
Reinforcement Learning Journal 2025
∣∣ Cover Page

Investigating the Utility of Mirror Descent in
Off-policy Actor-Critic

Samuel Neumann, Jiamin He, Adam White, Martha White

Keywords: mirror descent, off-policy, actor-critic, Soft Actor-Critic, Greedy Actor-Critic,
Maximum A-Posteriori Policy Optimization

Summary
Many policy gradient methods prevent drastic changes to policies during learning. This

is commonly achieved through a Kullback-Leibler (KL) divergence term. Recent work has
established a theoretical connection between this heuristic and Mirror Descent (MD), offer-
ing insight into the empirical successes of existing policy gradient and actor-critic algorithms.
This insight has further motivated the development of novel algorithms that better adhere to the
principles of MD, alongside a growing body of theoretical research on policy mirror descent.
In this study, we examine the empirical feasibility of MD-based policy updates in off-policy
actor-critic. Specifically, we introduce principled MD adaptations of three widely used actor-
critic algorithms and systematically evaluate their empirical effectiveness. Our findings indi-
cate that, while MD-style policy updates are not significantly advantageous over conventional
approaches to actor-critic, they can somewhat mitigate sensitivity to step size selection with
widely used deep-learning optimizers.

Contribution(s)
1. We derive novel Mirror Descent variants of Soft Actor-Critic (SAC), Greedy Actor-Critic

(GreedyAC), and Maximum A-Posteriori Policy Optimization (MPO) based on the Func-
tional Mirror Descent (FMD) perspective.
Context: A growing body of work on Policy Mirror Descent (PMD) has theoretically mo-
tivated the benefits of using Mirror Descent (MD) to update policies (Xiao, 2022; Johnson
et al., 2023; Fatkhullin & He, 2024; Vieillard et al., 2020a; Lan, 2023). Much of this the-
ory is for the tabular setting with exact policies. Recent work went one step further and
re-derived several policy gradient algorithms for function approximation by introducing a
functional MD (FMD) perspective (Vaswani et al., 2022). Such a perspective has yet to be
brought to off-policy actor-critic methods that use approximate action-values and alterna-
tive losses for the actor. We are not claiming to have introduced the FMD perspective, nor
that our derivations are complex, but they produce new algorithms.

2. We show these new MD variants exhibit no significant performance advantage over SAC,
GreedyAC, and MPO across a variety of small problems and MuJoCo tasks.
Context: It is possible there could be a difference in different environments.

3. We find that these MD algorithms provide (1) minor improvement in sensitivity to actor
step size, (2) no improvement in sensitivity to entropy regularization parameter, and (3) no
improvement with increasing replay ratio for actor updates; even though all three potential
benefits are suggested by the theory.
Context: Recent work suggests that policy gradient algorithms often encounter cliffs in the
gradient direction, limiting step size magnitudes and explaining sensitivity (Jordan et al.,
2024; Sullivan et al., 2022). Since MD updates account for policy-space distances, they
should be more robust to step sizes. The KL in MD updates may already prevent policy
collapse by regulating policy changes, hence these algorithms should be less sensitive to
entropy regularization. Finally, MD updates prevent the algorithm from changing the policy
too much, in probability space, and thus the amount of replay per step can be increased.
One actor update corresponds to an approximate MD step; increasing the number of actor
updates better approximates an exact MD step, which theoretically should perform better.



Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

Investigating the Utility of Mirror Descent in
Off-policy Actor-Critic

Samuel Neumann, Jiamin He, Adam White†, Martha White†
{sfneuman,jiamin12,amw8,whitem}@ualberta.ca

Department of Computing Science, University of Alberta, Canada
Alberta Machine Intelligence Institute (Amii)
†CIFAR AI Chair

Abstract
Many policy gradient methods prevent drastic changes to policies during learning.
This is commonly achieved through a Kullback-Leibler (KL) divergence term. Re-
cent work has established a theoretical connection between this heuristic and Mirror
Descent (MD), offering insight into the empirical successes of existing policy gradient
and actor-critic algorithms. This insight has further motivated the development of novel
algorithms that better adhere to the principles of MD, alongside a growing body of the-
oretical research on policy mirror descent. In this study, we examine the practicality
of MD-based policy updates in off-policy actor-critic. Specifically, we introduce prin-
cipled MD adaptations of three widely used actor-critic algorithms and systematically
evaluate their empirical effectiveness. Our findings indicate that, while MD-style policy
updates are not significantly advantageous over conventional approaches to actor-critic,
they can somewhat mitigate sensitivity to step size selection with widely used deep-
learning optimizers.

1 Introduction

Many policy optimization methods incorporate a term that prevents the policy from changing too
much. This typically takes the form of a Kullback-Leibler (KL) divergence to the previous policy,
either as a regularization penalty or constraint in the update. These include the widely-used algo-
rithms TRPO (Schulman et al., 2015), PPO (Schulman et al., 2017) and MPO (Abdolmaleki et al.,
2018b;a). Initial work proved that policy improvement could be guaranteed by preventing the policy
from changing too much on each step (Kakade & Langford, 2002), inspiring follow-up work in the
deep setting to explicitly constrain the policy update using KL divergences (Schulman et al., 2015;
2017; Mei et al., 2019).

These algorithms have since been framed as mirror descent (MD) algorithms for policy optimization
(Neu et al., 2017; Geist et al., 2019; Vieillard et al., 2020a; Tomar et al., 2022; Vaswani et al., 2022).
MD generalizes the typical Euclidean distance between parameter vectors in the gradient descent
update to allow for any Bregman divergence, such as the KL divergence.1 MD has been well-
motivated in machine learning, because the updates better reflect the underlying problem geometry
(Raskutti & Mukherjee, 2015; Gunasekar et al., 2021). The connection between these RL algorithms
and MD motivated the development of new algorithms that more closely adhere to the requirements

Code available at https://github.com/samuelfneumann/MirrorDescentRL
1RL algorithms have used either a KL penalty or a KL constraint. The KL penalty form is the one that corresponds to a

mirror descent update, and interestingly has been shown to be more effective than the constraint form (Lazić et al., 2021).

https://github.com/samuelfneumann/MirrorDescentRL


Reinforcement Learning Journal 2025

of a true MD update and there is a growing literature of theoretical results motivating these MD
updates in reinforcement learning (Abbasi-Yadkori et al., 2019; Vieillard et al., 2020a;b; 2022; Zhu
et al., 2023; Johnson et al., 2023; Alfano et al., 2023; Xiao, 2022; Fatkhullin & He, 2024; Lan,
2023; Xiong et al., 2024). Despite these compelling theoretical justifications, much less is known
empirically about the utility of true MD updates for policy optimization.

In this work, we focus on the empirical practicality of MD in three off-policy actor-critic algorithms:
SAC (Haarnoja et al., 2018; 2019), MPO (Abdolmaleki et al., 2018b), and GreedyAC (Neumann
et al., 2023). We use the functional mirror descent perspective (Vaswani et al., 2022) and introduce
principled MD variants of the actor updates in these algorithms. For MPO we remove the KL
constraint, which intuitively plays a role similar to MD but does not actually give an MD update,
and instead derive a more faithful MD update. We select three algorithms with different base updates
to more broadly understand when, or if, MD can be beneficial in deep RL.

We contribute a set of empirical results including: a bakeoff-style comparison of MD variants against
their standard non-MD configurations, followed by a sequence of targeted experiments designed to
uncover if MD-based actor-critic methods achieve the practical benefits the theory suggests (Vaswani
et al., 2022; Xiao, 2022; Alfano et al., 2023; Vieillard et al., 2020a; Geist et al., 2019). Across several
continuous state and action environments, where function approximation is required, there appears
to be little benefit to using these MD approaches. We then explore three settings where MD up-
dates with function approximation could be beneficial: (1) mitigating the step-size cliff in policy
gradient updates (Jordan et al., 2024; Sullivan et al., 2022), (2) reducing sensitivity to hyperparam-
eter choices, (3) and increasing the actor replay ratio. We found MD updates do indeed reduce the
step-size cliff; allowing for a larger range of step-size parameter values that avoid divergence. Un-
fortunately, in the other two settings, the results were mixed. Taken together, these results suggest
MD and standard gradient descent algorithms appear to be empirically comparable.

2 Problem Formulation and Background

The agent-environment interaction is formalized as a Markov Decision Process (MDP) defined as a
5-tuple (S,A,P, r, γ), where S is the state space, A is the action space, P : S×A× S→ [0,∞) is
the transition dynamics, r : S × A × S → R is the reward function, and γ ∈ [0, 1] is the discount
factor. The agent starts in state S0 ∼ d0, where d0 : S → [0,∞) is the distribution of starting
states. At each timestep t = 1, 2, 3, . . . , T the agent samples an action At from its policy π(· | St)
where π : S→ ∆A is a function mapping states to probability distributions over actions, ∆A. After
taking action At in state St, the agent transitions to a new state St+1 ∼ P(· | St, At) and receives
a scalar reward Rt+1 = r(St, At, St+1). The return is the cumulative, future, discounted reward
Gt

.
=

∑T
k=t γ

krk+1. The agent’s goal is to learn a policy π which maximizes J̃(π) .= E[G0], where
the expectation is with respect to d0, P, and π.

Typically, a parameterized policy πθ with parameters in θ ∈ Rn is learned by adapting θ to optimize
J(θ)

.
= Eπθ

[G0]. Policy gradient methods like REINFORCE (Williams, 1992) obtain unbiased
samples of ∇J(θ), which involves obtaining full episode trajectories. These gradient estimates are
expensive to sample and can be high variance. In this work we consider (off-policy) actor-critic
algorithms that learn and use action-value functions. The action-value function of π is the expected
return when taking action a in state s and following π thereafter, qπ(s, a)

.
= Eπ [Gt|St = s,At = a].

This function is approximated with a parametric critic qw(s, a) ≈ qπ(s, a). Such algorithms are
typically off-policy, using replay buffers of past data to update the critic with one-step bootstrap
updates, followed by different ways to update the policy to be greedy with respect to qw. We discuss
these kinds of policy updates, and how to use mirror descent (MD) for them, in the next section.
First, we give intuition about how to use MD in the simpler setting with REINFORCE.

REINFORCE makes gradient descent updates with stochastic samples of ∇J(θ) by executing the
parameterized policy πθ for an episode to obtain the trajectory s0, a0, r1, s1, a1, . . . , sT , terminating
at some variable time T . The stochastic gradient corresponds to gt

.
=

∑T−1
t=0 γtGt∇ lnπ(at|st)



Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

(Sutton et al., 1999). Because we can get unbiased, stochastic samples of the gradient, we can
leverage standard optimization techniques like stochastic MD, explicitly shown by Vaswani et al.
(2022). The standard gradient update corresponds to using

θt+1 = argmin
θ

−J(θt) + ⟨−∇J(θt),θ − θt⟩+ 1
2λ∥θ − θt∥22

= argmin
θ
⟨−∇J(θt),θ⟩+ 1

2λ∥θ − θt∥22 = θt + λ∇J(θt)

where the first line uses a first-order Taylor series approximation around θt, the second drops the
constant and the third equality simply solves this quadratic minimization in closed-form.

The idea in MD is to replace the ℓ2 distance with one that is more meaningful for policies. The
above finds the best nearby parameters, under the local Taylor series approximation, where nearby
is defined by Euclidean distance ∥θ− θt∥22. However, small changes in the policy parameters could
actually result in large changes to the policy, and vice versa. What we really want is to find the
best nearby policy in distribution space. In MD, we can replace the distance with any Bregman
divergence in ϕ, Dϕ, to get θt+1 = argmin θ⟨−∇J(θt),θ⟩+ 1

λDϕ(θ,θt), where ϕ is a (typically
strictly) convex function called the mirror map. The KL divergence between parameters is a valid
Bregman divergence. Unfortunately, in the general case no Bregman divergence on parameters
Dϕ(θ,θt) can provide a KL divergence on policies.

Fortunately, a recent paper introduced a functional mirror descent (FMD) perspective (Vaswani et al.,
2022) that makes it clear how we can obtain a KL divergence on the policies. The idea is to consider
an MD step in policy space Π directly, also called the functional space:

πt+1 = argmin
π∈Π

⟨−∇J̃(πt), π⟩+ 1
λDϕ(π, πt)

where λ is a stepsize, πt is the previous learned policy and the inner product ⟨, ⟩ is over the space of
states and actions. Since Π is just the parameterized policy space, we can remove the constraint and
directly optimize over the parameters

θt+1 = argmin
θ
⟨−∇J̃(πθt), πθ⟩+ 1

λDϕ(πθ, πt). (1)

In practice, we do not completely solve the above optimization problem, and instead update θ with
M > 1 SGD steps on Equation (1).

A key subtlety to notice here is that we use∇J̃(πθt
) instead of∇J(θt). The first is the gradient with

respect to the policy directly, whereas the second is the gradient w.r.t. to θ. In the standard gradient
descent update, we would use∇J(θt). For MD, we have to reason about∇J̃(πθt) instead. We will
see this when deriving the MD updates for the off-policy actor-critic algorithms in the Section 3.

