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Summary
We study learning to learn for the multi-task structured bandit problem where the goal is to

learn a near-optimal algorithm that minimizes cumulative regret. The tasks share a common
structure and an algorithm should exploit the shared structure to minimize the cumulative
regret for an unseen but related test task. We use a transformer as a decision-making algorithm
to learn this shared structure from data collected by a demonstrator on a set of training task
instances. Our objective is to devise a training procedure such that the transformer will learn to
outperform the demonstrator’s learning algorithm on unseen test task instances. Prior work on
pretraining decision transformers either requires privileged information like access to optimal
arms or cannot outperform the demonstrator. Going beyond these approaches, we introduce a
pre-training approach that trains a transformer network to learn a near-optimal policy in-context.
This approach leverages the shared structure across tasks, does not require access to optimal
actions, and can outperform the demonstrator. We validate these claims over a wide variety
of structured bandit problems to show that our proposed solution is general and can quickly
identify expected rewards on unseen test tasks to support effective exploration.

Contribution(s)
1. We introduce a new pre-training and test time decision-making procedure that in-context

learns the underlying reward structure for structured bandit settings, resulting in a near-
optimal policy without access to privileged information even when training data comes from
a sub-optimal demonstrator.
Context: Previous works like DPT (Lee et al., 2023) required access to the optimal action
per task, Algorithmic Distillation (AD) could not outperform the demonstrator, other works
need to know the structure to perform optimally.

2. We show that our approach enables successful in-context learning across a diverse set of
structured bandit settings where it matches the performance of existing algorithms that were
developed with knowledge of the structure.
Context: We evaluate our approach in linear,non-linear, bilinear, and latent bandit settings
as well as bandit experiments based on real-life datasets and show that it lowers regret
compared to DPT and AD while matching the near-optimal performance of specialized
algorithms.

3. We show that our algorithm leverages the latent structure and conducts a two-phase explo-
ration to minimize regret.
Context: We analyze the exploration of the pretrained decision transformer in the simplified
linear bandit setting where the optimal policy is well-understood. Previous works like DPT
do not study the exploration conducted by such transformer algorithms. We introduce new
actions both at train and test time. Since new actions are not shared across tasks now, the
transformer algorithm fails to learn the latent structure as we scale up the number of new
actions, thus indicating that it is relying on a discovered underlying structure. We observed
in our experiments that our proposed algorithm implicitly conducts two-phase exploration,
following the distribution of optimal action across training tasks and then switching to the
most rewarding action for the task after observing a few in-context examples.
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Abstract

We study learning to learn for the multi-task structured bandit problem where the goal is
to learn a near-optimal algorithm that minimizes cumulative regret. The tasks share a
common structure and an algorithm should exploit the shared structure to minimize the
cumulative regret for an unseen but related test task. We use a transformer as a decision-
making algorithm to learn this shared structure from data collected by a demonstrator
on a set of training task instances. Our objective is to devise a training procedure such
that the transformer will learn to outperform the demonstrator’s learning algorithm
on unseen test task instances. Prior work on pretraining decision transformers either
requires privileged information like access to optimal arms or cannot outperform the
demonstrator. Going beyond these approaches, we introduce a pre-training approach that
trains a transformer network to learn a near-optimal policy in-context. This approach
leverages the shared structure across tasks, does not require access to optimal actions,
and can outperform the demonstrator. We validate these claims over a wide variety of
structured bandit problems to show that our proposed solution is general and can quickly
identify expected rewards on unseen test tasks to support effective exploration.

1 Introduction

In this paper, we study multi-task bandit learning with the goal of learning an algorithm that discovers
and exploits structure in a family of related tasks. In multi-task bandit learning, we have multiple
distinct bandit tasks for which we want to learn a policy. Though distinct, the tasks share some
structure, which we hope to leverage to speed up learning on new instances in this task family.
Traditionally, the study of such structured bandit problems has relied on knowledge of the problem
structure like linear bandits (Li et al., 2010; Abbasi-Yadkori et al., 2011; Degenne et al., 2020),
bilinear bandits (Jun et al., 2019), hierarchical bandits (Hong et al., 2022a;b), Lipschitz bandits
(Bubeck et al., 2008; 2011; Magureanu et al., 2014), other structured bandits settings (Riquelme et al.,
2018; Lattimore & Szepesvári, 2019; Dong et al., 2021) and even linear and bilinear multi-task bandit
settings (Yang et al., 2022a; Du et al., 2023; Mukherjee et al., 2023). When structure is unknown
an alternative is to adopt sophisticated model classes, such as kernel machines or neural networks,
exemplified by kernel or neural bandits (Valko et al., 2013; Chowdhury & Gopalan, 2017; Zhou et al.,
2020; Dai et al., 2022). However, these approaches are also costly as they learn complex, nonlinear
models from the ground up without any prior data (Justus et al., 2018; Zambaldi et al., 2018).
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In this paper, we consider an alternative approach of synthesizing a bandit algorithm from historical
data where the data comes from recorded bandit interactions with past instances of our target task
family. Concretely, we are given a set of state-action-reward tuples obtained by running some bandit
algorithm in various instances from the task family. We then aim to train a transformer (Vaswani
et al., 2017) from this data such that it can learn in-context to solve new task instances. Laskin et al.
(2022) consider a similar goal and introduce the Algorithm Distillation (AD) method, however, AD
aims to copy the algorithm used in the historical data and thus is limited by the ability of the data
collection algorithm. Lee et al. (2023) develop an approach, DPT, that enables learning a transformer
that obtains lower regret in-context bandit learning compared to the algorithm used to produce the
historical data. However, this approach requires knowledge of the optimal action at each stage of
the decision process. In real problems, this assumption is hard to satisfy and we will show that DPT
performs poorly when the optimal action is only approximately known. With this past work in mind,
the goal of this paper is to answer the question:

Can we learn an in-context bandit learning algorithm that obtains lower regret than the
algorithm used to produce the training data without knowledge of the optimal action in each

training task?

To answer this question, we introduce a new pre-training methodology, called Pre-trained Decision
Transformer with Reward Estimation (PreDeToR) that obviates the need for knowledge of the optimal
action in the in-context data — a piece of information that is often inaccessible. Our key observation is
that while the mean rewards of each action change from task to task, certain probabilistic dependencies
are persistent across all tasks with a given structure (Yang et al., 2020; 2022a; Mukherjee et al., 2023).
These probabilistic dependencies can be learned from the pretraining data and exploited to better
estimate mean rewards and improve performance in a new unknown test task. The nature of the
probabilistic dependencies depends on the specific structure of the bandit and can be complex (i.e.,
higher-order dependencies beyond simple correlations). We propose to use transformer models as a
general-purpose architecture to capture the unknown dependencies by training transformers to predict
the mean rewards in each of the given trajectories (Mirchandani et al., 2023; Zhao et al., 2023). The
key idea is that transformers have the capacity to discover and exploit complex dependencies in
order to predict the rewards of all possible actions in each task from a small history of action-reward
pairs in a new task. This paper demonstrates how such an approach can achieve lower regret by
outperforming state-of-the-art baselines, relying solely on historical data, without the need for any
supplementary information like the action features or knowledge of the complex reward models. We
also show that the shared actions across the tasks are vital for PreDeToR to exploit the latent structure.
We show that PreDeToR learns to adapt, in-context, to novel actions and new tasks as long as the
number of new actions is small compared to shared actions across the tasks.

Contributions

1. We introduce a new pre-training procedure, PreDeToR, for learning the underlying reward structure
and using this to circumvent the issue of requiring access to the optimal (or approximately optimal)
action during training time.

2. We demonstrate empirically that this training procedure results in lower regret in a wide series of
tasks (such as linear, nonlinear, bilinear, and latent bandits) compared to prior in-context learning
algorithms and bandit algorithms with privileged knowledge of the common structure.

3. We also show that our training procedure leverages the shared latent structure. We systematically
show that when the shared structure breaks down no reward structure or exploration is learned.

4. Finally, we theoretically analyze the generalization ability of PreDeToR through the lens of
algorithmic stability and new results for the transformer setting.
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2 Background

In this section, we first introduce our notation and the multi-task, structured bandit setting. We then
formalize the in-context bandit learning model studied in Laskin et al. (2022); Lee et al. (2023); Sinii
et al. (2023); Lin et al. (2023); Ma et al. (2023); Liu et al. (2023c;a).

2.1 Preliminaries

In this paper, we consider the multi-task linear bandit setting (Du et al., 2023; Yang et al., 2020;
2022a). In the multi-task setting, we have a family of related bandit problems that share an action set
A and also a common action feature space X . The actions in A are indexed by a = 1, 2, . . . , A. The
feature of each action is denoted by x(a) ∈ Rd and d≪ A. A policy, π, is a probability distribution
over the actions.

Define [n] = {1, 2, . . . , n}. In a multi-task structured bandit setting the expected reward for each
action in each task is assumed to be an unknown function of the hidden parameter and action features
(Lattimore & Szepesvári, 2020; Gupta et al., 2020). The interaction proceeds iteratively over n rounds
for each task m ∈ [M ]. At each round t ∈ [n] for each task m ∈ [M ], the learner selects an action
Im,t ∈ A and observes the reward rm,t = f(x(Im,t),θm,∗) + ηm,t, where θm,∗ ∈ Rd is the hidden
parameter specific to the task m to be learned by the learner. The function f(·, ·) is the unknown
reward structure. This can be f(x(Im,t),θm,∗) = x(Im,t)

⊤θm,∗ for the linear setting or even more
complex correlation between features and θm,∗ (Filippi et al., 2010; Abbasi-Yadkori et al., 2011;
Riquelme et al., 2018; Lattimore & Szepesvári, 2019; Dong et al., 2021).

In our paper, we assume that there exist weak demonstrators denoted by πw. These weak demon-
strators are stochastic A-armed bandit algorithms like Upper Confidence Bound (UCB) (Auer et al.,
2002; Auer & Ortner, 2010) or Thompson Sampling (Thompson, 1933; Agrawal & Goyal, 2012;
Russo et al., 2018; Zhu & Tan, 2020). We refer to these algorithms as weak demonstrators because
they do not use knowledge of task structure or arm feature vectors to plan their sampling policy.
In contrast to a weak demonstrator, a strong demonstrator, like LinUCB, uses feature vectors and
knowledge of task structure to conduct informative exploration. Whereas weak demonstrators always
exist, there are many real-world settings with no known strong demonstrator algorithm or where the
feature vectors are unobserved and the learner can only use the history of rewards and actions.

2.2 In-Context Learning Model
Similar to Lee et al. (2023); Sinii et al. (2023); Lin et al. (2023); Ma et al. (2023); Liu et al. (2023c;a)
we assume the in-context learning model. We first discuss the pretraining procedure.

Pretraining: Let Tpre denote the distribution over tasks m at the time of pretraining. Let Dpre be the
distribution over all possible interactions that the πw can generate. We first sample a task m ∼ Tpre
and then a context Hm which is a sequence of interactions for n rounds conditioned on the task
m such that Hm ∼ Dpre(·|m). So Hm = {Im,t, rm,t}nt=1. We call this dataset Hm an in-context
dataset as it contains the contextual information about the task m. We denote the samples inHm till
round t as Htm = {Im,s, rm,s}t−1

s=1. This dataset Hm can be collected in several ways: (1) random
interactions within m, (2) demonstrations from an expert, and (3) rollouts of an algorithm. Finally,
we train a causal GPT-2 transformer model TF parameterized by Θ on this dataset Dpre. Specifically,
we define TFΘ (· | Htm) as the transformer model that observes the datasetHtm till round t and then
produces a distribution over the actions. Our primary novelty lies in our training procedure which we
explain in detail in Section 3.1.

Testing: We now discuss the testing procedure for our setting. Let Ttest denote the distribution over test
tasks m ∈ [Mtest ] at the time of testing. Let Dtest denote a distribution over all possible interactions
that can be generated by πw during test time. At deployment time, the datasetH0

m ← {∅} is initialized
empty. At each round t, an action is sampled from the trained transformer model It ∼ TFΘ(· | Htm).
The sampled action and resulting reward, rt, are then added to Htm to form Ht+1

m and the process
repeats for n total rounds. Finally, note that in this testing phase, the model parameter Θ is not
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updated. Finally, the goal of the learner is to minimize cumulative regret for all task m ∈ [Mtest]

defined as follows: E[Rn] = 1
Mtest

∑Mtest
m=1

∑n
t=1 maxa∈A f (x(a),θm,∗)− f (x(It),θm,∗).

2.3 Related In-context Learning Algorithms

In this section, we discuss related algorithms for in-context decision-making. For completeness,
we describe the DPT and AD training procedure and algorithm now. During training, DPT first
samples m ∼ Tpre and then an in-context datasetHm ∼ Dpre(·|,m). It adds thisHm to the training
dataset Htrain, and repeats to collect Mpre such training tasks. For each task m, DPT requires the
optimal action am,∗ = argmaxa f(x(m, a),θm,∗) where f(x(m, a),θm,∗) is the expected reward
for the action a in task m. Since the optimal action is usually not known in advance, in Section 4
we introduce a practical variant of DPT that approximates the optimal action with the best action
identified during task interaction. During training DPT minimizes the cross-entropy loss:

LDPT
t = cross-entropy(TFΘ(·|Htm), p(am,∗)) (1)

where p(am,∗)∈△A is a one-hot vector such that p(j)=1 when j=am,∗ and 0 otherwise. This loss
is then back-propagated and used to update the model parameter Θ.

During test time evaluation for online setting the DPT selects It ∼ softmaxτa(TFΘ(·|Htm))
where we define the softmaxτa(v) over a A dimensional vector v ∈ RA as softmaxτa(v(a)) =

exp(v(a)/τ)/
∑A
a′=1 exp(v(a

′)/τ) which produces a distribution over actions weighted by the
temperature parameter τ > 0. Therefore this sampling procedure has a high probability of choos-
ing the predicted optimal action as well as induce sufficient exploration. In the online setting, the
DPT observes the reward rt(It) which is added to Htm. So the Hm during online testing consists
of {It, rt}nt=1 collected during testing. This interaction procedure is conducted for each test task
m ∈ [Mtest ]. In the testing phase, the model parameter Θ is not updated.

