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Summary
Evaluating off-policy decisions using batch data is challenging because of limited sample
sizes which lead to high variance. Identifying and addressing the sources of this variance is
crucial to improve off-policy evaluation in practice. Recent research on Concept Bottleneck
Models (CBMs) shows that using human-explainable concepts can improve predictions and
provide additional context for understanding decisions. In this paper, we propose incorporating
an analogous notion of concepts into OPE to provide additional context that may help us
identify specific areas where variance is high. We introduce a family of new concept-based
OPE estimators and show that these estimators have two key properties when the concepts
are known in advance: they remain unbiased whilst reducing variance of overall estimates.
Since real-world applications often lack predefined concepts, we further develop an end-to-end
algorithm to learn interpretable, concise, and diverse concepts optimized for variance reduction
in OPE. Our experiments on synthetic and real-world datasets show that both known and learnt
concept-based estimators significantly improve OPE performance. Crucially, our concept-based
estimators offer two advantages over existing OPE methods. First, they are easily interpretable.
Second, they allow us to isolate specific concepts contributing to variance. Upon performing
targeted interventions on these concepts, we can further enhance the quality of OPE estimators.

Contribution(s)
1. We introduce a new family of IS estimators based on interpretable concepts. [Section 3]

Context: Previous works perform IS in the state representations, we explicitly define what is
a concept representation and tie the original definition of IS under concepts.

2. We derive theoretical conditions ensuring lower variance compared to existing IS estimators.
[Section 4]
Context: We compare the variance of the Concept-OPE estimators with traditional IS/PDIS
and MIS estimators and devise conditions under which the variance is reduced.

3. We propose an end-to-end algorithm for optimizing parameterized concepts when concepts
are unknown, using OPE characteristics like variance. [Section 5]
Context: Under real-world scenarios, the concepts are typically unknown or hard to define,
which adds to the complexity of performing OPE. In this section, we propose a novel
algorithm which learns concepts that satisfy the desidarata: Explainability, Conciseness,
Diversity while optimizing for variance.

4. We show, through synthetic and real experiments, that our estimators for both known and
unknown concepts outperform existing ones. [Sections 4,5]
Context: None

5. We interpret the learned concepts to explain OPE characteristics and suggest intervention
strategies to further improve OPE estimates. [Section 6]
Context: Interventions have been typically studied in the context of improving the CBM
performance in a supervised learning regime, we instead use interpretations to explain where
a concept-OPE estimator has high variance and intervene to reduce variance.
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Abstract
Evaluating off-policy decisions using batch data is challenging because of limited
sample sizes which lead to high variance. Identifying and addressing the sources of
this variance is crucial to improve off-policy evaluation in practice. Recent research
on Concept Bottleneck Models (CBMs) shows that using human-explainable concepts
can improve predictions and provide additional context for understanding decisions.
In this paper, we propose incorporating an analogous notion of concepts into OPE
to provide additional context that may help us identify specific areas where variance
is high. We introduce a family of new concept-based OPE estimators and show that
these estimators have two key properties when the concepts are known in advance:
they remain unbiased whilst reducing variance of overall estimates. Since real-world
applications often lack predefined concepts, we further develop an end-to-end algorithm
to learn interpretable, concise, and diverse concepts optimized for variance reduction in
OPE. Our experiments on synthetic and real-world datasets show that both known and
learnt concept-based estimators significantly improve OPE performance. Crucially, our
concept-based estimators offer two advantages over existing OPE methods. First, they
are easily interpretable. Second, they allow us to isolate specific concepts contributing
to variance. Upon performing targeted interventions on these concepts, we can further
enhance the quality of OPE estimators.

1 Introduction

In domains like healthcare, education, and public policy, where interacting with the environment can
be risky, prohibitively expensive, or unethical (Sutton & Barto, 2018; Murphy et al., 2001; Mandel
et al., 2014), estimating the value of a policy from batch data before deployment is essential for the
practical application of RL. OPE aims to estimate the effectiveness of a specific policy, known as the
evaluation or target policy, using offline data collected beforehand from a different policy, known
as the behavior policy (e.g., Komorowski et al. (2018a); Precup et al. (2000); Thomas & Brunskill
(2016); Jiang & Li (2016)).

Importance sampling (IS) methods are a popular class of methods for OPE which adjust for distri-
butional mismatches between behavior and target policies by reweighting historical data, yielding
generally unbiased and consistent estimates (Precup et al., 2000). Despite their desirable properties
(Thomas & Brunskill, 2016; Jiang & Li, 2016; Farajtabar et al., 2018), IS methods often face high
variance, especially with limited overlap between behavioral samples and evaluation targets or in
data-scarce conditions. Evaluation policies may outperform behavior policies for specific individuals
or subgroups (Keramati et al., 2021b), making it misleading to rely solely on aggregate policy value
estimates. In practice however, these groups are often unknown, prompting the need for methods to
learn interpretable characterizations of the circumstances where the evaluation policy benefits certain
individuals over others.

In this paper, we propose performing OPE using interpretable concepts (Koh et al., 2020; Madeira
et al., 2023) instead of relying solely on state and action information. We demonstrate that this
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approach offers significant practical benefits for evaluation. These concepts can capture critical
aspects in historical data, such as key transitions in a patient’s treatment or features affecting short-
term outcomes that serve as proxies for long-term results. By learning interpretable concepts from
data, we introduce a new family of concept-based IS estimators that provide more accurate value
estimates and stronger statistical guarantees. Additionally, these estimators allow us to identify which
concepts contribute most to variance in evaluation. When the evaluation is unreliable, we can modify,
intervene on, or remove these high-variance concepts to assess how the resulting evaluation improves
(Marcinkevičs et al., 2024; Madeira et al., 2023).

A physician treating two patients infected with the same virus, with similar disease dynamics focuses
on overall trends rather than precise viral load values when administering treatments. That is, if a
drug lowers one patient’s viral load below a threshold, it may also help the other, whereas it may be
ineffective for a patient with a different disease trajectory. This distinction between a concept — a
generalizable trend, such as viral load reduction — and a state — specific measurements at individual
time points e.g. viral load — is key. Learning concepts that capture these trends, rather than isolated
values, can better guide treatment decisions and evaluation. This idea is illustrated in Fig 1.

Figure 1: Simple example of a state vs concept. In this scenario,
the state is the viral load in a patient’s blood, whereas the concept
is defined as the viral load being above or below a certain threshold
x. The concept divides patients into two groups, in which different
treatments are administered, indicated by the frequency of syringes.
We do evaluation based on these two concepts, rather than the
unique values of the viral loads.

Our work makes the following contri-
butions: i) We introduce a new fam-
ily of IS estimators based on inter-
pretable concepts; ii) We derive theo-
retical conditions ensuring lower vari-
ance compared to existing IS estima-
tors; iii) We propose an end-to-end al-
gorithm for optimizing parameterized
concepts when concepts are unknown,
using OPE characteristics like vari-
ance; iv) We show, through synthetic
and real experiments, that our estima-
tors for both known and unknown con-
cepts outperform existing ones; v) We
interpret the learned concepts to ex-
plain OPE characteristics and suggest
intervention strategies to further im-
prove OPE estimates.

2 Preliminaries

Concept Bottleneck Models Conventional CBMs learn a mapping from some input features
x ∈ Rd to targets y via some interpretable concepts c ∈ Rk based on training data of the form
{xn, cn, yn}Nn=1. This mapping is a composition of a mapping from inputs to concepts, f : Rd → Rk,
and a mapping from concepts to targets, g : Rk → R. These may be trained via independent,
sequential or joint training (Marcinkevičs et al., 2024). Variations which consider learning concepts
in a greedy fashion or in a semi-supervised way include Wu et al. (2022); Havasi et al. (2022).

Markov Decision Processes (MDP). An MDP is defined by a tuple M = (S,A, P,R, γ, T ).
S and A are the state and action spaces, P : S × A → ∆(S) and R : S × A → ∆(R) are
the transition and reward functions, γ ∈ [0, 1] is the discount factor, T ∈ Z+ is the fixed time
horizon. A policy π : S → ∆(A) is a mapping from each state to a probability distribution over
actions in A. A T -step trajectory following policy π is denoted by τ = [(st, at, rt, st+1)]

T
t=1 where

s1 ∼ d1, at ∼ π(st), rt ∼ r(st, at), st+1 ∼ p(st, at). The value function of policy π, denoted by
Vπ : S → R, maps each state to the expected discounted sum of rewards starting from that state
following policy π. That is, Vπ(s) = Eπ[

∑T
t=1 γ

t−1rt|s1 = s].

Off-Policy Evaluation. In OPE, we have a dataset of T -step trajectories D = {τ (n)}Nn=1 inde-
pendently generated by a behaviour policy πb. Our goal is to estimate the value function of another
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evaluation policy, πe. We aim to use D to produce an estimator, V̂πe
, that has low mean squared

error, MSE(Vπe
, V̂πe

) = ED∼P τ
πb
[(Vπe

− V̂πe
)2]. Here, P τ

πb
denotes the distribution of trajectories

τ , under πb, from which D is sampled.

3 Concept-Based Off-Policy Evaluation

The goal of our work is to incorporate the notion of concepts into off-policy evaluation for improved
interpretability and variance reduction. In this section, we formally define the notion of a concept,
outline its desiderata and formally introduce a class of OPE estimators. In subsequent sections, we
discuss how these estimators can be used when a) concepts are known from domain expertise (see
Section 4), and b) concepts are unknown and must be learnt using a parametric representation (see
Section 5).

3.1 Defining a Concept for OPE

Given a dataset D = {τ (n)}Nn=1 of N T -step trajectories, let ϕ : S × A × R × S → C ∈ Rd

denote a function that maps trajectory histories ht to interpretable concepts in d-dimensional concept
space C. This mapping results in the concept vector ct = [c1t , c

2
t , ..., c

d
t ] at time t, defined by ϕ(ht).

These concepts can capture various vital information in the history ht, such as transition dynamics,
short-term rewards, influential states, inter-dependencies in actions across time steps, etc. Without
loss of generality, we consider concepts ct as functions of current state st, however this could be
extended to include historical information. This considers the scenario where concepts capture
important information based on the criticality of the state. The concept function ϕ satisfies the
following desiderata: explainability, conciseness, better trajectory coverage and diversity. A detailed
description of these desiderata is provided in Supplement A.

3.2 Concept-Based Estimators for OPE.

We propose a new class of concept-based OPE estimators, adapting existing non-concept-based
methods to integrate concepts into OPE. Here, we present the results specifically for per-decision
IS and standard IS estimators, as these serve as the foundation for several other estimators. We also
demonstrate in Supplement C how these methods can be extended to other estimators.

Definition 3.1 (Concept-Based Importance Sampling (CIS)).

V̂ CIS
πe

=
1

N

N∑
n=1

ρ
(n)
0:T

T∑
t=0

γtr
(n)
t ; ρ

(n)
0:T =

T∏
t′=0

πc
e(a

(n)
t′ |c

(n)
t′ )

πc
b(a

(n)
t′ |c

(n)
t′ )

Definition 3.2 (Concept-based Per-Decision Importance Sampling, (CPDIS)).

V̂ CPDIS
πe

=
1

N

N∑
n=1

T∑
t=0

γtρ
(n)
0:t r

(n)
t ; ρ

(n)
0:t =

t∏
t′=0

πc
e(a

(n)
t′ |c

(n)
t′ )

πc
b(a

(n)
t′ |c

(n)
t′ )

Concept-based variants of IS replace the traditional IS ratio with one that leverages the concept ct at
time t instead of the state st. This enables customized evaluations for various concept types, such as:
1) subgroups with similar short-term outcomes, 2) cases with comparable state-visitation densities,
and 3) subjects with high-variance transitions. Details on selecting concept types are provided in
Supplement B.

4 Concept-based OPE under Known Concepts

We first consider the scenario where the concepts are known apriori using domain knowledge and
human expertise. These concepts must satisfy the desiderata defined in Supplement A.

4.1 Theoretical Analysis of Known Concepts

In this subsection, we discuss the theoretical guarantees of OPE under known concepts. We make
the completeness assumption where every action of a particular state has a non-zero probability of
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appearing in the batch data. When this assumption is satisfied, we obtain unbiasedness and lower
variance when compared with traditional estimators. Proofs follow in Supplement D.
Assumption 4.1 (Completeness). ∀s ∈ S,a ∈ A, if πb(a|s), πc

b(a|c) > 0 then πe(a|s), πc
e(a|c) > 0.

This assumption states that if an action appears in the batch data with some probability, it also has a
chance of being evaluated with some probability.
Assumption 4.2. ∀s ∈ S, a ∈ A, |πc

e(a|c) − πe(a|s)| < β and |πc
b(a|c) − πb(a|s)| < β. This

assumption states that for all states s, the policies conditioned on concepts are allowed to differ from
the state policies by atmost β, which is defined by the practitioner.

