
Reinforcement Learning Journal 2025
∣∣ Cover Page

ProtoCRL: Prototype-based Network for Continual
Reinforcement Learning

Michela Proietti, Peter R. Wurman, Peter Stone, Roberto Capobianco

Keywords: Continual reinforcement learning, experience replay, event tables, prototype-based
architecture, Gaussian mixture model, variational inference

Summary
The purpose of continual reinforcement learning is to train an agent on a sequence of tasks

such that it learns the ones that appear later in the sequence while retaining the ability to per-
form the tasks that appeared earlier. Experience replay is a popular method used to make the
agent remember previous tasks, but its effectiveness strongly relies on the selection of experi-
ences to store. Kompella et al. (2023) proposed organizing the experience replay buffer into
partitions, each storing transitions leading to a rare but crucial event, such that these key experi-
ences get revisited more often during training. However, the method is sensitive to the manual
selection of event states. To address this issue, we introduce ProtoCRL, a prototype-based ar-
chitecture leveraging a variational Gaussian mixture model to automatically discover effective
event states and build the associated partitions in the experience replay buffer. The proposed
approach is tested on a sequence of MiniGrid environments, demonstrating the agent’s ability
to adapt and learn new skills incrementally.

Contribution(s)
1. This paper introduces ProtoCRL, a prototype-based architecture for continual reinforce-

ment learning. ProtoCRL features a variational Gaussian mixture model to automatically
identify effective event states and build the associated event tables, i.e., partitions within the
experience replay buffer (ERB) storing transitions that lead to a particular event state.
Context: Experience replay is a common strategy used in continual reinforcement learn-
ing (Liotet et al., 2022; Luo et al., 2023). Kompella et al. (2023) showed that partitioning
the ERB into event tables increases sample efficiency and improves the agent’s generaliza-
tion performance. However, the method is sensitive to the manual selection of event states.
ProtoCRL automatizes the construction of the ERB, making event tables suitable to appli-
cations in which the identification of event states is nontrivial.

2. The learned Gaussian mixture components practically serve as prototypical representations
of an event state. By inspecting the assignments of the input experiences to the Gaussian
mixture components, we show that ProtoCRL identifies meaningful event states that the
agent needs to visit more often to remember previously learned tasks.
Context: In the literature, prototypes have been used to either explain pre-trained black-
box agents (Borzillo et al., 2023) or to improve the agents generalization performance of
agents trained on single tasks (Liu et al., 2023). In this work, we leverage the learned
prototypical representations to both guide experience replay and gain insights into what
information is useful for the agents to maintain the ability to perform multiple tasks learned
in sequence.

3. We show that ProtoCRL achieves comparable performance to manually defined event tables
and even higher performance when reducing the ERB capacity.
Context: We test ProtoCRL on a sequence of three MiniGrid environments (Chevalier-
Boisvert et al., 2018), comparing its performance in terms of average return and forgetting
to manually defined event tables and to ContinualDreamer (Kessler et al., 2023).

ProtoCRL: Prototype-based Network for Continual Reinforcement Learning

ProtoCRL: Prototype-based Network for Continual
Reinforcement Learning

Michela Proietti1, Peter R. Wurman2, Peter Stone2,3, Roberto Capobianco 2

mproietti@diag.uniroma1.it,
{peter.wurman,peter.stone,roberto.capobianco}@sony.com

1Sapienza University of Rome, Italy
2Sony AI
3The University of Texas at Austin

Abstract

The purpose of continual reinforcement learning is to train an agent on a sequence of
tasks such that it learns the ones that appear later in the sequence while retaining the
ability to perform the tasks that appeared earlier. Experience replay is a popular method
used to make the agent remember previous tasks, but its effectiveness strongly relies on
the selection of experiences to store. Kompella et al. (2023) proposed organizing the
experience replay buffer into partitions, each storing transitions leading to a rare but
crucial event, such that these key experiences get revisited more often during training.
However, the method is sensitive to the manual selection of event states. To address this
issue, we introduce ProtoCRL, a prototype-based architecture leveraging a variational
Gaussian mixture model to automatically discover effective event states and build the
associated partitions in the experience replay buffer. The proposed approach is tested
on a sequence of MiniGrid environments, demonstrating the agent’s ability to adapt and
learn new skills incrementally.