An alternative to DPT that does not require knowledge of the optimal action is the AD approach
(Laskin et al., 2022; Lu et al., 2023). In AD, the learner aims to predict the next action of the
demonstrator. So it minimizes the cross-entropy loss as follows:

LAD
t = cross-entropy(TFΘ(·|Htm), p(Im,t)) (2)

where p(Im,t) is a one-hot vector such that p(j) = 1 when j = Im,t (the true action taken by the
demonstrator) and 0 otherwise. At deployment time, AD selects It ∼ softmaxτa(TFΘ(·|Htm)). The
objective of AD is to match the performance of the demonstrator. In the next section, we introduce a
new method that can improve upon the demonstrator without knowledge of the optimal action.

3 The PreDeToRAlgorithm

We now introduce our main algorithmic contribution, PreDeToR (which stands for Pre-trained
Decision Transformer with Reward Estimation).

3.1 Pre-training Next Reward Prediction

The key idea behind PreDeToR is to leverage the in-context learning ability of transformers to infer
the reward of each arm in a given test task. By training this in-context ability on a set of training tasks,
the transformer can implicitly learn structure in the task family and exploit this structure to infer
rewards without trying every single arm. Hence PreDeToR requires access to all the finite set of arms.
Note that the AD, and DPT only require access to the arms selected by the demonstrator. In contrast
to DPT and AD that output actions directly, PreDeToR outputs a scalar value reward prediction for
each arm. To this effect, we append a linear layer of dimension A on top of a causal GPT2 model,
denoted by TFr

Θ(·|Hm), and use a least-squares loss to train the transformer to predict the reward
for each action with these outputs. Note that we use TFr

Θ(·|Hm) to denote a reward prediction
transformer and TFΘ(·|Hm) as the transformer that predicts a distribution over actions (as in DPT
and AD ). At every round t the transformer predicts the next reward for each of the actions a ∈ A
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for the task m based onHtm = {Im,s, rm,s}t−1
s=1. This predicted reward is denoted by r̂m,t+1(a) for

each a ∈ A.

Loss calculation: For each training task, m, we calculate the loss at each round, t, using the
transformer’s prediction r̂m,t(Im,t) and the actual observed reward rm,t that followed action Im,t.
We use a least-squares loss function:

Lt = (r̂m,t(Im,t)− rm,t)
2 (3)

and hence minimizing this loss will minimize the mean squared-error of the transformer’s predictions.
The loss is calculated using (3) and is backpropagated to update the model parameter Θ.

Exploratory Demonstrator: Observe from the loss definition in (3) that it is calculated from the
observed true reward and action from the datasetHm. In order for the transformer to learn accurate
reward predictions during training, we require that the weak demonstrator is sufficiently exploratory
such that it collectsHm such thatHm contains some reward rm,t for each action a. We discuss in
detail the impact of the demonstrator on PreDeToR (-τ ) training in Section 7.

3.2 Deploying PreDeToR

At deployment time, PreDeToR learns in-context to predict the mean reward of each arm on an
unseen task and acts greedily with respect to this prediction. That is, at deployment time, a new task
is sampled, m ∼ Ttest, and the dataset H0

m is initialized empty. Then at every round t, PreDeToR
chooses It = argmaxa∈A TFr

Θ (r̂m,t(a) | Htm) which is the action with the highest predicted
reward and r̂m,t(a) is the predicted reward of action a. Note that PreDeToR is a greedy policy
and thus may fail to conduct sufficient exploration. To remedy this potential limitation, we also
introduce a soft variant, PreDeToR-τ that chooses It ∼ softmaxτa (TF

r
Θ (r̂m,t(a) | Htm)). For both

PreDeToR and PreDeToR-τ , the observed reward rt(It) is added to the datasetHm and then used
to predict the reward at the next round t + 1. The full pseudocode of using PreDeToR for online
interaction is shown in Algorithm 1. In Appendix A.14, we discuss how PreDeToR (-τ ) can be
deployed for offline learning. We also highlight that PreDeToR needs to forward-pass |A| times to
select the best arm during evaluation, and hence suffers from more computational overhead with a
large action space, compared to AD or DPT.

4 Empirical Study: Non-Linear Structure

Having introduced PreDeToR, we now investigate its performance in diverse bandit settings compared
to other in-context learning algorithms. In our first set of experiments, we use a bandit setting with
a common non-linear structure across tasks. Ideally, a good learner would leverage the structure,
however, we choose the structure such that no existing algorithms are well-suited to the non-linear
structure. This setting is thus a good testbed for establishing that in-context learning can discover and
exploit common structure. Moreover, each task only consists of a few rounds of interactions. This
setting is quite common in recommender settings where user interaction with the system lasts only
for a few rounds and has an underlying non-linear structure (Kwon et al., 2022; Tomkins et al., 2020).
We show that PreDeToR achieves lower regret than other in-context algorithms for the non-linear
structured bandit setting. We study the performance of PreDeToR in the large horizon setting in
Appendix A.8.

Baselines: We first discuss the baselines used in this setting.

(1) PreDeToR: This is our proposed method shown in Algorithm 1.

(2) PreDeToR-τ : This is the proposed exploratory method shown in Algorithm 1 and we fix τ = 0.05.

(3) DPT-greedy: This baseline is the greedy approximation of the DPT algorithm from Lee et al.
(2023) which is discussed in Section 2.3. Note that we choose DPT-greedy as a representative
example of similar in-context decision-making algorithms studied in Lee et al. (2023); Sinii et al.
(2023); Lin et al. (2023); Ma et al. (2023); Liu et al. (2023c;a) all of which require the optimal action
(or its greedy approximation). DPT-greedy estimates the optimal arm using the reward estimates for
each arm during each task.
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Algorithm 1 Pre-trained Decision Transformer with Reward Estimation (PreDeToR)

1: Collecting Pretraining Dataset
2: Initialize empty pretraining datasetHtrain
3: for i in [Mpre] do
4: Sample task m ∼ Tpre, in-context datasetHm ∼ Dpre(·|m) and add this toHtrain.
5: end for
6: Pretraining model on dataset
7: Initialize model TFr

Θ with parameters Θ
8: while not converged do
9: SampleHm fromHtrain and predict r̂m,t for action (Im,t) for all t ∈ [n]

10: Compute loss in (3) with respect to rm,t and backpropagate to update model parameter Θ.
11: end while
12: Online test-time deployment
13: Sample unknown task m ∼ Ttest and initialize emptyH0

m = {∅}
14: for t = 1, 2, . . . , n do
15: Use TFr

Θ on m at round t to choose

It

{
= argmaxa∈A TFr

Θ (r̂m,t(a) | Htm) , PreDeToR
∼ softmaxτaTF

r
Θ (r̂m,t(a) | Htm) , PreDeToR-τ

16: Add {It, rt} toHtm to formHt+1
m .

17: end for

(4) AD: This is the Algorithmic Distillation method (Laskin et al., 2022; Lu et al., 2021) discussed in
Section 2.3.

(5) Thomp: This baseline is the celebrated stochastic A-action bandit Thompson Sampling algorithm
from Thompson (1933); Agrawal & Goyal (2012); Russo et al. (2018); Zhu & Tan (2020). We
choose Thomp as the weak demonstrator πw as it does not make use of arm features. Thomp is also a
stochastic algorithm that induces more exploration in the demonstrations.

(6) LinUCB: (Linear Upper Confidence Bound): This baseline is the Upper Confidence Bound
algorithm for the linear bandit setting that leverages the linear structure and feature of the arms
to select the most promising action as well as conducting exploration. We choose LinUCB as a
baseline for each test task to show the limitations of algorithms that use linear feedback structure as
an underlying assumption to select actions. Note that LinUCB requires oracle access to features to
select actions per task.

(7) MLinGreedy: This is the multi-task linear regression bandit algorithm proposed by Yang et al.
(2021). This algorithm assumes that there is a common low-dimensional feature extractor shared
between the tasks and the reward of each task linearly depends on this feature extractor. We choose
MLinGreedy as a baseline to show the limitations of algorithms that use linear feedback structure
across tasks as an underlying assumption to select actions. Note that MLinGreedy requires oracle
access to the action features to select actions as opposed to DPT, AD, and PreDeToR.

We describe in detail the baselines Thomp, LinUCB, and MLinGreedy for interested readers in
Appendix A.2.2.

Outcomes: First, we discuss the main outcomes from our experimental results in this section:

Finding 1: PreDeToR (-τ ) lowers regret compared to other baselines under unknown, non-
linear structure. It learns to exploit the latent structure of the underlying tasks from in-context
data even when it is trained without the optimal action am,∗ (or its approximation) and
without action features X .
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Experimental Result: These findings are reported in Figure 1. In Figure 1a we show the non-
linear bandit setting for horizon n = 50, Mpre = 100000, Mtest = 200, A = 6, and d = 2. The
demonstrator πw is the Thomp algorithm. We observe that PreDeToR (-τ ) has lower cumulative
regret than DPT-greedy. Note that for this low data regime (short horizon) the DPT-greedy does not
have a good estimation of âm,∗ which results in a poor prediction of optimal action âm,t,∗. This
results in higher regret. The PreDeToR (-τ ) has lower regret than LinUCB, and MLinGreedy, which
fail to perform well in this non-linear setting due to their algorithmic design and linear feedback
assumption. Finally, PreDeToR-τ performs slightly better than PreDeToR in both settings as it
conducts more exploration.

In Figure 1b we show the non-linear bandit setting for horizon n = 25, Mpre = 100000, Mtest = 200,
A = 6, and d = 2 where the norm of the θm,∗ determines the reward of the actions which also is a
non-linear function θm,∗ and action features. This setting is similar to the wheel bandit setting of
Riquelme et al. (2018). Again, we observe that PreDeToR has lower cumulative regret than all the
other baselines.

Finally in Figure 1c and Figure 1d we show the performance of PreDeToR against other baselines
in real-world datasets Movielens and Yelp. The Movielens dataset consists of more than 32 million
ratings of 200,000 users and 80,000 movies (Harper & Konstan, 2015) where each entry consists
of user-id, movie-id, rating, and timestamp. The Yelp dataset (Asghar, 2016) consists of ratings of
1300 business categories by 150,000 users. Each entry is summarized as user-id, business-id, rating,
and timestamp. Previously structured bandit works (Deshpande & Montanari, 2012; Hong et al.,
2023) directly fit a linear structure or low-rank factorization to estimate the θm,∗ and simulate the
ratings. However, we directly use the user-ids and movie-ids (or business-ids) to build a histogram
of ratings per user and calculate the mean rating per movie (or business-id) per task. Define this as
the {µm,a}Aa=1. This is then used to simulate the rating for n horizon per movie per task where the
data collection algorithm is uniform sampling. Note that this does not require estimation of user or
movie features, and PreDeToR (-τ ) learns to exploit the latent structure of user-movie (or business)
rating correlations directly from the data. From Figure 1c and Figure 1d we see that PreDeToR, and
PreDeToR-τ outperform all the other baselines in these settings. In the next section, we study the
simplified linear setting to show that PreDeToR is indeed exploiting the latent structure to minimize
the cumulative regret.

(a) Non-linear bandit (b) Feature bandit (c) Movielens (d) Yelp

Figure 1: Non-linear regime. The horizontal axis is the number of rounds. Confidence bars show one
standard error.

5 Empirical Study: Linear Structure and Understanding PreDeToR’s
Exploration

The previous experiments were conducted in a non-linear structured setting where we are unaware of a
provably near-optimal algorithm. To assess how close PreDeToR’s regret is to optimal, in this section,
we consider a linear setting for which there exist well-understood algorithms (Abbasi-Yadkori et al.,
2011; Lattimore & Szepesvári, 2020). Such algorithms provide a strong upper bound for PreDeToR.
We summarize the key finding below:



Reinforcement Learning Journal 2025

Finding 2: PreDeToR (-τ ) matches the performance of the optimal algorithm LinUCB in
linear bandit setting as it learns to exploit the latent structure across tasks from in-context
data and without access to features.

In Figure 2 we first show the linear bandit setting for horizon n = 25, Mpre = 200000, Mtest = 200,
A = 10, and d = 2. Note that the length of the context (the number of rounds) is an artifact of the
transformer architecture and computational complexity. This is because the self-attention takes in
as input a length-n sequence of tokens of size d, and requires O

(
dn2
)

time to compute the output
(Keles et al., 2023). Further empirical setting details are stated in Appendix A.2.

We observe from Figure 2 that PreDeToR (-τ ) has lower cumulative regret than DPT-greedy, and AD.
Note that for this low data (short horizon) regime, the DPT-greedy does not have a good estimation
of âm,∗ which results in a poor prediction of optimal action âm,t,∗. This results in higher regret.
Observe that PreDeToR (-τ ) performs quite similarly to LinUCB and lowers regret compared to
Thomp which also shows that PreDeToR is able to exploit the latent linear structure and reward
correlation of the underlying tasks. Note that LinUCB is close to the optimal algorithm for this linear
bandit setting. PreDeToR outperforms AD as the main objective of AD is to match the performance
of its demonstrator. In this short horizon, we see that MLinGreedy performs similarly to LinUCB.

We also show how the prediction error of the optimal action by PreDeToR is small compared to
LinUCB in the linear bandit setting. In Figure 2b we first show how the 10 actions are distributed
in the Mtest = 200 test tasks. In Figure 2b for each bar, the frequency indicates the number of
tasks where the action (shown in the x-axis) is the optimal action. Then, in Figure 2c, we show the
prediction error of PreDeToR (-τ ) for each task m ∈ [Mtest]. The prediction error is calculated as
(µ̂m,n,∗(a)− µm,∗(a))

2 where µ̂m,n,∗(a) = maxa θ̂
⊤
m,nxm(a) is the empirical mean at the end of

round n, and µ∗,m(a) = maxa θ
⊤
m,∗xm(a) is the true mean of the optimal action in task m. Then we

average the prediction error for the action a ∈ [A] by the number of times the action a is the optimal
action in some task m. From the Figure 2c, we see that for actions {2, 3, 5, 6, 7, 10}, the prediction
error of PreDeToR is either close or smaller than LinUCB. Note that LinUCB estimates the empirical
mean directly from the test task, whereas PreDeToR has a strong prior based on the training data. So
PreDeToR is able to estimate the reward of the optimal action quite well from the training dataset
Dpre. This shows the power of PreDeToR to go beyond the in-context decision-making setting studied
in Lee et al. (2023); Lin et al. (2023); Ma et al. (2023); Sinii et al. (2023); Liu et al. (2023c) which
require long horizons/trajectories and optimal action during training to learn a near-optimal policy.