This assumption constrains concept-based policies to be close to state-based policies, with a maximum
allowable difference of β, defined by the practitioner. This is to ensure that the evaluation policy
πc
e under concepts is reflective of the original policy πe. If the practitioner is confident in the

state representation, they may set a lower β to find concepts that align closely with state policies.
Conversely, a higher β allows for more deviation between concept and state policies.
Theorem 4.3 (Bias). Under known-concepts, when assumption 4.1 holds, both V̂ CIS

πe
and V̂ CPDIS

πe

are unbiased estimators of the true value function Vπe .
Theorem 4.4 (Variance comparison with traditional OPE estimators). When Cov(ρc0:trt, ρ

c
0:krk) ≤

Cov(ρ0:trt, ρ0:krk), the variance of known concept-based IS estimators is lower than traditional
estimators, i.e. Vπb

[V̂ CIS ] ≤ Vπb
[V̂ IS ], Vπb

[V̂ CPDIS ] ≤ Vπb
[V̂ PDIS ].

As noted in Jiang & Li (2016), the covariance assumption across timesteps is crucial yet challenging
for OPE variance comparisons. Concepts being interpretable allows a user to design policies which
align with this assumption, thereby reducing variance. We also compare concept-based estimators to
the MIS estimator, the gold standard for minimizing variance via steady-state distribution ratios.
Theorem 4.5 (Variance comparison with MIS estimator). When Cov(ρc0:trt, ρ

c
0:krk) ≤

Cov(d
πe (st,at)

dπb (st,at)
rt,

dπe (sk,ak)
dπb (sk,ak)

rk), the variance of known concept-based IS estimators is lower than

the Variance of MIS estimator, i.e. Vπb
[V̂ CIS ] ≤ Vπb

[V̂MIS ], Vπb
[V̂ CPDIS ] ≤ Vπb

[V̂MIS ].

Finally, we evaluate the CR-bounds on the MSE and quantify the tightness achieved using concepts.
Theorem 4.6 (Confidence bounds for Concept-based estimators). The Cramer-Rao bound on the
Mean-Square Error of CIS and CPDIS estimator under known-concepts is tightened by a factor of
K2T , where K is the ratio of the cardinality of the concept-space and state-space.

With limited samples, certain relevant states are underrepresented in the behavior policy, leading to a
low πb(.|s) and corresponding high IS ratio. However, an alternative state s′ in the data may closely
resemble s (e.g., similar blood pressure values). Thus, even if s is missing, it can be characterized by
s′ through the concept function ϕ(s′), as ϕ(s) ≈ ϕ(s′). Consequently, while πb(.|s) is low, πc

b(.|s) is
higher, as s is effectively represented via s′. This reduces the IS ratio in concept space and tightens
the overall bounds.

4.2 Experimental Setup and Metrics

Environments: We consider a synthetic domain: WindyGridworld and the real world MIMIC-III
dataset for acutely hypotensive ICU patients as our experiment domains for the rest of the paper.

WindyGridworld: The goal is to reach the top-right corner of the grid. The states are defined by
the 2D co-ordinates, and actions are directions up, down, left, right. We (as human experts) define
a concept ct = ϕ(distance to target,wind) as a function of the distance to the target and the wind
acting on the agent at a given state. This concept can take 25 unique values, ranging from 0 to 24.
For example: ct = 0 when distance to target ∈ [15, 19] × [15, 19] and wind = [0, 0]. The first and
second co-ordinates represent the horizontal and vertical features respectively. Detailed description
of known concepts in Supplement G. All experiments conducted over 20 seeds.

MIMIC: The goal is to treat and manage hypotensive patients. The state space consists of the physio-
logical quantities of the patient while actions correspond to quantities of IV-fluids and vasopressors.
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Concepts ct ∈ Z15 are a function of 15 different vital signs (interpretable features) of a patient
at a given timestep. The vital signs considered are: Creatinine, FiO2, Lactate, Partial Pressure of
Oxygen (PaO2), Partial Pressure of CO2, Urine Output, GCS score, and electrolytes such as Calcium,
Chloride, Glucose, HCO3, Magnesium, Potassium, Sodium, and SpO2. Each vital sign is binned into
10 discrete levels, ranging from 0 (very low) to 9 (very high). Experiments conducted over 20 seeds.

For example, a patient with the concept representation [0, 2, 1, 1, 2, 0, 9, 5, 2, 0, 6, 2, 1, 5, 9] shows
the following conditions: acute kidney injury-AKI (very low creatinine), severe hypoxemia (very low
PaO2), metabolic alkalosis (very high SpO2), and critical electrolyte imbalances (low potassium and
magnesium), along with severe hypoglycemia. The normal GCS score indicates preserved neurologi-
cal function, but over-oxygenation and potential respiratory failure are likely. The combination of
anuria, AKI, and hypoglycemia points strongly toward hypotension or shock as underlying causes.

Policy descriptions: In the case of WindyGridworld, we run a PPO Schulman et al. (2017) algorithm
for 10k epochs and consider the evaluation policy πe as the policy at epoch 10k, while the behavior
policy πb is taken as the policy at epoch 5k. For the MIMIC case, we generate the behavior
policy πb by running an Approximate Nearest Neighbors algorithm with 200 neighbors, using
Manhattan distance as the distance metric. The evaluation policy πe involves a more aggressive use
of vasopressors (10% more) compared to the behavior policy. See Supplement F for further details.

Metrics: In the case of the synthetic domain, we measure bias, variance, MSE, and the effective
sample size (ESS) to assess the quality of our concept-based OPE estimates. The ESS is defined as

N × Vπe [V̂
on−policy
πe

]

Vπb
[V̂πe ]

, where N is the number of trajectories in the off-policy data, and V̂ on−policy
πe

and V̂πe are the on-policy and OPE estimates of the value function, respectively. For MIMIC, where
the true on-policy estimate is unknown due to the unknown transition dynamics and environment
model, we only consider variance as the metric. Additionally, we compare the Inverse Propensity
scores (IPS) under concepts and states to better underscore the reasons for variance reduction.

4.3 Results and Discussion
Good concept-based estimators demonstrate reduced variance, improved ESS, and lower MSE
compared to traditional estimators, although they come with slightly higher bias. Fig 2
compares known-concept and traditional OPE estimators. We observe a consistent reduction in
variance and an increase in ESS across all sample sizes for the concept-based estimators. Although
our theoretical analysis suggests that known-concept estimators are unbiased in the asymptotic case,
practical results indicate some bias due to finite sample size. While unbiased estimates are generally
preferred, they can lead to higher errors when the behavior policy does not cover all states. This
issue is especially pronounced in limited data settings, which are common in medical applications.
Despite this bias-variance trade-off, the MSE for concept-based OPE estimators shows a 1-2 order
of magnitude improvement over traditional estimators due to significant variance reduction. In the
real-world MIMIC example, concept-based estimators exhibit a variance reduction of one order of
magnitude compared to traditional OPE estimators. This shows that characterizing diverse states,
such as varying grid world positions or patient vital signs, in terms of shared concepts based on
common attributes, improves OPE characterization.

The frequency of higher IPS scores is reduced in good concepts compared to states. Fig 2c
compares IPS scores in good concept and state estimators. We observe, the frequency of lower IPS
scores is higher under concepts as opposed to states. This indicates the source of variance reduction
in Concept-based OPE lies in the lowering of the IPS scores, which is also backed theoretically in
Theorem 4.4 when the rewards rt equal 1.

Imperfect concepts baseline: While known concepts display superior OPE performance, in real
world scenarios, concepts are often poorly described. We thus, perform an experiment where the
concepts known but poor and study the resulting OPE performance. For Windygridworld, we define
concepts as functions solely of the horizontal distance to the target. This approach neglects critical
information such as vertical distance to the target, wind effects, and region penalties. As a result,
these concepts violate one of the primary desiderata: diversity. By capturing only one important
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(a) Windy Gridworld: Known Concepts

(b) MIMIC: Known Concepts (c) IPS frequency comparison

Figure 2: Known Concepts. (a) Windy Gridworld: Concept-based estimators with good concepts have lower
variance and MSE, and higher ESS compared to traditional OPE estimators, with a higher bias. For poor
concepts, we observe the OPE performance to be poor across all metrics compared to traditional estimators. (b)
MIMIC: Good Concept-based estimators have lower variance compared to traditional OPE estimators, while poor
concepts have higher variance. (c) Under good concepts, the frequency of high IPS scores is lower compared to
traditional estimators, whereas for poor concepts, the frequency is higher across both domains. This indicates
the source of variance reduction in good concept estimators lies in the lowered IPS scores.

concept dimension while disregarding others, these poor concepts fail to represent the full complexity
of the environment.

Poor concepts exhibit inferior OPE characteristics across all metrics. From fig 2a and 2b, we
observe that poor concepts exhibit higher bias, variance, and MSE, along with lower ESS, compared
to traditional OPE estimators. Additionally, fig 2c shows an increased frequency of high IPS scores
for poor concepts. This demonstrates that not all concept-based estimators improve performance;
their quality is crucial and depends on the desiderata they satisfy. It also underscores the need for an
algorithm that learns concepts with favorable OPE characteristics, particularly in complex domains or
scenarios with imperfect experts. We explore this in the next section. Nonetheless, poor concepts still
allow for interventions, as their impact on OPE metrics can be systematically analyzed and addressed.

5 Concept-based OPE under Unknown Concepts

While domain knowledge and predefined concepts can enhance OPE, in real-world situations concepts
are typically unknown. In this section, we address cases where concepts are unknown and must be
estimated. We learn a parametric representation of concepts via CBMs, which initially may not meet
the required desiderata. This section introduces a methodology to optimize parameterized concepts
to meet explicitly these desiderata, alongside improving OPE metrics like variance.

Learning concepts that characterize relevant trajectory information. Algorithm 1 outlines the
training methodology. We split the batch of trajectoriesD into training trajectories Ttrain and evaluation
trajectories TOPE, with the evaluation policy πe, the behavior policy πb, and an OPE estimator (e.g.
CIS/CPDIS) known beforehand. We aim to learn our concepts using a CBM parameterized by θ. The
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Algorithm 1 Unknown Concept-based Off Policy Evaluation

Require: Trajectories {Ttrain,TOPE}, Policies {πe, πb}, OPE Estimator.
Ensure: CBM θ, concept policies π̃c {θb, θe}

Loss terms: {Loutput, Linterpretability, Ldiversity, LOPE-metric, Lpolicy}= 0
1: while Not Converged do
2: for trajectory in Ttrain do
3: for (s, a, r, s′, o) in trajectory do ▷ Choices for o: s′ (Next state) / r (Next reward)

4: c′, o′ ← CBM(s) ▷ CBM predicts concept c′ and output label o′

5: Loutput += Coutput(o, o
′) ▷ Eg: MSE/Cross-entropy between true next state and predicted next state

6: Linterpretability += Cinterpretability(c
′) ▷ Eg: L1-loss over weights

7: Ldiversity += Cdiversity(c
′) ▷ Eg: Cosine distance between sub-concepts

8: Lpolicy += Cpolicy(c
′) ▷ Eg: MSE/Cross-entropy between predicted logits and true logits in Assn 4.2

9: end for
10: end for
11: Returns← Estimator(Ttrain, πe, πb,CBM) ▷ Eg: CIS/CPDIS

12: Loss(θ, θb, θe) = Loutput + Linterpretability + Ldiversity + COPE-metric(Returns) ▷ Eg: Variance

13: Gradient Descent on {θ, θb, θe} using Loss(θ, θb, θe)
14: end while
15: Return Concept OPE Returns← OPE Estimator(TOPE, πe, πb, CBM)

CBM maps states to outputs through an intermediary concept layer. In this work, the output o is the
next state, indicating that the bottleneck concepts capture transition dynamics. Other possible outputs
could include short-term rewards, long-term returns, or any user-defined information of interest
present in the batch data. In addition to learning concepts, we also learn parameterized concept
policies π̃c which maps concepts to actions parameterized by θb, θe for πb, πe respectively.

Optimizing concepts for variance reduction in OPE. For each transition tuple (s, a, r, s′), the
CBM computes a concept vector c′ and an output o′. Since the concepts are initially unknown, they
do not inherently satisfy the concept desiderata and must be learned through constraints. Lines 5-7
impose soft constraints on the concepts to meet these desiderata using loss functions. The losses
are updated based on output, interpretability, and diversity, with MSE used for Coutput, L1 loss for
Cinterpretability, and cosine distance for Cdiversity. In Line 8, we constrain the difference between the
concept policies and the original policies to satisfy Assumption 4.2. For our experiments, we take
maximum allowable difference β = 0, however a user can choose a different value to allow for
more deviation in the concept policies π̃c and original policies π. In line 11, we evaluate the OPE
estimator’s returns based on the concepts at the current iteration with metrics like variance. The
aggregate loss, Loss(θ), guides gradient descent on CBM parameters θ. Finally, the OPE estimator
is applied to TOPE using learned concepts, yielding concept-based OPE returns. The COPE−metric

reflects an OPE criteria (e.g. Variance reduction) which we are trying to optimise directly via gradient
descent. Integrating multiple competing loss components makes this problem complex, and, to our
knowledge, this is the first approach that incorporates the OPE metric directly into the loss function.

5.1 Theoretical Analysis of Unknown Concepts

The theoretical implications mainly differ in the bias, consequently MSE and their Confidence bounds
on moving from known to unknown concepts, as analyzed below. Proofs are listed in Supplement E.