Remark: Because KL is not symmetric, we could also have chosen the KL in the other direc-
tion, KL(πθt ||πθ), the mode-covering, forward KL (FKL). Vaswani et al. (2022) prove that using
the above mode-seeking, reverse KL (RKL) divergence provides monotonic policy improvement
guarantees for direct policy representations, under some conditions, but the FKL is preferable for
softmax policy parameterizations. We provide derivations with both divergences in Section 3.2

3 Mirror Descent for Off-policy Actor-Critic Methods

In this section, we introduce the off-policy algorithms and develop their FMD variants.

2In RL, it is common to call the mode-seeking KL the reverse KL and the mode-covering KL the forward KL. In the
optimization literation, unfortunately, it is exactly the opposite. To avoid confusion, we will periodically use the longer, more
descriptive names.



Reinforcement Learning Journal 2025

3.1 A Generic Form of Mirror Descent for Off-policy Actor-Critic Methods

Actor-Critic methods alternate between updating an action-value critic and updating the actor. We
consider a mirror descent variant for the actor update, where the loss decomposes across states s
and changes as the action-values q change. Formally, ℓq(θ)

.
= Es∼d[ℓq,s(θ)] for some weighting

over states d, and ℓq,s(θ) is defined differently for each actor-critic (AC) algorithm. For example,
for vanilla AC, we have

ℓq,s(θ) = −Ea∼πθ(·|s) [q(s, a)]

with gradient (using the log-likelihood trick)

∇ℓq,s(θ) = −Ea∼πθ(·|s) [q(s, a)∇ lnπθ(a | s)] where∇ℓq(θ) = Es∼d[∇ℓq,s(θ)].

In place of the standard gradient descent update, we can use a mirror descent update on this loss,
using the same functional mirror descent argument as above. We define the loss on the policy directly
ℓ̃q,s(π) = −Ea∼π(·|s) [q(s, a)] with ℓ̃q(π) = Es∼d[ℓ̃q,s(π)]. The functional mirror descent update
starts from the current πt and obtains the next πt+1 using mirror descent update

πt+1 = argmin
π∈Π

⟨∇ℓ̃q(πt), π⟩+ 1
λDϕ(π, πt) (2)

where for vanilla AC, ∂ℓ̃q,s
∂π(a|s) (πt) = −q(s, a) and ⟨∇ℓ̃q(πt), π⟩ = −Es∼d, a∼π(·|s)[q(s, a)]. We can

again rewrite the update in terms of θ, getting

θt+1 = argmin
θ

fq(θ) for surrogate loss fq(θ)
.
= ⟨∇ℓ̃q(πθt

), πθ⟩+ 1
λDϕ(πθ, πt).

We typically cannot solve this optimization in closed-form. Instead, we approximate the solution by
taking multiple gradient descent steps on this surrogate loss. For vanilla AC, we use the gradient

gt = ∇θfq(θ) = −Es∼d, a∼πθ(·|s)[q(s, a)∇θ lnπθ(a|s)] + 1
λ∇θDϕ(πθ, πt). (3)

Or, alternatively, we can use SGD steps, with mini-batches of transitions from s ∼ d on loss

fq,s(θ)
.
= ⟨∇ℓ̃q,s(πθt), πθ(·|s)⟩+ 1

λDϕ(πθ(·|s), πt(·|s)) where fq(θ)
.
= Es∼d[fq,s(θ)]. (4)

For vanilla AC, we get a surprising coincidence: the gradient in functional space∇θ⟨∇ℓ̃q(πθt
), πθ⟩

is actually the same as in parameter space∇θ⟨∇ℓq(θt),θ⟩. Hence, we could have obtained the same
update by swapping the Euclidean distance with a KL, without taking this functional perspective. In
other words, the MD update for vanilla AC uses the same gradient as usual, but adds a KL-penalty
term λ−1Dϕ(πθ, πt). This correspondence may help explain why several previous derivations did
not use the functional view, and instead simply jumped to the KL form. An example of this is MDPO
(Tomar et al., 2022), where the MD update is given in terms of the policy directly, and the switch to
policy parameters is done without considering the potential discrepancy. Again, this happens to be
correct for vanilla AC—there is no discrepancy—and MDPO (correctly) uses Equation (3) above.
In general, though, we will not have such an equality, and using MD for other AC algorithms will
not correspond to simply adding a KL-penalty term to the gradient descent update.

3.2 Functional Mirror Descent for Soft Actor-Critic

The previous section laid the ground-work for deriving the FMD updates for SAC; we simply need
to define our surrogate loss. More specifically, we need to define ℓ̃q,s and obtain its gradient to get
both the surrogate loss fq,s and its gradient to get our multiple MD updates.

SAC minimizes a mode-seeking KL to the Boltzmann distribution over q with entropy scale τ > 0,

ℓq,s(θ) = τKL(πθ(·|s) || Bτq(· | s)) for Boltzmann Bτq(a | s) ∝ exp

(
q(s, a)

τ

)
.

The loss is scaled by τ to adjust the increasing magnitude for larger entropy scales. The gradient for
this loss is∇ℓq,s(θ) = Ea∼πθ(·|s)[(−q(s, a) + τ lnπθ(a|s))∇ lnπθ(a|s)].



Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

Proposition 1. On time step t with current action-values q and policy πt, the surrogate objective
for Soft Actor-Critic with a direct functional representation and any Bregman divergence Dϕ, is

fq,s(θ) = Ea∼πθ(·|s)[−q(s, a) + τ lnπt(a | s)] + 1
λDϕ(πθ(·|s), πt(·|s)) (5)

with gradient

∇θfq,s(θ) = Ea∼πθ(·|s)[(−q(s, a) + τ lnπt(a | s))∇ lnπθ(a|s)] + 1
λ∇θDϕ(πθ(·|s), πt(·|s)).

Proof. We first define the loss in policy space, ℓ̃q,s(π)
.
= τKL(π(·|s) || Bτq(· | s)). Now we

differentiate it
∂ℓ̃q,s

∂π(a | s) (πt) = −q(s, a) + τ(lnπt(a | s) + 1). (6)

Taking the inner product with πθ(·|s), we get

〈 ∂ℓ̃q,s
∂π(a|s) (πt), πθ(·|s)

〉
=Ea∼πθ(·|s)[−q(s, a)+τ(lnπt(a|s)+1)]=Ea∼πθ(·|s)[−q(s, a)+τ lnπt(a|s)]

where the 1 disappears because Ea∼πθ(·|s)[1] = 1 and we ignore constants. We can plug this into
Equation (4) to get Equation (5). Taking the gradient is straightforward, since neither q(s, a) nor
lnπt(a | s) depend on θ. Again using the log likelihood trick, we get ∇Ea∼πθ(·|s)[−q(s, a) +
τ lnπt(a | s)] = Ea∼πθ(·|s)[(−q(s, a) + τ lnπt(a | s))∇ lnπθ(a|s)].

MD-SAC with a mode-seeking KL penalty (Reverse KL)

Corollary 1. On time step t with current action-values q and policy πt, the surrogate objective for
Soft Actor-Critic with a mode-seeking KL, namely Dϕ(πθ(·|s), πt(·|s)) = KL(πθ(·|s) || πt(·|s)), is

fq,s(θ) = Ea∼πθ

[
−q(s, a) +

(
τ − 1

λ

)
ln(πt(a | s)) + 1

λ lnπθ(a | s)
]

(7)

with gradient

∇θfq,s(θ) = Ea∼πθ

[(
−q(s, a) +

(
τ − 1

λ

)
ln(πt(a | s)) + 1

λ lnπθ(a | s)
)
∇θ ln(πθ(a | s))

]
.

Proof. We need to plug Dϕ(πθ(·|s), πt(·|s)) = KL(πθ(·|s) || πt(·|s)) into Equation (5). We have

1
λKL(πθ(·|s) || πt(·|s)) = 1

λEa∼πθ(·|s) [lnπθ(a|s)− lnπt(a|s)] .

Combining this − 1
λ lnπt(a|s) with the τ lnπt(a|s) term from the main loss, we get Equation (7).

To derive the gradient, we primarily need to compute the gradient for the entropy term
∇Ea∼πθ(·|s)[lnπθ(a|s)]. For completeness, we derive the gradient of the entropy in Lemma 1.
Using the log-likelihood trick with Lemma 1, yields the gradient above.

This update is similar to an actor-critic variant of the MD policy update employed by DAPO-KL
(Xiong et al., 2024), but derived from the FMD perspective. We can contrast this with the standard
SAC update, which uses ∇ℓq,s(θ) = Ea∼πθ(·|s)[(−q(s, a) + τ lnπθ(a|s))∇ lnπθ(a|s)]. For the
very first MD step, the updates are actually the same! The reason is that on MD iteration k = 0, we
start from πθ0

= πt and so the KL divergence does not play a role. After the first step, however,
πθk

no longer equals πt and we have a different update. We can also see the update is different from
simply adding a KL penalty to the SAC update, which would provide the gradient

Ea∼πθ
[(−q(s, a) +

(
τ + 1

λ

)
lnπθ(a | s)− 1

λ ln(πt(a | s)))∇θ ln(πθ(a | s))]. (8)



Reinforcement Learning Journal 2025

MD-SAC with a mode-covering KL penalty (Forward KL) Using the mode-covering KL in
Proposition 1 produces an algorithm that looks like TRPO, albeit with entropy regularization.
Namely we would get a surrogate loss Ea∼πt [(−q(s, a) + τ lnπt(a | s))πθ(a|s)

πt(a|s) −
1
λ lnπθ(a | s)].

However, unlike the mode-seeking KL, the mode-covering KL is not a Bregman divergence. So it is
not a technically valid choice for mirror descent, which is restricted to using Bregman divergences.

Instead, to get the mode-covering KL on the policy, we actually need to consider a Bregman diver-
gence on the logits of the policy. This choice results in using a mode-covering KL on the policy
itself. Vaswani et al. (2022) showed this result for a REINFORCE update; we prove this result for
SAC below. Assume we have a softmax parameterization, πθ(a | s) ∝ exp(zθ(a, s)). Our network
outputs zθ(a, s), and we consider the functional space over z instead.

Proposition 2. Assume we have a finite number of actions, |A|, and use a softmax policy param-
eterization, πθ(a|s) = exp(zθ(a,s))∑|A|

j=1 exp(zθ(a,s))
. On time step t with current action-values q and policy πt

and logits zt, the surrogate objective for Soft Actor-Critic with the log-sum-exp mirror map

fq,s(θ) = Ea∼πt(·|s)
[
(ςπt(a,s) − 1

λ ) lnπθ(a|s)
]

with gradient
∇fq,s(θ) = Ea∼πt(·|s)

[
(ςπt(a,s) − 1

λ )∇ lnπθ(a|s)
]

where v(s) .=
∑|A|

j=1 q(s, j)π(j | s) and ςπt(a, s) = −q(s, a)+v(s)+τ lnπt(a | s)+τH(πt(· | s))

The proof is given in Section 8.2 in the Supplementary Material. A key difference from Equation
(7) is that actions are sampled from πt instead of πθ. The reason for this is that the mode-covering
KL for the penalty requires sampling from πt and the SAC objective—which uses a mode-seeking
KL—requires sampling from πθ. To avoid sampling actions twice, we should choose one of these
policies and use importance sampling for one of the terms. We opted for sampling from πt, because
this better matches existing algorithms like TRPO and because the gradient when sampling from πθ
is much messier.

3.3 Functional Mirror Descent for MPO

Maximum A-Posteriori Policy Optimization (MPO) (Abdolmaleki et al., 2018b) is an off-policy
actor-critic algorithm that incorporates KL regularization in two ways. The original explanation
builds on relative entropy policy search (Peters et al., 2010), with a relatively complex derivation,
but recent work recast it in simpler terms (Vieillard et al., 2020a). The idea is as follows. Ideally,
we would extract the following policy after updating the critic qt on time step t, for all s

πKL(·|s) = argmin
p

−Ea∼p[qt(s, a)] + κKL(p || π(·|s)) ∝ π(a|s) exp
(
qt(s, a)

κ

)
.

This closed-form solution for the policy maximizes the vanilla AC objective, under a constraint to
stay close to the current policy, and can be interpreted as a mirror descent or natural gradient update
in policy space (Xiao, 2022; Agarwal et al., 2021). However, this policy may not be in the policy
class. MPO approximates this target policy by minimizing a mode-covering KL divergence to it:

ℓq,s(θ)=KL(πKL(·|s) || πθ(·|s))=Ea∼πKL(·|s)[lnπθ(a|s)] = Ea∼πt(·|s)[
1
κqt(s, a) lnπθ(a|s)]. (9)

This objective already prevents the new policy from moving too far from the current policy, by en-
couraging the policy to match πKL. However, it is implicit and it is not obvious precisely how much
it will deviate from the current policy. MPO, therefore, also adds a mode-seeking KL constraint to
the optimization: KL(πθ || πθt−1

) < ϵ.

We can revisit this algorithm in light of the FMD perspective. We consider Equation (9) to be the
loss for MPO, and derive the functional mirror descent update for this loss, instead of using the
added constraint. For space, here we provide the losses and include the gradient and derivations in



Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

Section 8 of the Supplementary Material. The generic form for the MD update for MPO uses the
following surrogate loss:

fq,s(θ) = Ea∼πθ(·|s)

[
−e q(s,a)

κ

]
+ 1

λDϕ(πθ(·|s), πt(·|s)).

