, called Domain Randomisation (DR), directly trains an agent on this
uniform distribution (Tobin et al., 2017). In simple environments, DR can perform competitively
to other UED algorithms (Coward et al., 2024), but falls behind when the environment becomes
more complex (Matthews et al., 2025). Other sampling-based approaches, like Prioritised Level
Replay (Jiang et al., 2021b;a, PLR) and Sampling For Learnability (Rutherford et al., 2024, SFL)
prioritise training on levels with a high score (e.g., regret, learnability, etc.). However, empirically
these methods tend to work best when the agent is also trained on some levels from the unfiltered
DR distribution, in addition to the high-scoring ones.

While these sampling methods have achieved impressive empirical results, they do not enjoy conver-
gence guarantees due to the use of heuristics in place of gradient-based optimisation. In our work,
we establish a two-player game objective that is efficiently optimisable with gradients. Moreover,
we provide convergence guarantees for regret, but defer theoretical considerations of learnability to
future work, as the general-sum setting induces a significant departure from our current method.

Generative approaches such as PAIRED have also seen success, particularly when replacing the RL
level generator with a deep generative model (Azad et al., 2023; Li & Varakantham, 2024; Garcin

2For example, if return R(·, λ) ∈ [0, 1], and cannot be increased past 0.7, Reg(·, λ) is irreducible below 0.3.
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et al., 2024; Chung et al., 2024). However, the optimisation objective is nonconvex-nonconcave due
to the neural adversary, and thus is known to have issues with instability and convergence (Wiatrak
et al., 2020). Our method does not use a deep generative model, but unifies the generative and
sampling approaches by learning the sampling distribution with gradient optimisation.

4 Method

We reformulate UED as a regularised game over expected score, and derive optimisation guarantees
from this formulation. We then break the theoretical assumptions for empirical reasons in Section 6.

4.1 Core Optimisation Problem

Consider s : X × L → R, where s(πx, λ) denotes the policy’s score on level λ. We abuse notation
to rewrite any level-wise function of λ as a function of Λ in bold to denote the vector of the function
evaluated at all levels λ ∈ Λ (e.g. s(πx,Λ) is the score vector). Additionally, we define Y := ∆(Λ)
as the feasibility set for y. Motivated by the unstated formulations of Dennis et al. (2020) and Jiang
et al. (2021a), we establish the expected score objective for UED, similar to Qian et al. (2019), which
is linear in the adversary’s strategy:

min
x∈X

max
y∈Y

Eλ∼Λ(y)

[
s(πx, λ)

]
= min

x∈X
max
y∈Y

yTs(πx,Λ) . (5)

Extending the soft UED framework of Chung et al. (2024), we add an entropy regularisation term
H(y) = −yT log y to the objective of our adversary:

min
x∈X

max
y∈Y

f(x, y) := min
x∈X

max
y∈Y

yTs(πx,Λ) + αH(y) , (6)

where α > 0 is a temperature coefficient. Our justification is twofold: first, as per Chung et al.
(2024) the agent needs to train on several different levels at each iteration, requiring the adversary’s
distribution to have greater entropy instead of collapsing to a single level whose score is largest.
Second, entropy regularisation ensures that f is strongly concave in y, guaranteeing best-iterate
convergence (Theorem 5.1). For general score functions, the optimisation problem is given by:

min
x∈X

f(x, y) = −yTJ(πx,Λ) , max
y∈Y

g(x, y) = yTs(πx,Λ) + αH(y) . (7)

Because UED conventionally uses a nonlinear neural network to parameterise its policy (and value
function), we have an objective that is nonconvex in x and strongly concave in y. Lin et al. (2020)
have shown that under certain assumptions, we can guarantee (best-iterate) convergence using two-
timescale stochastic gradient descent-ascent, which assumes a separation of learning rates. Using
these results, we propose NonConvex-Concave optimisation for UED (NCC) as a theoretically based
method for optimisation in the UED setting.