Theorem 5.1 (Bias). Under Assumptions 4.1, 4.2, the unknown concept-based estimators are biased.
The change of measure theorem from probability distributions πb to πc

b is not applicable on moving
from known to unknown concepts, leading to bias. In the special case where πc

b(.|ct) = πb(.|st), the
estimator is unbiased.

Theorem 5.2 (Variance comparison with traditional OPE estimators). Under Assumption 4.2, when
Cov(ρc0:trt, ρ

c
0:krk) ≤ Cov(ρ0:trt, ρ0:krk), the variance of concept-based IS estimators is lower

than the traditional estimators, i.e. Vπb
[V̂ CIS ] ≤ Vπb

[V̂ IS ], Vπb
[V̂ CPDIS ] ≤ Vπb

[V̂ PDIS ].
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(a) Windy Gridworld: Learned Concepts

(b) MIMIC: Learned Concepts (c) IPS frequency comparison

Figure 3: Learned Concepts. (a-b) Windy Gridworld and MIMIC: In both environments, we see a reduction in
variance in learned concepts compared to both traditional and known concept estimators, at a cost of higher bias.
(c) The frequency of high IPS scores is lower for learned concepts compared to traditional and known concept
estimators. This indicates our proposed algorithm learns alternative concepts which further reduce variance.

Theorem 5.3 (Variance comparison with MIS estimator). Under Assumption 4.2, when
Cov(ρc0:trt, ρ

c
0:krk) ≤ Cov(d

πe (st,at)
dπb (st,at)

rt,
dπe (sk,ak)
dπb (sk,ak)

rk), like known concepts, the variance is lower

than the Variance of MIS estimator, i.e. Vπb
[V̂ CIS ] ≤ Vπb

[V̂MIS ], Vπb
[V̂ CPDIS ] ≤ Vπb

[V̂MIS ].

Similar to known concepts, when the covariance assumption is satisfied, even unknown concept-based
estimators can provide lower variances than traditional and MIS estimators. In known concepts
however, this assumption has to be satisfied by the practitioner, whereas in unknown concepts, this
assumption can be used as a loss function in our methodology to implicitly reduce variance. (Line 12)

Theorem 5.4 (Confidence bounds for Concept-based estimators). The Cramer-Rao bound on the
Mean-Square Error of CIS and CPDIS estimator loosen by ϵ(|Eπc

e
[V̂πe ]|2), under unknown concepts

over known-concepts. Here, Eπc
e
[V̂πe ] is the on-policy estimate of concept-based IS (PDIS) estimator.

The confidence bounds of unknown concepts mirror that of known-concepts, with the addition of
the bias term whose maximum value is the true on-policy estimate of the estimator. This is typically
unknown in real-world scenarios and requires additional domain knowledge to mitigate.

5.2 Experimental setup

Environments, Policy descriptions, Metrics: Same as those in known concepts section.

Concept representation: In both examples, we use a 4-dimensional concept ct ∈ R4, where each
sub-concept is a linear weighted function of human-interpretable features f , i.e., cit = w · f(st), with
w optimized as previously discussed. Detailed descriptions of the features and optimized concepts
after CBM training are provided in Supplement H. For MIMIC, features f are normalized vital signs,
as threshold information for discretization is unavailable. In brevity of space, we move the training
and hyperparameter details to Supplement G.
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5.3 Results and Discussion

Learned concepts using Algorithm 1 yield improvements across all metrics except bias compared
to traditional OPE estimators. Significant improvements in variance, MSE, and ESS are observed
for the Windy Gridworld and MIMIC datasets, with gains of 1-2 and 2-3 orders of magnitude,
respectively. This improvement is due to our algorithm’s ability to identify concepts that satisfy the
desiderata, including achieving variance reduction as specified in line 12 of the algorithm. However,
like known concepts, optimized concepts show a higher bias than traditional estimators. This is
because, unlike variance, bias cannot be optimized in the loss function without the true on-policy
estimate, which is typically unavailable in real-world settings. As a result, external information may
be essential for further bias reduction.

Learned concepts yield improvements across all metrics besides bias over
known concept estimators. From Fig 3a,3b, we observe that our methodology improves
variance, MSE, and ESS by 1–2 orders of magnitude compared to known concepts. This suggests our
algorithm can learn concepts that outperform human-defined ones in OPE metrics. Fig 3c further
supports this, showing a lower frequency of high IPS scores for learned concepts than for known
ones. This indicates our algorithm discovers novel concepts that satisfy concept desiderata in Section
A while enhancing OPE characteristics, particularly variance. Such capability is valuable in domains
with imperfect experts or complex real-world settings where perfect expertise is unattainable.
However, these learned concepts introduce higher bias, as the training algorithm prioritizes variance
reduction over bias minimization. This could be mitigated by regularizing variance during training.

Learned concepts are interpretable, show conciseness and diversity. We list the optimized
concepts in Supplement H. These concepts exhibit sparse weights, enhancing their conciseness,
with significant variation in weights across different dimensions of the concepts, reflecting diversity.
This work focuses on linearly varying concepts, but more complex concepts, such as symbolic
representations (Majumdar et al., 2023), could better model intricate environments.

6 Interventions on Concepts for Insights on Evaluation
Concepts provide interpretations, allowing practitioners to identify sources of variance—an advantage
over traditional state abstractions like Pavse & Hanna (2022a). Concepts also clarify reasons behind
OPE characteristics, such as high variance, enabling corrective interventions based on domain
knowledge or human evaluation. We outline the details of performing interventions next.

6.1 Methodology
Given trajectory history ht and concept ct, we define cintt as the intervention (alternative) concept
an expert proposes at time t. We define criteria κ : (ht, ct)→ {0, 1} as a function constructed from
domain expertise that takes in (ht, ct) as input and outputs a boolean value. This criteria function
determines whether an intervention needs to be conducted over the current concept ct or not. For e.g.,
if a practitioner has access to true on-policy values, he/she can estimate which concepts suffer from
bias. If a concept doesn’t suffer from bias, the criteria κ(ht, ct) = 1 is satisfied and the concept is not
intervened upon, else κ(ht, ct) = 0 and the intervened concept cint

t is used instead. The final concept
c̃t is then defined as: c̃t = κ(ht, ct) · ct + (1− κ(ht, ct)) · cint

t . Under the absence of true on-policy
values, the practitioner may chose to intervene using a different criteria instead.

We define criteria κ for our experiments as follows. In gridworld, we assume access to oracle concepts,
listed in Supp. Material G. When the learned concept ct matches the true concept, κ(ht, ct) = 1,
otherwise 0. In MIMIC, the interventions are based on a patient’s urine output at a specific timestep
with κ(ht, ct) = 1 when urine output > 30 ml/hr, and 0 otherwise. Performing interventions based
on urine output enables us to assess the role of kidney function in hypotension management. In this
work, we consider 3 possible intervention strategies either based on states or domain knowledge.

Interventions that replace concepts with state representations and state-based policies. We intervene
on the concept with the state and use policies dependent on state to perform OPE, i.e cint

t = st,
πc
e(at|c̃t) = πe(at|st), πc

b(at|c̃t) = πb(at|st). This can be thought of as a comparative measure a
practitioner can look for between the concept and the state representations.
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(a) Oracle Concepts (b) Learned Concepts (c) Baseline: State Abstraction (d) MIMIC- Urine Output

Figure 4: Interpretations of learned concepts. Windy Gridworld: Fig 4a and 4b compare true oracle concepts
with learned concepts derived from the proposed methodology. We observe a deviation between learned and
oracle concepts (circled in red), identifying potential interventions. We compare our learnt concepts with a state
abstraction baseline in Fig 4c obtained using K-means clustering. We observe the clusters to significantly differ
from both oracle and optimized concepts, underscoring the meaningfulness of learned concepts. MIMIC: From
Fig 4d, we observe patients with low urine output exhibit greater variance in learned concepts compared to
high-output patients, revealing potential intervention targets.

Interventions that replace concepts with state representations and maximum likelihood estimator
(MLE) of state-based policies. We replace the erroneous concept with the corresponding state and use
the MLE of the state conditioned policy to perform OPE, i.e cint

t = st, πc
e(at|c̃t) =MLE(πe(at|st)),

πc
b(at|c̃t) =MLE(πb(at|st)). This can be thought of as a comparative measure a practitioner can

look for between the concept and states, while priortizing over the most confident action.

Interventions using a qualitative concept while retaining concept-based policies. In this approach,
a human expert replaces the concept using external domain knowledge. This is similar to Tang &
Wiens (2023), where the authors augment the dataset with counterfactual annotations to improve
sample efficiency in regions where the coverage is low. However, while Tang & Wiens focus on
quantitative counterfactual annotations in the state representation, we employ human interventions to
qualitatively edit concepts. In case of gridworld, we consider the oracle concepts as our qualitative
concept, while for MIMIC, we consider the learnt CPDIS estimator as qualitative concept while
intervening on CIS estimator.

6.2 Results and Interpretations from Interventions on learned concepts

We interpret the optimized concepts in Fig.4. In the gridworld environment, we compare the
ground-truth concepts with the optimized ones and observe two additional concepts predicted in
the bottom-right region. This likely stems from overfitting to reduce variance in the OPE loss,
suggesting a need for inspection and possible intervention. Additionally, we compare our clusters
with state-abstraction baseline (clustering in the state-space), and observe the clusters to be widely
different from the learnt concepts. In MIMIC, prior studies indicate that patients with urine output
above 30 ml/hr are less susceptible to hypotension than those with lower output (Kellum & Prowle,
2018; Singer et al., 2016; Vincent & De Backer, 2013). Using this, we analyze patient trajectories
and find that lower urine output correlates with higher variance, while higher output corresponds to
lower variance. This insight helps identify patients who may benefit from targeted interventions.

Interpretable concepts allow for targeted interventions that further enhance OPE estimates.

Using qualitative interventions, we observe a reduction in bias and, consequently, MSE in WindyGrid-
world. This occurs because replacing erroneous concepts with oracle concepts introduces previously
missing on-policy information during the optimization of unknown concepts, while preserving the
order of variance and ESS estimates. Similarly, in MIMIC, intervening on states with low urine
output reduces variance by 1–2 orders of magnitude. This is further supported by the decreased
frequency of high IPS scores after intervention, as shown in Fig 5c.
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(a) Windy Gridworld: Interventions

(b) MIMIC: Interventions

(c) MIMIC: IPS frequency comparison

Figure 5: Interventions. (a-b) Qualitative interventions reduce bias in the learned concept estimator in Windy
Gridworld and lower variance in MIMIC. In contrast, interventions based on traditional state-based policies
π(.|s) reduce bias and MSE compared to non-intervened concepts in Gridworld but are outperformed by
qualitative interventions. (c) The frequency of high IPS scores decreases after applying qualitative interventions.
Furthermore, π(.|s)-based interventions exhibit a higher frequency of IPS scores before intervention, indicating
that not all strategies are equally effective.

Not all interventions improve Concept OPE characteristics and should be used at the prac-
titioner’s discretion. We analyze OPE after applying interventions using traditional state-based
policies, π(.|s). In gridworld, state-based interventions increase bias and MSE compared to qualita-
tive ones, while in MIMIC, they lead to higher variance. This occurs because traditional state policies
(πb and πe) fail to compensate for the lack of on-policy information, undermining the advantages
of concept-based policies (πc

b and πc
e). In contrast, qualitative interventions—oracle concepts in

WindyGridworld or urine output thresholds in MIMIC—retain these benefits and effectively address
domain-specific challenges. Additionally, as shown in Fig 5c, π(.|s)-based interventions result in
a higher frequency of both low and high IPS scores. However, since the effect of high IPS scores
dominates, OPE variance increases compared to non-intervened OPE. Nevertheless, this framework
allows practitioners to inspect and select among alternative interventions as needed.

7 Conclusions, Limitations and Future Work

We introduced a new family of concept-based OPE estimators, demonstrating that known-concept
estimators can outperform traditional ones with greater accuracy and theoretical guarantees. For
unknown concepts, we proposed an algorithm to learn interpretable concepts that improve OPE
evaluations by identifying performance issues and enabling targeted interventions to reduce variance.
These advancements benefit safety-critical fields like healthcare, education, and public policy by
supporting reliable, interpretable policy evaluations. By reducing variance and providing policy
insights, this approach enhances informed decision-making, facilitates personalized interventions,
and refines policies before deployment for greater real-world effectiveness. A limitation of our work
is trajectory distribution mismatch when learning unknown concepts, particularly in low-sample
settings, which can lead to high-variance OPE. Targeted interventions help mitigate this issue. We
also did not address hidden confounding variables or potential CBM concept leakage, focusing
instead on evaluation. Future work will address these challenges and extend our approach to more
general, partially observable environments.
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Ričards Marcinkevičs, Sonia Laguna, Moritz Vandenhirtz, and Julia E Vogt. Beyond concept
bottleneck models: How to make black boxes intervenable? arXiv preprint arXiv:2401.13544,
2024.

Anton Matsson and Fredrik D. Johansson. Case-based off-policy policy evaluation using prototype
learning, 2021. URL https://arxiv.org/abs/2111.11113.