The derivation is in Proposition 6. Using a mode-seeking KL for the Bregman divergence, we get
(see Corollary 3)

fq,s(θ) = Ea∼πθ

[
−e q(s,a)

κ − 1
λ ln(πt(a | s)) + 1

λ lnπθ(a | s)
]
.

For the softmax representation with a log-sum-exp mirror map (mode-covering, forward KL), we
obtain surrogate loss (see Proposition 7)

fq,s(θ) = Ea∼πt(·|s)

[(
1− exp

(
q(s, a)

κ

)
− 1

λ

)
lnπθ(a|s)

]
.

3.4 Functional Mirror Descent for Greedy Actor-Critic

Greedy Actor-Critic (GreedyAC) is a recently proposed off-policy actor-critic algorithm (Neumann
et al., 2023) inspired by the cross-entropy method. GreedyAC defines a percentile policy on q, that
increases the probability of actions in the top ρ percentile and zeros the probability (density) for all
other actions. Like MPO, this target policy πρ is difficult to directly represent, but it is feasible to
minimize a (forward) KL divergence to it because we can sample from πρ. The GreedyAC algorithm
also incorporated entropy, giving us the combined loss

ℓq,s(θ) = KL(πρ(· | s) || πθ(· | s)) = Ea∼πρ(·|s)[− lnπθ(a|s)] + τEa∼πθ(·|s)[lnπθ(a|s)]. (10)

The generic form for the FMD update for GreedyAC uses the following surrogate loss

fq,s(θ) = Ea∼πρ(·|s)

[
−πθ(a|s)

πt(a|s)

]
+ τEa∼πθ(·|s) [lnπt(a|s)] + 1

λDϕ(πθ(·|s), πt(·|s)).

Notice now that we need to sample the primary loss with the percentile policy and the entropy
separately. The GreedyAC algorithm does not have a closed-form for the percentile policy—namely
we can sample from it but cannot compute its probabilities—so we cannot use importance sampling
to make the two match. The derivation is given in Proposition 4. When using a mode-seeking KL
for the Bregman divergence, we get (see Corollary 2)

fq,s(θ) = Ea∼πρ(·|s)

[
−πθ(a|s)

πt(a|s)

]
+ Ea∼πθ

[(
τ − 1

λ

)
ln(πt(a|s)) + 1

λ lnπθ(a|s)
]

For the softmax representation with a log-sum-exp mirror map (mode-covering, forward KL), we
obtain surrogate loss (see Proposition 5)

fq,s(θ) = E
a∼πρ(·|s)

[− lnπθ(a | s)] + E
a∼πt(·|s)

[(
τ lnπt(a|s) + τH(πt(·|s)) + 1− 1

λ

)
lnπθ(a|s)

]
.

4 Empirical Study

In this section we empirically investigate MD variants of GreedyAC, SAC, and MPO. We used sev-
eral continuous- and discrete-action classic control environments: Pendulum (Degris et al., 2012),
Acrobot (Sutton & Barto, 2018), and Mountain Car (Sutton & Barto, 2018). Discrete actions in-
cluded the extreme continuous actions and zero. Experiments always consisted of 100,000 steps
except for Pendulum which used 50,000 steps. We also used HalfCheetah-v4, Walker2D-v4, and
Hopper-v4 from the MuJoCo suite (Towers et al., 2023) and used 1 million steps for each. In all
plots, solid lines denote mean performance with shaded regions denoting 95% bootstrap confidence
intervals. All learning curves are smoothed for readability.



Reinforcement Learning Journal 2025

(a) Continuous-Action (b) Discrete-Action

Figure 1: Learning curves on the classic control suite. Dashed and dotted lines indicate MD-style
updates with FKL and RKL penalties respectively. Solid lines denote non-MD updates.

Summary and some Implementation Details Hereon, we will label the FMD variants of SAC,
MPO, and GreedyAC using MD-SAC, MD-MPO and MD-GreedyAC with RKL or FKL to indicate
the variant. Standard algorithm variants are sometimes referred to using non-MD. Typically, we
approximated the closed-form MD update with M = 10 SGD updates, performing all M SGD
updates on the same environment step. For computational feasibility in Section 4.1, we performed
an MD update (i.e. M SGD updates) every M environment steps, ensuring that the number of SGD
updates was equal for MD and non-MD algorithms. For all other experiments, we performed an MD
update (i.e. M SGD updates) on each environment step.

All algorithms optimize updates using a log-likelihood form for consistency, a natural choice for
GreedyAC and MPO. While SAC typically uses reparameterization, this is challenging for MD-
SAC with the FKL, so we apply the log-likelihood form to all SAC variants. Using a baseline
v(s) for advantage estimates q(s, a) − v(s) was crucial, rather than relying solely on an action-
value critic. We approximated v(s) with a sample average of 30 action-values from policy-sampled
actions. This approach aligns with the original SAC proposal (Haarnoja et al., 2018), though later
versions (Haarnoja et al., 2019) omitted it. In the continuous-action setting, MD-GreedyAC with
the RKL exhibited unstable learning due to the likelihood ratio in its gradient. We found clipping to
be crucial for stability (see Supplementary Material, Section 7).

We used the Adam optimizer (Kingma & Ba, 2014) with neural networks for both actor and critic,
each consisting of 2 hidden layers with 256 units for MuJoCo, 64 units for continuous-action classic
control, and 32 units for discrete-action classic control per layer. Continuous-action policies were
parameterized as Squashed Gaussian distributions with a separate network predicting location and
log-scale parameters, sharing inputs. We clipped the log-scale parameter to±103 and exponentiated
for positivity. For discrete-actions, we used softmax policies. All algorithms used a single action-
value critic. Hyperparameter sweeps and tuned values are listed in Section 7 in the Supplementary.

4.1 Mirror Descent Bake-Off

We begin with a bake-off style analysis, comparing each algorithm to its two MD variants, sweeping
hyperparameters and reporting performance over 50 runs3 (30 for MuJoCo). Since hyperparameter
tuning is often impractical in real-world applications, we assess algorithm sensitivity using a cross-
environment hyperparameter tuning procedure (Neumann et al., 2023), tuning across the continuous-
action classic control, discrete-action classic control, and MuJoCo suites separately.

3For continuous-action MD-GreedyAC with RKL, we only used 30 runs.



Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

−8 −6 −4 −2 0 2

log(αactor)

0

100

200

S
te

p
s

(×
10

00
)

SAC

−8 −6 −4 −2 0 2

log(αactor)

MD-SAC/RKL

−8 −6 −4 −2 0 2

log(αactor)

MD-SAC/FKL

Met Convergence Criterion Did Not Meet Convergence Criterion

(0.9, 0.9)

(0.5, 0.1)

Figure 3: (Left) The number of steps for SAC and MD-SAC to learn a near-optimal policy for at least
1,500 runs. Each point represents a single agents with a randomly sampled log(αactor) ∈ [−9, 2].
An algorithm which is robust to the step size cliff would exhibit a wide, contiguous region of points
along the x-axis which are low on the y-axis, indicating that a wide range of step sizes induce
convergence to a near-optimal policy. Dashed lines indicate smallest/largest inlier working step
sizes for SAC. (Right) The environment.

Classic Control Figures 1a and 1b show the learning curves on the continuous- and discrete-action
classic control suite respectively. We did not find a consistent trend between MD and non-MD
algorithms, both performing similarily.

0 1000

Timesteps (×1000)

0

1000

2000

R
et

u
rn

Hopper

0 1000

Timesteps (×1000)

0

1000

2000

3000

Walker2D

0 1000

Timesteps (×1000)

0

2500

5000

7500

10000
HalfCheetah

SAC MD-SAC/RKL MD-SAC/FKL

Figure 2: Mujoco Suite

MuJoCo Gymnasium Suite De-
spite the negative result, it is possible
that things change in more difficult
environments. Figure 2 shows the
learning curves of SAC and its MD
variants on the MuJoCo suite. Again,
MD-style updates provided no con-
sistent benefit. MD-SAC with FKL
learned a better policy than SAC on
Hopper but learned a worse policy
than SAC on HalfCheetah. In all cases, SAC and MD-SAC with RKL performed similarly.

4.2 Further Analysis of the Functional Mirror Descent Update

The previous section found no definitive advantage to using the MD-style actor-critic algorithms
in terms of learning speed. However, this does not preclude the possibility that MD offers other
benefits. Our previous analysis may have focused on the wrong aspects, overlooking scenarios
where MD could be advantageous. In this section, we conduct a more in-depth examination of the
MD update to identify conditions under which it may provide meaningful improvements.

4.2.1 Mitigating the Step Size Cliff

Large actor step sizes can severely degrade policies (Jordan et al., 2024; Sullivan et al., 2022), known
as the step size cliff. This cliff can be avoided by using small actor step sizes but such a strategy
slows learning. Step sizes must be chosen to balance learning speed and stability. Since MD better
accounts for policy changes, it may enhance robustness to the step size cliff.

To test this, we considered a continuous-state, discrete-action MDP (Figure 3, Right). States con-
sisted of the agent’s (x, y) position, between [0, 0] (lower left) and [1, 1] (upper right). The agent,
starting at (0.5, 0.1), took actions either moving it nowhere or moving it 0.05 units along the four
cardinal directions or four diagonals. The goal was a 0.1 radius circle at (0.9, 0.9), with rewards
of −0.01 per step and an additional +10 for entering the goal, which induced episode termination.
We truncated episodes at 1,000 steps (without termination), set γ = 1, and ran experiments for



Reinforcement Learning Journal 2025

−1000

1000

P
en

d
u

lu
m

R
et

u
rn

−4 −3 −2 −1 0

log(τ)

−1000

0

A
cr

ob
ot

R
et

u
rn

SAC MD-SAC/RKL MD-SAC/FKL

(a) SAC

−1000

1000

P
en

d
u

lu
m

R
et

u
rn

−∞ −3 −2 −1 0

log(τ)

−1000

0

A
cr

ob
ot

R
et

u
rn

GreedyAC MD-GreedyAC/RKL MD-GreedyAC/FKL

(b) GreedyAC

Figure 4: Performance distributions across entropy scales.

250,000 steps. The maximum and minimum attainable return was Gmax = 9.85 and Gmin = −10
respectively for each (potentially cutoff) episode.

To quantify how actor step sizes affect learning, we measured performance as the number of envi-
ronment steps required for SAC and MD-SAC to maintain performance above a threshold ϱ. We
set M = 10 and updated every environment step. Following Jordan et al. (2024), we estimated an
approximate lower bound on J̃(π) using the last n returns without pausing learning. Concretely,
we let J̃e,n = Ḡe−n+1:e − 3σ(Ḡe−n+1:e)√

n
, where Ḡe−n+1:e and σ(Ḡe−n+1:e) are the sample mean

and standard deviation of the last n returns, and terminate when J̃e,n ≥ ϱ. We set n = 100 and
ϱ = Gmin + 0.95(Gmax −Gmin).

Figure 3 shows convergence times across at least 1,500 randomly sampled log(αactor) ∈ [−9, 2]
per algorithm using the Adam optimizer (Kingma & Ba, 2014). We fixed τ = αcritic = 10−3,
ensuring SAC could learn well across many actor step sizes, and λ = 10−1 for MD-SAC variants.
Occasionally, extreme αactor yielded convergence. We applied a local outlier factor algorithm to
identify the largest/smallest inlier αactor leading to convergence and show these as dashed lines in
Figure 3 (see Supplementary Material, Section 10.1).

A broader range of actor step sizes resulted in convergence for MD-SAC compared to SAC. Within
the lower limit of SAC’s working step size range, MD-SAC variants often converged faster. Further,
MD-SAC with FKL was most robust to large step sizes. Even with good step sizes, each algorithm
occasionally failed to learn a near-optimal policy within the duration of the experiment, especially
noticeable for MD-SAC. Notably, many of these good—yet unsuccessful—step sizes produced rea-
sonable performance but did not meet our convergence criterion. Furthermore, λ influenced the
range of good step sizes for MD-SAC (see Supplementary Material, Section 10.1), generally in-
creasing the range of good step sizes as λ decreased (higher KL penalty).

4.2.2 Sensitivity to Entropy Scale

Actor-Critics are notoriously sensitive to the entropy scale hyperparameter (Eimer et al., 2023; Neu-
mann et al., 2023). Intuitively, MD should mitigate this sensitivity by restricting policy changes in
policy space. Further, the FKL penalty form provides additional protection since the update samples
actions from πt rather than from πθ. We analyzed performance distributions across different entropy
scales τ for SAC and GreedyAC. Using the experimental setup in Section 4.1, we conducted 50 ad-
ditional runs of MD-SAC and MD-GreedyAC for log τ ∈ {−4, 0} (MD-SAC) and log τ ∈ {−3, 0}
(MD-GreedyAC). Figure 4 shows the performance distribution of each algorithm with λ set to the
tuned values from Section 4.1. We see that MD-style updates did not substantially improve robust-
ness to τ for either algorithm, though a moderate improvement was observed for MD-SAC (FKL)
and MD-GreedyAC (RKL) on Pendulum.



Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

4.2.3 Increasing the Actor Replay Ratio

Figure 5: Performance vs replay ratio over 60 runs
with continuous-actions.