(a) Linear Bandit setting (b) Test action distribution (c) Test Prediction Error
Figure 2: Linear Expt. The horizontal axis is the number of rounds. Confidence bars show one
standard error.

We now state the main finding of our analysis of exploration in the linear bandit setting:

Finding 3: The PreDeToR (-τ ) has an implicit two-phase exploration. In the first phase, it
explores with a strong prior over the in-context training data. In the second phase, once the
task data has been observed for a few rounds (in-context) it switches to task-based exploration.

We first show in Figure 3a the training distribution of the optimal actions. For each bar, the frequency
indicates the number of tasks where the action (shown in the x-axis) is the optimal action. Then
in Figure 3b we show how the sampling distribution of DPT-greedy, PreDeToR and PreDeToR-τ
change in the first 10 and last 10 rounds for all the tasks where action 5 is optimal. To plot this graph
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we first sum over the individual pulls of the action taken by each algorithm over the first 10 and last
10 rounds. Then we average these counts over all test tasks where action 5 is optimal. From the
figure Figure 3b we see that PreDeToR(-τ ) consistently pulls the action 5 more than DPT-greedy.
It also explores other optimal actions like {2, 3, 6, 7, 10} but discards them quickly in favor of the
optimal action 5 in these tasks. This shows that PreDeToR (-τ ) only considers the optimal actions
seen from the training data. Once sufficient observation have been observed for the task it switches to
task-based exploration and samples the optimal action more than DPT-greedy.

Finally, we plot the feasible action set considered by DPT-greedy, PreDeToR, and PreDeToR-τ in
Figure 3c. To plot this graph again we consider the test tasks where the optimal action is 5. Then
we count the number of distinct actions that are taken from round t up until horizon n. Finally we
average this over all the considered tasks where the optimal action is 5. We call this the candidate
action set considered by the algorithm. From the Figure 3c we see that DPT-greedy explores the least
and gets stuck with few actions quickly (by round 10). Note that the actions DPT-greedy samples
are sub-optimal and so it suffers a high cumulative regret (see Figure 2). PreDeToR explore slightly
more than DPT-greedy, but PreDeToR-τ explores the most.

(a) Train Optimal Action Dis-
tribution

(b) Distribution of action sam-
pling in all test tasks where ac-
tion 5 is optimal

(c) Candidate Action Set in
Time averaged over all tasks
where action 5 is optimal

Figure 3: Exploration Analysis of PreDeToR(-τ )

6 Empirical Study: Importance of Shared Structure and Introducing New
Actions

One of our central claims is that PreDeToR (-τ ) internally learns and leverages the shared structure
across the training and testing tasks. To validate this claim, in this section, we consider the introduction
of new actions at test time that do not follow the structure of training time. These experiments are
particularly important as they show the extent to which PreDeToR(-τ ) is leveraging the latent structure
and the shared correlation between the actions and rewards.

Invariant actions: We denote the set of actions fixed across the different tasks in the pretraining
in-context dataset as Ainv. Therefore these action features x(a) ∈ Rd for a ∈ Ainv are fixed across
the different tasks m. Note that these invariant actions help the transformer TFw to learn the latent
structure and the reward correlation across the different tasks. Therefore, as the structure breaks
down, PreDeToR starts performing worse than other baselines.

New actions: We also want to test whether PreDeToR (-τ ) exploits shared structure when new actions
are introduced that are not seen during training time. To this effect, for each task m ∈ [Mpre] and
m ∈ [Mtest] we introduce A− |Ainv| new actions. That is both for train and test tasks, we introduce
new actions. For each of these new actions a ∈ [A−|Ainv|] we choose the features x(m, a) randomly
from X ⊆ Rd. Note the transformer now trains on a datasetHm ⊆ Dpre ̸= Dtest.

Baselines: We implement the same baselines discussed in Section 4.

Outcomes: Again before presenting the result we discuss the main outcomes from our experimental
results of introducing new actions during data collection and evaluation:
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(a) 0 new action (b) 1 new action (c) 5 new actions (d) 10 new actions
Figure 4: Linear new action experiments. The horizontal axis is the number of rounds. Confidence
bars show one standard error.

(a) 0 new action (b) 1 new action (c) 5 new actions (d) 10 new actions
Figure 5: Non-linear new action experiments with non-linear setting.

Finding 4: Shared structure across the tasks is important to learn the reward structure.

Experimental Result: We observe these outcomes in Figure 4 and Figure 5. We consider the
linear and non-linear bandit setting of horizon n = 50, Mpre = 100000, Mtest = 200, A = 10,
and d = 2. Here during data collection and during collecting the test data, we randomly select
between 0, 1, 5, and 10 new actions from Rd for each task m. So the number of invariant actions
is |Ainv| ∈ {10, 5, 1, 0}. Again, the demonstrator πw is the Thomp algorithm. From Figure 4a, 4b,
4c, and 4d, we observe that when the number of invariant actions is less than PreDeToR (-τ ) has
lower cumulative regret than DPT-greedy, and AD. Observe that PreDeToR (-τ ) matches LinUCB
and has lower regret than DPT-greedy, and AD when Ainv| ∈ {10, 5, 1}. This shows that PreDeToR
(-τ ) is able to exploit the latent linear structure of the underlying tasks. However, as the number of
invariant actions decreases we see that PreDeToR(-τ ) performance drops and becomes similar to the
unstructured bandits Thomp. We also show in Appendix A.3 that in K-armed bandit setting when
there is no structure across arms PreDeToR (-τ ) matches the performance of the demonstrator.

Similarly in Figure 5a, 5b, 5c, and 5d we show the performance of PreDeToR in the non-linear bandit
setting. Observe that LinUCB, MLinGreedy fails to perform well in this non-linear setting due to
their assumption of linear rewards. Again note that PreDeToR (-τ ) has lower regret than DPT-greedy,
and AD when Ainv| ∈ {10, 1}. This shows that PreDeToR (-τ ) is able to exploit the latent linear
structure of the underlying tasks. However, as the number of invariant actions decreases we see that
PreDeToR(-τ ) performance drops and becomes similar to AD.

7 Data Collection Analysis
In this section, we analyze the performance of PreDeToR, PreDeToR-τ , DPT-greedy, AD, Thomp,
and LinUCB when the weak demonstrator πw is Thomp, LinUCB, or Uniform. We again consider
the linear bandit setting discussed in Section 4. We show the cumulative regret by the above baselines
in Figure 6a, 6b, and 6b when data is collected through Thomp, LinUCB, and Uniform respectively.
We first state the main finding below:

Finding 5: The PreDeToR (-τ ) excels in exploiting the underlying latent structure and reward
correlation from in-context data when the data diversity is high.

Experimental Result: We observe these outcomes in Figure 6. In Figure 6a we see that the
A-actioned Thomp is explorative enough as it does not explore with the knowledge of feature
representation. So it pulls the sub-optimal actions sufficiently high number of times before discarding
them in favor of the optimal action. Therefore the training data is diverse enough so that PreDeToR
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(a) Thomp data collection (b) LinUCB data collection (c) Uniform data collection

Figure 6: Data Collection with various algorithms and Performance analysis

(-τ ) can predict the reward vectors for actions sufficiently well. Consequently, PreDeToR (-τ ) almost
matches the LinUCB algorithm. Both DPT-greedy and ADperform poorly in this setting.

In Figure 6b we see that the LinUCB algorithm is not explorative enough as it explores with the
knowledge of feature representation and quickly discards the sub-optimal actions in favor of the
optimal action. Therefore the training data is not diverse enough so that PreDeToR (-τ ) is not able to
correctly predict the reward vectors for actions. Note that DPT-greedy also performs poorly in this
setting when it is not provided with the optimal action information during training. The AD matches
the performance of its demonstrator LinUCB because of its training procedure of predicting the next
action of the demonstrator.

Finally, in Figure 6c we see that the A-armed Uniform is fully explorative as it does not intend
to minimize regret (as opposed to Thomp) and does not explore with the knowledge of feature
representation. Therefore the training data is very diverse which results in PreDeToR (-τ ) being
able to predict the reward vectors for actions very well. Consequently, PreDeToR (-τ ) perfectly
matches the LinUCB algorithm. Note that AD performs the worst as it matches the performance of
its demonstrator whereas the performance of DPT-greedy suffers due to the lack of information on
the optimal action during training.

We also empirically study the test performance of PreDeToR (-τ ) in K-armed bandit setting when
there is no structure across arms in Appendix A.3, against the original DPT in Appendix A.3, in other
non-linear bandit settings such as bilinear bandits (Appendix A.4), latent bandits (Appendix A.5),
draw a connection between PreDeToR and Bayesian estimators (Appendix A.6), and perform sensi-
tivity and ablation studies in Appendix A.7, A.9, A.10, A.11. Due to space constraints, we refer the
interested reader to the relevant section in the appendices.

8 Theoretical Analysis of Generalization
In this section, we present a theoretical analysis of how PreDeToR-τ generalizes to an unknown target
task given a set of source tasks. We observe that PreDeToR-τ ’s performance hinges on a low excess
error on the predicted reward of the actions of the unknown target task based on the in-context data.
Thus, in our analysis, we show that, in low-data regimes, PreDeToR-τ has a low expected excess risk
for the unknown target task as the number of source tasks increases. This is summarized as follows:

Finding 6: PreDeToR (-τ ) has a low expected excess risk for the unknown target task as the
number of source tasks increases. Moreover, the transfer learning risk of PreDeToR-τ (once
trained on the M source tasks) scales with Õ(1/

√
M).

To show this, we proceed as follows: Suppose we have the training data setHall = {Hm}
Mpre
m=1, where

the task m ∼ T with a distribution T and the task dataHm is generated from a distributionDpre(·|m).
For illustration purposes, here we consider the training data distribution Dpre(·|m) where the actions
are sampled following soft-LinUCB (a stochastic variant of LinUCB) (Chu et al., 2011). Given the
loss function in Equation (3), we can define the task m training loss of PreDeToR-τ as L̂m(TFr

Θ) =
1
n

∑n
t=1 ℓ(rm,t,TF

r
Θ(r̂m,t(Im,t)|Htm)) = 1

n

∑n
t=1(TF

r
Θ(r̂m,t(Im,t)|Htm)−rm,t)

2. We drop the
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notation Θ, r from TFr
Θ for simplicity and let M = Mpre. We define

T̂F =argmin
TF∈Alg

L̂Hall
(TF) :=

1

M

M∑
m=1

L̂m(TF), (ERM) (4)

where Alg denotes the space of algorithms induced by the TF. Let Lm(TF) = EHm

[
L̂m(TF)

]
and

LMTL(TF) = E
[
L̂Hall

(TF)
]
= 1

M

∑M
m=1 Lm(TF) be the corresponding population risks. For the

ERM in (4), we want to bound the following excess Multi-Task Learning (MTL) risk of PreDeToR-τ

RMTL(T̂F) = LMTL(T̂F)− min
TF∈Alg

LMTL(TF). (5)

Note that for in-context learning, a training sample (It, rt) impacts all future decisions of the algorithm
from time step t+ 1 to n. Therefore, we need to control the stability of the input perturbation of the
learning algorithm learned by the transformer. We introduce the following stability condition.
Assumption 8.1. (Error stability (Bousquet & Elisseeff, 2002; Li et al., 2023)). LetH = (It, rt)

n
t=1

be a sequence in [A] × [0, 1] with n ≥ 1 and H′ be the sequence where the t′th sample of H is
replaced by (I ′t, r

′
t). Error stability holds for a distribution (I, r) ∼ D if there exists a K > 0 such

that for anyH, (I ′t, r′t) ∈ ([A]× [0, 1]), t ≤ n, and TF ∈ Alg, we have∣∣E(I,r) [ℓ(r,TF(r̂(I)|H))− ℓ (r,TF(r̂(I)|H′))]
∣∣ ≤ K

n .

Let ρ be a distance metric on Alg. Pairwise error stability holds if for all TF,TF′ ∈ Alg we have∣∣E(x,y)

[
ℓ(r,TF(r̂(I)|H))− ℓ

(
r,TF′(r̂(I)|H)

)
− ℓ(r,TF(r̂(I)|H′)) + ℓ

(
r,TF′(r̂(I)|H′)

)] ∣∣ ≤ Kρ(TF,TF′)
n .

Now we present the Multi-task learning (MTL) risk of PreDeToR-τ .
Theorem 8.2. (PreDeToR risk) Suppose error stability Assumption 8.1 holds and assume loss
function ℓ(·, ·) is C-Lipschitz for all rt ∈ [0, B] and horizon n ≥ 1. Let T̂F be the empirical solution
of (ERM) and N (A, ρ, ϵ) be the covering number of the algorithm space Alg following Definition
C.2 and C.3. Then with probability at least 1− 2δ, the excess MTL risk of PreDeToR-τ is bounded by

RMTL(T̂F) ≤ 4 C√
nM

+ 2(B +K log n)

√
log(N (Alg,ρ,ε)/δ)

cnM ,

where N (Alg, ρ, ε) is the covering number of transformer T̂F and ϵ = 1/
√
nM .

The proof of Theorem 8.2 is provided in Appendix C.1. From Theorem 8.2 we see that in low-data
regime with a small horizon n, as the number of tasks M increases the MTL risk decreases. We
further discuss the stability factor K and covering number N (Alg, ρ, ε) in Remark C.4, and C.5. We
also present the transfer learning risk of PreDeToR-τ in Appendix C.2.