S A Murphy, M J van der Laan, J M Robins, and Conduct Problems Prevention Research Group.
Marginal mean models for dynamic regimes. Journal of the American Statistical Association, 96
(456):1410–1423, 2001. DOI: 10.1198/016214501753382327. URL https://doi.org/10.
1198/016214501753382327. PMID: 20019887.

Brahma S. Pavse and Josiah P. Hanna. Scaling marginalized importance sampling to high-dimensional
state-spaces via state abstraction, 2022a.

Brahma S. Pavse and Josiah P. Hanna. Scaling marginalized importance sampling to high-dimensional
state-spaces via state abstraction, 2022b. URL https://arxiv.org/abs/2212.07486.

https://proceedings.mlr.press/v119/koh20a.html
https://proceedings.mlr.press/v119/koh20a.html
https://doi.org/10.1038/s41591-018-0213-5
https://doi.org/10.1038/s41591-018-0213-5
https://doi.org/10.1038/s41591-018-0213-5
https://arxiv.org/abs/1910.06508
https://arxiv.org/abs/1910.06508
https://arxiv.org/abs/2207.00632
https://arxiv.org/abs/2303.07009
https://arxiv.org/abs/2111.11113
https://doi.org/10.1198/016214501753382327
https://doi.org/10.1198/016214501753382327
https://arxiv.org/abs/2212.07486


Reinforcement Learning Journal 2025

Achim Peine, Andreas Hallawa, Jan Bickenbach, Peter Sidler, Andreas Markewitz, Alexandre
Levesque, Jeremy Levesque, and Nils Haake. Development and validation of a reinforcement
learning algorithm to dynamically optimize mechanical ventilation in critical care. npj Digital
Medicine, 4(1):32, 2021. DOI: 10.1038/s41746-021-00388-6.

Doina Precup, Richard S. Sutton, and Satinder P. Singh. Eligibility traces for off-policy policy
evaluation. In Proceedings of the Seventeenth International Conference on Machine Learning,
ICML ’00, pp. 759–766, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc. ISBN
1558607072.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Mervyn Singer, Clifford S. Deutschman, Christopher W. Seymour, et al. The third international
consensus definitions for sepsis and septic shock (sepsis-3). JAMA, 315(8):801–810, 2016. DOI:
10.1001/jama.2016.0287.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Shengpu Tang and Jenna Wiens. Counterfactual-augmented importance sampling for semi-offline
policy evaluation, 2023. URL https://arxiv.org/abs/2310.17146.

Philip Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforcement
learning. In International Conference on Machine Learning, pp. 2139–2148. PMLR, 2016.

Jean-Louis Vincent and Daniel De Backer. Circulatory shock. New England Journal of Medicine,
369(18):1726–1734, 2013. DOI: 10.1056/NEJMra1208943.

Carissa Wu, Sonali Parbhoo, Marton Havasi, and Finale Doshi-Velez. Learning optimal summaries
of clinical time-series with concept bottleneck models. In Machine Learning for Healthcare
Conference, pp. 648–672. PMLR, 2022.

Tengyang Xie, Yifei Ma, and Yu-Xiang Wang. Towards optimal off-policy evaluation for reinforce-
ment learning with marginalized importance sampling. Advances in neural information processing
systems, 32, 2019.

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2310.17146


Concept-Based Off-Policy Evaluation

Supplementary Material

A Concept Desiderata

Explainability: Explainability ensures that the concept function ϕ is composed of human-
interpretable functions f1, f2, . . . , fn. Each interpretable function fi depends on the current state,
past actions, rewards, and states, i.e., st, a0:t−1, r0:t−1, s0:t−1. Mathematically:

ct = ϕ(st, a0:t−1, r0:t−1, s0:t−1) = ψ(f1(st, a0:t−1, r0:t−1, s0:t−1), . . . , fn(st, a0:t−1, r0:t−1, s0:t−1))
(1)

Here, ψ maps the human-interpretable functions fi to the concept ct, and both ϕ and ψ share the
same co-domain space C. In essence, ϕ can be defined using a single interpretable function or a
combination of multiple interpretable functions.

As a running example in this paper (applicable across domains), the concept function ϕ(st) for
diagnosing hypertension can be expressed using human-interpretable features:

ct = ϕ(st)

= ϕ(SBP,DBP,HR,Glucose levels,GCS,Age,Weight)
= ψ(f1(SBP), f2(DBP), f3(HR), f4(Glucose levels), f5(GCS), f6(Age,Weight))

Where:

• f1(SBP) maps Systolic Blood Pressure to a category (e.g., Low, Normal, High).

• f2(DBP) maps Diastolic Blood Pressure to a category (e.g., Low, Normal, High).

• f3(HR) maps Heart Rate to a category (e.g., Low, Normal, High).

• f4(Glucose levels) maps blood glucose levels to a category (e.g., Low, Normal, High).

• f5(GCS) maps GCS scores to a category.

• f6(Age,Weight) maps age and weight to Body Mass Index (BMI).

This ensures that the concept ϕ(st) for diagnosing hypertension is built from human-interpretable
features, making the diagnostic process explainable. Each function fi translates raw medical data
into intuitive categories that are meaningful to medical practitioners.

Conciseness: Conciseness ensures that the concept function ϕ represents the minimal mapping of
interpretable functions f1, f2, . . . , fn to the concept ct. If multiple mappings ψ1, ψ2, . . . , ψm satisfy
ϕ, we choose the mapping ψ that provides the simplest composition of fi to describe ct.

E.g. Obesity can be represented by different combinations of human-interpretable functions. We
select the least complex representation that remains interpretable. The two possible representations
are:

ct = ψ1(f1(height), f2(weight), f3(SBP), f4(DBP))
ct = ψ2(f5(BMI), f3(SBP))

Since BMI encapsulates both height and weight, and either SBP or DBP accurately summarizes blood
pressure pertinent to Obesity, the concept ct = ψ2(f5(BMI), f3(SBP)) is more concise.

Better Trajectory Coverage: Concept-based policies have a higher coverage than traditional state
policies. Mathematically:

∑
τ∈T1

T∑
t=0

πc(at|ct) ≥
∑
τ∈T2

T∑
t=0

π(at|st) (2)

Here, πc, π represent policies conditioned on concepts and states respectively, T1, T2 is the set of all
possible trajectories under πc, π and T is the total number of timesteps.
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Diversity: The diversity property ensures that each dimension of the concept at a given timestep
captures distinct and independent aspects of the state space, minimizing overlap.

As an example, the concept function ϕ(st) for a comprehensive patient health assessment can be
represented as:

ϕ(st) = [c1t , c
2
t , . . . , c

d
t ]

= [c1t (Cardiovascular Health), c2t (Metabolic Health), c3t (Respiratory Health)]
= [ψ1(f1(blood pressure), f2(cholesterol levels), f3(heart rate variability)),
ψ2(f1(blood glucose levels), f2(BMI), f3(metabolic history)),
ψ3(f1(lung function), f2(oxygen saturation), f3(respiratory history))]

Each dimension of the concept cit captures unique information, contributing to a holistic assessment
of the patient’s health without redundancy.

B Choice of Concept Types

Concepts capturing subgroups with short-term benefits. If ϕ maps state st and action at to immediate
reward rt, the resulting concepts can identify subgroups with similar short-term benefits, facilitating
more personalized OPE, as seen in Keramati et al. (2021a). Unlike Keramati et al. (2021b), we do
not limit ϕ to a regression tree.

Concepts capturing high-variance transitions. If ϕ highlights changes in state st and action at that
cause significant shifts in value estimates, it can capture influential transitions or dynamics from
historical data, similar to Gottesman et al. (2020).

Concepts capturing least influential states. If ϕ identifies the least (or most) influential states st, it
can help focus more on critical states, reducing variance by only applying IS ratios to those states
Bossens & Thomas (2024).

Concepts capturing state-density information. If ϕ extracts information from histories to predict
state-action visitation counts, concept-based OPE with ϕ functions similarly to Marginalized OPE
estimators, like Xie et al. (2019), which reweight trajectories based on state-visitation distributions.
However, density-based concepts may be less interpretable and harder to intervene in the context of
OPE.

C Generalized Concept-based OPE estimators

Building on the OPE estimators discussed in the main paper, we extend the integration of concepts
into other popular OPE estimators. Without making any additional assumptions about the estimators’
definitions, concepts can be seamlessly incorporated into the original formulations of these estimators.

Definition C.1 (Concept-based Weighted Importance Sampling, CWIS).

V̂ CWIS
πe

=

∑N
n=1 ρ

(n)
0:T

∑T
t=0 γ

tr
(n)
t∑N

n=1 ρ
(n)
0:T

; ρ
(n)
0:T =

T∏
t′=0

πe(a
(n)
t′ |c

(n)
t′ )

πb(a
(n)
t′ |c

(n)
t′ )

Definition C.2 (Concept-based Per-Decision Weighted Importance Sampling, CPDWIS).

V̂ CPDWIS
πe

=

∑N
n=1

∑T
t=0 ρ

(n)
0:t γ

tr
(n)
t∑N

n=1 ρ
(n)
0:T

; ρ
(n)
0:t =

t∏
t′=0

πe(a
(n)
t′ |c

(n)
t′ )

πb(a
(n)
t′ |c

(n)
t′ )

Definition C.3 (Concept-based Doubly Robust Estimator, CDR).

V̂CDR =
1

N

N∑
i=1

T∑
t=0

t∏
k=0

πe(a
(i)
k | c

(i)
k )

πb(a
(i)
k | c

(i)
k )

(
r
(i)
t − Q̂(s

(i)
t , a

(i)
t )
)
+ V̂ (s

(i)
t )
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Assuming good model-based estimates V̂ (st), Q̂(s
(i)
t , a

(i)
t ), all the advantages seen in the traditional

DR estimator translate over to the concept-space representation. It’s important to note, the concepts
are only used to reweight the Importance Sampling ratios and are not incorporated in the model-based
estimates. This allows concepts to have a general form and are not under any markovian assumption,
thus satisfying the Bellman equation.
Definition C.4 (Concept-based Marginalized Importance Sampling Estimator, CMIS).

V̂CMIS =

N∑
n=1

T∑
t=0

dπc
e
(ct)

dπc
b
(ct)

γtrt

Different algorithms from the DICE family attempt to estimate the state-distribution ratio dπe (st)
dπb

(st)
.

MIS in the concept representation accounts for concept-visitation counts. These counts retain all
the statistical guarantees of the state representation. However, a drawback is that concept-visitation
counts are less intuitive than the original concept definition. This makes it harder to assess the quality
of the OPE.

D Known Concept-based OPE Estimators: Theoretical Proofs

In this section, we provide the detailed proofs for the known concept scenario.
Theorem. For any arbitary function f , Ec∼dπc f(c) = Es∼dπf(ϕ(s))

Proof: See Pavse & Hanna (2022b).

D.1 IS

D.1.1 Bias

Bias = |Eπc
b
[V̂ CIS

πc
e

]− Eπc
e
[V̂ CIS

πc
e

]| (a)

= |Eπc
b

[
ρ
(n)
0:T

T∑
t=0

γtr
(n)
t

]
− Eπc

e
[V̂ CIS

πe
]| (b)

= |
N∑

n=1

(
T∏

t=0

πc
b(a

(n)
t |c

(n)
t )

)
ρ
(n)
0:T

T∑
t=0

γtr
(n)
t − Eπe [V̂

CIS
πc
e

]| (c)

= |
N∑

n=1

T∏
t=0

(
πc
b(a

(n)
t |c

(n)
t )

πc
e(a

(n)
t |c

(n)
t )

πc
b(a

(n)
t |c

(n)
t )

)
T∑

t=0

γtr
(n)
t − Eπc

e
[V̂ CIS

πe
]| (d)

= |
N∑

n=1

T∏
t=0

πc
e(a

(n)
t |c

(n)
t )

T∑
t=0

γtr
(n)
t − Eπc

e
[V̂ CIS

πc
e

]| = 0 (e)

Explanation of steps:

(a) We start by expressing the definition of Bias as the difference between expected values of the value
function sampled under the behavior policy πc

b and the concept-based evaluation policy πc
e(a|c).

(b) We expand the respective definitions.

(c) Each term is expanded to represent the probability of the trajectories, factoring in the importance
sampling ratio.

(d) Grouping similar terms. This change of measure is possible as the concepts are known and can be
modify the trajectory probabilities.