In this section we test if increasing M can im-
prove the MD update, because doing so could
give a better approximation of the closed-form
MD update in Equation 2. On each step, we
increase the number of actor updates, though
this still only corresponds to an approximation
to one MD update. For a fair comparison, we
also increase the number of actor updates for
the non-MD variants, though the interpretation
in that case is different. Each actor update is an-
other standard gradient descent update. We ex-
pect that increasing the number of actor updates
for the MD algorithms should be beneficial, but
may actually be harmful for the non-MD algo-
rithms.

Using the tuned hyperparameters from Section 4.1, we evaluated each algorithm on the classic con-
trol suite with actor replay ratios of 2, 4, 8, 16, 32, or 64 gradient updates for the actor per envi-
ronment step over 60 runs, setting M to the number of actor updates per step and updating on each
environment step. Our goal was to test the policy update, so we fixed the critic updates to 1 per
step.4 Figure 5 shows the results for the continuous-action setting. Discrete-action results are shown
in Section 10.2 in the Supplementary Material.

We found no consistent relationship between actor replay ratio and performance. While large actor
replay ratios sometimes degraded performance as expected, MD-style algorithms did not consis-
tently benefit from increased updates and, in some cases, performed worse. Moreover, MD-style
methods were not typically more robust to the actor replay ratio than non-MD variants, though
they exhibited slightly greater robustness in the continuous-action setting than in the discrete-action
setting.

5 Discussion and Conclusion

Our empirical analysis did not provide evidence for a significant difference between MD and
NonMD algorithm variants. In this section we discuss potential reasons for this and propose fur-
ther avenues for investigation. The potential reasons can be grouped into two categories: difficulty
in approximately solving the MD optimization problem (Equation 4) and difficulty in optimizing an
actor-critic algorithm’s objective with MD.

Key to the performance of MD algorithms is how well the optimization problem in Equation 4 is
approximated. If the approximation is too coarse, then the MD algorithm variants may be quite
similar to their Non-MD counterparts. In a similar vein, if this optimization problem is difficult to
solve and not much progress is made for any number of inner updates M , the resulting algorithm
would again be quite similar to a Non-MD algorithm. In fact, we observed some evidence of this,
since we found that the actor step size αactor was more crucial for performance than λ. In reality, if
our approximation to the MD optimization problem was good enough, then αactor should have had a
smaller impact on performance since its role in optimizing the policy is secondary to λ. If we were
able to exactly solve the MD optimization problem, then αactor should play no role at all in the MD
update.

The performance of actor-critic algorithms heavily rests on the kind of optimizer used, and modern
optimizers are crucial for successfully training neural networks with actor-critics. In contrast, SGD
with fixed step sizes is typically much less effective practically. In this work, we used the Adam

4Note that increasing the replay ratio for the action-value has been shown to degrade performance (D’Oro et al., 2023;
Nikishin et al., 2022). But here we keep the number of critic updates at 1, and so those results do not directly apply.



Reinforcement Learning Journal 2025

optimizer (Kingma & Ba, 2014) for training neural networks. But for MD, the hyperparameter λ
is well though of as a step size controlling how updates are made in policy space. Although in this
work we tuned the MD step size λ, it was nevertheless held constant after tuning. Because of this,
the MD algorithms could have been at a significant disadvantage. We likely need an optimizer for
the MD step size.

We propose a few avenues for future research. The first being to verify whether the surrogate MD
optimization problem is approximately solved in these MD-style actor-critic and policy gradient al-
gorithms, and to develop improved methods for approximating the MD optimization problem if not.
This could include different optimization strategies beyond Adam, such as second order methods,
line search, or meta-learning. Next, we suggest developing new adaptive step size strategies for
adjusting λ rather than keeping it constant, and potentially considering joint tuning of αactor and
λ. Finally, we suggest a more thorough investigation of MD and actor-critic components to better
understand the interplay between MD and actor-critic objectives, especially pertaining to how actor
and critic step size affect the MD update and performance.

References
Yasin Abbasi-Yadkori, Peter Bartlett, Kush Bhatia, Nevena Lazic, Csaba Szepesvari, and Gellert

Weisz. POLITEX: Regret Bounds for Policy Iteration using Expert Prediction. In Proceedings of
the International Conference on Machine Learning, 2019.

Abbas Abdolmaleki, Jost Tobias Springenberg, Jonas Degrave, Steven Bohez, Yuval Tassa, Dan
Belov, Nicolas Heess, and Martin Riedmiller. Relative Entropy Regularized Policy Iteration.
arXiv preprint arXiv:1812.02256, 2018a.

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Mar-
tin Riedmiller. Maximum a Posteriori Policy Optimisation. In Proceedings of the International
Conference on Learning Representations, 2018b.

Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. Journal of Machine Learning
Research, 2021.

Carlo Alfano, Rui Yuan, and Patrick Rebeschini. A Novel Framework for Policy Mirror Descent
with General Parameterization and Linear Convergence. Proceedings of the International Con-
ference on Neural Information Processing Systems, 2023.

Navid Azizan, Sahin Lale, and Babak Hassibi. Stochastic Mirror Descent on Overparameterized
Nonlinear Models. IEEE Transactions on Neural Networks and Learning Systems, 2022.

Amir Beck. First-Order Methods in Optimization. Society for Industrial and Applied Mathematics,
2017.

Sébastien Bubeck. Convex Optimization: Algorithms and Complexity. Foundations and Trends in
Machine Learning, 2015.

Thomas Degris, Patrick M. Pilarski, and Richard S. Sutton. Model-Free Reinforcement Learning
with Continuous Action in Practice. In Proceedings of the American Control Conference, 2012.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G. Bellemare, and
Aaron Courville. Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier.
In Proceedings of the International Conference on Learning Representations, 2023.

Theresa Eimer, Marius Lindauer, and Raileanu Roberta. Hyperparameters in Reinforcement Learn-
ing and How to Tune Them. In Proceedigs of the International Conference on Machine Learning,
2023.



Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

Ilyas Fatkhullin and Niao He. Taming nonconvex stochastic mirror descent with general Bregman
divergence. In Proceedings of the International Conference on Artificial Intelligence and Statis-
tics, 2024.

Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized markov decision
processes. In Proceedings of the International Conference on Machine Learning, 2019.

Suriya Gunasekar, Blake Woodworth, and Nathan Srebro. Mirrorless Mirror Descent: A Natural
Derivation of Mirror Descent. In Proceedings of International Conference on Artificial Intelli-
gence and Statistics, 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the
International Conference on Machine Learning, 2018.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic Algo-
rithms and Applications, 2019.

Emmeran Johnson, Ciara Pike-Burke, and Patrick Rebeschini. Optimal Convergence Rate for Exact
Policy Mirror Descent in Discounted Markov Decision Processes. In Proceedings of the Interna-
tional Conference on Neural Information Processing Systems, 2023.

Scott M Jordan, Samuel Neumann, James E Kostas, Adam White, and Philip S Thomas. The Cliff
of Overcommitment with Policy Gradient Step Sizes. Reinforcement Learning Conference, 2024.

Sham Kakade and John Langford. Approximately Optimal Approximate Reinforcement Learning.
In Proceedings of the International Conference on Machine Learning, 2002.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. CoRR, 2014.

Guanghui Lan. Policy mirror descent for reinforcement learning: Linear convergence, new sampling
complexity, and generalized problem classes. Mathematical Programming, 2023.

Nevena Lazić, Botao Hao, Yasin Abbasi-Yadkori, Dale Schuurmans, and Csaba Szepesvári.
Optimization Issues in KL-Constrained Approximate Policy Iteration. arXiv preprint
arXiv:2102.06234, 2021.

Jincheng Mei, Chenjun Xiao, Ruitong Huang, Dale Schuurmans, and Martin Müller. On Princi-
pled Entropy Exploration in Policy Optimization. In International Joint Conference on Artificial
Intelligence, 2019.

Gergely Neu, Anders Jonsson, and Vicenç Gómez. A Unified View of Entropy-Regularized Markov
Decision Processes. arXiv preprint arXiv:1705.07798, 2017.

Samuel Neumann, Sungsu Lim, Ajin Joseph, Yangchen Pan, Adam White, and Martha White.
Greedy Actor-Critic: A New Conditional Cross-Entropy Method for Policy Improvement. In
Proceedings of the International Conference on Learning Representations, 2023.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
Primacy Bias in Depp Reinforcement Learning. In Proceedings of the International Conference
on Machine Learning, 2022.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
2011.

Jan Peters, Katharina Mulling, and Yasemin Altun. Relative Entropy Policy Search. In Proceedings
of the AAAI Conference on Artificial Intelligence, 2010.



Reinforcement Learning Journal 2025

Garvesh Raskutti and Sayan Mukherjee. The Information Geometry of Mirror Descent. IEEE
Transactions on Information Theory, 2015.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust Region
Policy Optimization. In Proceedings of the International Conference on Machine Learning, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ryan Sullivan, Jordan K Terry, Benjamin Black, and John P Dickerson. Cliff Diving: Exploring Re-
ward Surfaces in Reinforcement Learning Environments. In Proceedings of the 39th International
Conference on Machine Learning, 2022.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy Gradient Methods
for Reinforcement Learning with Function Approximation. In Proceedings of the International
Conference on Neural Information Processing Systems, 1999.

Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror Descent Policy
Optimization. In Proceedings of the International Conference on Learning Representations, 2022.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, An-
drea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymna-
sium, 2023. URL https://zenodo.org/record/8127025.

Sharan Vaswani, Olivier Bachem, Simone Totaro, Robert Mueller, Shivam Garg, Matthieu Geist,
Marlos C. Machado, Pablo Samuel Castro, and Nicolas Le Roux. A General Class of Surro-
gate Functions for Stable and Efficient Reinforcement Learning. In International Conference on
Artificial Intelligence and Statistics, 2022.

Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Rémi Munos, and Matthieu Geist.
Leverage the Average: An Analysis of Regularization in RL. In Proceedings of the International
Conference on Neural Information Processing Systems, 2020a.

Nino Vieillard, Olivier Pietquin, and Matthieu Geist. Munchausen Reinforcement Learning. In
Proceedings of the International Conference on Neural Information Processing Systems, 2020b.

Nino Vieillard, Marcin Andrychowicz, Anton Raichuk, Olivier Pietquin, and Matthieu Geist. Im-
plicitly Regularized RL with Implicit Q-Values. In Proceedings of the International Conference
on Artificial Intelligence and Statistics, 2022.

Ronald J Williams. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforce-
ment Learning. Machine learning, 1992.

Lin Xiao. On the Convergence Rates of Policy Gradient Methods. In Journal of Machine Learning
Research, 2022.

Zhihan Xiong, Maryam Fazel, and Lin Xiao. Dual Approximation Policy Optimization. In Proceed-
ings of the ICML Workshop on Aligning Reinforcement Learning Experimentalists and Theorists,
2024.

Lingwei Zhu, Zheng Chen, Matthew Schlegel, and Martha White. Generalized Munchausen Rein-
forcement Learning using Tsallis KL Divergence. arXiv preprint arXiv:2301.11476, 2023.

https://zenodo.org/record/8127025


Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

Supplementary Materials
The following content was not necessarily subject to peer review.

6 Mirror Descent

Mirror Descent (MD) is an iterative optimization algorithm which generalizes (sub)gradient descent;
in contrast to gradient descent, mirror descent better considers the geometry of the input space
(Raskutti & Mukherjee, 2015; Bubeck, 2015; Beck, 2017). Further, by clearly distinguishing primal
and dual spaces, MD addresses the philosophical issue of combining vectors in different spaces
during gradient updates. Although the derivation of mirror descent can be found in a multitude
of other sources, we provide a brief derivation and discussion here for completeness, focusing on
smooth optimization alone. This section is organized as follows. We first briefly summarize mirror
descent. We refer the reader to Bubeck’s comprehensive textbook on convex optimization (Bubeck,
2015) – from which we extensively adapt the proceeding sections – for a more detailed discussion
of mirror descent. We then derive mirror descent on the simplex with a negative entropy mirror
map. Finally, we explore the connections between the lift-step-project form of mirror descent and
its commonly used proximal form.

Let us first define some terminology. In the following sections, we refer to an input x as being in
some primal space. Following the notation of Bubeck (2015), we use a hatted symbol (e.g. x̂) to
refer to the same point after transforming it to the associated dual space. For some set S, denote ∂S
as the boundary of S and define the closure of S as S .

= S ∪ ∂S. Denote as Rn
++ the subset of Rn

consisting of vectors whose elements are positive real numbers:

Rn
++

.
= {x | x ∈ Rn, xi > 0, ∀i ≤ n ∈ Z}

We similarly defined Rn
+ = Rn

++ ∪ {0} as the set of non-negative real numbers.

Consider an objective function which we would like to optimize J : X → R such that X ⊆ Rn.
For gradient-descent-style optimization algorithms, an optimization step at iteration t is taken by
subtracting from input xt a scaled gradient of J evaluated at xt:

xt+1 ← xt − λgt for some λ ∈ R

where gt = ∇J(xt). The gradient gt does not necessarily lie in the same space as the input xt.
While xt ∈ X, gt is in the dual space (we direct the reader to Beck’s textbook for further explanation
(Beck, 2017)). As an example, consider the case when X is the simplex and J(x) = ⟨x, ln(x)⟩.
Then ∇J(x) = ln(x)− 1 which may not lie in X.

