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Summary

Offline reinforcement learning (RL) is vital in areas where active data collection is expen-
sive or infeasible, such as robotics or healthcare. In the real world, offline datasets often involve
multiple “domains” that share the same state and action spaces but have distinct dynamics, and
only a small fraction of samples are clearly labeled as belonging to the target domain we are
interested in. For example, in robotics, precise system identification may only have been per-
formed for part of the deployments. To address this challenge, we consider Positive-Unlabeled
Offline RL (PUORL), a novel offline RL setting in which we have a small amount of labeled
target-domain data and a large amount of domain-unlabeled data from multiple domains, in-
cluding the target domain. For PUORL, we propose a plug-and-play approach that leverages
positive-unlabeled (PU) learning to train a domain classifier. The classifier then extracts target-
domain samples from the domain-unlabeled data, augmenting the scarce target-domain data.
Empirical results on a modified version of the D4RL benchmark demonstrate the effectiveness
of our method: even when only 1%-3% of the dataset is domain-labeled, our approach accu-
rately identifies target-domain samples and achieves high performance, even under substantial
dynamics shift. Our plug-and-play algorithm seamlessly integrates PU learning with existing
offline RL pipelines, enabling effective multi-domain data utilization in scenarios where com-
prehensive domain labeling is prohibitive.

Contribution(s)

1. We introduce Positive-Unlabeled Offline RL (PUORL), a novel offline RL setting with a
small amount of data from a target domain and a large dataset containing data from multiple
domains without domain labels. The goal is to learn a policy for the target domain.
Context: Existing cross-domain offline RL methods (Liu et al., 2022; 2023; Wen et al.,
2024) assume knowledge of the original domain of each transition, which is not accessible
in our setting.

2. We propose a method that uses positive-unlabeled (PU) learning to filter the target-domain
data from domain-unlabeled data.
Context: Our approach uses PU learning (Li & Liu, 2003; Kiryo et al., 2017) to classify
domain-unlabeled samples as “positive” (target) or “negative” (other). We then augment the
labeled target-domain dataset with the domain-unlabeled samples predicted to be positive.
This filtering can be integrated with value-based offline RL algorithms.

3. We empirically demonstrate that our PU-based method accurately filters domain-unlabeled
data and achieves high performance in a modified version of D4RL.
Context: We tested our approach on a modified D4RL benchmark (Fu et al., 2020), where
only 1%-3% of samples contain domain labels, and the rest are domain-unlabeled, drawn
from both the target and other domains with different dynamics. Even with this limited
labeling, our method closely matches an oracle baseline (which has access to all target-
domain data) and overall achieves higher average returns than the other baselines, even
under substantial dynamics mismatch.



Offline Reinforcement Learning with Domain-Unlabeled Data

Offline Reinforcement Learning with Domain-
Unlabeled Data

oichiro Nishimori" in-Qiang Cai
Soichiro Nish 12X Cai?
Johannes Ackermann'> Masashi Sugiyama?>'

{nishimori, ackermann}@ms.k.u-tyokyo.ac.jp
{xingiang.cai, masashi.sugiyama}@riken. jp

!The University of Tokyo, Japan 2RIKEN AIP, Japan

Abstract

Offline reinforcement learning (RL) is vital in areas where active data collection is ex-
pensive or infeasible, such as robotics or healthcare. In the real world, offline datasets
often involve multiple “domains” that share the same state and action spaces but have
distinct dynamics, and only a small fraction of samples are clearly labeled as belong-
ing to the target domain we are interested in. For example, in robotics, precise system
identification may only have been performed for part of the deployments. To address
this challenge, we consider Positive-Unlabeled Offline RL (PUORL), a novel offline
RL setting in which we have a small amount of labeled target-domain data and a large
amount of domain-unlabeled data from multiple domains, including the target domain.
For PUORL, we propose a plug-and-play approach that leverages positive-unlabeled
(PU) learning to train a domain classifier. The classifier then extracts target-domain
samples from the domain-unlabeled data, augmenting the scarce target-domain data.
Empirical results on a modified version of the D4RL benchmark demonstrate the effec-
tiveness of our method: even when only 1%—-3% of the dataset is domain-labeled, our
approach accurately identifies target-domain samples and achieves high performance,
even under substantial dynamics shift. Our plug-and-play algorithm seamlessly inte-
grates PU learning with existing offline RL pipelines, enabling effective multi-domain
data utilization in scenarios where comprehensive domain labeling is prohibitive. The
code is available at https://github.com/nissymori/PUORL.git.

1 Introduction

Offline reinforcement learning (RL) (Levine et al., 2020) trains policies exclusively from pre-
collected datasets without further environmental interaction. This paradigm has been applied to
many real-world problems, including robotics (Kalashnikov et al., 2018; 2021) and healthcare (Guez
et al., 2008; Killian et al., 2020), where live data collection is costly or infeasible. This paper ex-
amines an offline RL setting where the dataset is collected in multiple domains, environments that
share the same state and action spaces but have different dynamics—with the goal of training a pol-
icy that performs well in a specific target domain. In practice, however, annotating domain labels
is labor-intensive or impractical at scale, resulting in a small amount of domain-labeled target data
alongside a large volume of domain-unlabeled samples drawn from various domains, including the
target domain. One illustrative example arises in healthcare: if a specific disease significantly alters
a patient’s response to treatment, it effectively changes the transition dynamics. Only a small subset
of patients are tested for disease with high cost of testing, leading to limited domain-labeled data
and a predominance of domain-unlabeled samples (Claesen et al., 2015).
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Since offline RL depends on large, diverse datasets (Kalashnikov et al., 2021; Padalkar et al., 2023),
relying solely on the small domain-labeled subset may deteriorate policy performance. Conse-
quently, there is a pressing need to incorporate domain-unlabeled data effectively. While recent
studies have focused on enhancing target domain performance by utilizing data from a different
domain (Liu et al., 2022; Wen et al., 2024; Xu et al., 2023b), these methods presuppose that clear
domain labels are available for all samples, which does not hold in our setting.

To tackle this challenge, we propose a new offline RL setting called Positive-Unlabeled Offline
RL (PUORL). In PUORL, we have two types of data: a small amount of target-domain (positive-
domain) data and a large volume of domain-unlabeled data, a mixture of samples from the positive
domain and other domains (negative domains). This setting is relevant in any setting where we aim
to train agents based on a specific characteristic that significantly affects the dynamics. This includes
cases where a particular disease influences medical outcomes, as noted above, and scenarios such as
unique road conditions in autonomous driving or a standard actuator defect in robotics (Kiran et al.,
2021; Padakandla, 2021; Shi et al., 2021).