(e) The denominator of the IS term cancels with the probability of the trajectory under πc
b . Using the

definition of Eπc
e
[V̂ CIS

πc
e

] =
∑N

n=1

∏T
t=0 π

c
e(a

(n)
t |c

(n)
t )

∑T
t=0 γ

tr
(n)
t .
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D.1.2 Variance

V[V̂ CIS
πc
e

] = Eπc
b
[(V̂ CIS

πc
e

)2]− (Eπc
b
[V̂ CIS

πc
e

])2 (a)

We first evaluate the expectation of the square of the estimator:

Eπc
b
[(V̂ CIS

πe
)2] = Eπc

b

(ρ(n)0:T

T∑
t=0

γtr
(n)
t

)2
 (b)

= Eπc
b

[
T∑

t=0

T∑
t′=0

ρ20:T γ
(t+t′)r

(n)
t r

(n′)
t′

]
(c)

=

N∑
n=1

T∏
t=0

(πc
e(a

(n)
t |c

(n)
t ))2

πc
b(a

(n)
t |c

(n)
t )

T∑
t=0

T∑
t′=0

γ(t+t′)rtrt′ (d)

Evaluating the second term in the variance expression:

(Eπc
b
[V̂ CIS

πc
e

])2 =

(
Eπc

b
[ρ

(n)
0:T

T∑
t=0

γtr
(n)
t ]

)2

(e)

=

N∑
n=1

T∏
t=0

(
πc
b(a

(n)
t |c

(n)
t )(

πc
e(a

(n)
t |c

(n)
t )

πc
b(a

(n)
t |c

(n)
t )

)

)2 T∑
t=0

T∑
t′=0

γ(t+t′)rtrt′ (f)

=

N∑
n=1

T∏
t=0

(
πc
e(a

(n)
t |c

(n)
t )
)2 T∑

t=0

T∑
t′=0

γ(t+t′)rtrt′ (g)

Subtracting the squared expectation from the expectation of the squared estimator:

V[V̂ CIS
πc
e

] =

N∑
n=1

T∏
t=0

(
(πc

e(a
(n)
t |c

(n)
t )2(

1

πc
b(a

(n)
t |c

(n)
t )
− 1)

)
T∑

t=0

T∑
t′=0

γ(t+t′)rtrt′ (h)

Explanation of steps:

(a) We begin with the definition of variance for our estimator.

(b) We evaluate the first term of the Variance.

(c),(d) We expand the square of the estimator as the square of a sum of weighted returns.

(e) We calculate the square of the expectation of the estimator.

(f) We expand this squared expectation.

(g) The denominator of the IS ratio cancels with the probability of the trajectory.

D.1.3 Variance comparison between CIS ratios and IS ratios

Theorem. V[
∏T

t=0
πc
e(at|ct)

πc
b(at|ct) ] ≤ V[

∏T
t=0

πe(at|st)
πb(at|st) ]

Proof: The proof is similar to Pavse & Hanna (2022b), where we generalize to concepts from state
abstractions. Using Lemma D and Assumption 4.1, we can say that:

Ec∼dπc

T∏
t=0

πc
e(at|ct)
πc
b(at|ct)

= Es∼dπ

T∏
t=0

πe(at|st)
πb(at|st)

= 1 (a)
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Denoting the difference between the two variances as D:

D = V[
T∏

t=0

πe(at|st)
πb(at|st)

]− V[
T∏

t=0

πc
e(at|ct)
πc
b(at|ct)

] (b)

= Eπb
[

T∏
t=0

(
πe(at|st)
πb(at|st)

)2

]− [Eπb

T∏
t=0

(
πe(at|st)
πb(at|st)

)
]2 − Eπc

b
[

T∏
t=0

(
πc
e(at|ct)
πc
b(at|ct)

)2

] + [Eπc
b

T∏
t=0

(
πc
e(at|ct)
πc
b(at|ct)

)
]2

(c)

= Eπb
[

T∏
t=0

(
πe(at|st)
πb(at|st)

)2

]− Eπc
b
[

T∏
t=0

(
πc
e(at|ct)
πc
b(at|ct)

)2

] (d)

=
∑
s

T∏
t=0

πb(at|st)[
T∏

t=0

(
πe(at|st)
πb(at|st)

)2

]−
∑
c

T∏
t=0

πc
b(at|ct)[

T∏
t=0

(
πc
e(at|ct)
πc
b(at|ct)

)2

] (e)

=
∑
c

(∑
s

T∏
t=0

πb(at|st)[
T∏

t=0

(
πe(at|st)
πb(at|st)

)2

]−
T∏

t=0

πc
b(at|ct)[

T∏
t=0

(
πc
e(at|ct)
πc
b(at|ct)

)2

]

)
(f)

=
∑
c

(∑
s

[

T∏
t=0

(
πe(at|st)2

πb(at|st)

)
]− [

T∏
t=0

(
πc
e(at|ct)2

πc
b(at|ct)

)
]

)
(g)

We will analyse the difference of variance for 1 fixed concept and denote it as D’:

D′ = [

T∏
t=0

(
πc
e(at|ct)2

πc
b(at|ct)

)
]−

(∑
s

[

T∏
t=0

(
πe(at|st)2

πb(at|st)

)
]

)
(h)

Now, if we can show D′ ≥ 0 for |c|, where |c| is the cardinality of the concept representation, then
the difference will always be positive, thus completing our proof. We will use induction to prove
D′ ≥ 0 on the total number of concepts from 1 to |c| = n < |S|. Now, our induction statement T (n)
to prove is, D′ ≥ 0 where n = |c′|. For n = 1, the statement is trivially true where every concept
can be represented as the traditional representation of the state.Our inductive hypothesis states that

D′ =

(
[

T∏
t=0

(
πc
e(at|ct)2

πc
b(at|ct)

)
]−
∑
s

[

T∏
t=0

(
πe(at|st)2

πb(at|st)

)
]

)
≥ 0 (i)

Now, we define S =
∑

s[
∏T

t=0

(
πe(at|st)2
πb(at|st)

)
], C =

∏T
t=0 π

c
e(at|ct)2,C ′ =

∏T
t=0 π

c
b(at|ct). After

making the substitutions, we obtain

C2 ≤ SC ′ (j)

This result holds true for |c| = n as per the induction. Now, we add a new state sn+1 to the concept
as part of the induction, and obtain the following difference:

D′ = S × πe(a|sn+1)
2

πb(a|sn+1)
− C

C ′ ×
πe(a|sn+1)

2

πb(a|sn+1)
(k)

Let πe(a|sn+1) = X and πb(a|sn+1) = Y . Substituting, we get:

D′ = S
X2

Y
− C

C ′
X2

Y
=

(SC ′ − C)X2

C ′Y
(l)

D’ is minimum when C is maximized, hence we substitute C ≤
√
SC ′ from the induction hypothesis

in the expression

D′ ≤ (SC ′ −
√
SC ′)X2

C ′Y
(m)

As SC ′ ≥ 0, the term SC ′ −
√
SC ′ is never negative, leading to D′ ≤ 0, since the remaining

quantities are always positive. Thus, the induction hypothesis holds, and that concludes the proof.
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D.1.4 Variance comparison between CIS and IS estimators

Theorem. When Cov(
∏t

t=0
πc
e(at|ct)

πc
b(at|ct)rt,

∏k
t=0

πc
e(at|ct)

πc
b(at|ct)rk) ≤

Cov(
∏k

t=0
πe(at|st)
πb(at|st)rt,

∏k
t=0

πe(at|st)
πb(at|st)rk), the variance of known concept-based IS estimators is

lower than traditional estimators, i.e. Vπb
[V̂ CIS ] ≤ Vπb

[V̂ IS ], Vπb
[V̂ CPDIS ] ≤ Vπb

[V̂ PDIS ].

Proof: Using Lemma D and Assumption 4.1, we can say that:

Ec∼dπc

[
T∑

t=0

T∏
t=0

πc
e(at|ct)
πc
b(at|ct)

rt(ct, at)

]
= Es∼dπ

[
T∑

t=0

T∏
t=0

πe(at|st)
πb(at|st)

rt(st, at)

]
(a)

The Variance for a single example of a CIS estimator is given by

V[V̂ CIS ] =
1

T 2

(
T∑

t=0

V[
T∏

t=0

πc
e(at|ct)
πc
b(at|ct)

rt] + 2
∑
t<k

Cov(

T∏
t=0

πc
e(at|ct)
πc
b(at|ct)

rt,

T∏
t=0

πc
e(at|ct)
πc
b(at|ct)

rk)

)
(b)

The Variance for a single example of a IS estimator is given by

V[V̂ IS ] =
1

T 2

(
T∑

t=0

V[
T∏

t=0

πe(at|st)
πb(at|st)

rt] + 2
∑
t<k

Cov(

T∏
t=0

πe(at|st)
πb(at|st)

rt,

T∏
t=0

πe(at|st)
πb(at|st)

rk)

)
(c)

We take the difference between the variances, and note the difference of the covariances is not positive
as per the assumption. Hence, if we show the differences of variances per timestep is negative, we
complete our proof.

D = V[
T∏

t=0

πc
e(at|ct)
πc
b(at|ct)

rt]− V[
T∏

t=0

πe(at|st)
πb(at|st)

rt] (d)

= Eπc
b
[

(
T∏

t=0

πc
e(at|ct)
πc
b(at|ct)

rt

)2

]− [Eπc
b

(
T∏

t=0

πc
e(at|ct)
πc
b(at|ct)

rt

)
]2 − Eπb

[

(
T∏

t=0

πe(at|st)
πb(at|st)

rt

)2

] + [Eπb

(
T∏

t=0

πe(at|st)
πb(at|st)

rt

)
]2

(e)

= Eπc
b
[

(
T∏

t=0

πc
e(at|ct)
πc
b(at|ct)

rt

)2

]− Eπb
[

(
T∏

t=0

πe(at|st)
πb(at|st)

rt

)2

] (e)

=
∑
c

T∏
t=0

(πc
b(at|ct)) [

(
T∏

t=0

πc
e(at|ct)
πc
b(at|ct)

rt

)2

]−
∑
s

T∏
t=0

(πb(at|st)) [

(
T∏

t=0

πe(at|st)
πb(at|st)

rt

)2

] (f)

=
∑
c

∑
s∈ϕ−1(c)

T∏
t=0

(πc
b(at|ct)) [

(
T∏

t=0

πc
e(at|ct)
πc
b(at|ct)

rt

)2

]−
∑
s

T∏
t=0

(πb(at|st)) [

(
T∏

t=0

πe(at|st)
πb(at|st)

rt

)2

]

(g)

≤ R2
max

∑
c

∑
s∈ϕ−1(c)

T∏
t=0

(πc
b(at|ct)) [

(
T∏

t=0

πc
e(at|ct)
πc
b(at|ct)

)2

]−
∑
s

T∏
t=0

(πb(at|st)) [

(
T∏

t=0

πe(at|st)
πb(at|st)

)2

]


(h)

The rest of the proof is identical to the previous subsection, wherein we perform induction on the
cardinality of the concept for and the term inside the bracket is never positive, thus completing the
proof.
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D.1.5 Upper Bound on the Variance

V[V̂ CIS
πc
b

] = Eπc
b
(

(
T∑

t=0

γtrt

T∏
t′=0

πe(at′ |ct′)
πb(at′ |ct′)

)2

)− Eπc
b

(
T∑

t=0

γtrt

T∏
t′=0

πe(at′ |ct′)
πb(at′ |ct′)

)2

(a)

≤ Eπc
b
(

(
T∑

t=0

γtrt

T∏
t′=0

πe(at′ |ct′)
πb(at′ |ct′)

)2

) (b)

≤ 1

N

N∑
n=1

(

(
T∑

t=0

γtrt

T∏
t′=0

πe(at′ |ct′)
πb(at′ |ct′)

)2

) +
7T 2R2

maxU
2T
c ln( 2δ )

3(N − 1)
+

√√√√ ln( 2δ )

N3 −N2

N∑
i<j

(X2
i −X2

j )
2

(c)

≤ T 2R2
maxU

2T
c (

1

N
+

ln 2
δ

3(N − 1)
) +

√√√√ ln( 2δ )

N3 −N2

N∑
i<j

(X2
i −X2

j )
2 (d)

Explanation of steps:

(a) We begin with the definition of variance.

(b) The second term is always greater than 0

(c) Applying Bernstein inequality with probability 1-δ. Xi refers to the CIS estimate for 1 sample.

(d) Grouping terms 1 and 2 together,where Uc = max
πc
e(a|c)

πc
b(a|c)

.

The first term of the variance dominates the second with increase in number of samples. Thus,
Variance is of the complexity O(T

2R2
maxU

2T
c

N )

D.1.6 Upper Bound on the MSE

MSE = Bias2 + Variance = Variance ∼ O(T
2R2

maxU
2T
c

N
) (a)

The Upper Bound on the MSE of Concept-based IS estimator is of the same form as the Cramer-Rao
bounds of the traditional IS estimator as stated in Jiang & Li (2016). We investigate when the MSE
bounds can be tightened in the concept representation. We first say,

Uc = max
πc
e(a|c)
πc
b(a|c)

= Us
K1

K2
(b)

Here, Us = maxπe(a|s)
πb(a|s) , K1 is the cardinality of the states which have the same concept c under

evaluation policy πe, while K2 refers to the same quantity under the behavior policy πb. Typically,
the maximum value of the IS ratio occurs when πe(a|s) >> πb(a|s), i.e. the action taken is very
likely under the evaluation policy πe while it’s unlikely under the behavior policy πb. This typically
happens when that particular state has less coverage, or doesn’t appear in the data generated by
the behavior policy πb. Under concepts however, similar states are visited and categorized, which
improves the information on the state s through c, leading to K2 > 1. On the other hand, as both
πc
e(a|s) and πe(a|s) are close to 1, K1 = 1. Thus, K = K1

K2
< 1 and Hence,

O(T
2R2

maxU
2T
c

N
) ∼ O(T

2R2
max(UsK)

2T

N
) ∼ O(T

2R2
maxUs

2T

N
)K2T (3)

Thus, the Concept-based MSE bounds are tightened by a factor of K2T .
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D.1.7 Variance comparison with MIS estimator

Theorem. Let ρ be the product of the Importance Sampling ratio in the state space, and dπe ,dπb be
the stationary density ratios. Then,

E(ρ0:T |st, at) =
dπe(st, at)

dπb(st, at)

Proof: See Liu et al. (2020)
Theorem. Let Xt and Yt be two sequences of random variables. Then

V(
∑
t

Yt)− V(
∑
t

E[Yt|Xt]) ≥ 2
∑
t<k

E[YtYk]− 2
∑
t<k

E[E[Yt|Xt]E[Yk|Xk]]

Proof: See Liu et al. (2020)

Theorem. When Cov(
∏t

t=0
πc
e(at|ct)

πc
b(at|ct)rt,

∏k
t=0

πc
e(at|ct)

πc
b(at|ct)rk) ≤ Cov(d

πe (st,at)
dπb (st,at)

rt,
dπe (sk,ak)
dπb (sk,ak)

rk), the

variance of known CIS estimators is lower than the Variance of MIS estimator, i.e. Vπb
[V̂ CIS ] ≤

Vπb
[V̂MIS ].