The Lift Procedure The lift procedure of MD consists of lifting the input to the dual space, the
same space that the gradient of J lies is. To do this, we introduce a mirror map. Let D be an open,
convex set such that X ⊂ D and X ∩D ̸= ∅. We say that ϕ : D→ R is a mirror map if it satisfies
the following conditions (Bubeck, 2015):

• Convexity and Differentiability: ϕ is strictly convex and differentiable

• Gradient Surjectivity: ∇ϕ : D→ Rn is surjective

• Gradient Divergence: lim
x→∂D

∥∇ϕ(x)∥ =∞

This is the common characterization of mirror maps (Bubeck, 2015) but note that we will later
require ∇ϕ to be injective on its domain.

The lift procedure then consists of the transformation:

x̂t ← ∇ϕ(xt) (11)



Reinforcement Learning Journal 2025

The Step Procedure The step procedure consists of taking a step in the dual space:

ŷt+1 ← x̂t − λgt (12)

where λ ∈ R is a stepsize parameter.

The Project Procedure The project procedure consists of transforming ŷt+1 back to the primal
set X. To begin, ŷt+1 is transformed back to D using the inverse gradient of the mirror map. That is

yt+1 ← (∇ϕ)−1(ŷt+1) (13)

This procedure is often computed using the Legendre-Fenchel transform. For a function f : X→ R,
the Legendre-Fenchel transform (or convex conjugate) of f is defined to be

f∗(x∗)
.
= sup

x∈X

(⟨x∗,x⟩ − f(x)) (14)

A useful property of the Legendre-Fenchel transformation of f is that its gradient is the inverse of
the gradient of f , that is:

∇f∗(∇f(x)) = x

∇f(∇f∗(x)) = x
(15)

Therefore, if we are able to compute the gradient of the Legendre-Fenchel transform of ϕ, we can
use it to compute Equation 13:

yt+1 ← ∇ϕ∗(ŷt+1) (16)

To project yt+1 ∈ D back to the constraint set X we employ a projection operator ΠX
ϕ : D→ X:

ΠX
ϕ (y)

.
= argmin

x∈X∩D

Dϕ(x,y) (17)

where Dϕ is the Bregman divergence in ϕ. To complete the mirror descent update, we simply apply
this projection to yt+1:

xt+1 ∈ ΠX
ϕ (yt+1) (18)

General Form Based on the preceding discussion, mirror descent has the following general form:

yt+1 = ∇ϕ∗(∇ϕ(xt)− λgt) where gt ∈ ∂J(xt)

xt+1 ∈ ΠX
ϕ (yt+1)

from (11, 12, 13, 16)
from (18)

(19)

where x1 = argmin x∈X∩D ϕ(x).

6.1 Deriving Mirror Descent on the Simplex

Given a mirror map ϕ, the lift and step operations are immediately defined. For the projection step,
we must derive the inverse of the lift step. This requires deriving:

1. Inverse of mirror map gradient: (∇ϕ)−1

2. Projection operator: ΠX
ϕ (y) = argmin

x∈X∩D

Dϕ(x,y) for some y ∈ D

We will use the negative entropy mirror map, defined as:

ϕ(x) = ⟨x, lnx⟩ =
n∑

i=1

xi ln(xi) (20)

where D = Rn
+. We use the convention that 0 log 0 = 0.

In Section 6.1.1, we derive the Legendre-Fenchel transform of the negative entropy mirror map and
use it to compute the inverse of the mirror map gradient for Point (1) above. Next, in Section 6.1.2
and 6.1.3, we derive the projection operator (2).



Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

6.1.1 Legendre-Fenchel Transform of the Negative Entropy Mirror Map

Recall the definition of the Legendre-Fenchel transform of ϕ:

ϕ∗(x∗) = sup
x∈Rn

+

(⟨x,x∗⟩ − ϕ(x)) (21)

= sup
x∈Rn

+

(⟨x,x∗⟩ − ⟨x, ln(x)⟩) (22)

= sup
x∈Rn

+

f(x) (23)

where f is defined implicitly. Notice that

∇f(x) = x∗ −∇ϕ(x)
= x∗ −∇⟨x, ln(x)⟩
= x∗ − ln(x)− 1

Clearly this objective function has a unique optimum. This optimum either lies on the boundary of
Rn

+ (where gradients are undefined) or else it lies in the interior of Rn
+. We will seek a solution in the

interior of Rn
+. Upon obtaining such a solution, the uniqueness property ensures that the optimum

indeed lies in the interior of Rn
+. Setting ∇f(x) = 0 and solving provides:

x = ex
∗−1 (24)

substituting x back into Equation 22 we get

ϕ∗(x∗) = ⟨ex∗−1,x∗⟩ − ⟨ex∗−1,x∗ − 1⟩ = 1⊤ex
∗−1 (25)

where 1 ∈ Rn is the vector whose elements are all 1. Hence ϕ∗(x∗) = 1⊤ex
∗−1 and ∇ϕ∗(x∗) =

ex
∗−1

6.1.2 Bregman Divergence of the Negative Entropy

Similarly to above, let ϕ(x) = ⟨x, lnx⟩. The Bregman divergence of ϕ is

Dϕ(x,y) = ϕ(x)− ϕ(y)− ⟨∇ϕ(y), (x− y)⟩ (26)
= ⟨x, ln(x)⟩ − ⟨y, ln(y)⟩ − ⟨ln(y) + 1,x⟩+ ⟨ln(y) + 1,y⟩ (27)

=

n∑
i=1

xi ln

(
xi
yi

)
−

n∑
i=1

xi +

n∑
i=1

yi (28)

(29)

This last equation is known as the generalized KL divergence and is exactly equal to the KL diver-
gence when x and y lie on the simplex.

6.1.3 Projection onto the Constraint Set

Let X ⊂ Rn
+ denote the probability simplex over Rn:

X
.
=

{
x | x ∈ RN , xi ≥ 0,

n∑
i=1

xi = 1

}
(30)

Let y ∈ Rn
++. Let ΠX

ϕ denote the projection operator, projecting vectors in Rn
>0 onto the simplex X

according to:

ΠX
ϕ (y) = argmin

x∈X∩Rn
+

Dϕ(x,y) = argmin
x∈X∩Rn

+

n∑
i=1

xi ln

(
xi
yi

)
(31)



Reinforcement Learning Journal 2025

We will now derive the closed form equation for this projection operator. To begin, recall Jensen’s
inequality for some convex ψ:

ψ

(∑
i aixi∑
i ai

)
≤

∑
i aiψ(xi)∑

i ai
for ai > 0 ∀i

and ψ(
∑

i xi) ≤
∑

i ψ(xi) when ai = 1 ∀i. Letting f(x) = x ln(x), we can rewrite the argument
to the optimization problem in Equation 31 as:

n∑
i=1

xi ln

(
xi
yi

)
=

n∑
i=1

yif

(
xi
yi

)
Using Jensen’s inequality, we get that:

n∑
i=1

yif
(

xi

yi

)
∥y∥1

≥ f


n∑

i=1

yi
xi

yi

∥y∥1

 =⇒
n∑

i=1

yif

(
xi
yi

)
≥ ∥y∥1 f


n∑

i=1

xi

∥y∥1


Based on the conditions of Jensen’s inequality, we know that equality holds if and only if xj

yj
=

xi

yi
∀i, j. This condition is satisfied if xi = yi

∥y∥1
, indicating that:

argmin
X∩Rn

+

Dϕ(x,y) =
y

∥y∥1

6.2 Relationship to the Proximal Form of Mirror Descent

It may not be immediately clear how the lift-step-project form of mirror descent is related to the
proximal form of mirror descent. The proximal form is defined as:

argmin
x∈X∩Rn

+

(
⟨x, gt⟩+ 1

λDϕ(x,xt)
)

where gt ∈ ∂J(xt) (32)

Notice that we can re-write the general lift-step-project form of mirror descent from Equation 19 as:

xt+1 = argmin
X∩Rn

>0

Dϕ(x,yt+1)

= argmin
X∩Rn

>0

ϕ(x)− ⟨∇ϕ(yt+1),x− yt+1⟩

= argmin
X∩Rn

>0

ϕ(x)− ⟨∇ϕ(yt+1),x⟩

= argmin
X∩Rn

>0

ϕ(x)− ⟨∇ϕ(xt)− λgt,x⟩ ▷ from (15)

= argmin
X∩Rn

>0

⟨x, λgt⟩+Dϕ(x,xt)

= argmin
X∩Rn

>0

⟨x, gt⟩+ 1
λDϕ(x,xt)

From here it is clear what exactly mirror descent is doing. It is minimizing the first order approxi-
mation of the function J while staying in close proximity (as determined by λ) to the previous point
as measured by the Bregman divergence in ϕ.

As previously shown, the Bregman divergence in the negative entropy mirror map is the generalized
KL divergence. Hence, the proximal form of mirror ascent as studied in this paper is defined by the
iterative equation:

xt+1 = argmax
X∩Rn

+

⟨x,∇J(x)⟩ − 1
λKL(x || xt) (33)

where KL is the generalized KL divergence on the simplex and J is some policy performance func-
tion.



Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

7 Hyperparameter Tuning

In this section, we list the ranges of hyperparameters swept for our analysis in Section 4.1 along
with the tuned hyperparameters for each algorithm. Table 1 lists the tuned hyperparameters across
all continuous-action classic control environments for each algorithm tested. Table 2 lists the tuned
hyperparameters across all MuJoCo environments. Finally, Table 6 lists the tuned hyperparameters
across all discrete-action environments.

We swept the following hyperparameters. Replay buffers held all transitions, with batch sizes of 32
(256 for MuJoCo). We swept critic step sizes αcritic = 10y for y ∈ {−4,−3,−2} and actor stepsizes
αactor = 10ςactorαcritic, ςactor ∈ {−1, 0, 1}. The likelihood ratio in the gradient for MD-GreedyAC with
an RKL penalty caused numerical instabilities, hence we found it crucial to clip this likelihood ratio.
We clipped between

[
(1 + ε)−1, 1 + ε

]
and set ε = 0.7 in all experiments as we found the value to

work well. We swept entropy scales τ = 10t for t ∈ {−4,−3,−2,−1, 0}. For MD updates, the
two extreme entropy scales were excluded. For GreedyAC, the smallest τ was replaced with 0. Soft
action-value functions were used. MPO did not use entropy regularization, instead we swept the KL
policy coefficient κ = 10t−1, excluding the two lowest κ values for MD-MPO. For MD updates, we
swept λ ∈ {±3,±2,±1, 0}, setting M = 10 unless otherwise explicitly stated. For GreedyAC, we
set ρactor = 0.1, ρproposal = 0.2, and n = 10. Both policies used entropy regularization. We used
target critic networks for learning action-value critics with a Sarsa update. The target networks were
updated each timestep using a polyak average with constant β = 0.01

wtarget = (1− β)wtarget + βw (34)

where w are the parameters for the critic network and wtarget are the parameters for the target critic
network.

On the MuJoCo environments, we reduced our hyperparameter sweep and only used SAC. We swept
the critic stepsize 10y and entropy scale 10y+1 for y ∈ {−5,−4, . . . ,−1} as we found SAC to be
most sensitive to these hyperparameters. We set ςactor = 10−1 and λ = 10.

