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Summary
Many real-world control and optimization problems require making decisions over a fi-

nite time horizon to maximize performance. This paper proposes a reinforcement learning
framework that approximately solves the finite-horizon Markov Decision Process (MDP) by
combining Gaussian Processes (GPs) with Q-learning. The method addresses two key chal-
lenges: the tractability of exact dynamic programming in continuous state-control spaces, and
the need for sample-efficient state-action value function approximation in systems where data
collection is expensive. Using GPs and backward induction, we construct state-action value
function approximations that enable efficient policy learning with limited data. To handle the
computational burden of GPs as data accumulate across iterations, we propose a subset selec-
tion mechanism that uses M-determinantal point processes to draw diverse, high-performing
subsets. The proposed method is evaluated on a linear quadratic regulator problem and online
optimization of a non-isothermal semi-batch reactor. Improved learning efficiency is shown
relative to the use of Deep Q-networks and exact GPs built with all available data.

Contribution(s)
1. The paper presents a framework for learning Gaussian process state-action value function

approximations using Q-learning for deterministic finite horizon Markov Decision Pro-
cesses.
Context: Prior work has explored the use of Gaussian process models within the infinite
horizon context but has shown no principled mechanism to handle increasing dataset size
(Engel et al., 2005; Grande et al., 2014; Chowdhary et al., 2014).

2. A subset selection strategy is proposed to ensure the online computational tractability of
control inference using M-determinantal point processes to build a GP approximation of
the state-action value function, that balances global coverage with local accurate modeling
in highly performing regions of the state-control space (Kulesza et al., 2012; Moss et al.,
2023)
Context: Previous works take the approach of building variational approximations globally
to the exact GP state-action value function approximation (Grande et al., 2014).
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Abstract

Many real-world control and optimization problems require making decisions over a
finite time horizon to maximize performance. This paper proposes a reinforcement
learning framework that approximately solves the finite-horizon Markov Decision Pro-
cess (MDP) by combining Gaussian Processes (GPs) with Q-learning. The method
addresses two key challenges: the tractability of exact dynamic programming in contin-
uous state-control spaces, and the need for sample-efficient state-action value function
approximation in systems where data collection is expensive. Using GPs and backward
induction, we construct state-action value function approximations that enable efficient
policy learning with limited data. To handle the computational burden of GPs as data
accumulate across iterations, we propose a subset selection mechanism that uses M-
determinantal point processes to draw diverse, high-performing subsets. The proposed
method is evaluated on a linear quadratic regulator problem and online optimization of
a non-isothermal semi-batch reactor. Improved learning efficiency is shown relative to
the use of Deep Q-networks and exact GPs built with all available data.

1 Introduction

Sequential decision-making problems with finite time horizons appear across numerous domains.
These problems are often naturally modeled as finite-horizon Markov Decision Processes (MDPs),
where decisions must optimize the total cost incurred over a predetermined time window. Fed-
batch process control and online optimization is a prominent example within the process systems
engineering (PSE) community (Mesbah, 2016; Bradford et al., 2020), where optimal policy identi-
fication is inherently challenging due to difficulties in system model identification and uncertainty
propagation over the decision horizon. While optimal solutions to these problems can theoretically
be obtained through dynamic programming (DP), three significant challenges emerge in practice: (i)
the intractability of exact DP in continuous state-action spaces, (ii) the lack of an exact descriptive
process model, and (iii) the need for sample efficiency when data collection is expensive.