Proof: We start from the assumption:

Cov(

T∏
t=0

πc
e(at|ct)
πc
b(at|ct)

rt,

T∏
t=0

πc
e(at|ct)
πc
b(at|ct)

rk) = E[
T∏

t=0

πc
e(at|ct)
πc
b(at|ct)

T∏
t=0

πc
e(at|ct)
πc
b(at|ct)

rtrk]− E[
T∏

t=0

πc
e(at|ct)
πc
b(at|ct)

rt]E[
T∏

t=0

πc
e(at|ct)
πc
b(at|ct)

rk]

(a)

= E[
T∏

t=0

πe(at|st)
πb(at|st)

T∏
t=0

πe(ak|sk)
πb(ak|sk)

K2rtrk]− E[
T∏

t=0

πe(at|st)
πb(at|st)

Krt]E[
T∏

t=0

πe(at|st)
πb(at|st)

Krk] (b)

≤ E[
T∏

t=0

πe(at|st)
πb(at|st)

T∏
t=0

πe(ak|sk)
πb(ak|sk)

rtrk]− E[
T∏

t=0

πe(at|st)
πb(at|st)

rt]E[
T∏

t=0

πe(at|st)
πb(at|st)

rk] (c)

≤ E[(
dπe(st, at)

dπb(st, at)
)(
dπe(sk, ak)

dπb(sk, ak)
)rtrk]− E[

dπe(st, at)

dπb(st, at)
)rt]E[

dπe(sk, ak)

dπb(sk, ak)
)rk] (d)

Explanation of steps:

(a) We begin with the definition of covariance.

(b),(c) Using the definition of πc, with K (the ratio of state-space distribution ratio) < 1.

(d) Applying Lemma D.1.7 to both the terms.

Finally, using Lemma D.1.7, substituting Yt =
∏T

t=0
πe(at|st)
πb(at|st)rt and Xt = st, at, rt completes our

proof.

D.2 PDIS

D.2.1 Bias

Bias = |Eπc
b
[V̂ CPDIS

πc
e

]− Eπc
e
[V̂ CPDIS

πc
e

]| (a)

= |Eπc
b

[
T∑

t=0

γtρ
(n)
0:t r

(n)
t

]
− Eπc

e
[V̂ CPDIS

πc
e

]| (b)

= |
N∑

n=1

(
T∏

t=0

πc
b(a

(n)
t |c

(n)
t )

)
T∑

t=0

γtρ
(n)
0:t r

(n)
t − Eπc

e
[V̂ CPDIS

πc
e

]| (c)

= |
N∑

n=1

T∑
t=0

γt

(
t∏

t′=0

πc
b(a

(n)
t′ |c

(n)
t′ )(

πc
e(a

(n)
t′ |c

(n)
t′ )

πc
b(a

(n)
t′ |c

(n)
t′ )

)

)
r
(n)
t − Eπc

e
[V̂ CPDIS

πe
]| = 0 (d)
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Explanation of steps: Similar to CIS.

D.2.2 Variance

Following the process similar to CIS estimator:

V[V̂ CPDIS
πc
b

] = Eπc
b
[(V̂ CPDIS

πc
b

)2]− (Eπc
b
[V̂ CPDIS

πc
b

])2 (a)

We first evaluate the expectation of the square of the estimator:

Eπc
b
[(V̂ CPDIS

πc
b

)2] = Eπc
b

( T∑
t=0

γtρ0:trt

)2
 (b)

= Eπc
b

[
T∑

t=0

T∑
t′=0

ρ0:tρ0:t′γ
(t+t′)rtrt′

]
(c)

=

N∑
n=1

T∑
t=0

T∑
t′=0

(
t∏

t′′=0

πc
b(at|ct)(

πc
e(at|ct)
πc
b(at|ct)

)

) t′∏
t′′′=0

(
πc
e(at|ct)
πc
b(at|ct)

)

 γ(t+t′)rtrt′

(d)

=

N∑
n=1

T∑
t=0

T∑
t′=0

(
t∏

t′′=0

πc
e(at|ct)

) t′∏
t′′′=0

(
πc
e(at|ct)
πc
b(at|ct)

)

 γ(t+t′)rtrt′ (e)

Evaluating the second term in the variance expression:

(Eπc
b
[V̂ CPDIS

πc
b

])2 =

(
N∑

n=1

T∑
t=0

Eπc
b
[γtρ0:trt]

)2

(f)

=

N∑
n=1

T∑
t=0

T∑
t′=0

(
t∏

t′′=0

πc
b(at′′ |ct′′)(

πc
e(at′′ |ct′′)
πc
b(at′′ |ct′′)

)

) t′∏
t′′′=0

πc
b(at′′′ |st′′′)(

πc
e(at′′′ |ct′′′)
πc
b(at′′′ |ct′′′)

)

 γ(t+t′)rtrt′

(g)

=

N∑
n=1

T∑
t=0

T∑
t′=0

(
t∏

t′′=0

πc
e(at′′ |ct′′)

) t′∏
t′′′=0

πc
e(at′′′ |st′′′)

 γ(t+t′)rtrt′ (h)

Subtracting the squared expectation from the expectation of the squared estimator:

V[V̂ CPDIS
πc
b

] =

N∑
n=1

T∑
t=0

T∑
t′=0

(
t∏

t′′′=0

πc
e(at′′′ |ct′′′)

) t′∏
t′′=0

πc
e(at′′ |ct′′)(

1

πc
b(at′′ |ct′′)

− 1)

 γ(t+t′)rtrt′

(i)

Explanation of steps: Similar to CIS.

D.2.3 Variance comparison between CPDIS ratios and PDIS ratios

Theorem. V[
∑T

t=0

∏t
t′=0

πc
e(at′ |ct′ )

πc
b(at′ |ct′ )

] ≤ V[
∑T

t=0

∏t
t′=0

πe(at′ |st′ )
πb(at′ |st′ )

]

Proof: Similar to CIS estimator.
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D.2.4 Variance comparison between CPDIS and PDIS estimators

Theorem. If for any fixed 0 ≤ t ≤ k < T , if

Cov(

t∏
t′=0

πc
e(at′ |ct′)
πc
b(at′ |ct′)

rt,

k∏
t′=0

πc
e(at′ |ct′)
πc
b(at′ |ct′)

rk) ≤ Cov(
t∏

t′=0

πe(at′ |st′)
πb(at′ |st′)

rt,

T∏
t=0

πe(at′ |st′)
πb(at′ |st′)

rk)

then V[V̂ CPDIS ] ≤ V[V̂ PDIS ].

Proof: Similar to CIS estimator.

D.2.5 Upper Bound on the Variance

V[V̂ CPDIS
πc
b

] = Eπc
b
(

(
T∑

t=0

γtrt

t∏
t′=0

πc
e(at′ |ct′)
πc
b(at′ |ct′)

)2

)− Eπc
b

(
T∑

t=0

γtrt

t∏
t′=0

πc
e(at′ |ct′)
πc
b(at′ |ct′)

)2

(a)

≤ Eπc
b
(

(
T∑

t=0

γtrt

t∏
t′=0

πc
e(at′ |ct′)
πc
b(at′ |ct′)

)2

) (b)

≤ 1

N

N∑
n=1

(

(
T∑

t=0

γtrt

t∏
t′=0

πc
e(at′ |ct′)
πc
b(at′ |ct′)

)2

) +
7T 2R2

maxU
2T
c ln( 2δ )

3(N − 1)
+

√√√√ ln( 2δ )

N3 −N2

N∑
i<j

(X2
i −X2

j )
2

(c)

≤ T 2R2
maxU

2T
c (

1

N
+

ln 2
δ

3(N − 1)
) +

√√√√ ln( 2δ )

N3 −N2

N∑
i<j

(X2
i −X2

j )
2 (d)

Explanation of steps: Similar to CIS.

D.2.6 Upper Bound on the MSE

MSE = Bias2 + Variance = Variance ∼ O(T
2R2

maxU
2T
c

N
) ∼ O(T

2R2
maxUs

2T

N
)K2T (4)

Proof: Similar to CIS estimator.

D.2.7 Variance comparison with MIS estimator

Theorem. When Cov(
∏t

t=0
πc
e(at|ct)

πc
b(at|ct)rt,

∏k
t=0

πc
e(at|ct)

πc
b(at|ct)rk) ≤ Cov(d

πe (st,at)
dπb (st,at)

rt,
dπe (sk,ak)
dπb (sk,ak)

rk),
the variance of known CPDIS estimators is lower than the Variance of MIS estimator, i.e.
Vπb

[V̂ CPDIS ] ≤ Vπb
[V̂MIS ].

Proof: Similar to CIS estimator.

E Unknown Concept-based OPE Estimators: Theoretical Proofs

In this section, we provide the theoretical proofs of the unknown concept scenarios.
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E.1 IS

E.1.1 Bias

We begin by stating the expression for the expected value of the CIS estimator under πb:

Bias = |Eπb
[V̂ CIS

πe
]− Eπe

[V̂ CIS
πc
e

]| (a)

= |Eπb

[
ρ
(n)
0:T

T∑
t=0

γtr
(n)
t

]
− Eπe

[V̂ CIS
πc
e

]| (b)

= |
N∑

n=1

(
T∏

t=0

πb(a
(n)
t |s

(n)
t )

)
ρ
(n)
0:T

T∑
t=0

γtr
(n)
t − Eπe [V̂

CIS
πc
e

]| (c)

= |
N∑

n=1

T∏
t=0

(
πb(a

(n)
t |s

(n)
t )

πc
e(a

(n)
t |c̃

(n)
t )

πc
b(a

(n)
t |c̃

(n)
t )

)
T∑

t=0

γtr
(n)
t − Eπe

[V̂ CIS
πc
e

]| (d)

Explanation of steps:

(a) We start by expressing the definition of Bias as the difference between expected values of the value
function sampled under the behavior policy πb and the concept-based evaluation policy πe(a|c).

(b) We expand the respective definitions.

(c) Each term is expanded to represent the probability of the trajectories, factoring in the importance
sampling ratio.

(d) Similar terms are grouped together to concisely represent the impact of the importance sampling
ratios.

The bias of the CIS estimator is mimimum when the concepts c̃t equals the traditional state repre-
sentations st, thus, implying imperfect concept-based sampling induces bias. As the concepts are
unknown, the reparameterization of the probabilities of the behavior trajectories isn’t possible, thus
leading to a finite bias as opposed to Known-concept representations.

E.1.2 Variance

We start with the definition of variance for the CIS estimator:

V[V̂ CIS
πe

] = Eπb
[(V̂ CIS

πe
)2]− (Eπb

[V̂ CIS
πe

])2 (a)

We first evaluate the expectation of the square of the estimator:

Eπb
[(V̂ CIS

πe
)2] = Eπb

(ρ(n)0:T

T∑
t=0

γtr
(n)
t

)2
 (b)

= Eπb

[
T∑

t=0

T∑
t′=0

ρ20:T γ
(t+t′)r

(n)
t r

(n′)
t′

]
(c)

=

N∑
n=1

T∏
t=0

(
πb(a

(n)
t |s

(n)
t )(

πc
e(a

(n)
t |c̃

(n)
t )

πc
b(a

(n)
t |c̃

(n)
t )

)2

)
T∑

t=0

T∑
t′=0

γ(t+t′)rtrt′ (d)

Evaluating the second term in the variance expression:

(Eπb
[V̂ CIS

πe
])2 =

(
Eπb

[ρ
(n)
0:T

T∑
t=0

γtr
(n)
t ]

)2

(e)

=

N∑
n=1

T∏
t=0

(
πb(a

(n)
t |s

(n)
t )(

πc
e(a

(n)
t |c̃

(n)
t )

πc
b(a

(n)
t |c̃

(n)
t )

)

)2 T∑
t=0

T∑
t′=0

γ(t+t′)rtrt′ (f)
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Subtracting the squared expectation from the expectation of the squared estimator:

V[V̂ CIS
πe

] =

N∑
n=1

T∏
t=0

(
(πb(a

(n)
t |s

(n)
t )− πb(a(n)t |s

(n)
t )2)(

πc
e(a

(n)
t |c̃

(n)
t )

πc
b(a

(n)
t |c̃

(n)
t )

)2

)
T∑

t=0

T∑
t′=0

γ(t+t′)rtrt′

(g)

Explanation of steps:

(a) We begin with the definition of variance for our estimator.