9 Conclusions, Limitations and Future Works
In this paper, we studied the supervised pretraining of decision transformers in the multi-task
structured bandit setting when the knowledge of the optimal action is unavailable. Our proposed
methods PreDeToR (-τ ) do not need to know the action representations or the reward structure
and learn these with the help of offline data. PreDeToR (-τ ) predict the reward for the next action
of each action during pretraining and can generalize well in-context in several regimes spanning
low-data, new actions, and structured bandit settings like linear, non-linear, bilinear, latent bandits.
The PreDeToR (-τ ) outperforms other in-context algorithms like AD, DPT-greedy in most of the
experiments. Finally, we theoretically analyze PreDeToR-τ and show that pretraining it in M source
tasks leads to a low expected excess error on a target task drawn from the same task distribution T . In
the future, we want to extend our PreDeToR (-τ ) to the MDP setting (Sutton & Barto, 2018; Agarwal
et al., 2019), and constrained MDP setting (Efroni et al., 2020; Gu et al., 2022).
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A Appendix

A.1 Related Works

In this section, we briefly discuss related works.

In-context decision making (Laskin et al., 2022; Lee et al., 2023) has emerged as an attractive alterna-
tive in Reinforcement Learning (RL) compared to updating the model parameters after collection of
new data (Mnih et al., 2013; François-Lavet et al., 2018). In RL the contextual data takes the form of
state-action-reward tuples representing a dataset of interactions with an unknown environment (task).
In this paper, we will refer to this as the in-context data. Recall that in many real-world settings, the
underlying task can be structured with correlated features, and the reward can be highly non-linear.
So specialized bandit algorithms fail to learn in these tasks. To circumvent this issue, a learner can
first collect in-context data consisting of just action indices It and rewards rt. Then it can leverage
the representation learning capability of deep neural networks to learn a pattern across the in-context
data and subsequently derive a near-optimal policy (Lee et al., 2023; Mirchandani et al., 2023). We
refer to this learning framework as an in-context decision-making setting.

The in-context decision-making setting of Sinii et al. (2023) also allows changing the action space
by learning an embedding over the action space yet also requires the optimal action during training.
In contrast we do not require the optimal action as well as show that we can generalize to new
actions without learning an embedding over them. Similarly, Lin et al. (2023) study the in-context
decision-making setting of Laskin et al. (2022); Lee et al. (2023), but they also require a greedy
approximation of the optimal action. The Ma et al. (2023) also studies a similar setting for hierarchical
RL where they stitch together sub-optimal trajectories and predict the next action during test time.
Similarly, Liu et al. (2023c) studies the in-context decision-making setting to predict action instead
of learning a reward correlation from a short horizon setting. In contrast we do not require a greedy
approximation of the optimal action, deal with short horizon setting and changing action sets during
training and testing, and predict the estimated means of the actions instead of predicting the optimal
action. A survey of the in-context decision-making approaches can be found in Liu et al. (2023a).

In the in-context decision-making setting, the learning model is first trained on supervised input-
output examples with the in-context data during training. Then during test time, the model is asked to
complete a new input (related to the context provided) without any update to the model parameters
(Xie et al., 2021; Min et al., 2022). Motivated by this, Lee et al. (2023) recently proposed the
Decision Pretrained Transformers (DPT) that exhibit the following properties: (1) During supervised
pretraining of DPT, predicting optimal actions alone gives rise to near-optimal decision-making
algorithms for unforeseen task during test time. Note that DPT does not update model parameters
during test time and, therefore, conducts in-context learning on the unforeseen task. (2) DPT improves
over the in-context data used to pretrain it by exploiting latent structure. However, DPT either requires
the optimal action during training or if it needs to approximate the optimal action. For approximating
the optimal action, it requires a large amount of data from the underlying task.

At the same time, learning the underlying data pattern from a few examples during training is
becoming more relevant in many domains like chatbot interaction (Madotto et al., 2021; Semnani
et al., 2023), recommendation systems, healthcare (Ge et al., 2022; Liu et al., 2023b), etc. This is
referred to as few-shot learning. However, most current RL decision-making systems (including
in-context learners like DPT) require an enormous amount of data to learn a good policy.

The in-context learning framework is related to the meta-learning framework (Bengio et al., 1990;
Schaul & Schmidhuber, 2010). Broadly, these techniques aim to learn the underlying latent shared
structure within the training distribution of tasks, facilitating faster learning of novel tasks during
test time. In the context of decision-making and reinforcement learning (RL), there exists a frequent
choice regarding the specific ’structure’ to be learned, be it the task dynamics (Fu et al., 2016;
Nagabandi et al., 2018; Landolfi et al., 2019), a task context identifier (Rakelly et al., 2019; Zintgraf
et al., 2019; Liu et al., 2021), or temporally extended skills and options (Perkins & Precup, 1999;
Gupta et al., 2018; Jiang et al., 2022).
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However, as we noted in the Section 1, one can do a greedy approximation of the optimal action
from the historical data using a weak demonstrator and a neural network policy (Finn et al., 2017;
Rothfuss et al., 2018). Moreover, the in-context framework generally is more agnostic where it learns
the policy of the demonstrator (Duan et al., 2016; Wang et al., 2016; Mishra et al., 2017). Note that
both DPT-greedy and PreDeToR are different than algorithmic distillation (Laskin et al., 2022; Lu
et al., 2023) as they do not distill an existing RL algorithm. moreover, in contrast to DPT-greedy
which is trained to predict the optimal action, the PreDeToR is trained to predict the reward for each
of the actions. This enables the PreDeToR (similar to DPT-greedy) to show to potentially emergent
online and offline strategies at test time that automatically align with the task structure, resembling
posterior sampling.

As we discussed in the Section 1, in decision-making, RL, and imitation learning the transformer
models are trained using autoregressive action prediction (Yang et al., 2023). Similar methods have
also been used in Large language models (Vaswani et al., 2017; Roberts et al., 2019). One of the
more notable examples is the Decision Transformers (abbreviated as DT) which utilizes a transformer
to autoregressively model sequences of actions from offline experience data, conditioned on the
achieved return (Chen et al., 2021; Janner et al., 2021). This approach has also been shown to be
effective for multi-task settings (Lee et al., 2022), and multi-task imitation learning with transformers
(Reed et al., 2022; Brohan et al., 2022; Shafiullah et al., 2022). However, the DT methods are not
known to improve upon their in-context data, which is the main thrust of this paper (Brandfonbrener
et al., 2022; Yang et al., 2022b).

Our work is also closely related to the offline RL setting. In offline RL, the algorithms can formulate a
policy from existing data sets of state, action, reward, and next-state interactions. Recently, the idea of
pessimism has also been introduced in an offline setting to address the challenge of distribution shift
(Kumar et al., 2020; Yu et al., 2021; Liu et al., 2020; Ghasemipour et al., 2022). Another approach to
solve this issue is policy regularization (Fujimoto et al., 2019; Kumar et al., 2019; Wu et al., 2019;
Siegel et al., 2020; Liu et al., 2019), or reuse data for related task (Li et al., 2020; Mitchell et al.,
2021), or additional collection of data along with offline data (Pong et al., 2022). However, all of
these approaches still have to take into account the issue of distributional shifts. In contrast PreDeToR
and DPT-greedy leverages the decision transformers to avoid these issues. Both of these methods can
also be linked to posterior sampling. Such connections between sequence modeling with transformers
and posterior sampling have also been made in Chen et al. (2021); Müller et al. (2021); Lee et al.
(2023); Yang et al. (2023).

A.2 Experimental Setting Information and Details of Baselines

In this section, we describe in detail the experimental settings and some baselines.

A.2.1 Experimental Details

Linear Bandit: We consider the setting when f(x,θ∗) = x⊤θ∗. Here x ∈ Rd is the action feature
and θ∗ ∈ Rd is the hidden parameter. For every experiment, we first generate tasks from Tpre. Then we
sample a fixed set of actions from N (0, Id/d) in Rd and this constitutes the features. Then for each
task m ∈ [M ] we sample θm,∗ ∼ N (0, Id/d) to produce the means µ(m, a) = ⟨θm,∗,x(m, a)⟩ for
a ∈ A and m ∈ [M ]. Finally, note that we do not shuffle the data as the order matters. Also in this
setting x(m, a) for each a ∈ A is fixed for all tasks m.

Non-Linear Bandit: We now consider the setting when f(x,θ∗) = 1/(1 + 0.5 · exp(2 ·
exp(−x⊤θ∗))). Again, here x ∈ Rd is the action feature, and θ∗ ∈ Rd is the hidden parame-
ter. Note that this is different than the generalized linear bandit setting (Filippi et al., 2010; Li et al.,
2017). Again for every experiment, we first generate tasks from Tpre. Then we sample a fixed set of
actions fromN (0, Id/d) in Rd and this constitutes the features. Then for each task m ∈ [M ] we sam-
ple θm,∗ ∼ N (0, Id/d) to produce the means µ(m, a) = 1/(1+0.5·exp(2·exp(−x(m, a)⊤θm,∗)))
for a ∈ A and m ∈ [M ]. Again note that in this setting x(m, a) for each a ∈ A is fixed for all tasks
m.



Reinforcement Learning Journal 2025

We use NVIDIA GeForce RTX 3090 GPU with 24GB RAM to load the GPT 2 Large Language
Model. This requires less than 2GB RAM without data, and with large context may require as much
as 20GB RAM.

A.2.2 Details of Baselines

(1) Thomp: This baseline is the stochastic A-action bandit Thompson Sampling algorithm from
Thompson (1933); Agrawal & Goyal (2012); Russo et al. (2018); Zhu & Tan (2020). We briefly
describe the algorithm below: At every round t and each action a, Thomp samples γm,t(a) ∼
N (µ̂m,t−1(a), σ

2/Nm,t−1(a)), where Nm,t−1(a) is the number of times the action a has been

selected till t−1, and µ̂m,t−1(a) =
∑t−1

s=1 r̂m,s1(Is=a)
Nm,t−1(a)

is the empirical mean. Then the action selected
at round t is It = argmaxa γm,t(a). Observe that Thomp is not a deterministic algorithm like UCB
(Auer et al., 2002). So we choose Thomp as the weak demonstrator πw because it is more exploratory
than UCB and also chooses the optimal action, am,∗, a sufficiently large number of times. Thomp is
a weak demonstrator as it does not have access to the feature set X for any task m.

(2) LinUCB: (Linear Upper Confidence Bound): This baseline is the Upper Confidence Bound
algorithm for the linear bandit setting that selects the action It at round t for task m that is most
optimistic and reduces the uncertainty of the task unknown parameter θm,∗. To balance exploitation
and exploration between choosing different items the LinUCB computes an upper confidence value
to the estimated mean of each action xm,a ∈ X . This is done as follows: At every round t
for task m, it calculates the ucb value Bm,a,t for each action xm,a ∈ X such that Bm,a,t =

x⊤
m,aθ̂m,t−1 + α∥xm,a∥Σ−1

m,t−1
where α > 0 is a constant and θ̂m,t is the estimate of the model

parameter θm,∗ at round t. Here, Σm,t−1 =
∑t−1
s=1 xm,sx

⊤
m,s + λId is the data covariance matrix

or the arms already tried. Then it chooses It = argmaxaBm,a,t. Note that LinUCB is a strong
demonstrator that we give oracle access to the features of each action; other algorithms do not
observe the features. Hence, in linear bandits, LinUCB provides an approximate upper bound on the
performance of all algorithms.

(3) MLinGreedy: This is the multi-task linear regression bandit algorithm proposed by Yang
et al. (2021). This algorithm assumes that there is a common low dimensional feature extractor
B ∈ Rk×d, k ≤ d shared between the tasks and the rewards per task m are linearly dependent on a
hidden parameter θm,∗. Under a diversity assumption (which may not be satisfied in real data) and
W = [w1, . . . ,wM ] they assume Θ = [θ1,∗, . . . ,θM,∗] = BW. During evaluation MLinGreedy
estimates the B̂ and Ŵ from training data and fit θ̂m = B̂ŵm per task and selects action greedily
based on Im,t = argmaxa x

⊤
m,aθ̂m,∗. Finally, note that MLinGreedy requires access to the action

features to estimate θ̂m and select actions as opposed to DPT, AD, and PreDeToR.

A.3 Empirical Study: Comparison against K-armed bandits and DPT

In this section, we discuss the performance of PreDeToR (-τ ) when there is no latent structure in the
data, that is the K-armed bandits. Then we compare the performance of PreDeToR (-τ ) against DPT.

Baselines: In the K-armed bandits We implement the same baselines discussed in Section 4. The
baselines are PreDeToR, PreDeToR-τ , DPT-greedy, AD, Thomp, and LinUCB. In the linear and
non-linear setting, we compare against DPT instead of DPT-greedy.

Settings: In the K-armed bandit setting we consider d = 6, and the arms as canonical vectors
e1, e2, . . . , e6. For each task m, we choose the hidden parameter θm,∗ similar to the linear bandit
setting discussed in Section 5. Note that this results in a K-armed bandit setting. For the linear and
non-linear setting comparison, we use the same setting as Section 5, and 4.

Outcomes: We first discuss the main outcomes from our experimental results in K-armed bandits
and then in comparison against DPT in linear and non-linear settings.
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Finding 7: PreDeToR (-τ ) matches the performance of the demonstrator when there is
no structure (K-armed bandits). PreDeToR (-τ ) performs close to DPT in the linear and
non-linear setting showing the usefulness of learning the reward structure.

(a) K-armed Bandit
(b) Comparison against DPT in
linear setting

(c) Comparison against DPT in
non-linear setting

Figure 7: Experiment with k-armed bandits and DPT (original). The y-axis shows the cumulative
regret.

Experimental Result: We observe these outcomes in Figure 7. In Figure 7a the demonstrator πw is
the Thomp algorithm. Note that there is no structure across arms now, and sampling one arm gives
no information about other arms in a task. We observe that PreDeToR-τ performs similarly to the
demonstrator Thomp, and also shows that incorporating exploration is a sound technique. Also, AD
performs similarly to the demonstrator Thomp. Both DPT-greedy and PreDeToR fail to learn the
latent structure across the tasks and therefore do not learn any exploration strategy.

In Figure 7b we show the linear bandit setting discussed in Appendix A.2. We observe that PreDeToR
(-τ ) matches the performance of DPT, and LinUCB. Note that DPT has access to the optimal action
per task, and LinUCB is the optimal oracle algorithm that leverages the structure information.