4.2 Method for Optimisation

To perform gradient based optimisation for the adversary, we construct the score vector s before each
iteration of RL training to construct y’s gradient. For the adversary, we perform projected gradient
ascent constrained to the probability simplex, and for x we perform unconstrained gradient descent.
The training loop is summarised in Algorithm 1 (illustrated in Figure 1), where PX (·) represents the
Euclidean projection onto set X . For learning rates ηy ≫ ηx, and stochastic gradient estimators F̂
and Ĝ defined in Equations (9) and (10), our update rule can be summarised as the following:

xt+1 = xt − ηx · F̂ , yt+1 = PY
(
yt + ηy · Ĝ

)
. (8)

In theory, NCC uses a single stochastic gradient step of x using the gradient estimator in Equation
(9), and relies on a static buffer. While we make typical assumptions about the policy architecture
and policy gradient estimator for the sake of theoretical analysis, we do not necessarily use these in
practice due to worsened empirical performance (see Appendix B.3 for more details).
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Algorithm 1 Nonconvex-concave Optimisation for UED

Require: Initial policy x0, distribution y0 = 1
|Λ|1, stepsizes ηx, ηy , level set Λ.

for t = 0, 1, . . . do
Sample batch of training levels λ ∼ Λ(yt)
Construct score vector s = s(πx,Λ)
xt+1 = xt − ηx · F̂ (xt, yt;λ) with F̂ defined in Equation (9)

yt+1 = PY

(
yt + ηy · Ĝ(xt, yt; s)

)
with Ĝ defined in Equation (10)

end for
return Best-iterate policy parameters x∗

5 Convergence Results

In order to guarantee convergence in the zero-sum setting, we use two-timescale stochastic gradi-
ent descent-ascent (Lin et al., 2020), as given by Algorithm 1, to find an approximate solution to
the optimisation problem defined by Equation (6). We first make the necessary assumptions and
definitions, and then state our main theorem.

5.1 Preliminaries and Assumptions

Notation We denote F = ∇xf(x, y), G = ∇yf(x, y), and H = ∇f = (F,G). Moreover, we let
N = |Λ| be the number of levels and λi be the i-th level. We denote trajectories by τ t = (ot, at, rt),
with πx(τ

t) := πx(a
t|ot) for short. We write Ψt(τ, λ) for the estimator used in policy gradients,

typically taken to be the discounted Q-function Qt
πx
(τ, λ) = γtQπx

(st, at, λ), advantage function
At

πx
(τ, λ) = γtAπx

(st, at, λ) or return Rt(τ, λ) =
∑t

h=t γ
hrh from time t onwards. The discount

ensures that the policy gradient is a true gradient, as clarified by Nota & Thomas (2020).

In order to prove convergence guarantees, we need to make some basic regularity assumptions on
the UED and policy network architecture. The first is standard for returns to be finite and for regu-
larity conditions to hold, while the second can be guaranteed by clipping, normalising or otherwise
bounding network weights, as discussed in Appendix A.

Assumption 1. The number of levels N and the longest episode length T are finite, and the state
and reward spaces are bounded. We consequently write R∗ = maxτ,λ |R(τ, λ)| < ∞ for the largest
absolute discounted return across trajectories and levels.

Assumption 2. The agent policy πx is a ζ-greedy policy parameterized by an L-Lipschitz and K-
smooth function with parameters x. The adversary distribution is constrained to the ξ-truncated
probability simplex, namely Y = ∆ξ(Λ) := {y ∈ ∆(Λ) | yi ≥ ξ ∀i}.

Gradient Estimators For the purpose of analysis, we generalize REINFORCE (Williams, 1992)
to the UED setting by defining an unbiased estimator for our agent’s gradient F as an expectation
over N levels λi sampled from Λ(y), with a batch size of M trajectories for each level:

F̂ (x, y) = − 1

NM

∑
i,j

T∑
t=0

∇x log πx(τ
t
ij , λi)Ψ

t(τij , λi) , (9)

where λi ∼ Λ(y) and trajectories τij ∼ πx(λi) are sampled independently. For the adversary, the
unbiased estimator gradient is similarly given by

Ĝ(x, y) = ŝ(πx,Λ) + α∇yH(y) , (10)

where ŝ is the empirical score vector, given by ŝ(πx, λi) = − 1
M

∑
j R(τij , λi) for s = −J and

ŝ(πx, λi) = maxτ R(τ, λi)− 1
M

∑
j R(τij , λi) for s = Reg.
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5.2 Convergence Guarantees

Proposition 1. Under Assumptions 1 and 2, the estimator Ĥ = (F̂ , Ĝ) defined in Equations (9)
and (10) has σ2

M -bounded variance, where

σ2
M =

4R2
∗

M

(
N +

T 2L2

ζ2

)
.