For PUORL, we propose a general approach that uses positive-unlabeled (PU) learning (Li & Liu,
2003; Bekker & Davis, 2020; Sugiyama et al., 2022) to train a classifier to distinguish positive-
domain data from other domains (Sec. 4.2). Using the trained classifier, we filter out negative-
domain data from a large, domain-unlabeled dataset, thereby augmenting the small domain-labeled
data with additional positive-domain samples. Then, we apply off-the-shelf offline RL algorithms
to this augmented dataset. Our framework functions as a plug-and-play module compatible with
any value-based offline RL method, allowing users to adopt their preferred offline RL algorithm
for PUORL. Furthermore, our classification-based approach is particularly effective in the pres-
ence of significant dynamics shifts, where transferring knowledge across domains is often infeasible
or counterproductive. Such situations commonly arise in practical applications, such as robotics
with substantially different physical embodiments. Experiments utilized the modified version of the
D4RL (Fu et al., 2020) with diverse intensity of the dynamics shift, where only 1%—-3% of the data
are domain-labeled. The results demonstrate that our method accurately identifies positive-domain
data and effectively leverages the abundant domain-unlabeled dataset for offline RL (Sec. 5), achiev-
ing robust performance under significant dynamics shift compared to the baselines.

Contributions. Our contributions are threefold: 1) we propose a new offline RL setting, PUORL,
to handle the domain-unlabeled data, 2) we propose a method that leverages PU learning to train a
precise domain classifier, augmenting the limited domain-labeled data, and 3) we demonstrate the
effectiveness of our method on the modified version of the DARL benchmark with dynamics shift,
where only 1%-3% of the data are domain-labeled.

2 Related Work

In this section, we contextualize our work by comparing it with the relevant settings in RL literature.

Off-dynamics RL. Off-dynamics RL (Eysenbach et al., 2021; Lyu et al., 2024b) aims to trans-
fer the policy over the environments with different dynamics (i.e., the source domain and target
domain). We often assume that we are allowed to access ample online interactions or collected sam-
ples from the source domain while we have limited counterparts in the target domain. In the online
RL literature, approaches to handling dynamics shift include domain randomization (Slaoui et al.,
2019; Mehta et al., 2020), representation learning (Xing et al., 2021; Clavera et al., 2018), imitation
learning (Kim et al., 2020; Hejna et al., 2020; Cai et al., 2023), data filtering (Xu et al., 2023a), and
reward modification (Eysenbach et al., 2021).

Previous off-dynamics offline RL methods assume fully domain-labeled datasets from both source
and target domains (Liu et al., 2022; Xue et al., 2023; Xu et al., 2023b; Wen et al., 2024; Liu et al.,
2023; Lyu et al., 2024b; Wang et al., 2024). Some approaches fix the rewards (Liu et al., 2022) or
filter transitions from the labeled source domain using contrastive learning (Lyu et al., 2024a) or
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optimal transport (Lyu et al., 2025), while others constrain policies to remain within regions aligned
with target-domain data (Liu et al., 2023; Xue et al., 2023). Recently, Lyu et al. (2024b) proposed a
benchmark for off-dynamics offline RL. In contrast to most methods, which assume domain labels
are available for all samples, our work handles a large volume of domain-unlabeled data, which may
contain samples from both target and non-target domains.

RL with multiple MDPs. Contextual MDPs (CMDPs) formalize the RL problem with multiple
environments as MDPs controlled by a variable known as a “context” (Hallak et al., 2015). Different
contexts define different types of problems (Kirk et al., 2023). We focus on the case where the
context is a binary task ID determining the dynamics. Thanks to its generality, the CMDP can
encapsulate a wide range of RL problems, such as multi-task RL (Zhang et al., 2020; Li et al., 2020;
Sodhani et al., 2021) and meta-RL (Zintgraf et al., 2021; Dorfman et al., 2021). Depending on the
observability of the context, the solution to the RL problem within CMDPs differs. We can utilize the
information in policy training if the context is observable. For example, acquiring a representation of
the environment using self-supervised learning (Sodhani et al., 2021; Humplik et al., 2019; Achiam
et al., 2018; Li et al., 2020) is common in addressing this objective. In offline RL, MBML (Multi-
task Batch RL with Metric Learning) employed metric learning to acquire a robust representation
of discrete contexts in an offline setting (Li et al., 2020). Unlike these approaches, our method
considers settings where only a subset of the data has observable contexts.

CMDPs with unobservable contexts are also known as Hidden-Parameter (HiP)-MDPs (Doshi-Velez
& Konidaris, 2016; Perez et al., 2020). In HiP-MDPs, previous works focused on training an infer-
ence model for the context from histories of multiple time steps (Rakelly et al., 2019; Zintgraf et al.,
2021; Yoo et al., 2022; Dorfman et al., 2021; Ackermann et al., 2024). Since we consider transition-
based datasets without trajectory information, such methods are not applicable in our setting.

Unlabeled data in RL. In previous work, “unlabeled data” refers to two settings: reward-
unlabeled data and data with the quality of the behavioral policy unknown. In the first case, the
unlabeled data consist of transitions without rewards (Xu & Denil, 2021; Zolna et al., 2020; Yu
et al., 2022; Chen et al., 2022). Several studies have attempted to learn the reward function from
reward-unlabeled data using the PU learning technique and then utilize this learned reward function
in subsequent RL routines (Xu & Denil, 2021; Zolna et al., 2020). In the offline multi-task RL liter-
ature, Yu et al. (2022) explored conservatively using reward-unlabeled data, i.e., setting the reward
of the unlabeled transitions to zero. In our study, the label corresponds to a specific domain, while
they regard the reward as a label. In the second case, the unlabeled data is a mixture of transitions
from policies of unknown quality. In offline RL, previous works attempted to extract high-quality
data from unlabeled data using PU learning (Wang et al., 2023; Yan et al., 2023). In our setting,
labels correspond to specific domains, not the quality of the behavioral policy.

3 Preliminaries

Reinforcement learning (RL). RL (Sutton & Barto, 2018) is characterized by a Markov decision
process (MDP) (Puterman, 2014), defined by 6-tuple: M := (S, A, P,pg, R,~). Here, S and A
denote the continuous state and action spaces, respectively. P : S x A x § — [0, 1] defines the
transition density, po : S — [0, 1] denotes the initial state distribution, R : S x A — R specifies
the reward function, and v € [0, 1) represents the discount factor. In RL, the primary objective
is to learn a policy 7 : § x A — [0, 1], maximizing the expected cumulative discounted reward
Erp[Y oy 7' R(st,ar)], where E; p[-] denotes the expectation over the sequence of states and
actions (s1, a1, ...) generated by the policy 7 and the transition density P.