In Figure 7c we show the non-linear bandit setting discussed in Appendix A.2. Again we observe
that PreDeToR (-τ ) matches the performance of DPT and has lower cumulative regret than AD and
LinUCB which fails to perform well in this non-linear setting due to its algorithmic design.

A.4 Empirical Study: Bilinear Bandits

In this section, we discuss the performance of PreDeToR against the other baselines in the bilinear
setting. Again note that the number of tasks Mpre ≫ A ≥ n. Through this experiment, we want
to evaluate the performance of PreDeToR to exploit the underlying latent structure and reward
correlation when the horizon is small, the number of tasks is large, and understand its performance
in the bilinear bandit setting (Jun et al., 2019; Lu et al., 2021; Kang et al., 2022; Mukherjee et al.,
2023). Note that this setting also goes beyond the linear feedback model (Abbasi-Yadkori et al., 2011;
Lattimore & Szepesvári, 2020) and is related to matrix bandits (Yang & Wang, 2020).

Bilinear bandit setting: In the bilinear bandits the learner is provided with two sets of action sets,
X ⊆ Rd1 and Z ⊆ Rd2 which are referred to as the left and right action sets. At every round t the
learner chooses a pair of actions xt ∈ X and zt ∈ Z and observes a reward

rt = x⊤
t Θ∗zt + ηt

where Θ∗ ∈ Rd1×d2 is the unknown hidden matrix which is also low-rank. The ηt is a σ2 sub-
Gaussian noise. In the multi-task bilinear bandit setting we now have a set of M tasks where the
reward for the m-th task at round t is given by

rm,t = x⊤
m,tΘm,∗zm,t + ηm,t.

Here Θm,∗ ∈ Rd1×d2 is the unknown hidden matrix for each task m, which is also low-rank. The
ηm,t is a σ2 sub-Gaussian noise. Let κ be the rank of each of these matrices Θm,∗.
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A special case is the rank 1 structure where Θm,∗ = θm,∗θ
⊤
m,∗ where Θm,∗ ∈ Rd×d and θm,∗ ∈ Rd

for each task m. Let the left and right action sets be also same such that xm,t ∈ X ⊆ Rd. Observe
then that the reward for the m-th task at round t is given by

rm,t = x⊤
m,tΘm,∗xm,t + ηm,t = (x⊤

m,tθm,∗)
2 + ηm,t.

This special case is studied in Chaudhuri et al. (2017).

Baselines: We again implement the same baselines discussed in Section 4. The baselines are
PreDeToR, PreDeToR-τ , DPT-greedy, and Thomp. Note that we do not implement the LinUCB and
MLinGreedy for the bilinear bandit setting. However, we now implement the LowOFUL (Jun et al.,
2019) which is optimal in the bilinear bandit setting.

LowOFUL: The LowOFUL algorithm first estimates the unknown parameter Θm,∗ for each task
m using E-optimal design (Pukelsheim, 2006; Fedorov, 2013; Jun et al., 2019) for n1 rounds. Let
Θ̂m,n1 be the estimate of Θm,∗ at the end of n1 rounds. Let the SVD of Θ̂m,n1 be given by
SVD(Θ̂m,n1) = Ûm,n1 Ŝm,n1V̂m,n1 . Then LowOFUL rotates the actions as follows:

X ′
m =

{[
Ûm,n1

Û⊥
m,n1

]⊤
xm : xm ∈ X

}
and Z ′ =

{[
V̂m,n1

V̂⊥
m,n1

]⊤
zm : zm ∈ Z

}
.

Then defines a vectorized action set for each task m so that the last (d1 − κ) · (d2 − κ) components
are from the complementary subspaces:

Ãm =
{[
vec
(
xm,1:κz

⊤
m,1:κ

)
; vec

(
xm,κ+1:d1z

⊤
m,1:κ

)
; vec

(
xm,1:κz

⊤
m,κ+1:d2

)
;

vec
(
xm,κ+1:d1z

⊤
m,κ+1:d2

)]
∈ Rd1d2 : xm ∈ X ′

m, zm ∈ Z ′
m

}
.

Finally for n2 = n−n1 rounds, LowOFUL invokes the specialized OFUL algorithm (Abbasi-Yadkori
et al., 2011) for the rotated action set Ãm with the low dimension k = (d1 + d2)κ− κ2. Note that
the LowOFUL runs the per-task low dimensional OFUL algorithm rather than learning the underlying
structure across the tasks (Mukherjee et al., 2023).

Outcomes: We first discuss the main outcomes of our experimental results for increasing the horizon:

Finding 8: PreDeToR (-τ ) outperforms DPT-greedy, AD, and matches the performance of
LowOFUL in bilinear bandit setting.

(a) Rank 1 Θm,∗ (b) Rank 2Θm,∗

Figure 8: Experiment with bilinear bandits. The y-axis shows the cumulative regret.

Experimental Result: We observe these outcomes in Figure 8. In Figure 8a we experiment with
rank 1 hidden parameter Θm,∗ and set horizon n = 20, Mpre = 200000, Mtest = 200, A = 30, and
d = 5. In Figure 8b we experiment with rank 2 hidden parameter Θm,∗ and set horizon n = 20,
Mpre = 250000, Mtest = 200, A = 25, and d = 5. Again, the demonstrator πw is the Thomp
algorithm. We observe that PreDeToR has lower cumulative regret than DPT-greedy, AD and Thomp.
Note that for any task m for the horizon 20 the Thomp will be able to sample all the actions at
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most once. Note that for this small horizon setting the DPT-greedy does not have a good estimation
of âm,∗ which results in a poor prediction of optimal action âm,t,∗. In contrast PreDeToR learns
the correlation of rewards across tasks and can perform well. Observe from Figure 8a, and 8b that
PreDeToR has lower regret than Thomp and matches LowOFUL. Also, in this low-data regime it
is not enough for LowOFUL to learn the underlying Θm,∗ with high precision. Hence, PreDeToR
also has slightly lower regret than LowOFUL. Note that the main objective of AD is to match the
performance of its demonstrator. Most importantly it shows that PreDeToR can exploit the underlying
latent structure and reward correlation better than DPT-greedy, and AD.

A.5 Empirical Study: Latent Bandits

In this section, we discuss the performance of PreDeToR (-τ ) against the other baselines in the
latent bandit setting and create a generalized bilinear bandit setting. Note that the number of tasks
Mpre ≫ A ≥ n. Using this experiment, we want to evaluate the ability of PreDeToR (-τ ) to exploit
the underlying reward correlation when the horizon is small, the number of tasks is large, and
understand its performance in the latent bandit setting (Hong et al., 2020; Maillard & Mannor, 2014;
Pal et al., 2023; Kveton et al., 2017). We create a latent bandit setting which generalizes the bilinear
bandit setting (Jun et al., 2019; Lu et al., 2021; Kang et al., 2022; Mukherjee et al., 2023). Again note
that this setting also goes beyond the linear feedback model (Abbasi-Yadkori et al., 2011; Lattimore
& Szepesvári, 2020) and is related to matrix bandits (Yang & Wang, 2020).

Latent bandit setting: In this special multi-task latent bandits the learner is again provided with two
sets of action sets, X ⊆ Rd1 and Z ⊆ Rd2 which are referred to as the left and right action sets. The
reward for the m-th task at round t is given by

rm,t = x⊤
m,t (Θm,∗ +UV⊤)︸ ︷︷ ︸

Zm∗

zm,t + ηm,t.

Here Θm,∗ ∈ Rd1×d2 is the unknown hidden matrix for each task m, which is also low-rank.
Additionally, all the tasks share a common latent parameter matrix UV⊤ ∈ Rd1×d2 which is also
low rank. Hence the learner needs to learn the latent parameter across the tasks hence the name latent
bandits. Finally, the ηm,t is a σ2 sub-Gaussian noise. Let κ be the rank of each of these matrices
Θm,∗ and UV⊤. Again special case is the rank 1 structure where the reward for the m-th task at
round t is given by

rm,t = x⊤
m,t (θm,∗θ

⊤
m,∗ + uv⊤)︸ ︷︷ ︸
Zm,∗

xm,t + ηm,t.

where θm,∗ ∈ Rd for each task m and u,v ∈ Rd. Note that the left and right action sets are the same
such that xm,t ∈ X ⊆ Rd.

Baselines: We again implement the same baselines discussed in Section 4. The baselines are
PreDeToR, PreDeToR-τ , DPT-greedy, AD, Thomp, and LowOFUL. However, we now implement a
special LowOFUL (stated in Appendix A.4) which has knowledge of the shared latent parameters U,
and V. We call this the LowOFUL (oracle) algorithm. Therefore LowOFUL (oracle) has knowledge
of the problem parameters in the latent bandit setting and hence the name. Again note that we do not
implement the LinUCB and MLinGreedy for the latent bandit setting.

Outcomes: We first discuss the main outcomes of our experimental results for increasing the horizon:

Finding 9: PreDeToR (-τ ) outperforms DPT-greedy, AD, and matches the performance of
LowOFUL (oracle) in latent bandit setting.

Experimental Result: We observe these outcomes in Figure 9. In Figure 9a we experiment with
rank 1 hidden parameter θm,∗θ⊤

m,∗ and latent parameters uv⊤ shared across the tasks and set horizon



Reinforcement Learning Journal 2025

(a) Rank 1 Zm,∗ (b) Rank 2 Zm,∗ (c) Rank 3 Zm,∗

Figure 9: Experiment with latent bandits. The y-axis shows the cumulative regret.

n = 20, Mpre = 200000, Mtest = 200, A = 30, and d = 5. In Figure 9b we experiment with rank
2 hidden parameter Θm,∗, and latent parameters UV⊤ and set horizon n = 20, Mpre = 250000,
Mtest = 200, A = 25, and d = 5. In Figure 9c we experiment with rank 3 hidden parameter Θm,∗,
and latent parameters UV⊤ and set horizon n = 20, Mpre = 300000, Mtest = 200, A = 25, and
d = 5. Again, the demonstrator πw is the Thomp algorithm. We observe that PreDeToR (-τ ) has
lower cumulative regret than DPT-greedy, AD and Thomp. Note that for any task m for the horizon
20 the Thomp will be able to sample all the actions at most once. Note that for this small horizon
setting the DPT-greedy does not have a good estimation of âm,∗ which results in a poor prediction of
optimal action âm,t,∗. In contrast PreDeToR (-τ ) learns the correlation of rewards across tasks and is
able to perform well. Observe from Figure 9a, 9b, and 9c that PreDeToR has lower regret than Thomp
and has regret closer to LowOFUL (oracle)which has access to the problem-dependent parameters.
Hence. LowOFUL (oracle) outperforms PreDeToR (-τ ) in this setting. This shows that PreDeToR is
able to exploit the underlying latent structure and reward correlation better than DPT-greedy, and
AD.

A.6 Connection between PreDeToR and Linear Multivariate Gaussian Model

In this section, we try to understand the behavior of PreDeToR and its ability to exploit the reward
correlation across tasks under a linear multivariate Gaussian model. In this model, the hidden task
parameter, θ∗, is a random variable drawn from a multi-variate Gaussian distribution (Bishop, 2006)
and the feedback follows a linear model. We study this setting since we can estimate the Linear
Minimum Mean Square Estimator (LMMSE) in this setting (Carlin & Louis, 2008; Box & Tiao,
2011). This yields a posterior prediction for the mean of each action over all tasks on average, by
leveraging the linear structure when θ∗ is drawn from a multi-variate Gaussian distribution. So
we can compare the performance of PreDeToR against such an LMMSE and evaluate whether it is
exploiting the underlying linear structure and the reward correlation across tasks. We summarize this
as follows:

Finding 10: PreDeToR learns the reward correlation covariance matrix from the in-context
training dataHtrain and acts greedily on it.

Consider the linear feedback setting consisting of A actions and the hidden task parameter θ∗ ∼
N (0, σ2

θId). The reward of the action xt at round t is given by rt = x⊤
t θ∗ + ηt, where ηt is σ2

sub-Gaussian. Let πw collect n rounds of pretraining in-context data and observe {It, rt}nt=1. Let
Nn(a) denote the total number of times the action a is sampled for n rounds. Note that we drop the
task index m in these notations as the random variable θ∗ corresponds to the task. Define the matrix
Hn ∈ Rn×A where the t-th row represents the action It for t ∈ [n]. The t-th row of Hn is a one-hot
vector with the It-th component being 1. We represent each action by one hot vector because we
assume that this LMMSE does not have access to the feature vectors of the actions similar to the
PreDeToR for fair comparison. Then define the reward vector Yn ∈ Rn where the t-th component is
the reward rt observed for the action It for t ∈ [n] in the pretraining data. Define the diagonal matrix
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DA ∈ RA×A estimated from pretraining data as follows

DA(i, i) =

{
σ2

Nn(a)
, if Nn(a) > 0

= 0, if Nn(a) = 0
(6)

where the reward noise being σ2 sub-Gaussian is known. Finally define the estimated reward
covariance matrix SA ∈ RA×A as SA(a, a′) = µ̂n(a)µ̂n(a

′), where µ̂n(a) is the empirical mean of
action a estimated from the pretraining data. This matrix captures the reward correlation between
the pairs of actions a, a′ ∈ [A]. Then the posterior average mean estimator µ̂ ∈ RA over all tasks is
given by the following lemma. The proof is given in Appendix B.1.

Lemma 1. Let Hn be the action matrix, Yn be the reward vector and SA be the estimated reward
covariance matrix. Then the posterior prediction of the average mean reward vector µ̂ over all tasks
is given by

µ̂ = σ2
θSAH

⊤
n

(
σ2
θHn(SA +DA)H

⊤
n

)−1
Yn. (7)

Figure 10: BayesPred Performance

The µ̂ in (7) represents the posterior mean vector averaged
on all tasks. So if some action a ∈ [A] consistently yields
high rewards in the pretraining data then µ̂(a) has high
value. Since the test distribution is the same as pretraining,
this action on average will yield a high reward during test
time.