Moreover, the corresponding objective f(x, y) = yTs(πx,Λ) + αH(y) defined in Equation (6) is
α-strongly concave in y, Lipschitz, and ℓ-smooth, where

ℓ =
TR∗

ζ

(
TL2 +K +

L2

ζ
+ 2TL

)
+

α

ξ
.

Proof. In Appendix A.

Theorem 5.1 (Best-Iterate Convergence). Under Assumptions 1 and 2, let ℓ and σ := σ1 be the con-
stants defined in Proposition 1, α the entropy temperature, and ∆ = maxy f(x

0, y)−maxy f(x
∗, y)

the objective distance between initial and optimal policies. For learning rates ηx = Θ(α2/ℓ3) and
ηy = Θ(1/ℓ), and a batch size M = Θ(max{1, σ2ℓ/αϵ2}), Algorithm 1 finds an ϵ-stationary policy
πx∗ , such that ∥∇x maxy f(x

∗, y)∥ < ϵ, in a number of iterations given by

O

(
∆ℓ3

α2ϵ2
+

2ℓ3

αϵ4

)
.

Proof. Apply Proposition 1 and Lin et al. (2020, Theorem 4.5), with D ≤
√
2 being the diameter of

the ξ-truncated probability simplex Y and κ = ℓ/α the condition number.

We remark that while we are only concerned with finding a stationary policy πx∗ in the UED setting,
the corresponding optimal distribution y∗ = argmaxy∈Y f(x∗, y) can efficiently be computed via
projected gradient ascent due to the strong concavity of f in y. The resulting point (x∗, y∗) meets
the conditions of Equation (2), and is therefore an ϵ-approximate first-order Nash Equilibrium.

6 Practical Considerations

To detail the practical extension of our algorithm, we first introduce the dynamic level buffer, and
then explain our proposed generalisation of the learnability score function from Rutherford et al.
(2024). Additional discussion of the differences between our practical and theoretical methods are
in Appendix B.3, and the full practical algorithm is given in Algorithm 2.

6.1 Searching the level space

Given that the environment has a large enough level space (i.e. |L| ≫ |Λ|), it has been demonstrated
that intermittently sampling new levels and exchanging them for low-scoring levels in the level
buffer is often necessary for good performance (Jiang et al., 2021b). Inherently, if the level space
contains a high proportion of irrelevant (low-scoring) levels, the initially-sampled Λ would lead to a
poor training process if it were kept static. Considering this intuition, alongside the empirical results
of Jiang et al. (2021b), we consider the dynamic case in practice.

To implement such a dynamic buffer, we compute the scores of newly sampled levels at every
training iteration, and update the buffer with the top |Λ| scoring levels prior to constructing the
adversary’s gradient.
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6.2 Heuristics and General-Sum UED

General-Sum UED In practice, we use the same gradient estimators for x and y regardless of
score function, and we find this method with general-sum score functions can lead to performance
gains. However, with score functions that are not zero-sum with the policy’s negative return, our
method lacks convergence guarantees. We note that the baselines that we test our method against
(i.e., PLR (Jiang et al., 2021b), DR (Tobin et al., 2017), and SFL (Rutherford et al., 2024)) also lack
convergence guarantees.

Generalised Learnability We extend the learnability score function of Rutherford et al., 2024,
to general deterministic domains. As in the binary-outcome case, we aim to prioritise levels of
intermediate difficulty for the current policy. We start with the standard deviation of the returns
for a given level. However, unlike Equation 4, we cannot entirely rely on a variance metric as
we empirically find that in several domains, levels where agents do very poorly have a high return
variance. In order to bias scoring against levels that are not of intermediate difficulty, we scale the
standard error values with a Gaussian over the mean return of the level buffer Λ. This reduces the
score for levels of significant distance from the mean reward. While this approach could bias scores
towards levels with a high range of reward outcomes, empirically we do not find this to be an issue.