This paper introduces a reinforcement learning framework that addresses these challenges by com-
bining the statistical modeling power of Gaussian Processes (GPs) with Q-learning. Previous works
have predominantly explored the use of GPs to approximate state-space models (Kuss & Rasmussen,
2003; Deisenroth et al., 2015; Bradford et al., 2020; Mowbray et al., 2022), with relatively few tak-
ing a purely model-free approach. For example, Savage et al. (2021) exploited GP models for
state-action value learning. However, the paper provides no mechanism for updating the underlying
dataset, for example through a Monte Carlo or Q-learning estimator and therefore is not guaranteed
to identify the optimal policy. The GP temporal difference learning (GPTD) algorithm detailed in
Engel et al. (2005) is tailored for prediction problems by explicitly modeling rewards and exploit-
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ing the structure of the Bellman equation, to identify the value function of a stationary policy that
has generated the modeled data. The algorithm can be extended for on-policy control through the
use of SARSA. Nevertheless, the authors do not exploit the uncertainty of the state-action value
function posterior process to balance exploration and exploitation; and, as we argue subsequently,
off-policy updates are preferable. Chowdhary et al. (2014) have explored the development of GP-
based Q-learning algorithms; however convergence is dependent upon non-trivial selection of a
regularization parameter. Grande et al. (2014) provide a GPQ learning algorithm with an update
rule that assumes the observed rollout estimate and the approximation belong to a joint Gaussian
distribution. This assumption likely only holds for a subset of MDPs.

Unlike traditional state-action value function approximation methods that rely on neural networks
(Azizzadenesheli & Anandkumar, 2019) or linear models, GPs offer significant advantages: they
provide epistemic and aleatoric uncertainty quantification that can be exploited for decision mak-
ing through the use of bandit strategies, can incorporate prior domain knowledge through kernel
selection, and inherently balance model complexity as data are collected.

The contributions of this work are as follows. We pose a framework for learning optimal control us-
ing Q-learning and GPs in finite-horizon MDPs with deterministic dynamics and justify the compo-
sition of the two. The computational challenges associated with the use of GPs are handled through
implementation of a principled subset selection mechanism using M-determinantal point processes
(M-DPPs) (Kulesza & Taskar, 2012; Moss et al., 2023). This mechanism enables efficient scaling of
control inference with increasing dataset size, despite the cubic complexity of exact GP inference.
Empirical validation on both a linear quadratic regulator (LQR) system and a non-isothermal semi-
batch chemical reactor optimization problem demonstrate the algorithm’s sample efficiency. This
is a significant advantage in real-world chemical processes where experiments involve substantial
costs and time investment.

In summary, we develop a GP-based Q-learning framework for finite-horizon MDPs, and implement
a practical approach using M-DPPs for strategic subset selection. The rest of this paper is structured
as follows: Section 2 presents preliminaries, Section 3 the GPQL algorithm, Section 4 the case
studies, and conclusions in Section 5.

2 Preliminaries

2.1 Finite-horizon Markov decision processes

Consider a finite-horizon Markov Decision Process (MDP) which is defined by the 5-tuple
⟨X ,U ,P,Φ, T ⟩. Specifically, the states are described by a compact state set, x ∈ X ⊂ Rnx ,
with the controls restricted to a compact set, u ∈ U ⊂ Rnu . The underlying decision process
adheres to discrete-time state transitions described by a conditional probability density function,
P : X × U × X → [0,∞) over a time horizon, T = {0, . . . , T}. For convenience, in the following
we denote the state-control pair, z = [x,u]⊺, and corresponding set, Z = X × U . We restrict the
presentation to consider deterministic state-transitions, such that one may define

P(xt+1 | xt,ut) =

nx∏
i=1

δ(xi,t+1 − fi(xt,ut)) ,

where δ(·) indicates the dirac-delta function. xi,t ∈ R the ith state component, and f(x,u) =
[f1(x,u), . . . , fnx(x,u)]⊺ a discrete-time dynamic model of the system,

xt+1 = f(xt,ut) . (1)

The objective of decision making is to select controls, according to a non-stationary state-feedback
policy, π(·) = (π0(·), . . . , πT−1(·)), with Ut ∼ πt(ut | xt), to minimize the expected sum of
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stage-costs allocated by a cost function, Φ(x,u), incurred over a finite discrete-time horizon,

min
π

Eπ [Q
π
t (X0, U0) | X0 = x0]

Qπ
t (x,u) := Φ(x,u) + Eπ

[
T−1∑

k=t+1

Φ(Xk, Uk)

∣∣∣∣∣Uk ∼ πk(uk | xk)

]
.

(2)

Note that although the initial state, x0, is assumed to be known with certainty, in general the state
itself is uncertain due to the definition of the policy as a conditional probability density function.