(b) We expand the square of the estimator as the square of a sum of weighted returns.

(c),(d) We further expand the expected value of this squared sum and evaluate the expected values under
the assumption that trajectories are sampled independently.

(e) We calculate the square of the expectation of the estimator.

(f) We expand this squared expectation.

(g) We obtain the final expression for variance by subtracting the squared expectation from the
expectation of the squared estimator, simplifying to consider the covariance terms.

E.1.3 Variance comparison between Concept IS ratios and Traditional IS ratios

Theorem. V[
∏T

t=0
πc
e(at|c̃t)

πc
b(at|c̃t) ] ≤ V[

∏T
t=0

πe(at|st)
πb(at|st) ]

Proof: The proof is similar to Pavse & Hanna (2022b) and the ones we used in known concepts, where
we generalize to parameterized concepts from state abstractions. The proof remains intact because we
make no assumptions on how the concepts are derived, as long as they satisfy the desiderata. Using
Lemma D and Assumption 4.1, we can say that:

Ec∼dπc

T∏
t=0

πc
e(at|c̃t)
πc
b(at|c̃t)

= Es∼dπ

T∏
t=0

πe(at|st)
πb(at|st)

= 1 (a)

Denoting the difference between the two variances as D:

D = Var[
T∏

t=0

πe(at|st)
πb(at|st)

]− Var[
T∏

t=0

πc
e(at|c̃t)
πc
b(at|c̃t)

] (b)

= Eπb
[

T∏
t=0

(
πe(at|st)
πb(at|st)

)2

]− Eπb
[

T∏
t=0

(
πc
e(at|c̃t)
πc
b(at|c̃t)

)2

] (c)

=
∑
s

T∏
t=0

πb(at|st)[
T∏

t=0

(
πe(at|st)
πb(at|st)

)2

]−
∑
c

T∏
t=0

πc
b(at|c̃t)[

T∏
t=0

(
πc
e(at|c̃t)
πc
b(at|c̃t)

)2

] (d)

=
∑
c

(∑
s

T∏
t=0

πb(at|st)[
T∏

t=0

(
πe(at|st)
πb(at|st)

)2

]−
T∏

t=0

πc
b(at|c̃t)[

T∏
t=0

(
πc
e(at|c̃t)
πc
b(at|c̃t)

)2

]

)
(e)

=
∑
c

(∑
s

[

T∏
t=0

(
πe(at|st)2

πb(at|st)

)
]− [

T∏
t=0

(
πc
e(at|c̃t)2

πc
b(at|c̃t)

)
]

)
(f)

We will analyse the difference of variance for 1 fixed concept and denote it as D’:

D′ = [

T∏
t=0

(
πc
e(at|c̃t)2

πc
b(at|c̃t)

)
]−

(∑
s

[

T∏
t=0

(
πe(at|st)2

πb(at|st)

)
]

)
(g)

Now, if we can show D′ ≥ 0 for |c|, where |c| is the cardinality of concept representation, then the
difference will always be positive, thus completing our proof. We will use induction to prove D′ ≥ 0
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on the total number of concepts from 1 to |c| = n < |S|. Now, our induction statement T (n) to
prove is, D′ ≥ 0 where n = |c′|. For n = 1, the statement is trivially true where every concept can
be represented as the traditional representation of the state.Our inductive hypothesis states that

D′ =

(
[

T∏
t=0

(
πc
e(at|c̃t)2

πc
b(at|c̃t)

)
]−
∑
s

[

T∏
t=0

(
πe(at|st)2

πb(at|st)

)
]

)
≥ 0 (h)

Now, we define S =
∑

s[
∏T

t=0

(
πe(at|st)2
πb(at|st)

)
], C =

∏T
t=0 π

c
e(at|c̃t)2,C ′ =

∏T
t=0 π

c
b(at|c̃t). After

making the substitutions, we obtain

C2 ≤ SC ′ (i)

This result holds true for |c| = n as per the induction. Now, we add a new state sn+1 to the concept
as part of the induction, and obtain the following difference:

D′ = S × πe(a|sn+1)
2

πb(a|sn+1)
− C

C ′ ×
πe(a|sn+1)

2

πb(a|sn+1)
(j)

Let πe(a|sn+1) = X and πb(a|sn+1) = Y . Substituting, we get:

D′ = S
X2

Y
− C

C ′
X2

Y
=

(SC ′ − C)X2

C ′Y
(k)

D’ is minimum when C is maximized, hence we substitute C ≤
√
SC ′ from the induction hypothesis

in the expression

D′ ≤ (SC ′ −
√
SC ′)X2

C ′Y
(l)

As SC ′ ≥ 0, the term SC ′ −
√
SC ′ is never negative, leading to D′ ≤ 0, since the remaining

quantities are always positive. Thus, the induction hypothesis holds, and that concludes the proof.

E.1.4 Variance comparison between unknown CIS and IS estimators

Theorem. When Cov(
∏t

t=0
πc
e(at|ct)

πc
b(at|ct)rt,

∏k
t=0

πc
e(at|ct)

πc
b(at|ct)rk) ≤

Cov(
∏k

t=0
πe(at|st)
πb(at|st)rt,

∏k
t=0

πe(at|st)
πb(at|st)rk), the variance of unknown CIS estimator is lower

than IS estimator, i.e. Vπb
[V̂ CIS ] ≤ Vπb

[V̂ IS ].

Proof: Using Lemma D and Assumption 4.1, we can say that:

Ec∼dπc

[
T∑

t=0

T∏
t=0

πc
e(at|c̃t)
πc
b(at|c̃t)

rt(ct, at)

]
= Es∼dπ

[
T∑

t=0

T∏
t=0

πe(at|st)
πb(at|st)

rt(st, at)

]
(a)

The Variance for a single example of a CIS estimator is given by

V[V̂ CIS ] =
1

T 2

(
T∑

t=0

V[
T∏

t=0

πc
e(at|c̃t)
πc
b(at|c̃t)

rt] + 2
∑
t<k

Cov(

T∏
t=0

πc
e(at|c̃t)
πc
b(at|c̃t)

rt,

T∏
t=0

πc
e(at|c̃t)
πc
b(at|c̃t)

rk)

)
(b)

The Variance for a single example of a IS estimator is given by

V[V̂ IS ] =
1

T 2

(
T∑

t=0

V[
T∏

t=0

πe(at|st)
πb(at|st)

rt] + 2
∑
t<k

Cov(

T∏
t=0

πe(at|st)
πb(at|st)

rt,

T∏
t=0

πe(at|st)
πb(at|st)

rk)

)
(c)
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We take the difference between the variances, and note the difference of the covariances is not positive
as per the assumption. Hence, if we show the differences of variances per timestep is negative, we
complete our proof.

D = V[
T∏

t=0

πc
e(at|c̃t)
πc
b(at|c̃t)

rt]− V[
T∏

t=0

πe(at|st)
πb(at|st)

rt] (d)

= Eπc
b
[

(
T∏

t=0

πc
e(at|c̃t)
πc
b(at|c̃t)

rt

)2

]− Eπb
[

(
T∏

t=0

πe(at|st)
πb(at|st)

rt

)2

] (e)

=
∑
c

T∏
t=0

(πc
b(at|c̃t)) [

(
T∏

t=0

πc
e(at|c̃t)
πc
b(at|c̃t)

rt

)2

]−
∑
s

T∏
t=0

(πb(at|st)) [

(
T∏

t=0

πe(at|st)
πb(at|st)

rt

)2

] (f)

=
∑
c

∑
s∈ϕ−1(c)

T∏
t=0

(πc
b(at|c̃t)) [

(
T∏

t=0

πc
e(at|c̃t)
πc
b(at|c̃t)

rt

)2

]−
∑
s

T∏
t=0

(πb(at|st)) [

(
T∏

t=0

πe(at|st)
πb(at|st)

rt

)2

]

(g)

≤ R2
max

∑
c

∑
s∈ϕ−1(c)

T∏
t=0

(πc
b(at|c̃t)) [

(
T∏

t=0

πc
e(at|c̃t)
πc
b(at|c̃t)

)2

]−
∑
s

T∏
t=0

(πb(at|st)) [

(
T∏

t=0

πe(at|st)
πb(at|st)

)2

]


(h)

The rest of the proof is identical to the previous subsection of known concepts, wherein we apply
induction over the cardinality of the concepts and show the term inside the bracket is never positive,
thus completing the proof.

E.1.5 Upper Bound on the Bias

Unlike known concepts, there exists a finite bias in case of unknown concepts, and the finite bounds
need to be analyzed.

Bias = |
N∑

n=1

T∏
t=0

(
πb(a

(n)
t |s

(n)
t )

πc
e(a

(n)
t |c̃

(n)
t )

πc
b(a

(n)
t |c̃

(n)
t )

)
T∑

t=0

γtr
(n)
t − Eπc

e
[V̂ CIS

πc
e

]| (a)

≤ |
N∑

n=1

T∏
t=0

(
πc
e(a

(n)
t |c̃

(n)
t )(

πb(a
(n)
t |s

(n)
t )

πb(a
(n)
t |c̃

(n)
t

)

)
T∑

t=0

γtr
(n)
t |+ |Eπc

e
[V̂ CIS

πc
e

]| (b)

≤ 1

N
|

N∑
n=1

T∏
t=0

πc
e(a

(n)
t |c̃

(n)
t )

πc
b(a

(n)
t |c̃

(n)
t )

T∑
t=0

γtr
(n)
t |+

7TRmaxU
T
c ln(

2
δ )

3(N − 1)
+

√√√√ ln( 2δ )

N3 −N2

N∑
i<j

(Xi −Xj)2 + |Eπc
e
[V̂ CIS

πe
]|

(c)

≤ TRmaxU
T
c (

1

N
+

ln 2
δ

3(N − 1)
) +

√√√√ ln( 2δ )

N3 −N2

N∑
i<j

(Xi −Xj)2 + |Eπc
e
[V̂ CIS

πe
]| (d)

Explanation of steps:

(a) We begin with the evaluated Bias expression.

(b) Applying triangle inequality.

(c) Applying Bernstein inequality with probability 1-δ. Xi refers to the CIS estimate for 1 sample.

(d) Grouping terms 1 and 2 together,where Uc = max
πc
e(a|c̃)

πc
b(a|c̃)

.

The first term of the bias dominates the second in terms of the number of samples, with the true
expectation of the CIS estimator being unknown in general cases. Generally, the maximum possible
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reward is known, which leads to the first term dominating the Bias expression. Thus, Bias is of the
complexity O(TRmaxU

T
c

N )

E.1.6 Upper Bound on the Variance

V[V̂ CPDIS
πb

] = Eπb
(

(
T∑

t=0

γtrt

T∏
t′=0

πc
e(at′ |c̃t′)
πc
b(at′ |c̃t′)

)2

)− Eπb

(
T∑
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Explanation of steps:

(a) We begin with the definition of variance.

(b) The second term is always greater than 0

(c) Applying Bernstein inequality with probability 1-δ. Xi refers to the CIS estimate for 1 sample.

(d) Grouping terms 1 and 2 together,where Uc = maxπe(a|c̃)
πb(a|c̃) .

The first term of the variance dominates the second with increase in number of samples. Thus,
Variance is of the complexity O(T
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E.1.7 Upper Bound on the MSE
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The arguments are similar to the known-concept bounds of the MSE, with the difference being
the expressions for Uc, Us,K are over approximations of concepts instead of true concepts and an
irreducible error over Eπc

e
[V̂ CIS

πe
] as the distribution is sampled in the concept representations instead

of state representations.

E.1.8 Variance comparison with MIS estimator

Theorem. When Cov(
∏t
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rk), the

variance is lower than the Variance of MIS estimator, i.e. Vπb
[V̂ CIS ] ≤ Vπb

[V̂MIS ].
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Proof: We start from the assumption:
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Explanation of steps:

(a) We begin with the definition of covariance.

(b),(c) Using the definition of πc, with K (the ratio of state-space distribution ratio) < 1.

(c) Applying Lemma D.1.7 to both the terms.

Finally, using Lemma D.1.7, substituting Yt =
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rt and Xt = st, at, rt completes

our proof.

E.2 PDIS
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Explanation of steps: Similar to CIS.

E.2.2 Variance

Following the process similar to CIS estimator:

V[V̂ CPDIS
πb

] = Eπb
[(V̂ CPDIS

πb
)2]− (Eπb

[V̂ CPDIS
πb

])2 (a)
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We first evaluate the expectation of the square of the estimator:
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Evaluating the second term in the variance expression:
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Subtracting the squared expectation from the expectation of the squared estimator:
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Explanation of steps: Similar to CIS

E.2.3 Variance comparison between unknown CPDIS and PDIS estimators

Theorem E.1. When Cov(
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is lower than PDIS estimator, i.e. Vπb
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[V̂ PDIS ].