Given a set of M trajectories {τi}Mi=1 on level λ ∈ Λ, we compute the level-wise empirical
mean µλ = 1

M

∑M
i=1 R(τi, λ), overall mean µ = 1

N

∑
λ∈Λ µλ, level-wise empirical variance

σ2
λ = ( 1

M

∑M
i=1 R(τi, λ)

2)−µ2
λ, and overall variance σ2 = ( 1

N

∑
λ µ

2
λ)− ( 1

N

∑
λ µλ)

2. Using the
Gaussian probability density function N (·|µ, σ2), we get the generalised learnability score:

s(πx, λ) = σλ · N (µλ|µ, σ2) . (11)

In Appendix B.4 we repeat the score function analysis of Rutherford et al. (2024), demonstrating
the score function’s effectiveness on Minigrid. Generalised learnability thus allows for the use of
generalised SFL (“Gen-SFL” in Figure 3), which obtains superior performance on Craftax.

7 Experiments

Alongside our theoretical considerations, our method outperforms contemporary work on UED
benchmarks after being extended to a practical algorithm. In this section we detail the choice of
benchmarks and provide an experimental evaluation of our method’s performance.

7.1 Experimental Setup

We test our method on benchmarks from Rutherford et al. (2024) and report results on Minigrid
(Chevalier-Boisvert et al., 2023), using the implementation from Coward et al. (2024), and XLand-
Minigrid (Nikulin et al., 2023). We omit JaxNav, as the single-agent setting’s results are highly
saturated and the multi-agent setting introduces additional optimisation challenges. We refer the
reader to Rutherford et al. (2024) for more details on the individual environments, noting only that
Minigrid is the only environment with a regret oracle. Additionally, we show that our method can
obtain competitive performance on a more complex benchmark, Craftax (Matthews et al., 2024).

In all provided plots, we show our contributions in bold font, and suffix “NCC” with the particular
score function used (see Rutherford et al. (2024) for a further discussion of such score functions).
“Reg”, “Learn”, and “PVL” correspond to regret, learnability, and positive value loss respectively.
PVL is an approximation of regret when the latter is unknown, as in XLand-Minigrid and Craftax.
For Minigrid, learning curves overlap significantly and we use a bar plot for visual clarity, whereas
for XLand-Minigrid and Craftax we plot evaluation results over the course of training to additionally
compare sample efficiency.
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Experiments were written in JAX (Bradbury et al., 2018) and we discuss experimental details in
Appendix B.6. Results are averaged across 10 seeds, and standard error from the mean is displayed
in the plots. All experiments use PPO (Schulman et al., 2017) as the RL algorithm of choice.

We largely use the hyperparameters from Rutherford et al. (2024) and Matthews et al. (2024), de-
tailed in Appendix B.7. Moreover, we demonstrate the diversity of levels proposed by our method
throughout training in Appendix C.

7.2 Results
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Mean Solve Rate on Evaluation Set
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DR
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NCC-Learn

Figure 2: Mean solve rates with standard error bars on Minigrid, a common UED testbed.

Minigrid We observe improved performance on the Minigrid holdout set with 60 walls. For read-
ability, we use a bar plot using recommendations from (Agarwal et al., 2021), but with mean and
standard error for consistency. Additionally, we use Minigrid to highlight our method’s efficacy
given a regret oracle, and thus do not test NCC-PVL.3 Despite the wisdom from Rutherford et al.
(2024) that learnability improves learning, we hypothesise that due to the zero-sum nature of regret
it may still lead to more robust policies in the end.
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Figure 3: Performance on more difficult benchmarks.

XLand-Minigrid Our most significant improvement from prior work is in XLand-Minigrid. We
note that out of the given testbeds, this environment has results that are less saturated, and thus leaves
more room for improvement. NCC obtains a considerably improved solve rate compared to prior
works, although we remark that this is only the case when using learnability as the score function.

Craftax We use our new generalisation of learnability to outperform the highest-performing UED
baseline from Matthews et al. (2024, PLR-MaxMC). We remark that we find performance is stronger

3We did use PLR-MaxMC instead of PLR-Reg however, because we did not see a improvement in empirical performance.
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in Craftax with a static buffer, and we highlight this to mention that in environments with a higher
density of “good” levels, it may not be necessary to use a dynamic buffer.4 We attribute similar
performance across generalised SFL and NCC with learnability to the algorithms’ shared emphasis
on levels with high learnability. See Appendix B.2 for additional implementation details for Craftax
experiments.
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Figure 4: α-CVaR evaluation performance on Minigrid.