According to the principle of optimality, however, the optimal policy is a deterministic function of
state and acts to greedily minimize the state-action value function at a given time within the horizon,

π∗(xt) ∈ argmin
π

Qπ
t (xt, πt(xt)) . (3)

In principle, the optimal policy can be identified through dynamic programming (DP). However, DP
becomes intractable in large or continuous state-control spaces and is reliant on a known model of the
system, which is unavailable in general. This directs attention to the use of model-free approximate
methods, such as Q-learning, which, in the tabular sense, aim to approximate the state-action values
associated with state-control pairs in a given dataset,

D = {Dt}t=0:T−1 , Dt =
{(

x(i)t ,u(i)
t , x(i)t+1,Φ(x

(i)
t ,u(i)

t )
)}

i=1:N
.

We would like to exploit this discrete data for decision-making in continuous state-control spaces.
This challenge is typically handled through the construction of function approximators, e.g., deep
Q-networks (Mnih et al., 2013).

2.2 Gaussian process

GPs are probabilistic models that describe the relationship between a finite number of evalua-
tions of a multivariate, scalar-valued function via a joint multivariate Gaussian distribution. Con-
sider the input locations, Z = {z1, . . . , zN}, corresponding noiseless function evaluations, Y =
{f(z1), . . . , f(zN )}, test location, z∗, and function value, y∗. The zero-mean GP prior asserts,[

Y
y∗

]
∼ N

([
0
0

]
,

[
K(Z,Z) k(Z, z∗)
k(Z, z∗)⊺ k(z∗, z∗)

])
(4)

with k(z, z′) ∈ R denoting the kernel function, k(Z, z∗) ∈ RN the covariance of the function values
between the input locations and test point, k(z∗, z∗) ∈ R the variance of the function value at the test
point, and K(Z,Z) denoting the gram matrix representative of the covariance of the function values
evaluated at the input locations, Z. Bayesian inference gives the predictive posterior distribution:

µ(z∗) = k(Z, z∗)⊺K(Z,Z)−1Y

k(z∗, z∗) = k(z∗, z∗)− k(Z, z∗)⊺K(Z,Z)−1k(Z, z∗) ,
(5)

with y∗ ∼ N (µ(z∗),k(z∗, z∗)) providing a description of the posterior at z∗. One may also be
interested in a general description of the posterior process,

f(·) | Y ∼ GP (µ(·),k(·, ·)) , (6)

which may be used to approximate the state-action value function using the available data. A policy
may then be defined to exploit the posterior process for decision-making, generalizing to continuous
state-control spaces. Such a policy may be defined by greedily exploiting functions drawn from
the posterior, which involves solving minimization problems. This motivates discussion regarding
properties of the optimal solution map and value function.
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2.3 Optimal value functions and solution maps of nonlinear programs

Consider the optimal (possibly point-to-set) solution map, u∗ ∈ G∗(x) and optimal value func-
tion, g∗(x), of the following parametric nonlinear program with constant constraint map (Fiacco &
Ishizuka, 1990),

G∗(x) := argmin
u∈U

g(x,u)

g∗(x) := min
u∈U

g(x,u) ,
(7)

with g(x,u) indicating a multivariate, scalar valued objective function.

Assumption 1 The nonlinear objective function is continuous in both x and u, with (x,u) ∈ Z .

Property 1 Let Assumption 1 hold. The optimal value function, g∗(x), is continuous (Fiacco &
Ishizuka, 1990; Aubin & Frankowska, 1999), and the optimal solution map, G∗(x), is upper semi-
continuous on x ∈ X (Sundaram, 1996).

Strict convexity assumptions are typically required for the solution map to be single-valued and
continuous (Fiacco & Ishizuka, 1990; Aubin & Frankowska, 1999).

3 Methodology

In the following section, we present a methodology that leverages GPs to approximate the state-
action value function. This directs the presentation of the following problem statement.

3.1 Problem statement

Consider the finite-horizon MDP introduced in Section 2.1. To ensure that the state-action value
function can be well approximated by a continuous function, we impose the following regularity
conditions on the system dynamics and policies.