In this paper, we assume that different domains correspond to distinct MDPs that differ only in their
transition dynamics. For example, two domains, M; and M, have different transition dynamics
(P, and P»), with the other components being the same.
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Figure 1: Diagram of Positive-Unlabeled Offline RL (PUORL). PUORL has a positive domain we
target and negative domains, with different dynamics to the positive domain. We have two data
types: positive data and domain-unlabeled data, which are mixtures of samples from the positive
and negative domains. We train a policy to maximize the expected return in the positive domain.

Offline RL. To address the limitations on direct agent-environment interactions, offline RL
(Levine et al., 2020) employs a fixed dataset, D := {(s;, a;,7;,s:)}Y;, collected by a behav-
ioral policy 73 : S x A — [0,1]. Let ug(s, a) be the stationary distribution over the state-action
pair induced by the behavioral policy mg. The dataset D is assumed to be generated as follows:
(siyai) ~ pa(s,a), r; = R(s;, a;), and s ~ P(-|s;, a;).

Positive-unlabeled (PU) learning. PU learning is a method that trains a binary classifier us-
ing positive and unlabeled data (Li & Liu, 2003; Bekker & Davis, 2018; Sugiyama et al., 2022).
Let X € R and Y € {—1,+1} be the random variables of the input and label in a binary
classification problem. We denote the data-generating joint density over (X,Y") by p(x,y). Let
pp(x) == p(z]Y = +1) and pn(x) := p(z|Y = —1) be the densities of = conditioned on the
positive and negative labels respectively and p(z) := appp () + anpn(z) be the marginal density
of the unlabeled data. o, := p(Y = +1) denotes the class prior probability (mixture proportion)
for the positive label and o, := p(Y = —1) = 1 — «,, for the negative label. In PU learning,

we assume that we have two types of data: Positively labeled data X}, := {a?}>, Lig pp(x) and

unlabeled data X, := {z}'}, e~ p(z). The task of PU learning is to train a binary classifier
f X — {—1,+1} from positive data X}, and unlabeled data X,,. Generally, PU learning methods
require information on the mixture proportion (c,), and there are a bunch of mixture proportion
estimation (MPE) methods (du Plessis & Sugiyama, 2014; Scott, 2015; du Plessis et al., 2017; Garg
et al., 2021). Among the methods of PU learning, certain approaches, notably nnPU (Kiryo et al.,

2017) and (TED)® (Garg et al., 2021), demonstrate particular compatibility with neural networks.

4 Method

This section introduces a novel offline RL problem setting for leveraging domain-unlabeled data.
‘We then propose a simple algorithm using PU learning to address this problem.

4.1 Problem Formulation

We introduce Positive-Unlabeled Offline RL. (PUORL) where the dataset is generated within
multiple domains, with a small amount of data from one domain of our interest labeled and the
rest provided as domain-unlabeled (Figure 1). In PUORL, we have a positive domain M, :=
(S, A, Py, p,R,7y), for which we aim to maximize the expected return and negative domains
{ME = (S, A, PF,p, R,v)}_,, which share the same state and action spaces, initial state distri-
bution, reward function and discount factor. For each domain, there exist fixed behavioral policies:
mp for positive domain and 7¥ for negative domains, and they induce the stationary distributions



Offline Reinforcement Learning with Domain-Unlabeled Data

‘ ——> | OfflineRL

Positive
ﬁ Classifier

f
Du I:>

Negative

Unlabeled Filtering

Figure 2: Diagram of our method. We first train a classifier f using PU learning to distinguish
positive domain data from negative domain data. Then, we filter the positive domain data from
domain-unlabeled data by applying classifier f to the domain-unlabeled dataset. Finally, we train a
policy using off-the-shelf offline RL methods with the augmented dataset.

over the state-action pair denoted as 1,(s,a) and pk(s,a) for all k € {1,...,N}. We define
tn(s,a) = ij:l Nk (s, ), where . € [0, 1], chvzl N = 1 is the domain-mixture proportion.

We are given two datasets:

« Positive data: explicitly labeled target-domain transitions, D}, := {(s;, a;, 74, s;)}.2;. These
transitions are i.i.d. samples from p, (s, a), R, and P,

* Domain-unlabeled data: a mixture of positive and negative-domain transitions, D, :=
{(ss,a;,75,8;)},.  These transitions are ii.d. samples from p,(s,a) = opup(s,a) +
anfin (8, a), R, and corresponding transition densites. We assume that n,, >> ny,.

Henceforth, domain-unlabeled data will be referred to as unlabeled data when it is clear from the
context. Although PUORL focuses on the difference in dynamics, we can generalize the problem set
to encompass variations in the reward function. Refer to Appendix B for details. Here, the objective
is to learn the optimal policy in the positive domain of our interest as

Zw’fR(st,ao] : e

7" (a|s) ;= argmaxE, p,
T t=1

The most naive approach in this setup involves applying conventional offline RL methods on only a
small amount of positive data D,,. However, using a small dataset increases the risk of encountering
out-of-distribution state-action pairs due to the limited coverage of the dataset (Levine et al., 2020).
Conversely, utilizing all available data D, U D, to increase the dataset size can hinder the agent’s
performance due to the different dynamics (Liu et al., 2022).

4.2 Proposed Method

The key idea of our method is to filter positive-domain data from unlabeled data by training a domain
classifier that leverages the differences in transition dynamics. Specifically, we propose a two-staged
offline RL algorithm as in Figure 2.

Stage 1: Train a domain classifier by PU learning. We consider a binary classification problem
where S x A x &’ serves as the input space (X in Sec. 3). The label is defined as Y = +1 for the
positive domain and Y = —1 for the negative domains. Since positive and negative domains differ
in how they transition from (s, a) to s, the tuple (s, a, s’) naturally captures these discrepancies,
making it an effective signal for classification. Using positive data D, and unlabeled data D,,, we
train a classifier f : § x A x & — {+1,—1} by PU learning (Kiryo et al., 2017; Sugiyama
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et al., 2022; Plessis et al., 2015). Because «, is unknown in PUORL, we estimate it using mixture
proportion estimation (MPE) (Garg et al., 2021; Sugiyama et al., 2022).

Stage 2: Data filtering and offline RL. We first filter the positive domain data from unlabeled
data by applying classifier f to the unlabeled dataset to identify instances predicted as positive,
denoted by Dg = {(s,a,r,8') € Dy : f(s,a,8") = +1}, combining it with the positive data as
D, =D, U D[f) . Then, we train the policy using off-the-shelf offline RL methods with D,,.