Robustness Evaluation We also perform the α-CVaR evaluation protocol from Rutherford et al.
(2024), which evaluates policies from 10 seeds per method on the α% worst-case levels which are
still solvable. We find that in XLand-Minigrid and Craftax, the robustness evaluations roughly match
the experimental outcomes. However, in Minigrid (where regret is tractable) we find that NCC with
regret strongly outperforms any other method, indicating NCC significantly impacts the robustness
of the policy. We display our Minigrid result in Figure 4, and defer the other plots to Appendix B.5.

8 Future Work

Our work obtains best-iterate convergence guarantees, which is commonplace in nonconvex mini-
max optimisation (Lin et al., 2020; Kalogiannis et al., 2024). However, we leave the question of the
more desirable last-iterate convergence property (Daskalakis & Panageas, 2020; Lei et al., 2021) to
future work.

Moreover, while it may be possible to analyse the general-sum UED setting under the lens of bilevel
optimisation (Hong et al., 2023), we would suggest that future work investigates practical and more
scalable ways to produce convergent methods when the zero-sum condition is not met—as in the
case when using learnability. Finally, considering the emergence of analysis of more sophisticated
reinforcement learning algorithms like PPO (Grudzien et al., 2022), another promising direction for
future work is analysing the practical variant of our algorithm.

9 Conclusion

In this paper, we examine the connection between UED and optimisation theory, thereby developing
a new framework for optimisation within UED. This framework unlocks the area’s first convergence
guarantees, and suggests a new method that produces more robust policies. Following prior work, we
use our theoretical analysis to develop a practical algorithm that obtains strong results on robustness
evaluations. Ultimately, we believe that our work provides a gateway to the creation of practical
robust RL methods with guarantees under reasonable assumptions, which will become increasingly
important as UED gains prevalence.

4In Craftax, the DR distribution of levels is the same as the evaluation distribution.
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A Proof of Proposition 1

Before proving the proposition, we briefly discuss Assumption 2. In conjunction with Assumption
1, a simple and sufficient condition for it to hold is for πx to be parameterized by a neural network
with bounded weights, composed of any number of fully-connected, convolutional, max-pooling,
recurrent (vanilla / gated / LSTM) layers, dropout, batch normalization and smooth activation func-
tions including Sigmoid, Softmax, Tanh, ArcTan, ELU, SELU, GELU, SoftPlus, Softsign (Virmaux
& Scaman, 2018). The condition that weights be bounded may seem restrictive, but (1) typically
holds in practice because of weight regularisation, (2) can easily be ensured by clipping weights to
an (arbitrarily large) box, which would only alter experimental results if gradients explode, and (3)
can also be ensured by normalization across weight matrix rows, which in some cases may improve
training stability at a minor cost in performance (Miller & Hardt, 2019).
Proposition 1. Under Assumptions 1 and 2, the estimator Ĥ = (F̂ , Ĝ) defined in Equations (9)
and (10) has σ2

M -bounded variance, where

σ2
M =

4R2
∗

M

(
N +

T 2L2

ζ2

)
.

Moreover, the corresponding objective f(x, y) = yTs(πx,Λ) + αH(y) defined in Equation (6) is
α-strongly concave in y, Lipschitz, and ℓ-smooth, where

ℓ =
TR∗

ζ

(
TL2 +K +

L2

ζ
+ 2TL

)
+

α

ξ
.

Proof. We first derive the bounds for M = 1. Recall Equations (9) and (10) from the main text:

F̂ (x, y) = − 1

N

∑
i

T∑
t=0

∇x log πx(τ
t
i , λi)Ψ

t(τi, λi) ,

Ĝ(x, y) = ŝ(πx,Λ) + α∇yH(y) ,

where λi ∼ Λ(y) and τi ∼ πx(λi) are sampled independently for each level i, and ŝ is the empirical
score vector given by ŝ(πx, λi) = −R(τi, λi) for s = −J and ŝ(πx, λi) = maxτ R(τ, λi) −
R(τi, λi) for s = Reg. Finally, denote z = (x, y) for joint parameters.