Assumption 2 The underlying MDP satisfies the following conditions: (i) the state transition func-
tion ft : Z → X is continuous for all t ∈ {0, . . . , T − 1}; (ii) any policy π(u | x) is a conditional
probability density function continuous with respect to x with support on the compact set X ; and
(iii) the cost function Φ : Z → R is continuous over the compact set (x,u) ∈ Z .

Proposition 1 Under Assumption 2, the state-action value function Qπ
t : Z → R+ induced under

policy π is continuous for all t ∈ {0, . . . , T − 1}. Furthermore, the optimal state-action value
function Qπ∗

t (x,u) is continuous on (x,u) ∈ Z , and the value function of the nonlinear program
minu∈U Qπ

t (x,u) satisfies Property 1

3.2 Gaussian process Q-Learning (GPQL)

Having formalized the problem setting, we now direct our attention to the contribution of this work.
Namely, we introduce Gaussian process Q-Learning (GPQL), which is well suited to solving the
problems described, and adheres to the general framework for policy iteration.

3.2.1 Gaussian process state-action value function approximation

We propose to approximate the state-action value function, Qπ
t (·) using GP models and consider

the construction of independent GP models for each time-step. Specifically, we assume a dataset,
Dt ∀t, which provides some discretization of the state-control space, z ∈ Z , from which state-
action values may be estimated via fixed-point estimates, Qπ

t = {Qπ
t (z) ∀z ∈ Dt}, as in the tabular

setting. A joint prior distribution defines the predictive model of the state-action value, Qπ
t,∗, at a



Gaussian Process Q-Learning for Finite-Horizon Markov Decision Processes

new state-control pair, z∗ ∈ Z ,[
Qπ

t

Qπ
t,∗

]
∼ N

([
0
0

]
,

[
Kt(Z,Z) kt(Z, z∗)
kt(Z, z∗)⊺ kt(z∗, z∗)

])
. (8)

Through conditioning the posterior process may be obtained, Qπ
t (·) | Qπ

t ∼ GP (µπ
t (·),kπ

t (·, ·)),
as defined in Section 2.2. In principle, given knowledge of the underlying problem structure, one
can select a kernel appropriately, such that the state-action value function lies within the class of
functions well represented by the GP. Considerations for selection are outlined later in Section 3.2.3.

It is worth highlighting that the complexity of GP model inference scales cubically with the number
of datapoints, N . In practice, we use the M -determinantal point process (M -DPP) to select a subset
of the state-action value point estimates to build an approximation. A subset of M ≤ N points, ZM ,
are sampled from Dt, in order to maximize their probability under the M -DPP,

P(ZM ⊆ Z) ∝ |LZM
|

|LZM
| = |K(ZM , ZM )| ·

∏
z∈ZM

q(z)2 , (9)

which is proportional to the trace of the Gram matrix weighted by the quality of the points as eval-
uated by q(z), ∀z ∈ ZM . This is a strategy that was reported in Kulesza et al. (2012), and has
since been utilized within the context of Bayesian optimization with sparse GPs (Moss et al., 2023).
Intuitively, it selects points to balance performance under the quality function and coverage of the
state-control space as evaluated by the determinant of the kernel. Here, we utilize the strategy to
simply build an exact GP estimator providing a local model in promising regions of the state-control
space. The greedy method utilized in Chen et al. (2018); Moss et al. (2023) is implemented for
convenience.

3.2.2 Thompson sampling for policy improvement

Within the course of approximate policy improvement, the GP model is exploited to generate a
policy which balances exploration and exploitation. Specifically, a Thompson sampling (TS) policy,
π(u | x), is deployed (Wilson et al., 2020). The policy is defined through minimization of state-
action value functions, Qπ

t (·), sampled probabilistically from the GP posterior,

πt(u | x) = Pr

(
u ∈ argmin

ū∈U
Qπ

t (x, ū) | Qπ
t

∣∣∣∣ Qπ
t (·) | Q

π
t ∼ GP (µπ

t (·),kπ
t (·, ·))

)
. (10)

This enables one to exploit the GP-based state-action value function approximation to both explore
and exploit the decision-space—effectively leveraging the quantification of epistemic uncertainty to
generate data under a behavior policy, which may then be used to learn the target optimal policy.