The methodology details are outlined in Algo. 1.

Algorithm 1 Data filtering for the positive domain

1: Initialize classifier parameters 1) of classifier f

2: Initialize policy parameters 6§ and value function parameters ¢

3: Initialize experience replay buffer D, and D,

4: Specify epochs Kpy, KRy,

5. for iteration k € [0, ..., Kpy] do > PU learning routine
6: Update ¢ on Dy, and D, by PU learning with MPE

7: end for

8: Dy < Dy U{(s,a,7,8") € Dy : fy(s,a,8) =+1} > Data filtering
9: for iteration k € [0, ..., KRry] do > Offline RL routine
10: Update 6 and ¢ on ﬁp by Offline RL method
11: end for
12: Output 6 and ¢

This algorithm exhibits considerable generality, accommodating a wide range of PU learning
methodologies (Kiryo et al., 2017; Garg et al., 2021) and offline RL algorithm (Kumar et al., 2020;
Kostrikov et al., 2022; Fujimoto & Gu, 2021; Fujimoto et al., 2023; Tarasov et al., 2023), allowing
practitioners to choose the most suitable methods for their specific problem. An accurate classifier
is necessary for the subsequent offline RL to work effectively especially when the dynamics gap
between positive and negative domains is large. Conversely, less accurate classifiers result in the in-
clusion of negative-domain data in the filtered data D, potentially leading to a performance decline
due to the different dynamics.

S Experiment

We conduct experiments under various settings to investigate the following four questions: (i) Can
the PU learning method accurately classify the domain from PU-formatted data? (ii) Can our method
improve performance by augmenting positive data in various domain shift settings? (iii) How does
the magnitude of the dynamics shift affect performance? (iv) How does the different quality of the
negative-domain data affect the performance? We first explain the setup of our experiments and,
subsequently, report the results.

5.1 Experimental Setup

Dataset. We utilized the modified version of D4RL benchmark (Fu et al., 2020) with dynamics
shift, focusing on three control tasks: Halfcheetah, Hopper, and Walker2d. D4RL provides four
different data qualities for each task: medium-expert (ME), medium-replay (MR), medium (M), and
random (R). To examine the impact of dynamics shift on performance, we considered three types of
dynamics shifts between positive and negative domains: body mass shift, mixture shift, and entire
body shift. In all scenarios, we set the total number of samples to 1 million and maintained a 3:7
positive-to-negative ratio. We explored two labeled ratios: 0.03 and 0.01, where only 30K and 10K
samples were labeled positive, respectively. In the main text, we report the results with the labeled
ratio of 0.01 and put the results with the labeled ratio of 0.03 in App. C.
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We used the dataset provided by Liu et al. (2022) for the body mass shift and mixture shift. In body
mass shift, the mass of specific body parts in the negative domain was modified. For the mixture
shift, we mixed the data with body mass shift and data with joint noise with equal proportions to
test whether our method can handle multiple negative domains. We prepared the entire body shift
with Halfcheetah and Walker2d to test the performance with a large dynamics shift. Halfcheetah and
Walker2d were paired as positive and negative domains in the entire body shift due to their entirely
different body structures, yet they have the same state space of 17 dimensions.

To explore the effect of data quality on performance, we examined various combinations of data
qualities, using abbreviations separated by a slash to denote pairs of positive and negative data with
varying qualities, e.g., ME/ME, for medium-expert quality in both domains.

Offline RL algorithms and PU learning methods. We selected TD3+BC (Fujimoto & Gu, 2021)
and IQL (Kostrikov et al., 2022) as our offline RL methods due to their widespread use and compu-
tational efficiency. We used the implementation of TD3+BC and IQL from JAX-CORL (Nishimori,
2024) and used the default hyperparameters for all experiments. The main results presented below
pertain to TD3+BC. The results for IQL are reported in App. C.2. We trained the agent for 1 million
steps and reported the average and 95% confidence interval of averaged evaluation results over 10
episodes and 10 different seeds for each setting.

For PU learning, TED" (Garg et al., 2021) was chosen owing to its effectiveness with neural net-
works (App. A.1) and used the official implementation provided by the authors. We trained the
classifier for 100 epochs and reported the average and standard deviation of the test accuracy over 5
seeds. For more details, refer to App. A.

Baselines. To evaluate our method’s efficacy, we established five baselines for comparison: Only-
Labeled-Positive (OLP), Sharing-All, Dynamic-Aware Reward Augmentation (DARA) (Liu et al.,
2022), Info-Gap Data Filtering (IGDF) (Wen et al., 2024) and Oracle. The OLP baseline, utilizing
only labeled positive data (only 1%—-3% of the entire dataset), avoided dynamics shifts’ issues at
the expense of using a significantly reduced dataset size. This comparison assessed the benefit of
augmenting data volume through our filtering method. The Sharing-All baseline employed positive
and unlabeled data without preprocessing for offline RL, offering broader data coverage but posing
the risk of performance degradation due to dynamics shifts. This comparison aimed to explore the
impact of dynamics shifts and how our filtering technique can mitigate these effects. The Oracle
baseline, training policy with positively labeled data, and all positive data within the unlabeled data
provide the ideal performance our method strives to achieve.

In addition to those naive baselines, we also compared our method with cross-domain adaptation
methods designed to improve performance in the target domain by leveraging source domain data
with different dynamics. For these methods, we used the positive data as the target data and the
unlabeled data as the source domain data. We chose two methods, DARA and IGDF, which apply to
any offline RL algorithms and are, thereby, good candidates for comparison with our plug-and-play
method. This comparison aimed to examine whether PUORL, where we have domain-unlabeled
data alongside a limited amount of labeled target data, negatively impacts the performance of cross-
domain adaptation methods. If such a decline occurs, it highlights the need for specialized meth-
ods, such as PU-based filtering, to handle this scenario effectively. For both algorithms, we re-
implemented the algorithm in JAX (Bradbury et al., 2018) for parallelized training referring to the
official implementations. For more details, refer to App. A.3.

5.2 Results

We now present the experimental findings, organized around the four key questions posed in Sec-
tion 5. Unless stated otherwise, all offline RL experiments use TD3+BC with a labeled ratio of 0.01.
Full results for additional settings and labeled ratios are provided in Appendix C.
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Table 1: The results of the PU classifier in the body mass shift with labeled ratio = 0.01 and 0.03.
For each setting, we reported the average and standard deviation of the test accuracy over 5 seeds.