(1) Bounded variance. First note that the variance of the entropy term is zero, hence

E
[∥∥∥Ĥ(z)−H(z)

∥∥∥2] = E
[∥∥∥F̂ (z)− F (z)

∥∥∥2]+ E
[
∥ŝ(πx,Λ)− s(πx,Λ)∥2

]
≤ E

[∥∥∥F̂ (z)
∥∥∥2]+ E

[
∥ŝ(πx,Λ)∥2

]
, .

For the second term, we easily obtain

E
[
∥ŝ(πx,Λ)∥2

]
≤

∑
i

E
[
ŝ(πx, λi)

2
]
≤ 4NR2

∗

for both s = −J and s = Reg. For the first term, we invoke Lipschitzness and ζ-greediness of the
policy π. For any trajectory τ and any level λ, we have |

∑
t Ψ

t(τ, λ)| ≤ 2TR∗ for any choice of
estimator Ψt ∈ {Rt, Qt

πx
, At

πx
}, which combined with∥∥∇x log πx(τ

t, λ)
∥∥ =

∥∇xπx(τ
t, λ)∥

πx(τ t, λ)
≤ L

ζ
,

implies that

E
[∥∥∥F̂ (z)

∥∥∥2] ≤

∥∥∥∥∥∑
t

∇x log πx(τ
t, λ)Ψt(τ, λ)

∥∥∥∥∥
2

≤ 4T 2R2
∗L

2

ζ2
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and hence

E
[∥∥∥Ĥ(z)−H(z)

∥∥∥2] ≤ 4NR2
∗ +

4T 2R2
∗L

2

ζ2
= σ2

1

as required. The variance for arbitrary M follows immediately as σ2
M = σ2

1/M .

(2) Strong concavity of f in y. Trivial, since ∇2
yf(x, y) = diag(−α/y) ⪯ −αI .

(3) Lipschitzness of f . First note that

∥∇yH∥2 =
∑
i

(1 + log yi)
2 ≤ N(1 + log ξ)2 .

We combine this with Jensen’s inequality and part (1) of the proof above to obtain L-Lipschitzness:

∥∇f∥2 =
∥∥∥E [

Ĥ
]∥∥∥2 ≤ E

[∥∥∥Ĥ∥∥∥2]
= E

[∥∥∥F̂∥∥∥2]+ E
[
∥ŝ+ α∇yH∥2

]
= E

[∥∥∥F̂∥∥∥2]+ E
[
∥ŝ∥2

]
+ α2 ∥∇yH∥2 + 2αE [∥ŝ∥] ∥∇yH∥

≤ σ2
1 + α2N(1 + log ξ)2 + 4αNR∗(1 + log ξ) =: L .

(4) Smoothness of f . The policy gradient Hessian is given by (Shen et al., 2019)

∇2
xJ(πx, λ) = Eτ

[∑
t

Rt(τ, λ)
(
∇x log πx(τ

t)∇x log p(τ | πx)
T +∇2

x log πx(τ
t)
)]

,

where p(τ | πx) = ρ(s0)
∏

t P (st+1 | st, at)πx(τ
t) for initial and transition distributions ρ and P

(omitting λ for convenience). For the first term, writing P (τ) =
∏

t P (st+1 | st, at), we have

∇xp(τ | πx) = ρ(s0)P (τ)
∑
t

∇xπx(τ
t)
∏
s̸=t

πx(τ
t)

which implies

∥∇xp(τ | πx)∥ ≤ TL ,

hence the first term is bounded for each t:∥∥∇x log πx(τ
t)∇x log p(τ | πx)

T
∥∥ ≤ TL2

ζ
.

For the second term, we use the K-smoothness of π to obtain:∥∥∇2
x log πx(τ

t)
∥∥ =

∥∥∥∥∇2
xπx(τ

t)

πx(τ t)
− ∇xπx(τ

t)∇xπx(τ
t)T

πx(τ t)2

∥∥∥∥ ≤ K

ζ
+

L2

ζ2
.

Putting everything together, recalling that |Rt(τ, λ)| ≤ R∗ for all t, we obtain∥∥∇2
xf(z)

∥∥ =
∥∥yT∇2

xJ(πx,Λ)
∥∥ ≤ max

λ

∥∥∇2
xJ(πx, λ)

∥∥ ≤ TR∗

ζ

(
TL2 +K +

L2

ζ

)
.