1 Introduction

Recent advances in deep Reinforcement Learning (RL) have achieved super-human performance in
several applications (Silver et al., 2016; Wurman et al., 2022). However, unlike humans, RL agents
lack the ability to continuously and incrementally learn new skills, which is particularly crucial in
open-world games featuring diverse challenges. In these settings, the major obstacle to continual
learning is catastrophic forgetting (McCloskey & Cohen, 1989; French, 1999), a phenomenon con-
sisting of new knowledge overwriting previously learned information. Continual RL (CRL) aims to
address this issue by proposing methods to mitigate forgetting and improve the agent’s performance
in sequential tasks (Khetarpal et al., 2022).

Experience Replay (ER) is a common strategy used in both RL and CRL, albeit with slightly differ-
ent objectives. In both contexts, ER involves storing the agent’s experiences in an Experience Replay
Buffer (ERB) and randomly sampling from it to update the agent’s policy. In standard single-task
RL settings, ER thus leads to better generalization and higher stability, as it ensures that learning re-
lies on a more diverse set of experiences and breaks the correlation between consecutive experiences
(Lin, 1992). In CRL, instead, the ERB also stores data from previous tasks, which is periodically
replayed to prevent catastrophic forgetting (Rolnick et al., 2019b).

In environments where crucial events occur rarely, Kompella et al. (2023) propose to partition the
ERB into event tables, each storing transitions leading to a particular event, i.e. a rarely visited
state that is essential for task completion. Their approach, called Stratified Sampling from Event

Reinforcement Learning Journal 2025

Tables (SSET), demonstrates increased robustness to perturbations compared to other ER strategies,
showcasing its effectiveness in mitigating catastrophic forgetting. However, manual selection of
meaningful event states might not always be straightforward, especially in complex games in which
the environment has many diverse features.

To overcome this limitation and to ensure a more flexible approach for CRL, we introduce Pro-
toCRL, the first prototype-based architecture for CRL. By relying on a Variational Gaussian Mixture
Model (VGMM), ProtoCRL automatically identifies event states, assigning each experience to one
of the VGMM components, thus eliminating the need for manual event definitions. Moreover, given
that the VGMM can learn to use fewer clusters than its maximum capacity, we just need to define the
maximum number of components and it will autonomously learn to use additional clusters, and thus
additional event tables, for new tasks as they arise. When evaluated on three sequential MiniGrid
tasks, ProtoCRL not only reaches similar performance to baselines that rely on predefined event
tables, but also surpasses them under memory constraints. Moreover, inspecting the automatically
built event tables offers better insight into the agent’s decision-making. Finally, although we use
ProtoCRL as online and target network in DDQN (Hasselt et al., 2016), its modular design makes it
easily adaptable to other algorithms.

Our main contributions are:

• Proposing the first prototype-based architecture featuring a VGMM for automatic event discovery.
ProtoCRL additionally makes event tables more flexible and thus suited to CRL settings, as the
VGMM can dynamically leverage fewer clusters than the maximum number given, leaving extra
capacity to accommodate additional event tables as new tasks appear.

• Showing that ProtoCRL identifies meaningful event states by inspecting the assignments of ob-
servations to the VGMM’s components, thus gaining insights into the agent’s decision process.

• Providing evidence of ProtoCRL comparable performance to baselines with manually defined
event tables and superior performance in the presence of memory constraints on shuffled se-
quences of three MiniGrid tasks.