Env Ratio ME/ME ME/R M/M M/R
0.01  99.54+0.06 99.23+0.08 99.77+0.14 99.33 £0.07
0.03  99.724+0.06 99.89 £0.03 99.90£0.03 99.32 £ 0.05
Halfcheetah 0.01  99.48+0.04 99.45+0.11 99.38+0.18 99.33 £0.06
0.03  99.63+0.03 99.70+0.10 99.66 £0.06 99.43 £ 0.07
Walker2d 0.01  99.00+£0.03 98.43+0.04 98.36+0.02 99.69=£0.10
0.03 99.64£0.02 99.49+0.11 9841+0.06 99.39=£0.08

Hopper

Table 2: The average normalized score and 95% confidence interval calculated by the results from
10 different seeds in body mass shift (labeled ratio = 0.01) with TD3+BC. Of feasible methods (OLP,
Sharing-All, DARA, IGDF, Ours), the best average is in blue. Separated by the double vertical line,
we report Oracle as a reference.

Body mass shift

Env Quality OLP Sharing-All DARA IGDF Ours Oracle
ME/ME 28.6+£7.1 45.7+13.0 55.5+11.9 504+128 98.3+5.9 98.2 + 8.4

Hopper ME/R 36.5+75 739+127 51.0+9.1 40.3+£82 100.8+6.4 || 98.2+8.4
M/M 37.9+£73 474+34 56.6+46 529424 483+1.4 48.9 £ 2.8
M/R 43.3+4.6 458+4.0 52.1+48 50.5+4.7 521+29 48.9 £ 2.8
ME/ME 176+3.1 808+21 272+31 21.3+50 753+10.2 86.9+4.4

Halfcheetah ME/R 17.0+£27 725+44 3.9+27 74+£28 80.4 £ 8.7 86.9+4.4
M/M 320+2.7 421+13 41.3+1.0 423+09 485402 48.8 £ 0.3
M/R 32.3+3.0 3784102 11.3+£5.3 8.6 3.7 48.9+0.2 48.8 £ 0.3
ME/ME 93+44 8354+0.6 37.1+14.8 59.6+17.3 108.2+0.4 || 108.5+04

Walker2d ME/R 159+58 78.0+£24.1 26+18 45+22 108.1+0.8 || 108.5+0.4
M/M 164+70 812408 37.0+11.3 41.7+76 83.2+2.2 84.6 + 0.6
M/R 21.3+£7.9 80.0+2.1 1.2+1.1 09+14 84.0+0.3 84.6 + 0.6

(i) PU classification performance. Table 1 reports the test accuracy of our PU classifier (based
on TED"; (Garg et al., 2021)) for Hopper, Halfcheetah, and Walker2d under body mass shift. The
accuracy exceeds 98% in all cases, indicating that the classifier accurately distinguishes positive-
domain data from unlabeled data. Similar performance appears under mixture shift and entire body
shift, as detailed in Appendix C.3. These findings suggest that the data filtering employed by our
method is highly reliable across various shift settings.

(i) Policy performance with augmented positive data. Tables 2—4 summarize the performance
of all methods under body mass shift, mixture shift, and entire body shift. In nearly all settings, our
method achieves the highest or near-highest average normalized score among the feasible baselines
(OLP, Sharing-All, DARA, IGDF, Ours), often approaching the performance of the Oracle (which
has access to all positive samples). These results confirm that our method is effective even when
only a tiny fraction of labeled positive samples are available.

(iii) Effect of dynamics shift magnitude. We examine performance across body mass shift, mix-
ture shift, and entire body shift to analyze how outcomes change with increasing domain mismatch:

* Robustness of our method. Our method’s performance remains consistently strong, showing
minimal degradation under larger shifts (e.g., entire body shift in Table 4).

» Sharing-All vs. large shift. For smaller shifts (body mass or mixture shift), Sharing-All can
occasionally yield competitive or high scores by exploiting the broader coverage. However, per-
formance falls sharply as the shift increases (entire body shift).

* Domain adaptation baselines (DARA, IGDF). Although DARA (Liu et al., 2022) and
IGDF (Wen et al., 2024) are designed to handle domain differences, both are worse than Sharing-
All in most scenarios and degrade further with large shifts. A likely cause is their reliance on
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Table 3: The average normalized score and 95% confidence interval from 10 seeds in mixture shift
(labeled ratio = 0.01) with TD3+BC. The format is the same as the table for body mass shift.

Mixture shift

Env Quality OLP Sharing-All DARA IGDF Ours Oracle
ME/ME 26.8+6.2 73.0+£18.6 53.4+8.8 424+8.9 92.6 +9.7 96.4 + 8.2

Hopper ME/R 243+7.0 84.9+158 436+7.6 425+109 97.0+7.5 96.4 + 8.2
M/M 406+3.1 56.8+7.9 55.4+4.6 55.4+5.8 469+ 1.6 459+15
M/R 428 +£2.2 43.7+£29 449+46 49.3+2.8 487+ 1.5 459+ 1.5
ME/ME 19.5+5.2 78.6 £2.1 28.6 + 3.6 29.9+3.7 82.4+6.8 81.3+9.6

Halfcheetah ME/R 19.0+£3.1 82.0£4.8 11.1+4.0 93+19 78.6 £ 8.5 81.3+9.6
M/M 35.8+2.1 481+ 1.3 39.8+2.5 40.4+2.9 48.7 + 0.2 48.7+0.2
M/R 3254+20 51.7+14 14.7+ 3.2 16.8 +4.4 48.8+0.3 48.7+£0.2
ME/ME 7.0+3.1 104.4+3.5 4914202 46.0+11.9 107.6+2.0 || 108.5+0.4

Walker2d ME/R 16.3£6.3 107.24+185 252449 376 +6.5 108.7+0.3 || 108.5+0.4
M/M 173£72 79.8+ 1.6 55.1+ 135 564+124 843+1.5 84.8+14
M/R 19.1+£7.3 78.7+2.1 296 +11.8 41.6£6.8 83.0+3.5 848+ 1.4

Table 4: The average normalized score and 95% confidence interval from 10 seeds in entire body
shift (labeled ratio = 0.01) with TD3+BC. The format is the same as the table for body mass shift.

Entire body shift

Env Quality OLP Sharing-All DARA IGDF Ours Oracle

Halfcheetah ME/ME 184+3.0 54.0+£4.8 14.6+47 152+50 80.2+10.6 || 84.7+4.9
ME/R 21.3+26 33.8+10.2 99421 165+£4.0 89.1+4.2 84.7£4.9

submodule training (e.g., domain classifiers or encoders) with very few labeled data, which can
become unreliable when unlabeled data may also contain additional positive samples (App. C.1).

These patterns highlight that large domain shifts require careful data selection; our PU-based fil-
tering remains effective, whereas both the naive Sharing-All and the domain adaptation baselines
experience performance drops due to the dynamics shift.