Now notice that
∥∥∇2

yf(z)
∥∥ = ∥diag(−α/y)∥ ≤ α/ξ since yi ≤ ξ for all i. Moreover,∥∥∇2

xyf(z)
∥∥ = ∥∇xJ(πx,Λ)∥ ≤ 2TR∗L

ζ

by the same argument as part (1) of the proof, so we conclude∥∥∇2f(z)
∥∥ ≤ TR∗

ζ

(
TL2 +K +

L2

ζ
+ 2TL

)
+

α

ξ
= ℓ

as required.
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B Additional Experimental Details

B.1 Practical Algorithm

In practice, we often (although not always) find it helpful to use a dynamic buffer, as per Section
6.1. Moreover, we define the subroutine TRAIN_RL to refer to any form of training from the rein-
forcement learning literature, however in practice we use mini-batch PPO (Schulman et al., 2017).
Moreover, we use TiAda-Adam (Li et al., 2023) as an adaptive optimiser for our optimisation set-
ting, but for all other experiments we use Adam (Kingma & Ba, 2017). We write details for the
dynamic buffer in maroon.

Algorithm 2 Practical Nonconvex-concave Optimisation for UED (Dynamic Buffer)

Require: Initial policy x0, distribution y0 = 1
|Λ|1, stepsizes ηx, ηy , initial level set Λ0.

for t = 0, 1, . . . do
Sample batch of training levels λ ∼ Λt(yt)
Construct score vector s(πx,Λ)
Sample new levels Λ′ ∼ L
Construct alternate score vector s′ = s(πx,Λ

′)
Λt+1 = top |Λ| elements from Λt ∩ Λ′

Construct merged score vector s̃ = s(πx,Λ
t)

xt+1 = TRAIN_RL(xt, λ, ηx)

yt+1 = PY

(
yt + ηy · Ĝ(xt, yt; s, s̃)

)
with Ĝ defined in Equation (10)

end for
return Best-iterate policy parameters x∗

B.2 Additional Craftax Details

We maintain the training regime of Matthews et al. (2024) by using “inner” and “outer” rollouts,
where we update after multiple parallelised sub-sequences within an episode. Moreover, due to
such a level space where the levels and test set are so similar, we found that it more effective to
anneal our entropy regularisation coefficient α by the rule αt = α

3
√
t+1

, thus resulting in a more
diverse set of training levels at the start of training.

B.3 Comparison Between Theory and Practice

We give the following side by side comparison between our practical and theoretical method:

Table 1: Qualitative comparison between theoretical NCC and practical NCC.

Theory Practice

x Gradient Estimator Equation 9 (REINFORCE) Any
# minibatches (epochs) 1 (1) Any (Any)
Dynamic Buffer Not Allowed Allowed
Optimiser SGD Any
Score Function Only zero-sum (i.e. Regret and −J) Any
Activation Function Smooth Any
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Figure 5: Empirical comparison between the different instantiations of NCC.

Moreover, in Figure 5 we experimentally compare the theoretical version of our method (“NCC-T”)
with the other methods on Minigrid, which is our only testbed with a regret oracle.

B.4 Generalised Learnability Score Function

In Figure 6 we repeat the analysis of UED score functions conducted by Rutherford et al. (2024).
To give us a success rate metric, we conduct this analysis in Minigrid using a policy trained for
1100 update steps with SFL (1/4 of a usual training run). We randomly sample 5000 levels and
rollout the policy for 2000 timesteps on each. The trend illustrated by the quadratic demonstrates
the generalised learnability score function’s ability to identify levels of intermediate difficulty.
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Figure 6: Analysis of Generalised Learnability Score function on Minigrid. The black lines represent
a quadratic fit to the scatter data.
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B.5 Robustness Scores
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Figure 7: Omitted α-CVaR Robustness Evaluation curves.

B.6 Compute Time

Table 2 reports the compute time for all experimental evaluations. Each Minigrid seed was run on
1 Nvidia A40 using a server that has 8 Nvidia A40’s and two AMD EPYC 7513 32-Core Processor
(64 cores in total). Meanwhile, for XLand and Craftax, each individual seed was run on 1 Nvidia
L40s using a server that has 8 NVIDIA L40s’, two AMD EPYC 9554 processors (128 cores in total).
However, NCC experiments for Minigrid were run on the L40s server.