Proof: Similar to CIS estimator.
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E.2.4 Upper Bound on the Bias

Unlike known concepts, there exists a finite bias in case of unknown concepts, and the bounds need
to be analyzed.
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Explanation of steps: Similar to CIS.

E.2.5 Upper Bound on the Variance
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Explanation of steps: Similar to CIS.

E.2.6 Upper Bound on the MSE

MSE = Bias2 + Variance (a)

∼ O(TRmaxU
T
c

N
)2 + ϵ(|Eπc

e
[V̂ CPDIS

πe
]|2) +O(T

2R2
maxU

2T
c

N
) (b)

∼ O(T
2R2

maxU
2T
c

N
) + ϵ(|Eπc

e
[V̂ CPDIS

πe
]|2) (c)

∼ O(T
2R2

maxU
2T
s

N
)K2T + ϵ(|Eπc

e
[V̂ CPDIS

πe
]|2) (d)

The arguments are similar to the known-concept bounds of the MSE, with the difference being
the expressions for Uc, Us,K are over approximations of concepts instead of true concepts and an
irreducible error over Eπc

e
[V̂ CPDIS

πe
] as the distribution is sampled in the concept representations

instead of state representations.
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E.2.7 Variance comparison with MIS estimator

Theorem. When Cov(
∏t
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variance is lower than the Variance of MIS estimator, i.e. Vπb
[V̂ CPDIS ] ≤ Vπb

[V̂MIS ].

Explanation of Steps: Similar to CIS
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Figure 6: Schematic of windy-gridworld environment. The top-right corner refers to the goal target of the agent.
The wind direction and reward penalty is indicated in each region.

WindyGridworld Fig 6 illustrates the Windy Gridworld environment, a 20x20 grid divided into
regions with varying wind directions and penalties. The agent’s goal is to navigate from a randomly
chosen starting point to a fixed goal in the top-right corner. Off-diagonal winds increase in strength
near non-windy regions, affecting the agent’s movement. Each of the four available actions moves
the agent four steps in the chosen direction. Reaching the goal earns a +5 reward while moving away
results in a -0.2 penalty. Additional negative rewards are based on regional penalties within the grid.
Each episode ends after 200 steps.

The grid is split into 25 blocks, each measuring 4x4 units with each region having a penalty based
on the wind-strength. Blocks affected by wind display the direction and strength (e.g., ’←↑ (-2,+2)’
indicates northward and westward winds with a strength of 2 units each). This setup encourages the
agent to navigate through non-penalty areas for optimal rewards.
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MIMIC-III We use the publicly available MIMIC-III database (Johnson et al., 2016) from Phys-
ioNet (Goldberger et al., 2000), which records the treatment and progression of ICU patients at the
Beth Israel Deaconess Medical Center in Boston, Massachusetts. We focus on the task of managing
acutely hypotensive patients in the ICU. Our preprocessing follows the original MIMIC-III steps
detailed in Komorowski et al. (2018c) and used in subsequent works (Keramati et al., 2021b; Matsson
& Johansson, 2021). After processing the data in Excel, we group patients by ’ICU-stayID’ to form
distinct trajectories.

The state space includes 15 features: Creatinine, FiO2, Lactate, Partial Pressure of Oxygen, Partial
Pressure of CO2, Urine Output, GCS score, and electrolytes such as Calcium, Chloride, Glucose,
HCO3, Magnesium, Potassium, Sodium, and SpO2. Each feature is binned into 10 levels from 0
(very low) to 9 (very high).

Treatments for hypotension include IV fluid bolus administration and vasopressor initiation, with
doses categorized into four levels: "none," "low," "medium," and "high," forming a total action space
of 16 discrete actions. The reward function depends on the next mean arterial pressure (MAP) and
ranges from -1 to 0, linearly distributed between 20 and 65. A MAP above 65 indicates that the
patient is not experiencing hypotension.

G Additional Experimental Details

G.1 Known Concepts Policy Extraction

PPO exoerimental details: We run a PPO algorithm over our windygridworld environment to derive
our evaluation and behavior policies. The hyperparameters are as follows: 10k training episodes,
batch size of 64, discount factor of 0.99, learning rate of 1e-4, rate of exploration of 0.2, 5 epochs
between actor and critic update, update timestep interval of 2000. We take the evaluation policy as
the policy learnt at epoch 10k while the behavior policy as the policy learnt at epoch 5k.

G.2 Unknown Concepts Experimental setup

Environments, Policy descriptions, Metrics: Same as those in known concepts section.

Training and Hyperparameter Details: We use 400 training, 50 validation, and 50 test trajectories
sampled from the behavior policy to train the CBMs, which predict the next state transitions from the
current state. The model architecture includes an input layer, a bottleneck, two 256-neuron layers,
and an output layer, all with ReLU activations. Training is performed using the Adam Optimizer with
a learning rate of 1e-3 on an Nvidia P100 GPU (16 GB) within the Pytorch framework.

Training targets multiple loss components: the OPE metric, interpretability, diversity, and CBM
output. The non-convex nature of the loss landscape can lead to issues such as non-convergence and
NaN values. To address this, we employ a three-stage training strategy.

In the first stage, we optimize all losses except the OPE metric to stabilize the initial training process.
In the second stage, the OPE metric is gradually incorporated into the optimization until convergence
is achieved. Finally, in the third stage, we freeze the CBM weights to refine the remaining losses
while controlling variations in the OPE metric.

This strategy balances the learning of critical on-policy features with maintaining relevant OPE
metrics, thereby enhancing concept learning and policy generalization. Despite these efforts, man-
aging the complexity of the loss landscape remains a significant challenge, particularly in dynamic
environments, and represents an important direction for future research.

G.3 Known, Oracle and Intervened Concepts

Table 1 refers to the list of concepts used for Windygridworld experiments. The table consists of
Oracle concepts, good known concepts, poor known concepts, and learned concepts. In case of
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interventions, we intervene on misclassified learned concepts using good known concepts. In case of
MIMIC, oracle concepts are unknown as it’s a real world practical example. In case of good known
concepts, the concepts are obtained by applying Approximate nearest neighbors algorithm over 200
nearest neighbors for all features discretized over 10 levels. For poor MIMIC concepts, we discretize
the features into just 2 levels, thus leading to ambiguous features and thereby lack of diversity.

X Y
Known (Good) Known (Poor) Oracle Learned

Concept Concept Concept Concept
(0,4) (0,4) 0 0 0 0
(4,8) (0,4) 1 1 1 1
(8,12) (0,4) 2 2 1 1

(12,16) (0,4) 3 3 1 0
(16,20) (0,4) 4 4 1 1

(0,4) (4,8) 5 0 2 2
(4,8) (4,8) 6 1 0 0
(8,12) (4,8) 7 2 1 1

(12,16) (4,8) 8 3 1 1
(16,20) (4,8) 9 4 1 0

(0,4) (8,12) 10 0 2 2
(4,8) (8,12) 11 1 2 2
(8,12) (8,12) 12 2 0 0

(12,16) (8,12) 13 3 1 1
(16,20) (8,12) 14 4 1 1

(0,4) (12,16) 15 0 2 2
(4,8) (12,16) 16 1 2 2
(8,12) (12,16) 17 2 2 2

(12,16) (12,16) 18 3 3 3
(16,20) (12,16) 19 4 3 3

(0,4) (16,20) 20 0 2 2
(4,8) (16,20) 21 1 2 2
(8,12) (16,20) 22 2 2 2

(12,16) (16,20) 23 3 2 2
(16,20) (16,20) 24 4 3 3

Table 1: WindyGridworld Concept Information

G.4 Additional description on polices for MIMIC-III

For the MIMIC-III dataset, it is common to generate behavior trajectories using K-nearest neighbors
(KNN) as the true on-policy trajectories are unavailable. Examples of works that generate behavior
trajectories or policies using KNNs include (Gottesman et al., 2020; Böck et al., 2022; Liu et al.,
2022; Keramati et al., 2021b; Komorowski et al., 2018b; Peine et al., 2021). In this paper, we employ
a popular variant of KNN, known as approximate nearest neighbors (ANN) search.

The advantages of ANN over traditional KNN include scalability, reduced computational cost,
efficient indexing, and support for dynamic data. These benefits allow us to generate behavior and
evaluation policies with a larger number of neighbors (200 in this study, which is double that used in
prior works employing KNN) while achieving faster inference times. Examples of papers that use
approximate nearest neighbors in medical applications include (Anagnostou et al., 2020; Gupta et al.,
2022). For readers interested in the foundational work outlining the benefits of ANN over KNN, we
refer to the seminal paper (Indyk & Motwani, 1998).

H Optimized Parameterized Concepts
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Table 2: WindyGridworld: Coefficients of the human interpretable features learnt while optimizing parameter-
ized concepts. Here, the concept ct is a 4-dimensional vector [c1, c2, c3, c4], where ci = wT

i fi, with fi being
the human interpretable features.

Feature CIS CPDIS
c1 c2 c3 c4 c1 c2 c3 c4

f1: X-coordinate 0.15 -0.07 0.05 0.19 -0.23 0.33 -0.03 0.03
f2: Y-coordinate -0.02 -0.23 0.07 -0.12 -0.22 0.25 0.02 -0.06
f3: Horizontal distance from target -0.02 0.07 -0.10 0.00 -0.15 -0.30 0.02 -0.11
f4: Vertical distance from target 0.06 -0.26 -0.09 0.06 -0.11 0.10 -0.04 -0.21
f5: Horizontal Wind 0.05 0.12 -0.12 0.00 -0.15 0.20 0.29 -0.14
f6: Vertical Wind 0.26 0.01 -0.02 0.00 -0.18 0.06 -0.17 0.19
f7: Region penalty 0.24 0.18 -0.25 0.15 0.23 0.01 -0.11 0.22
f8: Distance to left wall -0.14 -0.25 0.01 0.05 -0.13 0.24 0.16 0.14
f9: Distance to right wall 0.02 0.00 0.01 0.19 -0.12 -0.28 0.06 0.16
f10: Distance to top wall -0.01 -0.20 -0.21 0.07 -0.33 -0.05 -0.04 -0.01
f11: Distance to bottom wall -0.16 0.07 0.22 -0.22 0.06 -0.13 0.13 -0.22
f12: Penalty of left subregion -0.06 0.08 -0.08 -0.22 -0.07 -0.01 0.03 -0.16
f13: Penalty of right subregion -0.03 0.02 -0.20 -0.20 -0.07 -0.18 -0.34 -0.21
f14: Penalty of top subregion 0.16 0.19 -0.08 -0.17 0.00 0.04 -0.07 0.21
f15: Penalty of bottom subregion 0.08 0.24 0.05 -0.19 0.17 -0.07 -0.12 0.21
f16: Distance to left subregion -0.11 0.05 0.00 0.26 0.10 -0.07 0.22 0.04
f17: Distance to right subregion 0.00 -0.17 0.04 0.13 0.05 -0.13 0.06 0.11
f18: Distance to top subregion 0.07 -0.03 0.13 0.08 -0.12 0.01 0.06 0.00
f19: Distance to bottom subregion -0.06 -0.09 -0.06 -0.01 -0.19 -0.01 0.06 0.13
Constant -0.06 -0.16 0.14 -0.01 -0.08 -0.01 0.00 0.13

Table 3: MIMIC: Coefficients of the human interpretable features learnt while optimizing parameterized
concepts.

Feature CIS CPDIS
c1 c2 c3 c4 c1 c2 c3 c4

f1: Creatinine -0.08 -0.24 0.19 -0.18 -0.08 -0.24 0.19 -0.18
f2: FiO2 -0.13 0.00 0.04 -0.06 -0.13 0.00 0.04 -0.06
f3: Lactate -0.24 -0.02 -0.23 0.21 -0.24 -0.02 -0.23 0.21
f4: Partial Pressure of O2 0.09 -0.07 -0.06 -0.12 0.09 -0.07 -0.06 -0.12
f5: Partial Pressure of CO2 -0.21 0.16 0.19 -0.03 -0.21 0.16 0.19 -0.03
f6: Urine Output 0.06 0.07 0.06 0.22 0.06 0.07 0.06 0.22
f7: GCS Score 0.11 -0.05 -0.01 0.15 0.11 -0.05 -0.01 0.15
f8: Calcium 0.16 -0.20 0.06 0.16 0.16 -0.20 0.06 0.16
f9: Chloride 0.02 -0.11 -0.04 0.14 0.02 -0.11 -0.04 0.14
f10: Glucose 0.06 -0.10 -0.10 -0.08 0.05 -0.10 -0.10 -0.08
f11: HCO2 0.21 0.14 -0.20 -0.22 0.20 0.14 -0.20 -0.22
f12: Magnesium -0.15 -0.02 -0.20 0.01 -0.15 -0.02 -0.20 0.01
f13: Potassium 0.04 0.08 0.15 -0.26 0.04 0.08 0.15 -0.26
f14: Sodium 0.00 -0.02 0.24 0.19 0.00 -0.02 0.24 0.19
f15: SpO2 -0.17 -0.20 -0.06 -0.23 -0.17 -0.20 -0.06 -0.23