2 Preliminaries

2.1 Reinforcement Learning

Markov Decision Process In this work, we consider an agent acting in a Markov Decision Process
(MDP) M = ⟨S,A, R,P, γ, I, β⟩ (Sutton et al., 1998), with state space S, action space A, reward
function R : S ×A → R, transition function P : S ×A → Pr[S], discount factor γ ∈ [0, 1), initial
state distribution I : Pr[S], and episode termination function β : S → {0, 1}. At time step t, the
agent observes state s, uses its current policy π : S → Pr[A] to choose action a, and receives reward
r and next state s′. The episode ends if a termination condition is verified (β(s′) = 1) or if a horizon
of H is reached. The action-value function Qπ(s, a) = R(s, a) + γEs′∼P(s,a)[V

π(s′)] represents
the expected discounted return when taking action a in state s and following policy π thereafter.
V π(s) = Ea∼π(s)[Q

π(s, π(s))] is the state value function representing the expected return when
starting in state s and following policy π.

Model-free Off-policy Methods The aim of the agent is to find an optimal policy π∗ and the cor-
responding Q∗(s, a) that maximizes the expected discounted return. Model-free methods learn the
value function or policy directly from interactions, without explicitly modeling the environment’s
dynamics (transition and reward functions). Additionally, off-policy methods can learn from experi-
ences generated by a different policy (behavior policy) than the one being improved (target policy),
enabling the reuse of past experiences. Consequently, model-free off-policy methods learn Q∗(s, a)
directly from data by incrementally updating the action-value function based on the temporal dif-
ference (TD)-error δ = r + γmaxa′ Qk(s

′, a′) − Qk(s, a), where maxa′ Qk(s
′, a′) represents the

maximum action-value in the next state (approximating the optimal state value). DDQN (Hasselt
et al., 2016) is one such approach, in which the action-value function is represented as a deep neural

ProtoCRL: Prototype-based Network for Continual Reinforcement Learning

network with parameters ϕ, that are updated along the gradient of the TD-error. With respect to
DQN (Mnih et al., 2015), DDQN uses two different value networks: an online network for current
Q-values and a target network for computing the target values that is updated with lower frequency.

Experience Replay with Event Tables In off-policy RL, experiences ⟨s, a, r, s′⟩ are typically
stored in an ERB and then sampled in batches to perform gradient updates to the value networks
parameters. Kompella et al. (2023) propose partitioning the ERB into n event tables Bνi and a
default table B0. The default table stores all transitions, while each event table is associated with
an event specification ν = ⟨ω, τ⟩, where ω : S → 0, 1 is a boolean event condition and τ is a
history length. Typical good candidates for event states are important states that occur rarely, such
as goal states or bottleneck states, and their associated event conditions need to be specified by
domain experts. All tables are handled in a FIFO manner and insertion and sampling operations
are controlled by parameters η, κ, di, with i ∈ [0, n], representing sampling probabilities, capacity
sizes, and minimum data requirements for each table (including the default table, corresponding to
i = 0), respectively.

Continual Reinforcement Learning CRL extends the standard RL paradigm to scenarios where
an agent is faced with a sequence of tasks or changing environments. Each new task is represented
as a new MDP Mi = ⟨Si,Ai, Ri,Pi, γi, Ii, βi⟩, with i = 1, ..., T . During the i-th task training, the
agent collects only experiences from that task.

2.2 Variational Gaussian Mixture Model

Gaussian Mixture Model A Gaussian Mixture Model (GMM) is a widely-used probabilistic
model for clustering and density estimation. The GMM assumes that the observed data is generated
from a mixture of several Gaussian distributions, each representing a different cluster or component
in the data. In this work, we deal with multi-dimensional data, so we use a multivariate GMM
which models the distribution of a set of N observed data points X = x1, ..., xN , with xn ∈ Rd, as
a weighted sum of K multivariate Gaussian components. The probability density function for the
multivariate GMM is given by:

P (xn|θ) =
K∑

k=1

πkN (x|µk,Σk)

where πk are the mixing weights, N (xn|µk,Σk) is a multivariate Gaussian distribution with mean
µk and covariance matrix Σk, and θ = {πk, µk,Σk}Kk=1 represents the set of all parameters of the
model. The mixing weights are such that 0 ≤ πk ≤ 1 and

∑K
k=1 πk = 1, as they represent the

probability that a data point belongs to each mixture component.