We hypothesize that the PreDeToR is learning the reward
correlation covariance matrix from the training dataHtrain
and acting greedily on it. To test this hypothesis, we con-
sider the greedy BayesPred algorithm that first estimates
SA from the pretraining data. It then uses the LMMSE es-
timator in Lemma 1 to calculate the posterior mean vector
µ̂, and then selects It = argmaxa µ̂(a) at each round t.

Note that BayesPred is a greedy algorithm that always selects the most rewarding action (exploitation)
without any exploration of sub-optimal actions. Also the BayesPred is an LMMSE estimator that
leverages the linear reward structure and estimates the reward covariance matrix, and therefore can
be interpreted as a lower bound to the regret of PreDeToR. The hypothesis that BayesPred is a
lower bound to PreDeToR is supported by Figure 10. In Figure 10 the reward covariance matrix for
BayesPred is estimated from theHtrain by first running the Thomp (πw). Observe that the BayesPred
has a lower cumulative regret than PreDeToR and almost matches the regret of PreDeToR towards the
end of the horizon. Also note that LinUCB has lower cumulative regret towards the end of horizon as
it leverages the linear structure and the feature of the actions in selecting the next action.

A.7 Empirical Study: Increasing number of Actions

In this section, we discuss the performance of PreDeToR when the number of actions is very high
so that the weak demonstrator πw does not have sufficient samples for each action. However, the
number of tasks Mpre ≫ A > n.

Baselines: We again implement the same baselines discussed in Section 4. The baselines are
PreDeToR, PreDeToR-τ , DPT-greedy, AD, Thomp, and LinUCB.

Outcomes: We first discuss the main outcomes from our experimental results of introducing more
actions than the horizon (or more dimensions than actions) during data collection and evaluation:

Finding 11: PreDeToR (-τ ) outperforms DPT-greedy, and AD, even when A > n but
Mpre ≫ A.
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(a) Linear Bandit (b) Non-linear Bandit
Figure 11: Testing the limit experiments. The horizontal axis is the number of rounds. Confidence
bars show one standard error.

Experimental Result: We observe these outcomes in Figure 11. In Figure 11a we show the
linear bandit setting for Mpre = 250000, Mtest = 200, A = 100, n = 50 and d = 5. Again, the
demonstrator πw is the Thomp algorithm. We observe that PreDeToR (-τ ) has lower cumulative
regret than DPT-greedy and AD. Note that for any task m the Thomp will not be able to sample all
the actions even once. The weak performance of DPT-greedy can be attributed to both short horizons
and the inability to estimate the optimal action for such a short horizon n < A. The AD performs
similar to the demonstrator Thomp because of its training. Observe that PreDeToR (-τ ) has similar
regret to LinUCB and lower regret than Thomp which also shows that PreDeToR is exploiting the
latent linear structure of the underlying tasks. In Figure 11b we show the non-linear bandit setting for
horizon n = 40, Mpre = 200000, A = 60, d = 2, and |Ainv| = 5. The demonstrator πw is the Thomp
algorithm. Again we observe that PreDeToR (-τ ) has lower cumulative regret than DPT-greedy, AD
and LinUCB which fails to perform well in this non-linear setting due to its algorithmic design.

A.8 Empirical Study: Increasing Horizon

In this section, we discuss the performance of PreDeToR with respect to an increasing horizon for
each task m ∈ [M ]. However, note that the number of tasks Mpre ≥ n. Note that Lee et al. (2023)
studied linear bandit setting for n = 200. We study the setting up to a similar horizon scale.

Baselines: We again implement the same baselines discussed in Section 4. The baselines are
PreDeToR, PreDeToR-τ , DPT-greedy, AD, Thomp, and LinUCB.

Outcomes: We first discuss the main outcomes of our experimental results for increasing the horizon:

Finding 12: PreDeToR (-τ ) outperforms DPT-greedy, and AD with increasing horizon.

Experimental Result: We observe these outcomes in Figure 12. In Figure 12 we show the linear
bandit setting for Mpre = 150000, Mtest = 200, A = 20, n = {20, 40, 60, 100, 120, 140, 200} and
d = 5. Again, the demonstrator πw is the Thomp algorithm. We observe that PreDeToR (-τ ) has
lower cumulative regret than DPT-greedy, and AD. Note that for any task m for the horizon 20 the
Thomp will be able to sample all the actions at most once. Observe from Figure 12a, 12b, 12c,
Figure 12d, 12e, 12f and 12g that PreDeToR (-τ ) is closer to LinUCB and outperforms Thomp which
also shows that PreDeToR (-τ ) is learning the latent linear structure of the underlying tasks. In
Figure 12h we plot the regret of all the baselines with respect to the increasing horizon. Again we see
that PreDeToR (-τ ) is closer to LinUCB and outperforms DPT-greedy, AD and Thomp. This shows
that PreDeToR (-τ ) is able to exploit the latent structure and reward correlation across the tasks for
varying horizon length.



Pretraining Decision Transformers with Reward Prediction for Multi-task Bandit Learning

(a) Horizon 20 (b) Horizon 40 (c) Horizon 60

(d) Horizon 100 (e) Horizon 120 (f) Horizon 140

(g) Horizon 200 (h) Increasing Horizon
Figure 12: Experiment with increasing horizon. The y-axis shows the cumulative regret.

A.9 Empirical Study: Increasing Dimension

In this section, we discuss the performance of PreDeToR with respect to an increasing dimension for
each task m ∈ [M ]. Again note that the number of tasks Mpre ≫ A ≥ n. Through this experiment,
we want to evaluate the performance of PreDeToR and see how it exploits the underlying reward
correlation when the horizon is small as well as for increasing dimensions.

Baselines: We again implement the same baselines discussed in Section 4. The baselines are
PreDeToR, PreDeToR-τ DPT-greedy, AD, Thomp, and LinUCB.

Outcomes: We first discuss the main outcomes of our experimental results for increasing the horizon:

Finding 13: PreDeToR (-τ ) outperforms DPT-greedy, AD with increasing dimension and
has lower regret than LinUCB for larger dimension.

Experimental Result: We observe these outcomes in Figure 12. In Figure 12 we show the linear
bandit setting for horizon n = 20, Mpre = 160000, Mtest = 200, A = 20, and d = {10, 20, 30, 40}.
Again, the demonstrator πw is the Thomp algorithm. We observe that PreDeToR (-τ ) has lower
cumulative regret than DPT-greedy, AD. Note that for any task m for the horizon 20 the Thomp
will be able to sample all the actions at most once. Observe from Figure 13a, 13b, 13c, and 13d
that PreDeToR (-τ ) is closer to LinUCB and has lower regret than Thomp which also shows that
PreDeToR (-τ ) is exploiting the latent linear structure of the underlying tasks. In Figure 13e we plot
the regret of all the baselines with respect to the increasing dimension. Again we see that PreDeToR
(-τ ) has lower regret than DPT-greedy, AD and Thomp. Observe that with increasing dimension
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(a) Dimension 10 (b) Dimension 20 (c) Dimension 30

(d) Dimension 40 (e) Increasing Dimension
Figure 13: Experiment with increasing dimension. The y-axis shows the cumulative regret.

PreDeToR is able to outperform LinUCB. This shows that the PreDeToR (-τ ) is able to exploit reward
correlation across tasks for varying dimensions.

A.10 Empirical Study: Increasing Attention Heads

In this section, we discuss the performance of PreDeToR with respect to an increasing attention heads
for the transformer model for the non-linear feedback model. Again note that the number of tasks
Mpre ≫ A ≥ n. Through this experiment, we want to evaluate the performance of PreDeToR to
exploit the underlying reward correlation when the horizon is small and understand the representative
power of the transformer by increasing the attention heads. Note that we choose the non-linear
feedback model and low data regime to leverage the representative power of the transformer.

Baselines: We again implement the same baselines discussed in Section 4. The baselines are
PreDeToR, PreDeToR-τ , DPT-greedy, AD, Thomp, and LinUCB.

Outcomes: We first discuss the main outcomes of our experimental results for increasing the horizon:

Finding 14: PreDeToR (-τ ) outperforms DPT-greedy, and AD with increasing attention
heads.

Experimental Result: We observe these outcomes in Figure 14. In Figure 14 we show the non-linear
bandit setting for horizon n = 20, Mpre = 160000, Mtest = 200, A = 20, heads = {2, 4, 6, 8} and
d = 5. Again, the demonstrator πw is the Thomp algorithm. We observe that PreDeToR (-τ ) has
lower cumulative regret than DPT-greedy, AD. Note that for any task m for the horizon 20 the Thomp
will be able to sample all the actions atmost once. Observe from Figure 14a, 14b, 14c, and 14d that
PreDeToR (-τ ) has lower regret than AD, Thomp and LinUCB which also shows that PreDeToR (-τ )
is exploiting the latent linear structure of the underlying tasks for the non-linear setting. In Figure 14f
we plot the regret of all the baselines with respect to the increasing attention heads. Again we see that
PreDeToR (-τ ) regret decreases as we increase the attention heads.

A.11 Empirical Study: Increasing Number of Tasks

In this section, we discuss the performance of PreDeToR with respect to the increasing number of
tasks for the linear bandit setting. Again note that the number of tasks Mpre ≫ A ≥ n. Through
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(a) Attention Heads 2 (b) Attention Heads 4 (c) Attention Heads 6

(d) Attention Heads 8 (e) Attention Heads 12 (f) Increasing Attention Heads
Figure 14: Experiment with increasing attention heads. The y-axis shows the cumulative regret.

this experiment, we want to evaluate the performance of PreDeToR to exploit the underlying reward
correlation when the horizon is small and the number of tasks is changing. Finally, recall that when
the horizon is small the weak demonstrator πw does not have sufficient samples for each action. This
leads to a poor approximation of the greedy action.

Baselines: We again implement the same baselines discussed in Section 4. The baselines are
PreDeToR, PreDeToR-τ , DPT-greedy, AD, Thomp, and LinUCB.

Outcomes: We first discuss the main outcomes of our experimental results for increasing the horizon:

Finding 15: PreDeToR (-τ ) fails to exploit the underlying latent structure and reward
correlation from in-context data when the number of tasks is small.

(a) Tasks Mtrain = 5000 (b) Tasks Mtrain = 10000 (c) Tasks Mtrain = 50000

(d) Tasks Mtrain = 100000 (e) Tasks Mtrain = 150000 (f) Increasing tasks
Figure 15: Experiment with an increasing number of tasks. The y-axis shows the cumulative regret.
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Experimental Result: We observe these outcomes in Figure 15. In Figure 15 we show the linear
bandit setting for horizon n = 20, Mpre ∈ {5000, 10000, 50000, 100000, 150000}, Mtest = 200,
A = 20, and d = 40. Again, the demonstrator πw is the Thomp algorithm. We observe that
PreDeToR (-τ ), AD and DPT-greedy suffer more regret than the LinUCB when the number of tasks
is small (Mtrain ∈ {5000, 10000} in Figure 15a, and 15b. However in Figure 15c, 15d, 15e, and
15f we show that PreDeToR has lower regret than Thomp and matches LinUCB. This shows that
PreDeToR (-τ ) is exploiting the latent linear structure of the underlying tasks for the non-linear
setting. Moreover, observe that as Mtrain increases the PreDeToR has lower cumulative regret than
DPT-greedy, AD. Note that for any task m for the horizon 20 the Thomp will be able to sample all
the actions at most once. Therefore DPT-greedy does not perform as well as PreDeToR. Finally, note
that the result shows that PreDeToR (-τ ) is able to exploit the reward correlation across the tasks
better as the number of tasks increases.

A.12 Exploration of PreDeToR(-τ ) in New Arms Setting

In this section, we discuss the exploration of PreDeToR (-τ ) in the linear and non-linear new arms
bandit setting discussed in Section 6. Recall that we consider the linear bandit setting of horizon
n = 50, Mpre = 200000, Mtest = 200, A = 20, and d = 5. Here during data collection and during
collecting the test data, we randomly select one new action from Rd for each task m. So the number
of invariant actions is |Ainv| = 19.

Outcomes: We first discuss the main outcomes of our analysis of exploration in the low-data regime:

Finding 16: The PreDeToR (-τ ) is robust to changes when the number of in-variant actions
is large. PreDeToR (-τ ) performance drops as shared structure breaks down.

We first show in Figure 16a the training distribution of the optimal actions. For each bar, the frequency
indicates the number of tasks where the action (shown in the x-axis) is the optimal action.

Then in Figure 16b we show how the sampling distribution of DPT-greedy, PreDeToR and PreDeToR-
τ change in the first 10 and last 10 rounds for all the tasks where action 17 is optimal. We plot this
graph the same way as discussed in Section 5. From the figure Figure 16b we see that PreDeToR(-τ )
consistently pulls the action 17 more than DPT-greedy. It also explores other optimal actions like
{1, 2, 3, 8, 9, 15} but discards them quickly in favor of the optimal action 17 in these tasks.

Finally, we plot the feasible action set considered by DPT-greedy, PreDeToR, and PreDeToR-τ in
Figure 16c. To plot this graph again we consider the test tasks where the optimal action is 17. Then
we count the number of distinct actions that are taken from round t up until horizon n. Finally we
average this over all the considered tasks where the optimal action is 17. We call this the candidate
action set considered by the algorithm. From the Figure 16c we see that PreDeToR-τ explores more
than PreDeToR in this setting.

We also show how the prediction error of the optimal action by PreDeToR compared to LinUCB in
this 1 new arm linear bandit setting. In Figure 17a we first show how the 20 actions are distributed
in the Mtest = 200 test tasks. In Figure 17a for each bar, the frequency indicates the number of
tasks where the action (shown in the x-axis) is the optimal action. Then in Figure 17b we show the
prediction error of PreDeToR (-τ ) for each task m ∈ [Mtest]. The prediction error is calculated the
same way as stated in Section 6 From the Figure 17b we see that for most actions the prediction error
of PreDeToR (-τ ) is closer to LinUCB showing that the introduction of 1 new action does not alter
the prediction error much. Note that LinUCB estimates the empirical mean directly from the test task,
whereas PreDeToR has a strong prior based on the training data. Therefore we see that PreDeToR is
able to estimate the reward of the optimal action quite well from the training dataset Dpre.