Table 1: Tuned Hyperparameters across environments for continuous-action algorithms

Algorithm
Hyper

αcritic ςactor τ κ λ

GreedyAC 10−3 1 10−1 - -
MD-GreedyAC (RKL) 10−3 1 10−2 - 1
MD-GreedyAC (FKL) 10−3 1 0 - 1

SAC 10−3 1 10−3 - -
MD-SAC (RKL) 10−3 1 10−3 - 102

MD-SAC (FKL) 10−3 1 10−3 - 101

MPO 10−3 1 - 10−5 -
MD-MPO (RKL) 10−2 −1 - 10−4 10−1

MD-MPO (FKL) 10−3 1 - 10−4 10−1

Table 2: Tuned Hyperparameters across environments for the MuJoCo suite

Algorithm
Hyper

αcritic ςactor τ λ

SAC 10−3 −1 10−2 -
MD-SAC (RKL) 10−3 −1 10−2 101

MD-SAC (FKL) 10−3 −1 1 101



Reinforcement Learning Journal 2025

Table 3: Tuned Hyperparameters for Continuous-Action Algorithms

GreedyAC MPO SAC
Environment αcritic ςactor τ αcritic ςactor κ αcritic ςactor τ

Acrobot 10−3 0 10−2 10−2 −1 10−5 10−3 0 10−4

MountainCar 10−2 −1 10−1 10−3 0 10−5 10−3 0 10−3

Pendulum 10−3 0 10−1 10−2 −1 10−3 10−2 −1 10−2

Table 4: Tuned Hyperparameters for Continuous-Action PMD Algorithms with an RKL Penalty

PMD GreedyAC/Clipping PMD MPO PMD SAC
Environment αcritic ςactor λ τ αcritic ςactor λ κ αcritic ςactor λ τ

Acrobot 10−4/10−3 −2/−1 10−1/102 10−2/10−2 10−2 −1 103 10−3 10−2 −1 101 10−3

MountainCar 10−2/10−3 −1/0 10−1/100 10−1/0 10−3 0 10−1 10−3 10−3 0 102 10−3

Pendulum 10−2/10−3 −2/0 100/100 10−1/10−2 10−2 −1 101 10−3 10−2 −1 101 10−2

Table 5: Tuned Hyperparameters for Continuous-Action PMD Algorithms with an FKL Penalty

PMD GreedyAC PMD MPO PMD SAC
Environment αcritic ςactor λ τ αcritic ςactor λ κ αcritic ςactor λ τ

Acrobot 10−2 −1 10−1 10−2 10−2 −1 100 10−3 10−2 −1 101 10−2

MountainCar 10−3 0 100 0 10−3 0 100 10−3 10−3 0 102 10−2

Pendulum 10−2 0 100 0 10−2 −1 100 10−2 10−2 −1 101 10−1

Table 6: Tuned Hyperparameters across environments for discrete-action algorithms

Algorithm
Hyper

αcritic ςactor τ κ λ

GreedyAC 10−3 1 10−3 - -
MD-GreedyAC (RKL) 10−3 1 0 - 10−1

MD-GreedyAC (FKL) 10−3 1 10−2 - 1
SAC 10−3 1 10−2 - -

MD-SAC (RKL) 10−3 1 10−2 - 102

MD-SAC (FKL) 10−3 1 10−2 - 102

MPO 10−3 1 - 10−2 -
MD-MPO (RKL) 10−3 1 - 10−2 1
MD-MPO (FKL) 10−3 1 - 10−3 102

Table 7: Tuned Hyperparameters for Discrete-Action Algorithms

GreedyAC MPO SAC
Environment αcritic ςactor τ αcritic ςactor κ αcritic ςactor τ

Acrobot 10−3 0 0 10−3 0 10−2 10−2 −1 10−2

MountainCar 10−3 0 10−2 10−3 0 10−2 10−3 0 10−2

Pendulum 10−2 −1 10−1 10−2 −1 10−4 10−2 −1 100



Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

Table 8: Tuned Hyperparameters for Discrete-Action PMD Algorithms with an RKL Penalty

PMD GreedyAC PMD MPO PMD SAC
Environment αcritic ςactor λ τ αcritic ςactor λ κ αcritic ςactor λ τ

Acrobot 10−2 −1 101 0 10−3 0 102 10−1 10−2 −1 10−1 10−2

MountainCar 10−3 0 10−1 0 10−3 0 10−1 10−2 10−3 0 102 10−2

Pendulum 10−2 −1 10−1 10−1 10−2 −1 100 10−3 10−2 −1 101 10−1

Table 9: Tuned Hyperparameters for Discrete-Action PMD Algorithms with an FKL Penalty

PMD GreedyAC PMD MPO PMD SAC
Environment αcritic ςactor λ τ αcritic ςactor λ κ αcritic ςactor λ τ

Acrobot 10−3 0 102 0 10−3 1 100 10−1 10−2 −1 101 10−2

MountainCar 10−3 0 10−2 10−2 10−3 0 10−1 10−1 10−3 0 100 10−2

Pendulum 10−2 0 10−1 10−2 10−2 −1 103 10−3 10−2 −1 10−2 10−1

8 Functional Mirror Decent Algorithm Derivations

In this section, we provide mathematical proofs for each of the algorithm extensions to the functional
mirror descent framework.

8.1 Preliminary Results

Lemma 1 (Gradient of the Negative Shannon Entropy). The gradient of the negative Shannon en-
tropy is∇θEπθ

[lnπθ(a | s)] = Eπθ
[lnπθ(a | s)∇θ lnπθ(a | s)]

Proof. We begin the proof by differentiating the argument to the expectation in integral form
Eπθ

[− lnπθ(a | s)] = −
∫
A
πθ(a | s) ln(πθ(a | s)) da. We get:

∇[πθ(a|s) lnπθ(a|s)] = lnπθ(a|s)∇πθ(a|s) + πθ(a|s)∇ lnπθ(a|s)

= lnπθ(a|s)∇πθ(a|s) + πθ(a|s)
1

πθ(a|s)
∇πθ(a|s) = (lnπθ(a|s) + 1)∇πθ(a|s)

Again using the log-likelihood trick, we get

∇Ea∼πθ(·|s)[lnπθ(a|s)] = Ea∼πθ(·|s)[lnπθ(a|s)∇ lnπθ(a|s)] +∇Ea∼πθ(·|s)[1]

= Ea∼πθ(·|s)[lnπθ(a|s)∇ lnπθ(a|s)].

Lemma 2 (Bregman Divergence in Log-Sum-Exp). Let ϕ be the log-sum-exp function and z, z′ be
the logits of two softmax distributions p and p′ respectively. Then Dϕ(z, z

′) = KL(p′ || p).

Proof. The proof is given by Vaswani et al. (2022).

8.2 Functional Mirror Descent for Soft Actor-Critic

In this section, we provide additional proofs for Mirror Descent Soft Actor-Critic not included in the
main text.

Assume we have a softmax parameterization, πθ(a | s) ∝ exp(zθ(a, s)). Our network outputs
zθ(a, s), and we consider the functional space over z instead. We prove the result for the discrete
action setting, but the updates extend to the continuous action setting.



Reinforcement Learning Journal 2025

Proposition 3. Assume we have a finite number of actions, |A|, and use a softmax policy param-
eterization, πθ(a|s) = exp(zθ(a,s))∑|A|

j=1 exp(zθ(a,s))
. On time step t with current action-values q and policy πt

and logits zt, the surrogate objective for Soft Actor-Critic with the log-sum-exp mirror map

fq,s(θ) = Ea∼πt(·|s)
[
(ςπt(a,s) − 1

λ ) lnπθ(a|s)
]

with gradient
∇fq,s(θ) = Ea∼πt(·|s)

[
(ςπt(a,s) − 1

λ )∇ lnπθ(a|s)
]

where v(s) .=
∑|A|

j=1 q(s, j)π(j | s) and ςπt(a, s) = −q(s, a)+v(s)+τ lnπt(a | s)+τH(πt(· | s))

Proof. Letting ℓ̃q,s(π) equal that defined in the proof of Proposition 1, we can use the chain rule to
get the partial derivatives in terms of the logits z(a, s) instead.

∂ℓ̃q,s
∂z(a, s)

=

|A|∑
j=1

∂ℓ̃q,s
∂π(j | s)

∂π(j | s)
∂z(a, s)

=

|A|∑
j=1

(−q(s, j) + τ(lnπ(j | s) + 1))
∂π(j | s)
∂z(a, s)

We can compute the second term considering two cases. Let c(s) =
∑|A|

j=1 exp(zθ(j, s)), with
π(a|s) = exp(z(a, s))/c(s). If a ̸= j, then we have

∂π(j | s)
∂z(a, s)

= − exp(z(j, s))c(s)−2 exp(z(a, s)) = −π(j | s)π(a | s)

If a = j, then we have

∂π(a | s)
∂z(a, s)

= exp(z(a, s))/c(s)− exp(z(a, s))c(s)−2 exp(z(a, s)) = π(a | s)(1− π(a | s))

Plugging this in above, we get that

|A|∑
j=1

∂ℓ̃q,s
∂π(j | s)

∂π(j | s)
∂z(a, s)

= π(a | s)(−q(s, a)+τ lnπ(a | s))−π(a | s)
|A|∑
j=1

(−q(s, j)+τ lnπ(j | s))π(j | s)

(35)
Notice that

|A|∑
j=1

(−q(s, j)+τ lnπ(j | s))π(j | s) = −
|A|∑
j=1

q(s, j)π(j | s)+τ
|A|∑
j=1

lnπ(j | s)π(j | s) = −v(s)+τH(π(· | s))

and so finally we get that

(35) = π(a | s)ς(a, s) for ς(a, s) .= −q(s, a) + v(s) + τ lnπ(a | s)− τH(π(· | s))

Taking the inner product with zθ(·|s), we get〈
∂ℓ̃q,s
∂z(·, s) (zt), zθ(·, s)

〉
= Ea∼πt(·|s) [ς(a, s)zθ(a, s)]

= Ea∼πt(·|s)

ς(a, s)
zθ(a, s)− |A|∑

j=1

exp(zθ(j, s))


= Ea∼πt(·|s) [ς(a, s) lnπθ(a|s)]

where the second line follows from the fact that Ea∼πt(·|s)[ς(a, s)] = 0 and so we can shift the
values of zθ(·, s) without changing the expectation.



Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

Finally, with a logsumexp mirror map, Lemma 2 shows that Dϕ(z
π, zπt) = KL(πt || π), and so we

get our surrogate objective

fq,s(θ) = Ea∼πt(·|s) [ς(a, s) lnπθ(a|s)] + 1
λKL(πt(·|s) || πθ(·|s))

= Ea∼πt(·|s)
[
ς(a, s) lnπθ(a|s) + 1

λ ln(πt(a | s))− 1
λ ln(πθ(a | s))

]
= Ea∼πt(·|s)

[
(ς(a, s)− 1

λ ) lnπθ(a|s)
]

The gradient is simple to compute, because we are sampling from πt,

∇fq,s(θ) = Ea∼πt(·|s)
[
(ς(a, s)− 1

λ )∇ lnπθ(a|s)
]

8.3 Functional Mirror Descent for Greedy Actor-Critic

In this section, we provide additional proofs for Mirror Descent Greedy Actor-Critic not included in
the main text.

Greedy Actor-Critic minimizes a mode-covering KL between πθ and the percentile greedy policy
πρ
θ with entropy scale τ ≥ 0.

Proposition 4. On time step t with current action-values q and policy πt, the surrogate objective
for Greedy Actor-Critic with a direct functional representation and any Bregman divergence Dϕ, is

fq,s(θ) = Ea∼πρ(·|s)

[
−πθ(a | s)
πt(a | s)

]
+ τEa∼πθ(·|s) [lnπt] +

1
λDϕ(πθ(·|s), πt(·|s)) (36)

with gradient

∇θfq,s(θ) = Ea∼πρ(·|s)

[
−∇θπθ(a|s)

πt(a|s)

]
+τ Ea∼πθ(·|s) [lnπt(a|s)∇θ lnπθ(a|s)] +

∇θ
1
λDϕ(πθ(·|s), πt(·|s))

(37)

where πρ is the percentile greedy policy in πt.

Proof. We first define the loss in policy space, ℓ̃q,s(π)
.
= KL(πρ(· | s) || π(· | s)) =

Ea∼πρ(·|s)[− lnπ(a | s)] + τEa∼π(·|s)[lnπ(a | s)]. Now we differentiate it

∂ℓ̃q,s
∂π(a | s) (π) =

−πρ(a | s)
π(a | s) + τ(lnπ(a | s) + 1) (38)

Taking the inner product with πθ(·|s), we get〈
∂ℓ̃q,s

∂π(a | s) (πt), πθ(·|s)
〉

= Ea∼πρ(·|s)

[
−πθ(a | s)
πt(a | s)

]
+ τEa∼πθ(·|s) [lnπt(a | s)] (39)

where the 1 disappears because Ea∼πθ(·|s)[1] = 1 and we ignore constants. Plugging this into
Equation (4), we get Equation (36). Taking the gradient is straightforward. Using the log-likelihood
trick we get:

∇θ

[
Ea∼πρ(·|s)

[
−πθ(a | s)
πt(a | s)

]
+ τEa∼πθ(·|s) [lnπt]

]
=

Ea∼πρ(·|s)

[
−∇θπθ(a | s)

πt(a | s)

]
+ τEa∼πθ(·|s) [lnπt(a | s)∇θ lnπθ(a | s)]



Reinforcement Learning Journal 2025

Corollary 2. On time step t with current action-values q and policy πt, the surrogate objective for
Greedy Actor-Critic with a mode-seeking KL, namelyDϕ(πθ(·|s), πt(·|s)) = KL(πθ(·|s) || πt(·|s)),
is

fq,sθ = −Ea∼πρ(·|s)

[
πθ(a | s)
πt(a | s)

]
+ Ea∼πθ

[(
τ − 1

λ

)
ln(πt(a | s)) + 1

λ lnπθ(a | s)
]

(40)

with gradient

∇θfq,sθ =− Ea∼πρ(·|s)

[∇θπθ(a | s)
πt(a | s)

]
+ Ea∼πθ

[( (
τ − 1

λ

)
ln(πt(a | s)) + 1

λ lnπθ(a | s)
)
∇θ lnπθ(a | s)

] (41)

Proof. We simply need to plug-inDϕ(πθ(·|s), πt(·|s)) = KL(πθ(·|s) || πt(·|s)) into Equation (36).
We have

1
λKL(πθ(·|s) || πt(·|s)) = 1

λEa∼πθ(·|s) [lnπθ(a|s)− lnπt(a|s)]

Combining this − 1
λ lnπt(a|s) with the τ lnπt(a|s) term from the main loss, we get Equation (40).

The gradient is a straightforward calculation. Differentiating Equation (40) and using the log-
likelihood trick with Lemma 1, yields the above gradient.

Now let us consider the case where we have a softmax parameterization, πθ(a | s) ∝ exp(zθ(a, s)).
Our network outputs zθ(a, s), and we consider the functional space over z instead.