(iv) Influence of negative-domain data quality. We analyze the influence of negative-domain
data quality on the performance of our method and the baselines by comparing results with different
negative-domain data quality. For example, compare ME/ME vs. ME/R or M/M vs.M/R with the
same positive dataset quality. We observe:

* Our method remains robust regardless of negative-domain quality. The PU filtering consistently
prevents the inclusion of harmful transitions, resulting in stable performance gains.

* Sharing-All and domain adaptation baselines degrade more significantly when the negative-
domain quality is poor (e.g., R), suggesting that merging or adapting from such data can damage
performance unless the shift and data mismatch is mild.

These findings indicate that negative-domain data quality is a key factor in the methods used to share
unlabeled data. By contrast, PU-based filtering appears less sensitive to variations in the quality.

6 Conclusion and Future Work

This study introduced a novel offline RL setting, positive-unlabeled offline RL (PUORL), incor-
porating domain-unlabeled data. We then proposed a plug-and-play algorithmic framework for
PUORL that uses PU learning to augment the positively labeled data with additional positive-domain
samples from the unlabeled data. Experiments on the D4RL benchmark showed that our approach
leverages large amounts of unlabeled data to train policies, achieving strong performance. Our
method primarily focused on filtering positive data from unlabeled data and training a policy solely
with the filtered samples, leaving efficient cross-domain sample sharing as a future direction. Since
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PU learning is a type of weakly supervised learning (WSL), we believe that extending this setting to
other WSL problems could broaden offline RL’s practical applications.
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A Details of Experimental Setup

TD3+BC
Critic Learning Rate 3x 1077
Actor Learning Rate 3x 1074
Discount Factor 0.99
Target Update Rate 5x 1073
Policy Noise 0.2
Policy Noise Clipping (-0.5,0.5)
Policy Update Frequency Variable
TD3+BC Hyperparameter o 2.5
Actor Hidden Dims (256, 256)
Critic Hidden Dims (256, 256)
IQL

Critic Learning Rate 3x 1077
Actor Learning Rate 3x 1074
Discount Factor 0.99
Expectile 0.7
Temperature 3.0
Target Update Rate 5x 1073
Actor Hidden Dims (256, 256)
Critic Hidden Dims (256, 256)

Table 5: Hyperparameters for TD3+BC and IQL.

A.1 PU Learning

Explanation of TED" (Garg et al., 2021). Here, we briefly explain the TED" (Garg et al., 2021)
we used in our experiments. TED" consists of two subroutines for the mixture proportion estima-
tion, Best Bin Estimation (BBE), and for PU learning, Conditional Value Ignoring Risk (CVIR).
They iterate these subroutines. Given the estimated mixture proportion & by BBE, CVIR first dis-
cards & samples from unlabeled data based on the output probability of being positive from the
current classifier f. The discarded samples are seemingly positive data. The classifier is then trained
using the labeled positive data and the remaining unlabeled data. On the other hand, in BBE, we
estimate the mixture proportion using the output of the classifier f with the samples in the validation
dataset as inputs.

Training and evaluation. The PU learning method TED" involved two phases: warm-up and
main training. We assigned 10 epochs for the warm-up step and 100 epochs for the main training
step. We utilized a 3-layer MLP with ReLU for the classifier’s network architecture. In our method,
the trained classifier was then frozen and shared across different random seeds of offline RL training
with identical data generation configurations, such as the positive-to-negative and unlabeled ratios.
We reported the average and standard deviation of the test accuracy over 5 random seeds.

A.2 Offline RL

For offline RL, we learned a policy with 1 million update steps. For both TD3+BC (Fujimoto &
Gu, 2021) and IQL (Kostrikov et al., 2022) we used the same hyperparameters for all baselines
and settings (Table 5). We evaluated the offline RL agent using the normalized score provided by
DA4RL (Fu et al., 2020). To evaluate the offline RL routine’s algorithmic stability, we trained with 10
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different random seeds. For each seed, we calculated the average normalized score over 10 episodes.
We reported the overall mean and 95% confidence interval from these averaged scores.

A.3 Baselines

Algorithm 2 DARA

Require: Target offline data D; and source offline data Dy and 7).
1: Learn classifier ggas : S X A x S = [0,1] and ¢s, : S x A — [0, 1] from Dy and Ds.
2: Forall (s,a,r,s") in Ds:

A0 o Bl 008) g (ources. ) @
QSas (target|37 CL, 8/) qsa(target‘s? a)
T 1 —nAr 3)

3: Learn policy with Dy U D;.

Algorithm 3 IGDF: Info-Gap Data Filtering Algorithm

Require: Source offline data Dq, target offline data D,
1:  Initialize policy 7, value function @, encoders ¢(s,a), 1 (s’),
2:  data filter ratio £, importance ratio «, batch size B.

3: // Contrastive Representation Learning
Optimize the contrastive objective in Eq. (6) to train the encoder networks ¢(s, a) and ¥(s’).

e

5: // Data Filtering algorithm

6: for each gradient step do

7: Sample a batch by, == {(s,a,r,s')} 2¢ from D,

8 Sample a batch by, := {(s,a,7,s')} 2 from Dy

9: Select the top-¢ samples from by, ranked by h(s, a, s') == exp(é(s,a) "¢ (s"))
10: Combine the top-£ samples from b, with all samples from by,

11: Optimize the value function @)y via Eq. (8)
12: Learn the policy 7(a | s) via offline RL algorithms
13: end for

Here, we provide a detailed explanation of the Domain-Adaptation baselines.

DARA. Here, we explain the Domain-Adaptation (DA) baseline used in Section 5. For domain
adaptation in offline RL, we utilized the Dynamics-Aware Reward Augmentation (DARA) (Liu
et al., 2022). In domain adaptation in offline RL, we focus on the performance in a target domain
M, with a limited amount of target domain data D;. To address this scarcity, domain adaptation
uses data D, from the source domain M. DARA modifies the source domain data’s reward using a
trained domain classifier and then utilizes this data with the modified reward for offline RL. Lacking
full domain labels in PUORL, we treated the positive data Dy, as target domain data and the domain-
unlabeled data D,, as source domain data, training the classifier with 5000 steps with batch size 256.
We set 7 = 0.1 following original paper (Liu et al., 2022).