We now consider the setting where the number of invariant actions is |Ainv| = 15. We again show in
Figure 18a the training distribution of the optimal actions. For each bar, the frequency indicates the
number of tasks where the action (shown in the x-axis) is the optimal action. Then in Figure 18b we
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(a) Train Optimal Action Distribu-
tion

(b) Distribution of action sampling
in all tasks where action 17 is opti-
mal

(c) Candidate Action Set in Time
averaged over all tasks where action
17 is optimal

Figure 16: Exploration Analysis of PreDeToR(-τ ) in linear 1 new arm setting

(a) Test action distribution (b) Test Prediction Error
Figure 17: Prediction error of PreDeToR(-τ ) in linear 1 new arm setting

show how the sampling distribution of DPT-greedy, PreDeToR and PreDeToR-τ change in the first
10 and last 10 rounds for all the tasks where action 17 is optimal. We plot this graph the same way as
discussed in Section 5. From the figure Figure 18b we see that none of the algorithms PreDeToR,
PreDeToR-τ , DPT-greedy consistently pulls the action 17 more than other actions. This shows that
the common underlying actions across the tasks matter for learning the epxloration.

Finally, we plot the feasible action set considered by DPT-greedy, PreDeToR, and PreDeToR-τ in
Figure 18c. To plot this graph again we consider the test tasks where the optimal action is 17. We
build the candidate set the same way as before. From the Figure 18c we see that none of the three
algorithms DPT-greedy, PreDeToR, PreDeToR-τ , is able to sample the optimal action 17 sufficiently
high number of times.

We also show how the prediction error of the optimal action by PreDeToR compared to LinUCB in
this 1 new arm linear bandit setting. In Figure 19a we first show how the 20 actions are distributed
in the Mtest = 200 test tasks. In Figure 19a for each bar, the frequency indicates the number of
tasks where the action (shown in the x-axis) is the optimal action. Then in Figure 19b we show the
prediction error of PreDeToR (-τ ) for each task m ∈ [Mtest]. The prediction error is calculated the
same way as stated in Section 6. From the Figure 19b we see that for most actions the prediction
error is higher than LinUCB showing that the introduction of 5 new actions (and thereby decreasing
the invariant action set) significantly alters the prediction error.

A.13 Empirical Validation of Theoretical Result

In this section, we empirically validate the theoretical result proved in Section 8. We again consider
the linear bandit setting discussed in Section 4. Recall that the linear bandit setting consist of horizon
n = 25, Mpre = {100000, 200000}, Mtest = 200, A = 10, and d = 2. The demonstrator πw is the
Thomp algorithm and we observe that PreDeToR (-τ ) has lower cumulative regret than DPT-greedy,
AD and matches the performance of LinUCB.

Baseline (LinUCB-τ ): We define soft LinUCB (LinUCB-τ ) as follows: At every round t for task
m, it calculates the ucb value Bm,a,t for each action xm,a ∈ X such that Bm,a,t = x⊤

m,aθ̂m,t−1 +



Reinforcement Learning Journal 2025

(a) Train Optimal Action Distribu-
tion

(b) Distribution of action sampling
in all tasks where action 17 is opti-
mal

(c) Candidate Action Set in Time
averaged all tasks where action 17
is optimal

Figure 18: Exploration Analysis of PreDeToR(-τ ) in linear 5 new arm setting

(a) Test action distribution (b) Test Prediction Error
Figure 19: Prediction error of PreDeToR(-τ ) in linear 1 new arm setting

α∥xm,a∥Σ−1
m,t−1

where α > 0 is a constant and θ̂m,t is the estimate of the model parameter θm,∗

at round t. Here, Σm,t−1 =
∑t−1
s=1 xm,sx

⊤
m,s + λId is the data covariance matrix or the arms

already tried. Then it chooses It ∼ softmaxτa(Bm,a,t), where softmaxτa(·) ∈ △A denotes a softmax
distribution over the actions and τ is a temperature parameter (See Section 4 for definition of
softmaxτa(·)).

Outcomes: We first discuss the main outcomes of our experimental results:

Finding 17: PreDeToR (-τ ) excels in predicting the rewards for test tasks when the number
of training (source) tasks is large.

(a) Prediction Error for 105 tasks (b) Prediction Error for 2×105 tasks
(c) Cumulative Regret of PreDeToR
(-τ ) compared against LinUCB-τ

Figure 20: Empirical validation of theoretical analysis

Experimental Result: These findings are reported in Figure 20. In Figure 20a we show the
prediction error of PreDeToR (-τ ) for each task m ∈ [Mtest]. The prediction error is calculated as
(µ̂m,n,∗(a)− µm,∗(a))

2 where µ̂m,n,∗(a) = maxa θ̂
⊤
m,nxm(a) is the empirical mean at the end of

round n, and µ∗,m(a) = maxa θ
⊤
m,∗xm(a) is the true mean of the optimal action in task m. Then we

average the prediction error for the action a ∈ [A] by the number of times the action a is the optimal
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action in some task m. We see that when the source tasks are 100000 the reward prediction falls short
of LinUCB prediction for all actions except action 2.

In Figure 20b we again show the prediction error of PreDeToR (-τ ) for each task m ∈ [Mtest] when
the source tasks are 200000. Note that in both these settings, we kept the horizon n = 25, and the
same set of actions. We now observe that the reward prediction almost matches LinUCB prediction
in almost all the optimal actions.

In Figure 20c we compare PreDeToR (-τ ) against LinUCB-τ and show that they almost match in the
linear bandit setting discussed in Section 4 when the source tasks are 100000.

A.14 Empirical Study: Offline Performance

In this section, we discuss the offline performance of PreDeToR when the number of tasks Mpre ≫
A ≥ n.

We first discuss how PreDeToR (-τ ) is modified for the offline setting. In the offline setting, the
PreDeToR first samples a task m ∼ Ttest, then the test datasetHm ∼ Dtest(·|m). Then PreDeToR and
PreDeToR-τ act similarly to the online setting, but based on the entire offline datasetHm. The full
pseudocode of PreDeToR is in Algorithm 2.

Algorithm 2 Pre-trained Decision Transformer with Reward Estimation (PreDeToR)

1: Collecting Pretraining Dataset
2: Initialize empty pretraining datasetHtrain
3: for i in [Mpre] do
4: Sample task m ∼ Tpre, in-context datasetHm ∼ Dpre(·|m) and add this toHtrain.
5: end for
6: Pretraining model on dataset
7: Initialize model TFΘ with parameters Θ
8: while not converged do
9: SampleHm fromHtrain and predict r̂m,t for action (Im,t) for all t ∈ [n]

10: Compute loss in (3) with respect to rm,t and backpropagate to update model parameter Θ.
11: end while
12: Offline test-time deployment
13: Sample unknown task m ∼ Ttest, sample datasetHm ∼ Dtest(·|m)
14: Use TFΘ on m at round t to choose

It

{
= argmaxa∈A TFΘ (r̂m,t(a) | Hm) , PreDeToR
∼ softmaxτaTFΘ (r̂m,t(a) | Hm) , PreDeToR-τ

Recall thatDtest denote a distribution over all possible interactions that can be generated by πw during
test time. For offline testing, first, a test task m ∼ Ttest, and then an in-context test dataset Hm is
collected such thatHm ∼ Dtest(·|m). Observe from Algorithm 2 that in the offline setting, PreDeToR
first samples a task m ∼ Ttest, and then a test datasetHm ∼ Dtest(·|m) and acts greedily. Crucially
in the offline setting the PreDeToR does not add the observed reward rt at round t to the dataset.
Through this experiment, we want to evaluate the performance of PreDeToR to learn the underlying
latent structure and reward correlation when the horizon is small. Finally, recall that when the horizon
is small the weak demonstrator πw does not have sufficient samples for each action. This leads to a
poor approximation of the greedy action.

Baselines: We again implement the same baselines discussed in Section 4. The baselines are
PreDeToR, PreDeToR-τ , DPT-greedy, AD, Thomp, and LinUCB. During test time evaluation for
offline setting the DPT selects It = âm,t,∗ where âm,t,∗ = argmaxaTFΘ(a|Htm) is the predicted
optimal action.
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Outcomes: We first discuss the main outcomes of our experimental results for increasing the horizon:

Finding 18: PreDeToR (-τ ) performs comparably to DPT-greedy and AD in the offline
setting.

(a) Offline for Linear setting (b) Offline for Non-linear setting
Figure 21: Offline experiment. The y-axis shows the cumulative reward.

Experimental Result: We observe these outcomes in Figure 21. In Figure 21 we show the linear
bandit setting for horizon n = 20, Mpre = 200000, Mtest = 5000, A = 20, and d = 5 for the low
data regime. Again, the demonstrator πw is the Thomp algorithm. We observe that PreDeToR (-τ )
has comparable cumulative regret to DPT-greedy. Note that for any task m for the horizon n = 20
the Thomp will be able to sample all the actions at most once. In the non-linear setting of Figure 21b
the n = 40, Mpre = 100000, A = 6, d = 2. Observe that in all of these results, the performance of
PreDeToR (-τ ) is comparable with respect to cumulative regret against DPT-greedy.

B Theoretical Analysis

B.1 Proof of Lemma 1

Proof. The learner collects n rounds of data following πw. The weak demonstrator πw only observes
the {It, rt}nt=1. Recall that Nn(a) denotes the total number of times the action a is sampled for n
rounds. Define the matrix Hn ∈ Rn×A where the t-th row represents the action sampled at round
t ∈ [n]. The t-th row is a one-hot vector with 1 as the a-th component in the vector for a ∈ [A]. Then
define the reward vector Yn ∈ Rn as the reward vector where the t-th component is the observed
reward for the action It for t ∈ [n]. Finally define the diagonal matrix DA ∈ RA×A as in (6) and
the estimated reward covariance matrix as SA ∈ RA×A such that SA(a, a′) = µ̂n(a)µ̂n(a

′). This
matrix captures the reward correlation between the pairs of actions a, a′ ∈ [A].

Assume µ ∼ N (0,S∗) where S∗ ∈ RA×A. Then the observed mean vector Yn is

Yn = Hnµ+HnD
1/2
A ηn

where, ηn is the noise vector over the [n] training data. Then the posterior mean of µ̂ by Gauss
Markov Theorem (Johnson et al., 2002) is given by

µ̂ = S∗H
⊤
n

(
Hn(S∗ +DA)H

⊤
n

)−1
Yn. (8)

However, the learner does not know the true reward co-variance matrix. Hence it needs to estimate
the S∗ from the observed data. Let the estimate be denoted by SA.

Assumption B.1. We assume that πw is sufficiently exploratory so that each action is sampled at
least once.

The Assumption B.1 ensures that the matrix
(
σ2
θHn(SA +DA)H

⊤
n

)−1
is invertible. Under Assump-

tion B.1, plugging the estimate SA back in (8) shows that the average posterior mean over all the
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tasks is

µ̂ = SAH
⊤
n

(
Hn(SA +DA)H

⊤
n

)−1
Yn. (9)

The claim of the lemma follows.

C Generalization and Transfer Learning Proof for PreDeToR

C.1 Generalization Proof

Alg is the space of algorithms induced by the transformer TFΘ.

Theorem C.1. (PreDeToR risk) Suppose error stability Assumption 8.1 holds and assume loss
function ℓ(·, ·) is C-Lipschitz for all rt ∈ [0, B] and horizon n ≥ 1. Let T̂F be the empirical solution
of (ERM) and N (A, ρ, ϵ) be the covering number of the algorithm space Alg following Definition
C.2 and C.3. Then with probability at least 1 − 2δ, the excess Multi-task learning (MTL) risk of
PreDeToR-τ is bounded by

RMTL(T̂F) ≤ 4 C√
nM

+ 2(B +K log n)

√
log(N (Alg,ρ,ε)/δ)

cnM

where, N (Alg, ρ, ε) is the covering number of transformer T̂F.

Proof. We consider a meta-learning setting. Let M source tasks are i.i.d. sampled from a task
distribution T , and let T̂F be the empirical Multitask (MTL) solution. Define Hall =

⋃M
m=1Hm.

We drop the Θ, r from transformer notation TFr
Θ as we keep the architecture fixed as in Lin et al.

(2023). Note that this transformer predicts a reward vector over the actions. To be more precise we
denote the reward predicted by the transformer at round t after observing history Ht−1

m and then
sampling the action amt as TF

(
r̂mt(amt)|Ht−1

m , amt
)
. Define the training risk

L̂Hall
(TF) =

1

nM

M∑
m=1

n∑
t=1

ℓ
(
rmt(amt),TF

(
r̂mt(amt)|Ht−1

m , amt
))

and the test risk
LMTL(TF) = E

[
L̂Hall (TF)

]
.

Define empirical risk minima T̂F = argminTF∈Alg L̂Hall (TF) and population minima

TF∗ = arg min
TF∈Alg

LMTL(TF)

In the following discussion, we drop the subscripts MTL andHall. The excess MTL risk is decom-
posed as follows:

RMTL(T̂F) = L(T̂F)− L (TF∗)

= L(T̂F)− L̂(T̂F)︸ ︷︷ ︸
a

+ L̂(T̂F)− L̂ (TF∗)︸ ︷︷ ︸
b

+ L̂ (TF∗)− L(TF∗︸ ︷︷ ︸
c

).

Since T̂F is the minimizer of empirical risk, we have b ≤ 0.