In principle, the TS behavior policy is upper semi-continuous in the state, and does not satisfy
Assumption 2. However, this does not impact the state-action value function approximation problem
posed as discussed in the subsequent section.

3.2.3 Q-Learning with backward induction

Having defined means to both approximate the state-action value function using point-estimates and
exploit it for decision-making, we now discuss updates of the point estimates, Qπ

t . In any given
rollout of the TS policy, one generates data that may be used to update the existing dataset,

Dn,t =
{(

x(n)t ,u(n)
t ,Φ(x(n)t ,u(n)

t ), x(n)t+1

)}
, Dt ← Dt ∪ Dn,t ∀t .

This new dataset may be used to update the GP posterior state-action value function approximations
working from the final decision-step, given Qπ

T−1 = {Φ(xT−1,uT−1), ∀(xT−1,uT−1) ∈ DT−1},
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and propagating information backwards over the horizon via the following update,

Qπ
t (xt,ut)← Qπ

t (xt,ut) + α

(
Φ(xt,ut) + min

ut+1∈U
µπ
t+1(xt+1,ut+1)−Qπ

t (xt,ut)

)
∀ (xt,ut,Φ(xt,ut), xt+1) ∈ Dt, ∀t < T − 1 ,

(11)

with α ∈ (0, 1] denoting a Robbins Munro step-size. This is a deterministic update rule based on the
mean posterior GP approximation of the future cost-to-go. In principle, in the deterministic finite
horizon setting one may keep α = 1; however, we found Robbins-Munro step sizes empirically
preferable. The updated state-action value point-estimates are then used to construct updated GPs.

The following analysis is provided as a comment on the considerations for approximation.

Assumption 3 The cost function, Φ : Z → R is a strictly convex function draw from Φ ∼
GP(0, k(·, ·)) with convex kernel, k ∈ KPD, on the compact set, Z × Z .

Property 2 Let Assumption 2 and 3 hold and ensure that the state-action value point estimates,
Qπ

T−1, are updated through (11). For the general case of nonlinear dynamics, the point estimates
do not lie in the same class of functions as the cost function in Assumption 3.

Property 3 Assume an initial dataset generated through a policy in a finite horizon MDP satisfying
Assumption 2. Provided the optimal future cost-to-go estimate from the posterior mean in (11) is
the value function of a nonlinear program satisfying Property 1, the state-action value estimates are
described by a continuous function for all timesteps.

Property 2 and 3 motivate the use of the off-policy Q-learning update1. The implication is that,
regardless of the behavior policy, the state-action value estimates yielded by (11) are well approx-
imated by a continuous function, although one not necessarily within the same class as the cost
function. The proof of Property 2 follows trivially from the assumption of nonlinear dynamics. The
proof of Property 3 is general beyond GP approximation and follows the reasoning from Section
2.3. We note that, if the initial step size is set α = 1, then the assumption for the initial state-action
value estimates to have been generated by a policy satisfying the policy continuity assumption from
Assumption 2 may be relaxed. The practical implications of Property 2 are relatively minimal given
the establishment of representer theorems (Williams & Rasmussen, 2006) and approximation capac-
ity of universal kernels (Micchelli et al., 2006). In the case of affine dynamics and convex cost the
following remark can be stated.

Remark 1 Assume time-varying or time-invariant affine dynamics, and a cost function, Φ : Z →
R+, strictly convex on the compact space, Z . Under the assumption of a strictly input convex kernel,
positive definite Gram matrix, and restriction for all Qπ

t+1 be strictly non-negative, then the optimal
future cost-to-go is a convex function of the current state-control pair. Hence the iterates yielded by
(11) are well approximated by a convex function.

Remark 1 is exemplified by the case of the LQR, where the state-action value function is a quadratic
function of the state and control, as is the cost function, for all time indices in the horizon. The
restriction imposed on all Qπ

t+1 to be non-negative can be enforced by simply bounding the iterates
produced by (11). Algorithm 1 describes GPQL as proposed.

4 Experiments

We evaluate GPQL computationally on two control tasks: an LQR problem, and a non-isothermal
semi-batch reactor, which highlights the practical applicability of our method to real-world systems.