Proposition 5. Assume we have a finite number of actions, | A |, and use a softmax policy param-
eterization, πθ(a|s) = exp(zθ(a,s))∑|A|

j=1 exp(zθ(a,s))
. On time step t with current action-values q and policy πt

and logits zt, the surrogate objective for Greedy Actor-Critic with the log-sum-exp mirror map is

fq,s(θ) = Eπt

[
(ςπτ

t
− 1

λ ) lnπθ(a | s)
]

(42)

with gradient
∇θfq,s(θ) = Eπt

[
(ςπτ

t
− 1

λ )∇θ lnπθ(a | s)
]

(43)

where ςπτ (a,s) =
−πρ(a|s)
π(a|s) + 1 + τ lnπ(a | s) + τH(π(· | s))

Proof. Letting ℓ̃q,s(π) equal that defined in the proof of Proposition 4, we can use the chain rule to
get the partial derivatives in terms of the logits z(a, s) instead.

∂ℓ̃q,s
∂z(a, s)

=

|A|∑
j=1

∂ℓ̃q,s
∂π(j | s)

∂π(j | s)
∂z(a, s)

=

|A|∑
j=1

([−πρ(j | s)
π(j | s)

]
+ τ(lnπ(j | s) + 1)

)
∂π(j | s)
∂z(a, s)

Similarly to Proposition 3, we can compute the second term considering two cases. Let c(s) =∑|A|
j=1 exp(zθ(j, s)), with π(a|s) = exp(z(a, s))/c(s). If a ̸= j, then we have

∂π(j | s)
∂z(a, s)

= − exp(z(j, s))c(s)−2 exp(z(a, s)) = −π(j | s)π(a | s)

If a = j, then we have

∂π(a | s)
∂z(a, s)

= exp(z(a, s))/c(s)− exp(z(a, s))c(s)−2 exp(z(a, s)) = π(a | s)(1− π(a | s))



Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

Plugging this in above, we get that

|A|∑
j=1

∂ℓ̃q,s
∂π(j | s)

∂π(j | s)
∂z(a, s)

=π(a | s)
(−πρ(a | s)

π(a | s) + τ(lnπ(a | s) + 1)

)
−

π(a | s)
|A|∑
j=1

(−πρ(j | s)
π(j | s) + τ(lnπ(j | s) + 1)

)
π(j | s)

(44)

Notice that
|A|∑
j=1

(−πρ(j | s)
π(j | s) + τ(lnπ(j | s) + 1)

)
π(j | s) = −1− τH(π) + τ

and so finally we get that

(44) = π(a | s)ςπτ (a,s) for ςπτ (a,s)
.
=
−πρ(a | s)
π(a | s) + 1 + τ lnπ(a | s) + τH(π(· | s))

where πρ is the percentile greedy policy in π. Taking the inner product with zθ(·|s), we get〈
∂ℓ̃q,s
∂z(·, s) (zt), zθ(·, s)

〉
= Ea∼πt(·|s)

[
ςπτ

t (a,s)
zθ(a, s)

]
= Ea∼πt(·|s)

ςπτ
t (a,s)

zθ(a, s)− |A|∑
j=1

exp(zθ(j, s))


= Ea∼πt(·|s)

[
ςπτ

t (a,s)
lnπθ(a|s)

]
where the second line follows from the fact that Ea∼πt(·|s)[ςπτ

t (a,s)
] = 0 and so we can shift the

values of zθ(·, s) without changing the expectation.

Finally, with a logsumexp mirror map, Lemma 2 shows that Dϕ(z
π, zπt) = KL(π || π), and so we

get our surrogate objective

fq,s(θ) = Ea∼πt(·|s)
[
ςπτ

t (a,s)
lnπθ(a|s)

]
+ 1

λKL(πt(·|s) || πθ(·|s))
= Ea∼πt(·|s)

[
ςπτ

t (a,s)
lnπθ(a|s) + 1

λ ln(πt(a | s))− 1
λ ln(πθ(a | s))

]
= Ea∼πt(·|s)

[
(ςπτ

t (a,s)
− 1

λ ) lnπθ(a|s)
]

The gradient is simple to compute, because we are sampling from πt,

∇fq,s(θ) = Ea∼πt(·|s)
[
(ςπτ

t (a,s)
− 1

λ )∇ lnπθ(a|s)
]

8.4 Functional Mirror Descent for Maximum A-Posteriori Policy Optimization

In this section, we provide additional proofs for Mirror Descent Maximum A-Posteriori Policy Op-
timization not included in the main text.

MPO minimizes a mode-seeking KL between πθ and πKL:

ℓq,s(θ) = KL(πKL || πθ(·|s)) = −Ea∼π(·|s)

[
exp

(
q(s, a)

κ

)
lnπθ(a | s)

]
+ constant

where πKL(a | s) ∝ π(a | s) exp
(
q(s, a)

κ

)
for some π, typically the previously learned policy πθt

. The constant is typically dropped. We
can incorporate entropy regularization by subtracting τ Eπθ

[lnπθ(a | s)] to the objective above, for
entropy scale τ .



Reinforcement Learning Journal 2025

Proposition 6. On time step t with current action-values q and policy πt, the surrogate objective for
Maximum A-Posteriori Policy Optimization with a direct functional representation and any Bregman
divergence Dϕ, is

fq,s(θ) = Ea∼πθ(·|s)

[
− exp

(
q(s, a)

κ

)
+ τ lnπt(a|s)

]
+ 1

λDϕ(πθ(·|s), πt(·|s)) (45)

gradient

∇θfq,s(θ) = Ea∼πθ(·|s)

[(
− exp

(
q(s, a)

κ

)
+ τ lnπt(a|s)

)
∇θ lnπθ(a|s)

]
+ 1

λDϕ(πθ(·|s), πt(·|s))
(46)

Proof. The proof is a straightforward extension of the proof for Proposition 4, replacing the per-
centile policy in πt, πρ, with the KL policy in πt, πKL. Following the exact same steps, we get

Ea∼πKL(·|s)

[
−πθ(a | s)
πt(a | s)

]
+ τEa∼πθ(·|s) [lnπt] +

1
λDϕ(πθ(·|s), πt(·|s)) (47)

Evaluating the expectation in the first term, we get

Ea∼πKL(·|s)

[
−πθ(a | s)
πt(a | s)

]
= Ea∼πθ

[
− exp

(
q(s, a)

κ

)]
Substituting this back into Equation (47) and combining terms results exactly in Equation (45).

The gradient is once again a simple calculation which involves using the log-likelihood trick to
derive the gradient of the expectation in Equation (45).

Corollary 3. On time step t with current action-values q and policy πt, the surrogate objective for
Maximum A-Posteriori Policy Optimization with a mode-seeking KL, namelyDϕ(πθ(·|s), πt(·|s)) =
KL(πθ(·|s) || πt(·|s)), is

fq,s(θ) = Ea∼πθ

[
− exp

(
q(s, a)

κ

)
+
(
τ − 1

λ

)
ln(πt(a | s)) + 1

λ lnπθ(a | s)
]

(48)

with gradient

∇θfq,s(θ) = Ea∼πθ

[(
− exp

(
q(s, a)

κ

)
+ (τ − 1

λ ) ln(πt(a | s))+ 1
λ lnπθ(a | s)

)
∇θ lnπθ(a | s)

] (49)

Proof. We simply need to plug-inDϕ(πθ(·|s), πt(·|s)) = KL(πθ(·|s) || πt(·|s)) into Equation (45),
re-arrange, and combine terms to get Equation (48).

Using the log-likelihood trick with Lemma 1, yields the gradient.

Now let us consider the case where we have a softmax parameterization, πθ(a | s) ∝ exp(zθ(a, s)).
Our network outputs zθ(a, s), and we consider the functional space over z instead.

Proposition 7. Assume we have a finite number of actions, | A |, and use a softmax policy param-
eterization, πθ(a|s) = exp(zθ(a,s))∑|A|

j=1 exp(zθ(a,s))
. On time step t with current action-values q and policy

πt and logits zt, the surrogate objective for Maximum A-Posteriori Policy Optimisastion with the
log-sum-exp mirror map is

fq,s(θ) = Ea∼πt(·|s)
[
(ςπτ

t (a,s)
− 1

λ ) lnπθ(a|s)
]

(50)



Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

with gradient
∇fq,s(θ) = Ea∼πt(·|s)

[
(ςπτ

t (a,s)
− 1

λ )∇ lnπθ(a|s)
]

(51)

where

ςπτ (a,s) = − exp

(
q(s, a)

κ

)
+ 1 + τ lnπ(a | s) + τH(π(· | s))

Proof. Similarly to Proposition 4, this proof is a straightforward extension of the corresponding
proof for GreedyAC in Proposition 5. We simply replace the percentile policy in πt, πρ, with the
KL policy in πt, πKL. Following the exact same steps, we get

fq,s(θ) = Eπt

[
(ςπτ

t
− 1

λ ) lnπθ(a | s)
]

where ςπτ
t (a,s)

= −πKL(a|s)
πt(a|s) + 1 + τ lnπt(a | s) + τH(πt(· | s)). But notice that

−πKL(a | s)
πt(a | s)

= − exp

(
q(s, a)

κ

)
(52)

Substituting this into the equation for ςπτ
t (a,s)

results in the surrogate above.

The gradient is a straightforward computation, since sampling is performed according to πt:

∇fq,s(θ) = Ea∼πt(·|s)
[
(ςπτ

t (a,s)
− 1

λ )∇ lnπθ(a|s)
]

9 Closed Form Mirror Descent Updates on the Simplex

In this section, we discuss closed-form mirror descent updates on the probability simplex. Such
a case is possible when policies are tabular, a setting we will further empirically consider in Ap-
pendix 10.4.

Algorithm 1: Closed-Form Mirror Descent for Policy Im-
provement
input : mirror map ϕ : D ⊆ Rn → R, policy πi, λ > 0,

st ∈ S

xi ← πi(·|st)
x̂i ← ∇ϕ(xi)= ln(xi) + 1
ŷi+1 ← x̂i − λgi // For gradient gi
yi+1 ← ∇ϕ∗= eŷi+1−1

xi+1 ← ΠS|A|

ϕ (yi+1) =

argmin x∈S|A|∩D(x,yi+1)=
yi+1

∥yi+1∥1

πi+1(· | st)← xi+1

The general framework for
utilizing closed-form MD up-
dates with stepsize λ > 0
is outlined in Algorithm 1.
In blue, we show the update
equations for the negative en-
tropy mirror map and simplex
policies.

We will use the following
notations. Let M(i, j) =
M (j,i) be the element of M ∈
Rm×n at row j and column i.
Define M(i, ·) = M (·,i) ∈
Rn as the vector composed
of the i-th column of M and
M(·, j) = M (j,·)⊤ as the column vector composed of the j-th row of M . The indicator matrix
for (s, a), denoted as 1(s, a) ∈ R|A|×|S|, is the matrix of zeros everywhere and a 1 at 1(a,s). The
indicator matrix for column s, denoted as 1(s, ·) ∈ R|A|×|S|, is the matrix of zeros everywhere and
a column of 1 at 1(·,s).

Let M ⊂ R|A|×|S| denote the space of probability matrices. Similarly to the previous sections, let
Sn be the simplex in Rn, S be the state space and A the action space. For S ∈ M, each column
has the simplex restriction, namely that S(j,i) ∈ [0, 1] and 1⊤S(i, ·) = 1 for i ≤ | A | ∈ Z,
j ≤ | S | ∈ Z. For policy πθ parameterized by θ ∈ M, πθ(a | s) = θ(a,s) denotes the probability of
selecting action a in state s.



Reinforcement Learning Journal 2025

In Section 10, we analyze the closed-form MD-GreedyAC with RKL algorithm in more depth. For
completeness, we here provide the algorithms for the variants of GreedyAC, SAC, and MPO which
use closed-form MD updates. We omit gradient derivations as each is a simple derivative calculation
for the corresponding algorithm’s loss function with tabular function approximation. We introduce
all algorithms with entropy regularization for entropy scale hyperparameter τ .

Mirror Descent Greedy Actor-Critic Let q be an action-value function estimate. Closed-Form
Mirror Descent Greedy Actor-Critic with an RKL penalty (CMD-GreedyAC with RKL) on the sim-
plex is exactly Algorithm 1 with the following gradient in state s ∈ S:

g = τ ln(θ(s, ·))− 1(s, a∗)
1

θ(s, a∗)
for a∗ = argmax

a∈A

q(s, a) (53)

Mirror Descent Soft Actor-Critic Let b : S→ Rn arbitrary and define At(s, a) = q(s, a)−b(s).
A is the advantage estimate of action a in state s when b is an approximation to the policy state-
value function. Closed-Form Mirror Descent Soft Actor-Critic with an RKL penalty (CMD-SAC
with RKL) on the simplex is exactly Algorithm 1 with the gradient:

g = τ ln(θ)−A(s) where A(s) =


A(s, a1)
A(s, a2)

...
A(s, a|A|)

 (54)

in state s ∈ S

Mirror Descent Maximum A-Posteriori Policy Optimisation Let πKL(a | s) be the KL policy
in π as in Section 8. Closed-Form Mirror Descent Maximum A-Posteriori Policy Optimisation with
an RKL penalty (CMD-MPO with RKL) on the simplex is exactly Algorithm 1 with the gradient in
state s ∈ S:

g = τ ln(θ(s, ·))− 1(s, ·)πKL(s, ·)
θ(s, ·) (55)

unlike the version of MPO introduced by Abdolmaleki et al. (2018b), MD-MPO with the negative
entropy mirror map is equivalent to using a KL penalty rather than a constraint.