IGDF. IGDF (Wen et al., 2024) is a method that uses the information of the source domain to
improve the performance of the target domain. IGDF filters the source domain data using encoder
networks trained with contrastive learning with target domain data as positive samples and source
domain data as negative samples. Similar to DARA, this method is also plug-and-play. We set the
representation dimension to 64 and trained the encoder with 7000 steps with batch size 256. The
data filter ratio £ is set to 0.75 following the original paper (Wen et al., 2024).
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B Extention to Reward Shift

To extend PUORL in for reward shift, we define the positive and negative MDPs as follows:
positive MDP M,, := (S, A, P,p,rp,7), which we target for and negative MDPs {M% :=
(S, A, P,p,rk %) }kN:1 , which share the same state and action spaces and dynamics. For each MDP,
there exist fixed behavioral policies: 7, for positive MDP and 7¥ for negative MDPs. They in-
duce the stationary distributions over the state-action pair denoted as y,(s,a) and ¥ (s, a) for all
ke {1,...,N}. We define pi(s,a) := Zszl Lk (s, a), where i, € [0,1], Zszl n, = 11is the
MDP-mixture proportion.

We are given two datasets:

» Positive data: explicitly labeled target-domain transitions, D, := {(s;, a;,7;, 8%, +1)}.*,. These
transitions are i.i.d. samples from p, (s, a), 7, and P.

* Domain-unlabeled data: a mixture of positive and negative-domain transitions, D, :=
{(ss,ai,ri,st) iy, These transitions are ii.d. samples from py(s,a) = apup(s,a) +
O fin (s, a), ry, and P.

Instead of taking transition, (s, a, s"), we take (s, a, ) to train the classifier with PU learning based
on the reward shift.

Algorithm 4 Data filtering for the positive domain with reward shift

Initialize classifier parameters 1 of classifier f

Initialize policy parameters 6 and value function parameters ¢

Initialize experience replay buffer D, and D,

Specify epochs Kpy, KR,

for iteration k € [0, ..., Kpy] do > PU learning routine
Update ¢ on Dy, and D, by PU learning with MPE

end for

: ﬁp — Dy U{(s,a,r,s'") € Dy : fy(s,a,r)=+1} > Data filtering

for iteration k € [0, ..., Kgy] do > Offline RL routine
Update 6 and ¢ on ﬁp by Offline RL method

end for

Output 0 and ¢

R e AN A R

— =
N e e
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Table 6: The average normalized score and 95% confidence interval from 10 seeds in body mass
shift (labeled ratio = 0.03) with TD3+BC. Of feasible methods (OLP, Sharing-All, DARA, IGDF,
Ours), the best average is in blue. The last column (Oracle) is for reference (ratio=0.05).

Body mass shift (0.03)

Env Quality OLP Sharing-All DARA IGDF Ours Oracle
ME/ME 50.0+10.1 523+81 899+13.8 71.1+10.1 904+9.2 98.2+8.4

Hopper ME/R 46.6+89 86.8+126 73.8+£9.6 77.2+6.9 90.0+10.9 || 98.2+8.4
M/M 5744+13.0 481+33 59.8+£3.0 56.3+£5.1 49.7+3.5 489+ 2.8
M/R 44.7+6.0 454+ 2.1 55.0+4.7 59.3+3.8 474+ 2.6 48.9 £ 2.8
MEME 244+19 78.6+36 483+42 455+4.7 75.6 £8.3 86.9+4.4

Halfcheetah ME/R 25.3+£25 70.3+77 236+21 225+42 82.2+6.9 86.9+4.4
M/M 434+16 41.0+£0.7 459403 46.0+03 48.7+0.2 48.8 £0.3
M/R 454+05 39.6+£81 46.7+1.7 452+19 48.5+0.2 48.8 £0.3
ME/ME 71.74+26.1 879+09 101.8+8.7 103.9+4.0 108.7+0.2 || 108.5+0.4

Walker2d ME/R 87.0£13.5 89.24+23.7 452+16.6 26.5+15.8 108.8+0.3 | 108.5£04
M/M 57.3+£11.5 809£09 67.0+£86 61.5+128 83.8+1.1 84.6 £0.6
M/R 64.3 £6.0 77.2+52 476+£158 51.5+10.6 84.5+0.6 84.6 £0.6

Table 7: The average normalized score and 95% confidence interval from 10 seeds in mixture shift
(labeled ratio = 0.03) with TD3+BC. Of feasible methods (OLP, Sharing-All, DARA, IGDF, Ours),
the best average is in blue. The last column (Oracle) is for reference (ratio=0.05).

Mixture shift (0.03)

Env Quality OLP Sharing-All DARA IGDF Ours Oracle
ME/ME 559+104 682+19.1 71.7+£87 743+10.1 981485 96.4 £8.2

Hopper ME/R 488+ 77 84.6+10.5 80.5+43 69.2+129 100.7+4.1 || 96.4+8.2
M/M 45.0 £8.1 50.4 £5.3 55.6 £2.6 52.9+4.0 87.6+8.7 459+ 1.5
M/R 48.6+1.9 49.6+5.9 57.8+3.2 55.1+35 49.2+2.0 459+ 1.5
ME/ME 243+4.4 82.1+1.3 416+54 43.1+£87 80.0+9.0 81.3+9.6

Halfcheetah ME/R 21.6 £4.9 82.1+6.8 226+28 242+71 67.1+93 81.3+9.6
M/M 35.8£2.1 48.1+1.3 39.8£2.5 40.4+2.9 48.7+0.3 48.7£0.2
M/R 32.5£20 51.7+1.4 14.7+ 3.2 16.8 +4.4 48.8 +0.2 48.7+0.2
ME/ME 80.3+15.1 1002+6.7 86.5+19.7 96.4+12.7 108.3+0.2 || 108.5+0.4

Walker2d ME/R 90.8+14.4 101.8+23.3 721+144 89.4+204 108.6+0.3 || 108.5+0.4
M/M 61.6 £8.0 81.8+24 624+11.3 T71.0x£79 83.9+0.8 84.8+1.4
M/R 6424738 79.1+3.7 66.3+16.7 65.7+16.8 828+1.7 84.8+14

C Supplemental result

In this section, we present the supplementary results and discussion to provide additional insights
into the main findings.

C.1 Results with TD3+BC with labeled ratio = 0.03

Table 6— 8 show the results of TD3+BC with the labeled ratio = 0.03. For all the results, our method
achieves the best performance in almost all the settings, indicating its efficacy in PUORL. Another
point to note is that the performance of the domain adaptation baselines is improved compared with
the labeled ratio of 0.01, indicating the severe influence of extremely limited labeled target domain
data for the subroutine training (classifier for DARA and the dynamics encoder for IGDF).