Step 1: (Concentration bound |L(TF)− L̂(TF)| for a fixed TF ∈ Alg) Define the test/train risks
of each task as follows:

L̂m(TF) :=
1

n

n∑
t=1

ℓ
(
rmt(amt),TF

(
r̂mt(amt)|Ht−1

m , amt
))

, and

Lm(TF) := EHm

[
L̂m(TF)

]
= EHm

[
1

n

n∑
t=1

ℓ
(
rmt(amt),TF

(
r̂mt(amt)|Ht−1

m , amt
))]

, ∀m ∈ [M ].
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Define the random variables Xm,t = E
[
L̂t(TF) | Htm

]
for t ∈ [n] and m ∈ [M ], that is, Xm,t

is the expectation over L̂t(TF) given training sequence Htm = {(amt′ , rmt′)}tt′=1 (which are

the filtrations). With this, we have that Xm,n = E
[
L̂m(TF) | Hnm

]
= L̂m(TF) and Xm,0 =

E
[
L̂m(TF)

]
= Lm(TF). More generally, (Xm,0, Xm,1, . . . , Xm,n) is a martingale sequence since,

for every m ∈ [M ], we have that E
[
Xm,i | Ht−1

m

]
= Xm,t−1. For notational simplicity, in the

following discussion, we omit the subscript m from a, r and H as they will be clear from the
left-hand-side variable Xm,t. We have that

Xm,t = E

[
1

n

n∑
t=1

ℓ
(
rt′ ,TF

(
r̂t′ |Ht

′−1, at′
))∣∣∣∣∣ Ht

]

=
1

n

t∑
t′=1

ℓ
(
rt′ ,TF

(
r̂t′ |Ht

′−1, at′
))

+
1

n

n∑
t′=t+1

E
[
ℓ
(
rt′ ,TF

(
r̂t′ |Ht

′−1, at′
))
| Ht

]
Using the similar steps as in Li et al. (2023) we can show that

|Xm,t −Xm,t−1|
(a)

≤ B

n
+

n∑
t′=t+1

K

t′n
≤ B +K log n

n
.

where, (a) follows by using the fact that loss function ℓ(·, ·) is bounded by B, and error stability
assumption.

Recall that
∣∣∣Lm(TF)− L̂m(TF)

∣∣∣ = |Xm,0 −Xm,n| and for every m ∈ [M ], we have∑n
t=1 |Xm,t −Xm,t−1|2 ≤ (B+K logn)2

n . As a result, applying Azuma-Hoeffding’s inequality,
we obtain

P
(∣∣∣Lm(TF)− L̂m(TF)

∣∣∣ ≥ τ
)
≤ 2e

− nτ2

2(B+K log n)2 , ∀m ∈ [M ] (10)

Let us consider Ym := Lm(TF) − L̂m(TF) for m ∈ [M ]. Then, (Ym)
M
m=1 are i.i.d. zero mean

sub-Gaussian random variables. There exists an absolute constant c1 > 0 such that, the subgaussian
norm, denoted by ∥ · ∥ψ2

, obeys ∥Ym∥2ψ2
< c1(B+K logn)2

n via Proposition 2.5.2 of (Vershynin, 2018).
Applying Hoeffding’s inequality, we derive

P

(∣∣∣∣∣ 1M
M∑
m=1

Yt

∣∣∣∣∣ ≥ τ

)
≤ 2e

− cnMτ2

(B+K log n)2 =⇒ P(|L̂(TF)− L(TF)| ≥ τ) ≤ 2e
− cnMτ2

(B+K log n)2

where c > 0 is an absolute constant. Therefore, we have that for any TF ∈ Alg, with probability at
least 1− 2δ,

|L̂(TF)− L(TF)| ≤ (B +K log n)

√
log(1/δ)

cnM
(11)

Step 2: (Bound supTF∈Alg |L(TF)− L̂(TF)| where Alg is assumed to be a continuous search
space). Let

h(TF) := L(TF)− L̂(TF)

and we aim to bound supTF∈Alg |h(TF)|. Following Definition C.3, for ε > 0, let Algε be a minimal
ε-cover of Alg in terms of distance metric ρ. Therefore, Algε is a discrete set with cardinality
|Algε| := N (Alg, ρ, ε). Then, we have

sup
TF∈Alg

|L(TF)− L̂(TF)| ≤ sup
TF∈Alg′

min
TF∈Algε

|h(TF)− h (TF′)|+ max
TF∈Algε

|h(TF)|.
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We will first bound the quantity supTF∈Alg′ minTF∈Algε
|h(TF)− h (TF′)|. We will utilize that

loss function ℓ(·, ·) is C-Lipschitz. For any TF ∈ Alg, let TF ∈ Algε be its neighbor following
Definition C.3. Then we can show that∣∣∣L̂(TF)− L̂ (TF′)∣∣∣
=

∣∣∣∣∣ 1

nM

M∑
m=1

n∑
t=1

(
ℓ
(
rmt(amt),TF

(
r̂mt(amt)|Ht−1

m , amt
))
− ℓ

(
rmt(amt),TF

′ (r̂mt(amt)|Ht−1
m , amt

)))∣∣∣∣∣
≤ L

nM

M∑
m=1

n∑
t=1

∥∥TF (r̂mt(amt)|Ht−1
m , amt

)
− TF′ (r̂mt(amt)|Ht−1

m , amt
)∥∥
ℓ2

≤ Lε.

Note that the above bound applies to all data-sequences, we also obtain that for any TF ∈ Alg,∣∣L(TF)− L (TF′)∣∣ ≤ Lε.

Therefore we can show that,

sup
TF∈Alg

min
TF
∈ Algε |h(TF)− h (TFF ′)|

≤ sup
TF∈Alg

min
TF
∈ Algε

∣∣∣L̂(TF)− L̂ (TF′)
∣∣∣+ ∣∣L(TF)− L (TF′)∣∣ ≤ 2Lε. (12)

Next we bound the second term maxTF∈Algε
|h(TF)|. Applying union bound directly on Algε and

combining it with (11), then we will have that with probability at least 1− 2δ,

max
TF∈Algε

|h(TF)| ≤ (B +K log n)

√
log(N (Alg, ρ, ε)/δ)

cnM

Combining the upper bound above with the perturbation bound (12), we obtain that

max
TF∈Alg

|h(TF)| ≤ 2Cε+ (B +K log n)

√
log(N (Alg, ρ, ε)/δ)

cnM
.

It follows then that

RMTL(T̂F) ≤ 2 sup
TF∈Alg

|L(TF)− L̂(TF)| ≤ 4Cε+ 2(B +K log n)

√
log(N (Alg, ρ, ε)/δ)

cnM

Again by setting ε = 1/
√
nM

L(T̂F)− L (TF∗) ≤ 4C√
nM

+ 2(B +K log n)

√
log(N (Alg, ρ, ε)/δ)

cnM

The claim of the theorem follows.

Definition C.2. (Covering number) Let Q be any hypothesis set and d (q, q′) ≥ 0 be a distance metric
over q, q′ ∈ Q. Then, Q̄ = {q1, . . . , qN} is an ε-cover of Q with respect to d(·, ·) if for any q ∈ Q,
there exists qi ∈ Q̄ such that d (q, qi) ≤ ε. The ε-covering number N (Q, d, ε) is the cardinality of
the minimal ε-cover.

Definition C.3. (Algorithm distance). Let Alg be an algorithm hypothesis set andH = (at, rt)
n
t=1

be a sequence that is admissible for some task m ∈ [M ]. For any pair TF,TF′ ∈ Alg, define the
distance metric ρ

(
TF,TF′) := supH

1
n

∑n
t=1

∥∥TF (r̂t|Ht−1, at
)
− TF′ (r̂t|Ht−1, at

)∥∥
ℓ2

.
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Remark C.4. (Stability Factor) The work of Li et al. (2023) also characterizes the stability factor K
in Assumption 8.1 with respect to the transformer architecture. Assuming loss ℓ(·, ·) is C-Lipschitz,
the algorithm induced by TF(·) obeys the stability assumption with K = 2C

(
(1 + Γ)eΓ

)L
, where

the norm of the transformer weights are upper bounded by O(Γ) and there are L-layers of the
transformer.
Remark C.5. (Covering Number) From Lemma 16 of Lin et al. (2023) we have the following upper
bound on the covering number of the transformer class TFΘ as

log(N (Alg, ρ, ε)) ≤ O(L2D2J)

where L is the total number of layers of the transformer and J and, D denote the upper bound to the
number of heads and hidden neurons in all the layers respectively. Note that this covering number
holds for the specific class of transformer architecture discussed in section 2 of (Lin et al., 2023).

C.2 Generalization Error to New Task

Theorem C.6. (Transfer Risk) Consider the setting of Theorem 8.2 and assume the source tasks
are independently drawn from task distribution T . Let T̂F be the empirical solution of (ERM) and
g ∼ T . Then with probability at least 1− 2δ, the expected excess transfer learning risk is bounded by

Eg
[
Rg(T̂F)

]
≤ 4 C√

M
+B

√
2 log(N (Alg,ρ,ε)/δ)

M

where, N (Alg, ρ, ε) is the covering number of transformer T̂F.

Proof. Let the target task g be sampled from T , and the test set Hg = {at, rt}nt=1. Define em-
pirical and population risks on g as L̂g(TF) = 1

n

∑n
t=1 ℓ

(
rt(amt),TF

(
r̂t(amt)|Ht−1

g , at
))

and

Lg(TF) = EHg

[
L̂g(TF)

]
. Again we drop Θ from the transformer notation. Then the expected

excess transfer risk following (ERM) is defined as

Eg
[
Rg(T̂F)

]
= EHg

[
Lg(T̂F)

]
− arg min

TF∈Alg
EHg

[Lg(TF)] . (13)

where A is the set of all algorithms. The goal is to show a bound like this

Eg
[
Rg(T̂F)

]
≤ min

ε≥0

{
4Cε+B

√
2 log(N (Alg, ρ, ε)/δ)

T

}

where N (Alg, ρ, ε) is the covering number.

Step 1 ((Decomposition): Let TF∗ = argminTF∈Alg Eg [Lg(TF)]. The expected transfer learning
excess test risk of given algorithm T̂F ∈ Alg is formulated as

L̂m(TF) :=
1

n

n∑
t=1

ℓ
(
rmt(amt),TF

(
r̂mt(amt)|Dt−1

m , amt
))

, and

Lm(TF) := EHm

[
L̂t(TF)

]
= EHm

[
1

n

n∑
t=1

ℓ
(
rmt(amt),TF

(
r̂mt(amt)|Dt−1

m , amt
))]

, ∀m ∈ [M ].

Then we can decompose the risk as

Eg
[
Rg(T̂F)

]
= Eg

[
Lg(T̂F)

]
− Eg [Lg (TF∗)]

= Eg
[
Lg(T̂F)

]
− L̂Hall

(T̂F)︸ ︷︷ ︸
a

+ L̂Hall (T̂F)− L̂Hall (TF
∗)︸ ︷︷ ︸

b

+ L̂Hall (TF
∗)− Eg [Lg (TF∗)]︸ ︷︷ ︸

c

.
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Here since T̂F is the minimizer of training risk, b < 0. Then we obtain

Eg
[
Rg(T̂F)

]
≤ 2 sup

TF∈Alg

∣∣∣∣∣Eg [Lg(TF)]− 1

M

M∑
m=1

L̂m(TF)

∣∣∣∣∣ . (14)

Step 2 (Bounding (14))For any TF ∈ Alg, let Xt = L̂t(TF) and we observe that

Em∼T [Xt] = Em∼T

[
L̂m(TF)

]
= Em∼T [Lm(TF)] = Eg [Lg(TF)]

Since Xm,m ∈ [M ] are independent, and 0 ≤ Xm ≤ B, applying Hoeffding’s inequality obeys

P

(∣∣∣∣∣Eg [Lg(TF)]− 1

M

M∑
m=1

L̂m(TF)

∣∣∣∣∣ ≥ τ

)
≤ 2e−

2Mτ2

B2 .

Then with probability at least 1− 2δ, we have that for any TF ∈ Alg,∣∣∣∣∣Eg [Lg(TF)]− 1

M

M∑
m=1

L̂m(TF)

∣∣∣∣∣ ≤ B

√
log(1/δ)

2M
. (15)

Next, let Algε be the minimal ε-cover of Alg following Definition C.2, which implies that for any
task g ∼ T , and any TF ∈ Alg, there exists TF′ ∈ Algε∣∣Lg(TF)− Lg (TF′)∣∣ , ∣∣∣L̂g(TF)− L̂g (TF′)

∣∣∣ ≤ Cε. (16)

Since the distance metric following Definition 3.4 is defined by the worst-case datasets, then there
exists TF′ ∈ Algε such that∣∣∣∣∣Eg [Lg(TF)]− 1

M

M∑
m=1

L̂m(TF)

∣∣∣∣∣ ≤ 2Cε.

Let N (Alg, ρ, ε) = |Algε| be the ε-covering number. Combining the above inequalities ((14), (15),
and (16)), and applying union bound, we have that with probability at least 1− 2δ,

Eg
[
Rg(T̂F)

]
≤ min

ε≥0

{
4Cε+B

√
2 log(N (Alg, ρ, ε)/δ)

M

}

Again by setting ε = 1/
√
M

L(T̂F)− L (TF∗) ≤ 4C√
M

+ 2B

√
log(N (Alg, ρ, ε)/δ)

cM

The claim of the theorem follows.

Remark C.7. (Dependence on n) In this remark, we briefly discuss why the expected excess risk
for target task T does not depend on samples n. The work of Li et al. (2023) pointed out that the
MTL pretraining process identifies a favorable algorithm that lies in the span of the M source tasks.
This is termed as inductive bias (see section 4 of Li et al. (2023)) (Soudry et al., 2018; Neyshabur
et al., 2017). Such bias would explain the lack of dependence of the expected excess transfer risk
on n during transfer learning. This is because given a target task g ∼ T , the TF can use the learnt
favorable algorithm to conduct a discrete search over span of the M source tasks and return the source
task that best fits the new target task. Due to the discrete search space over the span of M source
tasks, it is not hard to see that, we need n ∝ log(M) samples (which is guaranteed by the M source
tasks) rather than n ∝ d (for the linear setting).

C.3 Table of Notations
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Notations Definition
M Total number of tasks
d Dimension of the feature
Am Action set of the m-th task
Xm Feature space of m-th task
Mtest Tasks for testing
Mpre Total Tasks for pretraining
x(m, a) Feature of action a in task m
θm,∗ Hidden parameter for the task m
Tpre Pretraning distribution on tasks
Ttest Testing distribution on tasks
n Total horizon for each task m
Hm = {It, rt}nt=1 Dataset sampled for the m-th task containing n samples
Htm = {Is, rs}ts=1 Dataset sampled for the m-th task containing samples from round s = 1

to t
w Transformer model parameter
TFw Transformer with model parameter w
Dpre Pretraining in-context distribution
Htrain Training in-context dataset
Dtest Testing in-context distribution

Table 1: Table of Notations