Variational Inference Given a GMM, the end goal is to perform inference, i.e., to estimate the
parameters of the mixture components given some observations:

p(θ|X) =
p(X|θ)p(θ)

p(X)

where p(X|θ) is the likelihood of the data given the parameters, and p(θ) is the prior distribution.
However, the computation of the denominator, called evidence, is generally intractable. The main
idea of variational inference is to find a simple distribution q(θ, ϕ) from a family of distributions
Q, called variational distributions, that is a good approximation of the true posterior. Intuitively,
instead of computing the exact (but intractable) posterior distribution over model parameters, we
search for the best approximation within a tractable family of distributions. To this aim, we look for
the distribution q∗(θ, ϕ) that minimizes the Kullback-Leibler (KL) divergence between the true and
approximate posteriors, which is equivalent to maximizing the evidence lower bound (ELBO):

q∗(θ, ϕ) = arg min
q(θ,ϕ)∈Q

DKL [q(θ, ϕ)||p(θ, ϕ|X)]

Reinforcement Learning Journal 2025

To this aim, it is necessary to place prior distributions over the model parameters θ. A model that
applies this variational treatment to a Gaussian mixture, placing conjugate priors on the weights,
means, and covariances, and approximating their joint posterior is called a Variational Gaussian
Mixture Model (VGMM). The key advantage of VGMMs over standard GMMs is their ability to
automatically determine the appropriate number of mixture components, leaving some components
inactive during learning. This feature makes VGMMs particularly suitable for continual learning
scenarios where the number of meaningful clusters may grow over time.

3 Related Work

Continual Reinforcement Learning In recent years, interest in CRL has grown considerably
(Khetarpal et al., 2022). However, the study of catastrophic forgetting and the more general stability-
plasticity dilemma has a much longer history (McCloskey & Cohen, 1989; French, 1999; Mermillod
et al., 2013). While some approaches aim at reducing forgetting by applying some form of weight or
function regularization (Kirkpatrick et al., 2016; Kessler et al., 2022), architecture-based strategies
feature task-specific sub-networks or dynamic networks to prevent task interference (Rusu et al.,
2016; Mallya & Lazebnik, 2017). Another popular solution is experience replay (ER), first intro-
duced by Lin (1992) as a method to improve sample efficiency in RL by storing and reusing past
experiences. In the context of CRL, ER consists of storing and replaying experiences from old tasks
(Rolnick et al., 2019a; Li et al., 2021; Liotet et al., 2022; Luo et al., 2023). For instance, CLEAR
(Rolnick et al., 2019a) balances plasticity and stability by alternating off-policy learning from the
ERB and on-policy learning from new experiences, using behavioural cloning between the current
policy and its past version to increase stability. The way in which we populate and sample from
the ERB significantly affects the final performance, as demonstrated by Kessler et al. (2023). In
particular, ER is not particularly suited in environments featuring crucial event states that occur very
rarely during each episode. These states might get sampled too infrequently from the ERB, leading
to the agent being unable to efficiently and effectively learn the task at hand. Kompella et al. (2023)
address this issue by dividing the ERB into event tables and ensuring they get sampled frequently
enough. However, the effectiveness of event tables strongly relies on the definition of event condi-
tions by domain experts, and a wrong choice of events might lead to suboptimal performance. The
purpose of ProtoCRL is to avoid this problem by automatizing the construction of event tables.

Prototypes in Reinforcement Learning The term prototype has divergent meanings across dif-
ferent research sub-fields. In representation learning, a prototype is a latent vector encoding features
relevant for achieving a certain outcome, i.e., a prototypical embedding in the latent space. In ex-
plainable artificial intelligence, a prototype is typically an input instance or a part of it (e.g., an image
patch) that is representative of a specific class.