C.2 Results with IQL

Here, we provide the experimental results with IQL (Kostrikov et al., 2022). Table 9—11 show the
results with the labeled ratio = 0.01. The results show that our method achieves the best performance
in 17 out of 26 settings. Overall, the results with hopper are unstable and worse for all methods,
indicating that the performance of IQL is sensitive in Hopper with limited data (30% in maximum).
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Table 8: The average normalized score and 95% confidence interval from 10 seeds in entire body
shift (labeled ratio = 0.03) with TD3+BC. Of feasible methods (OLP, Sharing-All, DARA, IGDF,

Ours), the best average is in blue. The last column (Oracle) is for reference (ratio=0.05).

Entire body shift (0.03)
Env Quality OLP Sharing-All DARA IGDF Ours Oracle
Halfcheetah ME/ME 23.1+3.9 51.8+5.3 25.7+4.8 282+£32 827+58 | 84.7+4.9
alcheetal - \E/R - 25.6+£37 281481 13.6+3.1 134432 821+7.2 | 84.7+£4.9
Table 9: The average normalized score and 95% confidence interval from 10 seeds in body mass
shift (labeled ratio = 0.01) with IQL.
Body mass shift OLP Sharing-All DARA IGDF PU Oracle
ME/ME  239+5.9 3899+ 141 37.44+76 29751584 39721864 | 54.3+£149
ME/R 23354423  7.79+0.16 7744025  11.21+502  42.04+9.95 || 54.34+14.9
Hopper M/M 37.374+4.58 37.06+1.28 35.73+1.17 3628+7.38  56.37+3.83 || 54.2+3.3
M/R 33.56+3.47 804+0.16 21.68+8.98  12.37+5.4 18.66 £8.36 || 54.3+14.9
ME/ME 0.7 £ 0.86 51.53+3.96 54.41+2.17 51.33+3.18 8272+357 || 87.3L£27
ME/R —0.114047 26.95+7.54 A771+£7.73 38.39+455  84.83+4.06 || 87.3+2.7
Halfcheetah M/M 3.89 + 1.62 37.34+0.2  36.93+0.22  36.43+0.7 46.33+£0.46 || 46.5+0.1
M/R 6.31£3.66 41.64+2.38 43.56+0.5 41.18+1.9 46.57+0.13 || 46.5+0.1
ME/ME  43+275 90.68£0.38 88.92+6.82 96.73+7.74 110.32+0.78 || 109.1£1.4
ME/R 6.64+£622 651841223 62.04+17.2 66.61+10.58 88.57+14.48 || 109.14+1.4
Walker2d  M/M 1442+ 557 82.77+0.45 8242+0.63 74.85+6.35 73.49 + 9.69 75.6 £5.2
M/R 479 +3.4 52.22 4744 47.96+6.59 54.33+10.88 50.34+19.19 || 75.6+£5.2

C.3 Classifier Performance

Here, we review the performance of the classifier under the mixture shift. Seeing Table 12—13, we
can see that the PU classifier achieved higher than 98% accuracy, demonstrating the efficacy of PU
learning under mixture shift and entire body shift.
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Table 10: The average normalized score and 95% confidence interval from 10 seeds in mixture shift
(labeled ratio = 0.01) with IQL.

Mixture shift OLP Sharing-All DARA IGDF PU Oracle
ME/ME 20.43+6.53 24.58+4.47 43.0£10.54 43.08+11.08 35.28 £ 8.5 54.3 £14.9
ME/R 19.1£3.74 22.08+£3.58 36.36£7.83 2843+£8.29 29.03 £ 6.45 54.3 £14.9
Hopper M/M 29.96 £3.98 61.82+8.82 54.86+9.64 51.55 £ 6.13 50.1 4+ 3.34 542433
M/R 33.984+3.15 44.78+7.52 50.47 £ 2.51 47.2+2.13 45.86 +1.44 54.24+3.3
ME/ME 0.26+0.67 6246+ 143  56.73 & 3.36 57.48 £4.63 69.5 +2.97 87.3£2.7
ME/R 1.13 £1.09 5794+ 7.1 49.84 +9.63 51.46 £ 8.41 72.83 £4.74 87.3 £ 2.7
Halfcheetah M/M 5.584+232 48.05+0.64 48.43+0.42  46.36 +2.09 46.54 +0.19 46.5+0.1
M/R 7164+439 44974046  44.84+1.45 43.16 +1.04 46.58 + 0.21 46.5+0.1
ME/ME 3284208 93.95+19.68 96.8+13.09 93.13+11.37 108.46+2.65 || 109.1+1.4
ME/R 6.33+£3.13  93.38£8.08 89.98+12.61 88.98+£13.59 98.96+12.36 || 109.1+1.4
Walker2d M/M 3.556+243 T74.68+£273 T7285+5.38  64.14+8.58 64.45 +13.22 75.6 £5.2
M/R 11.84 £7.15 50.24+6.64  60.78 +7.39 59.43+7.88  62.15+18.06 || 75.6+5.2

Table 11: The average normalized score and 95% confidence interval from 10 seeds in halfcheetah
vs walker2d shift (labeled ratio = 0.01) with IQL.

Halfcheetah vs Walker2d OLP Sharing-All DARA IGDF PU Oracle
ME/ME 0.28£0.37 40.78+3.42 52.55+4.95 53.96+4.46 89.31+1.92 || 87.3+2.7
Halfcheetah ME/R 0.07+0.57 35.64+£3.58 36.93+3.33 31.12+452 86.73+291 || 87.3+2.7

Table 12: The results of the PU classifier in the mixture shift with labeled ratio = 0.01 and 0.03. For
each setting, we reported the average and standard deviation of the test accuracy over 5 seeds.

Env Ratio ME/ME ME/R M/M M/R
Hopper 0.01 98.92+0.54 98.91+0.14 99.334+0.20 99.21 £+ 0.08
0.03  99.44 £0.11 99.224+0.09 99.79 +0.11 99.42 £+ 0.05
0.01  99.43+£0.10 99.42+0.10 99.384+0.05 99.35 =+ 0.03
Halfcheetah

0.03  99.63+0.04 99.56+0.03 99.39£0.02 99.32£0.19
Walker2d 0.01  98.494+0.14 98.02+0.16 98.63+0.19 98.05=£0.12
0.03  99.00+0.07 98.83+£0.10 99.26+0.08 98.81 4+ 0.25

Table 13: The results of the PU classifier in the entire body shift with labeled ratio = 0.01 and 0.03.
For each setting, we reported the average and standard deviation of the test accuracy over 5 seeds.

Env Ratio ME/ME ME/R M/M M/R
0.01  99.76 £0.28 99.87£0.15 99.79 £0.11 99.74 £0.13
0.03  99.98+£0.01 99.93+0.04 99.95+0.06 99.96+0.21

Halfcheetah