Table 2: Mean and standard deviation of time take for experimental evaluations. Each evaluation
consisted of 10 independent seeds.

Method Minigrid XLand Craftax

NCC Learn 1:02:41 (0:00:26) 3:31:57 (0:01:06) 5:35:06 (0:00:59)
NCC Regret 1:01:59 (0:00:11) - -
NCC PVL - 2:52:31 (0:00:53) 4:13:16 (0:00:39)
SFL 0:28:19 (0:00:03) 9:16:31 (0:01:17) 4:29:17 (0:00:31)
PLR 0:45:16 (0:00:10) 2:47:53 (0:00:47) 3:24:46 (0:00:24)
DR 0:43:28 (0:00:16) 2:42:27 (0:00:43) 3:28:06 (0:00:08)
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B.7 Hyperparameters

Table 3: NCC (Reg) Hyperparameters

Hyperparameter Minigrid XLand Craftax

ηx 0.001 0.0001 0.0001
ηy 0.1 (0.005) 0.01 0.01
α 0.05 (0.032) 0 0.05
|Λ| 4000 4000 4000
|Λ′| 256 8192 0
|λ| 256 8192 1024
γ 0.995 0.99 0.995
GAE λ 0.98 0.95 0.95
clip_eps 0.2 0.2 0.2
critic_coeff 0.5 0.5 0.5
entropy_coeff 0.001 0.01 0.01
num_epochs 1 1 4
max_grad_norm 0.25 0.5 1.0
num_minibatches 1 16 2
num_parallel_envs 256 8192 1024

Table 4: PLR (DR) Hyperparameters

Hyperparameter Minigrid XLand Craftax

ηx 0.00025 0.0001 0.0002
|Λ| 4000 4000 4000
γ 0.995 0.99 0.99
GAE λ 0.98 0.95 0.9
clip_eps 0.2 0.2 0.2
critic_coeff 0.5 0.5 0.5
entropy_coeff 0 0.01 0.01
num_epochs 4 1 5
max_grad_norm 0.5 0.5 1.0
num_minibatches 4 16 2
num_parallel_envs 256 8192 1024
replay_prob 0.5 (0) 0.95 (0) 0.5 (0)
staleness_coeff 0.3 0.3 0.3
temperature 1 1 1
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Table 5: SFL Hyperparameters

Hyperparameter Minigrid XLand Craftax

ηx 0.00025 0.001 0.0001
|Λ| 1000 8192 4000
γ 0.99 0.99 0.995
GAE λ 0.95 0.95 0.95
clip_eps 0.04 0.2 0.2
critic_coeff 0.5 0.5 0.5
entropy_coeff 0 0.01 0.01
num_epochs 4 1 4
max_grad_norm 0.5 0.5 1.0
num_minibatches 4 16 2
num_parallel_envs 256 8192 1024
batch_size 4000 40000 4000
num_batches 5 1 5
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C Difficulty of Levels

To show how our method evolves over time, we compare minigrid levels at halfway and final
timesteps in training. Firstly, we plot levels from DR in Figure 8. Levels from DR are not well
selected, as there are unsolvable levels, as well as trivial levels at the end of training. Secondly, as
is explainable by them both selecting for learnability, NCC with learnability (Figure 10) and SFL
(Figure 9) both have what appear to be difficult (but not impossible) levels halfway and at the end of
training, although we do note that NCC appears to weigh some levels with shorter optimal paths at
the end of training in comparison to SFL (particularly the left and middle levels of NCC). This may
be to retain diversity in the difficulty of the batch of sampled levels, to prevent overfitting to a certain
class of problems. However, our analysis is a hypothesis, as our approach is learned, meaning it is
more black-box (i.e. uninterpretable).

Figure 8: DR: Sampled levels at halfway through training (top row) and the end of training (bottom
row)
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Figure 9: SFL: Highest learnability scoring levels at halfway through training (top row) and the end
of training (bottom row)

Figure 10: NCC-Learn: Highest weighted levels at halfway through training (top row) and the end
of training (bottom row)