1Note that these results do not necessarily hold for on-policy updates such as SARSA if the rollout policy does not have
continuity properties, which is often the case.
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Algorithm 1 Gaussian Process Q-Learning

1: Input: Dynamics, P(·) with compact state set X , compact control set U , a cost function, Φ(·), and discrete
time horizon, t ∈ {0, . . . , T −1}. A posterior Gaussian process state-action value function approximation
Qπ

t (·) | Qπ
t ∼ GP(µπ

t ,k
π
t (·, ·)), ∀t, estimated from initial data, Qπ

t , and an initial policy πt.

2: while evaluation budget available do
3: Approximate Policy Evaluation: Update Qπ

t (·) | Qπ
t ∼ GP(µπ

t ,k
π
t (·, ·)), ∀t

4: Rollout the policy, π(·) by sampling P(·)
5: Collect (xt, ut,Φ(xt, ut), xt+1) and store in Dt, ∀t.
6: for t ∈ {T − 1, . . . , 0} do
7: Update the data Qπ

t according to (11).
8: Update the posterior process Qπ

t (·) | Qπ
t ∼ GP(µπ

t ,k
π
t (·, ·))

9: end for

10: Approximate Policy Improvement: Update the policy, π

11: Define the Thompson Sampling policy, π, through the updated posterior processes via (10).
12: end while
13: Return: Optimized policy π∗ and function approximation Q∗.

4.1 Linear Quadratic Regulator

The LQR problem provides an ideal benchmark for our approach as it satisfies the conditions in
Remark 1 with its affine dynamics and strictly convex quadratic cost function. The quadratic cost
structure ensures that the state-action value function belongs to the same convex function class
throughout the learning process, making it well-suited for GP approximation with convex kernels.
We formulate an LQR problem using a double integrator system (position and velocity control)
with dynamics and cost matrices defined in Appendix B.1 with time horizon T = 6. For this
system, we employed a positive definite convex kernel (specifically, a quadratic kernel) to align with
the quadratic structure of the optimal Q-function and initialized with 5 episodes generated from a
Sobol sequence on control trajectories. Figure 1 shows the final policy2 that our GPQL algorithm

100 101 102
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102

C
os

t

LQR

0 100 200
Episode

4000

2000

Semi-batch reactor

GPQL [5] (LQR) GPQL [10] DQN GPQL [30]

Figure 1: From left to right: Learning curve for the LQR case study for GPQL training. Learning
curve for the Semi-batch Reactor case study. GPQL shown in blue for the LQR case with initial
dataset size of 5, and in green and cyan for the Semi-batch Reactor case with initial dataset sizes
of 10 and 30, respectively. DQN is orange and the oracle in dashed red. The shaded area shows a
single standard deviation.

identifies consistently approaches the oracle’s performance after collection of 25 further batches3.

2The final policy greedily exploits the posterior mean function.
3Here a batch refers to a rollout of the policy within the system over the discrete time horizon.
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We compare to a DQN (Mnih et al., 2013) implementation, which models the Q-function with a
neural network. DQN requires approximately 105 batches to reach the same level of performance
that GPQL achieves in a total of 30. Figure 2 illustrates the convergence by showing the state and
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Figure 2: State and control trajectories for the LQR case study. Median states and controls from five
repeats (blue) closely align with the oracle’s optimal trajectories (red). Shaded areas represent one
standard deviation.

control trajectories. The algorithm’s learned policy (blue) closely aligns with the oracle’s optimal
trajectories (red) after training. This demonstrates that our method not only minimizes cost but also
recovers the underlying optimal control structure of the LQR problem with relatively small datasets.

4.2 Semi-Batch Reactor

The second experiment involves a benchmark non-isothermal semi-batch reactor control problem
(Bradford & Imsland, 2018; Bloor et al., 2024). The system expresses a series reaction mechanism:
A

k1−→ B
k2−→ 3C, where the first reaction is exothermic and the second is endothermic. The state vec-

tor x = [CA,CB,CC,T,V]
⊺ tracks species concentrations, temperature, and reactor volume, while

control inputs u = [Tc,F]
⊺ represent cooling jacket temperature and feed flow rate. The objective

is to maximize the final amount of product C—the cost function is detailed in the supplementary.