While early prototype-based networks focused on supervised image classification (Chen et al., 2019;
Rymarczyk et al., 2022), recent works in RL adapt these principles to interpret black-box image-
based RL agents. Ragodos et al. (2022) exploit the black-box model’s demonstrations to train a self-
interpretable agent by imitation learning, while Borzillo et al. (2023) and Kenny et al. (2023) use
the pre-trained black-box agent as an encoder. In representation learning, instead, self-supervised
learning and task-agnostic pre-training allow learning prototypical embeddings to enhance the gen-
eralization capabilities of RL agents (Yarats et al., 2021; Liu et al., 2023; Mazoure et al., 2022).
For instance, DreamerPro (Deng et al., 2022) clusters observations into trainable prototypes and
predicts the cluster assignment from both the world model’s state and an augmented view of the
observations, while ProtoCAD (Wang et al., 2024) utilizes prototypical representations to extract
contextual information from varying dynamic environments.

To our knowledge, no existing work applies a prototype-based network to CRL. We address this
gap via an architecture featuring a VGMM (Corduneanu & Bishop, 2001; Nasios & Bors, 2006)
for clustering latent representations and identifying prototypical embeddings of event states. Unlike
prior methods, our architecture does not require a pre-trained black-box agent or self-supervised
pre-training.

ProtoCRL: Prototype-based Network for Continual Reinforcement Learning

4 ProtoCRL

CRL requires an agent to learn new tasks without forgetting earlier ones and using a fixed-size replay
buffer. In this section, we introduce ProtoCRL, our prototype-based architecture that addresses these
challenges by integrating a prototype-based latent representation with an event-based experience
replay mechanism. By learning to cluster latent features via a VGMM, ProtoCRL automatically
identifies prototypical event states that are critical for learning. These prototypes are then used to
form event tables in the replay buffer, ensuring that diverse transitions are revisited during training
to avoid forgetting within a constant memory budget.

4.1 Network Architecture

The network, illustrated in Figure 1, consists of three interdependent components: an encoder fe, a
VGMM module, and an output layer fo.

Figure 1: ProtoCRL. A transition ⟨s, a, r, s′⟩ is sampled from the ERB and state s is passed to the
encoder fe, which produces latent representation h. h is the input to a VGMM with K components.
The VGMM assigns the input observation to one of its components through z ∈ ZK , which is a one-
hot assignment vector. The VGMM is parametrized by mixing coefficients π = (π1, ..., πK), means
µ = (µ1, ..., µK), and covariance matrices Σ = (Σ1, ...,ΣK). The latent state representation h and
the mean of the component it is assigned to µk are concatenated and passed to an output dense layer
fo, which predicts Q values. When collecting the experiences to store in the ERB, each experience
is stored in the prototypical event table associated with the VGMM component the observation is
assigned to.

Encoder The encoder fe transforms high-dimensional raw observations into a compact latent rep-
resentation. This component can be implemented differently, depending on the type of input ob-
servations. The learned latent space is crucial for capturing the relevant features needed for both
control and for subsequent clustering. In our experiments, we implement the encoder as a simple
dense neural network with three hidden layers and LeakyReLU nonlinearities.

Variational Gaussian Mixture Model The VGMM processes the latent representations produced
by the encoder and clusters them into a set of prototypes.

As explained in Section 2.2, in order to maximize the ELBO objective, we need to place prior
distributions over the model parameters θ. In this work, we use a Dirichlet prior for the mixing
coefficients πk, a Gaussian prior for the means µk, and a Gamma prior for the magnitude of the
precision matrix, as reported in the literature (Lu, 2021). Additionally, to make this optimization
scalable, especially for large datasets, we use Stochastic Variational Inference (SVI) (Hoffman et al.,

Reinforcement Learning Journal 2025

2013). At each iteration, the gradient of the ELBO with respect to the variational parameters ϕ is
estimated using the batch of latent representations produced by the encoder. The gradient is then
used to update ϕ using a learning rate ηt, following the update rule:

ϕt+1 = ϕt + ηt∇ϕELBO(ϕt,Xmini−batch)

By iterating over mini-batches, the variational parameters ϕ converge to values that approximate
the true posterior distribution of the model parameters. The main advantage of using variational
inference is that after defining the maximum number of components in the VGMM, a smaller number
of components might be used based on the input data. This is particularly useful in our CRL setting,
in which an increasing number of components are needed as the number of seen tasks grows.