10 Further Experimental Results

In this section, we provide further empirical analysis of the MD-style algorithms considered.

10.1 Step Size Cliff

In this section, we provide additional details and analysis regarding our experiments in Section 4.2.1.

In our experiments in Section 4.2.1, a few of the extreme step sizes tested resulted in convergence for
SAC, according to our convergence metric mentioned in Section 4.2.1. To determine these outliers,
we used a Local Outlier Factor algorithm from ScikitLearn (Pedregosa et al., 2011) using 30 neigh-
bours and the L2-norm. We conducted the outlier detection based on the features (log(αactor), y)
where αactor was the randomly sampled step size, y = 1 if the sampled αactor resulted in convergence
according to our metric, and y = −1 otherwise.

Figure 6 shows the results of similar experiments to those described in Section 4.2.1, except for
log(λ) ∈ {−2,−1, 1, 2}. Again, we set log(τ) = log(αcritic) = −3 and provide plots for at least
1,500 random seeds. We see a clear trend for MD-SAC with FKL here. As log(λ) increases, fewer
actor step sizes work – the algorithm becomes more susceptible to the step size cliff. Again, we
mention that many of the unsuccessful step sizes in this figure still produced reasonable performance
but did not meet our criterion for convergence. Results for log(τ) = −4 are quantitatively similar,
but fewer points met our convergence criterion.



Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

0

100

200

S
te

p
s

(×
10

00
)

50%

M
D

-S
A

C
/R

K
L

M
D

-S
A

C
/R

K
L

M
D

-S
A

C
/R

K
L

M
D

-S
A

C
/R

K
L

log(λ) = −2

50%

log(λ) = −1

35%

log(λ) = 1

35%

log(λ) = 2

−8 −6 −4 −2 0 2

log(αactor)

0

100

200

S
te

p
s

(×
10

00
)

57%

M
D

-S
A

C
/F

K
L

M
D

-S
A

C
/F

K
L

M
D

-S
A

C
/F

K
L

M
D

-S
A

C
/F

K
L

−8 −6 −4 −2 0 2

log(αactor)

64%

−8 −6 −4 −2 0 2

log(αactor)

45%

−8 −6 −4 −2 0 2

log(αactor)

31%

Met Convergence Criterion Did Not Meet Convergence Criterion

Figure 6: Steps for MD-SAC to learn a near-optimal policy for different log(λ) with RKL (top) and
FKL (bottom) penalties. Each point represents a single agent with a randomly sampled log(αactor) ∈
[−9, 2]. Dashed lines indicate the smallest/largest working step sizes for SAC using outlier detection
as in Figure 3. Inset blue text indicates the percentage of blue points.

10.2 Replay Ratio

Figure 7: Performance vs replay ratio
over 60 runs with discrete-actions.

In this section, we present additional results for our re-
play ratio analysis in the discrete-action. All experiments
follow the same setup as in Section 4.2.3.

Figure 7 shows the sensitivity of each algorithm to the ac-
tor replay ratio in the discrete-action setting, across clas-
sic control problems. Similarly to the continuous-action
results presented in Section 4.2.3, we found no consis-
tent relationship between replay ratio and performance.
Again, MD-style algorithms did not consistently benefit
from increased number of actor updates. Instead, often
increasing the number of actor updates per environment
step was detrimental to performance – as in the case of
MPO.

10.3 Return Landscape for Mirror Descent Hyperparameters

The hyperparameters λ and M determine both the step size of the MD update and the degree to
which the MD objective is approximated, where an increasing M indicates a better approximate
solution to the MD objective, with appropriately chosen actor step size. We were interested in
determining if and how these hyperparameters affect the performance of algorithms.

We therefore analyzed the return landscape as a function of (λ,M) across two domains, the tabular
Cliffworld environment (Sutton & Barto, 2018) and discrete-action Acrobot. We chose Acrobot
because each algorithm could learn well on it, but it is not as easy as Pendulum and not as hard as
MountainCar. On Cliffworld, we used tabular function approximation, while for Acrobot we used
neural networks. We used the MD algorithms developed in the main text: on Cliffworld, we did
not use the tabular, closed-form variants of these algorithms which were developed in Appendix 9.
To analyze the return landscape, we randomly sampled log(λ) ∈ [−5, 5] and M ∈ [3, 500] (M ∈
[3, 250] for Acrobot). We performed all M SGD updates every environment step. We then plotted
scatter plots of (λ,M) with colour denoting average episodic return.



Reinforcement Learning Journal 2025

Figure 9: Scatter plot of randomly sampled (log(λ),M) on Cliffworld for GreedyAC with softmax
policies over 1,500 random seeds. Colour denotes average episodic return on a linear scale. Each
row/column corresponds to a different critic/actor stepsize.

Figure 8: Randomly sampled (log(λ),M) on
Cliffworld for GreedyAC (simplex policies) over
1,500 random seeds. Colour denotes episodic
return on a linear scale. Rows/columns denote
critic/actor stepsizes.

We used GreedyAC which we found to be
the least sensitive algorithm to hyperparame-
ters. The entropy scale was fixed to 0. For
Acrobot, all hyperparameters and experimental
details followed those outlined in Setion 4. For
the tabular Cliffworld environment, We swept
critic step sizes αcritic ∈ {−1,−2,−3} and
actor step sizes αactor = 10ςactor × αcritic with
ςactor ∈ {−2,−1, 0}. On Cliffworld, we used
both tabular softmax policies (MD-GreedyAC
with FKL and with RKL) and tabular simplex
policies (MD-GreedyAC with RKL). Experi-
ments were run for 25,000 steps.

We will first consider the tabular experiment
on Cliffworld. Figure 8 shows a scatter plot
of 1,500 random (log(λ),M) pairs for simplex
policies with an RKL penalty on Cliffworld.
Colour denotes episodic return on a linear scale.
The figure indicates that for simplex policies,
performance was primarily influenced by ac-
tor/critic stepsizes rather than λ and M . Fur-
thermore, we found that minuscule (αactor = 10−5) actor step sizes generally required larger M , as
expected, but did not often result in higher return.

Figure 9 shows scatter plots of 1,500 randomly sampled (log(λ),M) pairs for RKL (left) and FKL
(right) penalties and softmax policies on Cliffworld. Compared to simplex policies, softmax policies
induced higher sensitivity to (log(λ),M), indicating that policy parameterization affects sensitivity.
We explicitly point out the difference in scales in the colour bars in Figures 8 and 9, which makes
this relationship quite clear. On the other hand, we observed that with minuscule actor step sizes
(αactor = 10−5), the softmax policy parameterization tended to work better than the simplex policy
parameterization. Again we note that larger values of M tended to result in higher return in this
case. An FKL penalty induced lower sensitivity to (log(λ),M) compared to the RKL penalty in the
softmax case. Softmax policy parameterizations seemed to be more sensitive to the actor and critic
stepsizes than to either λ or M .



Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

Figure 10: Scatter plot of randomly sampled (log(λ),M) on Acrobot for GreedyAC with softmax
policies and neural networks over 750 random seeds. Colours denote average episodic return. Each
row/column corresponds to a different critic/actor stepsize.

Overall, we found low sensitivity to λ and M in the tabular case on Cliffworld. It is worth noting
that for a well-tuned actor and critic step size, a wide range of values for λ and M induced similar
performance. This could indicate that the MD objective is quite easy to solve on this problem or
perhaps that the MD objective is difficult to solve, but the environment too easy to show a big
difference in performance across multiple values of M .

Figure 10 shows the corresponding scatter plot of 750 randomly sampled (log(λ),M) pairs on
discrete-action Acrobot with neural networks. Compared to the tabular case, the patterns of perfor-
mance sensitivity with neural networks were much less obvious. In both RKL and FKL cases, we
observed higher sensitivity to λ and M . With an FKL penalty, we found a similar pattern to the tab-
ular case: larger values of λ tended to induce higher performance. Furthermore, we noticed a slight
trend with regards to αactor and M . For large values of M , performance tended to increase with
decreasing αactor, perhaps indicating the benefits of a better approximation to the MD optimization
in Equation 2.

10.4 Noisy Rewards

Previous work has suggested that mirror descent can enhance robustness to reward noise (Vieillard
et al., 2020a; Lazić et al., 2021). We analyzed GreedyAC’s performance in a noisy reward envi-
ronment, focusing on the tabular setting where MD is analytically tractable. We designed a small
MDP where MD updates dramatically improve over conventional ones. Figure 11 (right) shows a
tabular tree MDP where the agent starts at the root and moves to leaf nodes via left or right actions.
Rewards are -10, except for one transition (blue edge) with a reward of -1 (probability 274

275 ) or -100
(probability 1

275 ). The optimal policy (γ = 1) is to always go right. We ran GreedyAC for 25,000
steps, including both the closed-form MD updates developed in Appendix 9 and the approximate
MD updates considered in the main text. In this section, we will refer to MD-GreedyAC with RKL
as the approximate MD update and denote the number of gradient steps made on the surrogate ob-
jective, M , in parentheses. We refer to CMD-GreedyAC with RKL as the closed-from MD variant
with an RKL penalty.

We swept the following hyperparameters and report performance across 50 runs. Critic step
sizes were swept in 2x for x ∈ {−1,−2,−3}. Actor step sizes were swept in 2x for x ∈
{−11,−10, . . . ,−1} for CMD-GreedyAC and standard GreedyAC. For MD-GreedyAC with RKL
we instead swept x ∈ {−11,−9,−7,−5}. For MD-GreedyAC, we also swept λ = 2x for
x ∈ {−15,−14,−13, . . . ,−1}. We tested M ∈ {250, 100, 10}. Simplex policies were initial-



Reinforcement Learning Journal 2025

ized uniformly and used a negative entropy mirror map. We did not use entropy regularization. We
used simplex policies, initialized uniformly, with an RKL penalty for the MD update.

−20
0 2.5

−11

Non-MD

N
on

-M
D

M
D
(1
0)

M
D
(1
00

)

M
D
(2
50

)

C
-M

D

CMD

MD(250)

Update

Timesteps (×10⁴)

A
v
er

a
g
e 

R
et

u
rn

Figure 11: (left) Learning curves on the noisy reward envi-
ronment. (middle) Performance distributions. (right) Envi-
ronment.

GreedyAC is unstable. It ini-
tially learned the optimal policy but
quickly switched to a suboptimal
one. In contrast, MD-GreedyAC with
RKL consistently learned the optimal
policy for a range of values of M –
faster than other update type, shown
in Figure 11 (Left). The closed-form
MD update was less sensitive to hy-
perparameters (Middle) but did not learn as quickly as the approximate MD update. This finding
suggests that the performance improvements of the approximate MD updates noted here may not
completely stem from accurately approximating a closed-form update. Despite significant effort we
could not extend this finding to large environments with function approximation: adding noise and
partial observability to classic control domains did not yield significant advantages for MD updates.

Timesteps (×10⁴)

−20
0 2.5

−11

A
v
er

ag
e 

R
et

u
rn

Update
N
on

-M
D

M
D
(1
0)

M
D
(1
00

)

M
D
(2
50

)

C
-M

D
−20

0 2.5

−11

Non-MD

CMD

MD(250)

A
v
er

a
g
e 

R
et

u
rn

N
on

-M
D

M
D
(1
0)

M
D
(1
00

)

M
D
(2
50

)

C
-M

D

Update

Timesteps (×10⁴)

Figure 12: Learning curves and performance distributions when (left) tuning over lower actor step
sizes and (right) adding entropy regularization. Solid lines denote mean performance over 50 runs
with shaded regions denoting 95% percentile bootstrap confidence intervals.

One could ask how GreedyAC could be improved to match the performance of either MD-GreedyAC
CMD-GreedyAC. Further reducing the actor step size inhibits learning and slows – but does not
prevent – convergence to the suboptimal policy. Figure 12 (left) illustrates this phenomenon for
smaller actor step sizes tuned over the additional values of αactor = 2x for x ∈ {−13,−12}. The
figure shows that while a low actor step size slow convergence to the suboptimal policy, it did not
prevent it. Further reducing the actor step size to 2−15 enabled GreedyAC to learn the optimal
policy across all runs by the experiment’s end, but convergence remained slow, requiring the full
25,000 steps. We conjecture that, if the experiment’s length were extended, GreedyAC would have
eventually collapsed to the suboptimal policy even with this miniscule actor step size of 2−15. The
reason for this collapse is an exploding gradient, and a small, fixed actor step size cannot alone
prevent this.

Entropy regularization enabled GreedyAC to learn the optimal policy. Figure 12 (Right) shows the
learning curves of GreedyAC when tuning the entropy scale τ = 2x for x ∈ {−10,−8, . . . ,−2}. In
this case, GreedyAC benefited from a significant improvement in learning and no longer converged
to the suboptimal policy. Even so, the MD-style updates exhibited improved hyperparameter sensi-
tivity compared to the GreedyAC update. This result perhaps indicates that MD style optimization
induces some form of entropy regularization, as also suggested by results in the literature (Lazić
et al., 2021; Azizan et al., 2022).