Due to the nonlinearity of this system, we employed a Matérn-5/2 kernel for our GP models. We
evaluated GPQL with different initial dataset sizes (10 and 30 batches). We allow the TS pol-
icy to collect a further 25 batches and compare the final policy (greedily exploiting the posterior
mean function) against an oracle nonlinear model predictive controller (NMPC) with perfect system
model. Figure 1 shows the produced learning curves. With 30 initial batches, the starting perfor-
mance is notably higher than with 10 batches, demonstrating the value of a larger initial dataset. An
initial performance dip occurs in early training episodes due to the exploration behavior of TS.

Figure 3: State and control trajectories for semi-batch reactor. The learned policy (blue) closely
tracks the oracle (red) for key state variables and control inputs. Shaded areas represent one standard
deviation.
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Figure 3 compares the state and control trajectories to those of the oracle. The learned policy closely
tracks the oracle except for early states and controls. As the initial dataset size increases to 30
batches, GPQL approaches the performance of the oracle, confirming that our method provides
significant advantages in scenarios where experimental data is limited and costly.

5 Conclusions and Future Work

This paper introduces GPQL, an approach for solving finite-horizon MDPs by using GPs to approx-
imate state-action value functions. Our method addresses the challenges of continuous state-control
spaces while maintaining computational tractability through strategic subset selection. Our empir-
ical evaluation on both LQR problems and a non-isothermal semi-batch reactor demonstrates that
GPQL achieves near-optimal performance with limited data.

Future work includes extending our analysis to the case of uncertain dynamics. Additionally, in-
vestigating the application of the algorithm to MDPs with state chance constraints additionally im-
posed would enhance its practical utility for real-world control problems where state and control
constraints are common.

A Additional Studies

A.1 Ablation of Subset Selection Strategy

To evaluate our proposed M-DPP subset selection mechanism, we compare four approaches for
subset selection. The exact GP baseline uses the complete accumulated dataset without subset se-
lection. Random subset selection samples datapoints from a uniform distribution. Uniform coverage
selection chooses points with probability proportional to the kernel function alone.

The subset selection strategies use a maximum of 20 state-control pairs for both experiments, with
additional comparisons at 30 points shown as dashed lines. The exact GP utilizes all available data-
points. This design evaluates whether principled subset selection achieves comparable performance
to exact GP formulations while maintaining computational tractability.
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C
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0 10 20 30
Episode

100

101

LQR

M-DPP (30 IPs)
Uniform (30 IPs)

Random (30 IPs)
Exact GP

Uniform
M-DPP

Random

Figure 4: Ablation study of subset selection strategies. From left-to-right, the ablation study for
semi-batch, and then the LQR case study. The Blue line is the full dataset (i.e. no subset selection),
orange is a uniform coverage, green is the M-DPP, red is a random subset, and the dashed lines
represent subsets with a maximum of 30 data points.
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The ablation study demonstrates that M-DPP marginally outperforms uniform coverage in the LQR
case, with both methods substantially exceeding the performance using the full dataset. For the
semi-batch reactor, uniform coverage performs well at 20 inducing points while M-DPP performs
better at 30 datapoints. Both subset selection strategies consistently outperform the GP using the
full dataset, likely due to challenges associated with building global function approximations with
the exact GP.

A.2 Timing Analysis

The computational efficiency of different subset selection strategies was evaluated across both case
studies to understand the trade-offs between accuracy and computational expense. Figure 5 presents
offline timing comparisons for four approaches to construct the GPs: Exact GP, M-DPP subset
selection, Random selection, and Uniform selection, conducted across five random seeds with a
maximum subset size of 20 datapoints.
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Figure 5: Computational timing comparison of subset selection strategies for the LQR and Semi-
batch case studies across different dataset sizes.Offline phase showing GP construction time (solid
lines, left y-axis) and subset selection time (dashed lines, right y-axis). Four strategies are compared:
Exact GP, M-DPP, Random selection, and Uniform selection. Lines show median timing across five
seeds, with shaded regions indicating min-max ranges.

The offline timing analysis shows the scalability challenge of exact GPs. While subset-based meth-
ods maintain relatively constant fitting times regardless of dataset size, the exact GP approach ex-
hibits the expected cubic growth in computational expense. The subset selection overhead (dashed
lines, right y-axis) shows that M-DPP and uniform strategies both incur higher computational costs
due to its kernel matrix computations compared to random and no selection strategies.
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B Experimental Setup

B.1 Linear Quadratic Regulator

min
u0,...,uT−1

x⊺
TQT xT +

T−1∑
k=0

(xT
kQxk + uT

kRuk) (12)

s.t xk+1 = Axk +Buk (13)
x0 = x(0) (14)
uL ≤ uk ≤ uU (15)
∀k ∈ T \ {T} (16)

where xk ∈ Rnx represents the state vector, uk ∈ Rnu is the control input vector, A ∈ Rnx×nx and
B ∈ Rnx×nu define the discrete-time system dynamics, Q ∈ Rnx×nx and R ∈ Rnu×nu are positive
semi-definite and positive definite cost matrices for state and control respectively, QN ∈ Rnx×nx

is the terminal state cost matrix, uL and uU are the lower and upper control bounds respectively,
and N denotes the finite time horizon. In the LQR experiment, the following dynamics matrices are

used A =

[
0 1
0 0

]
and B =

[
0
1

]
. Cost matrices are set as Q =

[
1.0 0.0
0.0 0.1

]
and R = 0.1.

B.2 Semi-Batch Reactor

The dynamics of the semi-batch reactor are shown below:

dCA

dt
=

F

V
(CA,in − CA)− k1CA (17)

dCB

dt
= − F

V
CB + k1CA − k2CB (18)

dCC

dt
= − F

V
CC + k2CB (19)

dT

dt
=

UA(Ta − T)− FA0CPA
(T− Tb)

[CACPA
+ CBCPB

+ CCCPC
]V + NH2SO4CPH2SO4

(20)

+
[(∆HR1)(−k1CA) + (∆HR2B)(−k2CB)]V

[CACPA
+ CBCPB

+ CCCPC
]V + NH2SO4CPH2SO4

(21)

dV

dt
= F (22)

The variables in the system are denoted as follows: CA, CB, and CC represent the concentrations
(mol/dm3) of species A, B, and C; T is the reactor temperature (K); V is the liquid volume (m3); F
is the flow rate of pure A entering the reactor (m3/h); Ta is the temperature of the heat exchanger
(K); CPA

, CPB
, CPC

are the specific heat capacities of components A, B, and C; ∆HR1A and ∆HR2B

are the reaction enthalpies for the first and second reactions; k1 and k2 are temperature-dependent
rate constants.

The cost function is defined,

Φ(x,u) =

{
−CC(t+ 1)V(t+ 1) if t = T − 1

0 else
. (23)
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C Deep Q-Network (DQN) Implementation Details

For comparison with our GPQL method, we implemented a standard DQN (Mnih et al., 2013) with
the following configuration. The neural network architecture consists of fully connected layers with
ReLU activations, taking concatenated state-action pairs as input and outputting scalar Q-values.
To find the optimal action at each state, we optimize over the Q-function by sampling actions and
selecting the one with minimum Q-value, similar to the approach used in our GPQL method.

Table 1: DQN Hyperparameters and Architecture

Parameter Value

Network Architecture [256, 256, 1]
Activation Function ReLU
Learning Rate 3e-4
Batch Size 128
Replay Buffer Size 100,000
Target Network Update Frequency Every 10 episodes
Action Optimization 10 random samples per state
Exploration (ϵ-greedy)

Initial ϵ 1.0
Final ϵ 0.001
Decay Steps 500

Optimizer Adam
Loss Function MSE

The exploration strategy follows an exponential ϵ-greedy decay schedule: ϵ = ϵfinal + (ϵstart −
ϵfinal) exp(−step/decay). Experience replay is used with uniform sampling from the replay buffer.
The target network is updated via soft updates with τ = 0.005.