Output Layer The output layer maps the prototype-augmented features, obtained by concatenat-
ing the encoder’s output with the mean of the GMM component it is assigned to, to action-value
estimates using a shared network head. In our continual learning setting, the use of a shared head
across tasks promotes knowledge transfer while reducing the overall model complexity. However,
this choice may also introduce interference if tasks are highly divergent, which is mitigated by our
selective replay strategy.

4.2 Prototypical Event Tables

To enhance learning and avoid catastrophic forgetting, ProtoCRL employs event tables (Kompella
et al., 2023). Specifically, for each task i ∈ [1, T], we define a default table B0

i and prototypical event
tables Bνk

i , with k ∈ [1,K]. Let h = fe(s) be the latent representation of state s obtained from the
encoder. The VGMM clusters the stream of latent vectors online, so each mixture component center
becomes a prototype event state that summarizes a set of similar, informative states. For a VGMM
with K components, let p(k | h) be the probability that latent vector h belongs to component k; the
event condition for table k can be defined as the indicator function

ωk(s) = 1

{
k = arg max

j∈{1,...,K}
p(j | fe(s))

}

which evaluates to 1 if and only if the latent representation h = fe(s) is most likely generated by the
k-th component, and 0 otherwise. Over-sampling each prototype’s table during training therefore
reinforces those critical, cluster-representative transitions and mitigates forgetting. Manual event-
table methods require careful tuning of sampling probabilities ηi to be effective, whereas ProtoCRL
simply fixes a common sampling probability for all prototype tables, leaving finer schemes to future
work. However, results show that ProtoCRL effectively manages to distribute states among tables
to favor more frequent sampling of important states.

4.3 Training Procedure

Before starting the actual training, we collect data by performing a random policy on the first task
in the sequence for Ninit = 200 steps. The training of ProtoCRL then consists of three main
phases: (1) VGMM warm start to initialize clustering, (2) alternating optimization between policy
improvement and prototype refinement, and (3) prototypical event table construction and sampling.
Algorithm 1 provides a detailed overview of the complete training procedure.

VGMM Warm Start To ensure initial reliable clustering in the latent space, the VGMM under-
goes a warm start procedure. Although the agent has yet to see future tasks, this warm start builds a
reasonable basis for prototype extraction. As training proceeds through subsequent tasks, the clus-
tering continues to be updated in an online fashion to reflect data from the new tasks. The training
objective used during this warm start procedure is made up of several components. The first one is
the TD loss, which ensures that the learned representations are meaningful for the task at hand. The

ProtoCRL: Prototype-based Network for Continual Reinforcement Learning

second term is the ELBO, that we need to maximize:

LELBO = αlogplog p(X)− αKL DKL [q(θ, λ)||p(θ, λ|X)]

The third component is an entropy term that encourages the use of diverse clusters. Let ri ∈ RK

denote the cluster probability vector for the i-th sample, obtained by applying a softmax over the
VGMM log-probabilities. We define the average probability of cluster k over a batch of N samples
as:

mk =
1

N

N∑
i=1

ri,k, for k = 1, . . . ,K

Then, we define the entropy loss as:

LE = −
K∑

k=1

mk log
(
mk + ϵ

)
,

where ϵ is a small constant for numerical stability. Finally, we use Hoyer’s sparsity loss (Hoyer,
2004) to encourage exactly one VGMM component to have high probability for each input observa-
tion. The Hoyer sparsity measure for the i-th input sample takes the form:

H(ri) =

√
K ∥ri∥1

∥ri∥2 + ϵ
− 1

where ∥ri∥1 =
∑K

k=1 |ri,k| and ∥ri∥2 =
√∑K

k=1 r
2
i,k. A perfectly one-hot vector achieves

H(ri) = 1, while a uniform distribution yields a lower value. The overall Hoyer sparsity loss over
a batch of N samples is computed as the mean:

LH =
1

N

N∑
i=1

H(ri).

Minimizing this loss encourages each probability vector ri to become more sparse. The overall
training objective is:

LProtoCRL = LTD − λ(LELBO − βE LE + βH LH)

with λ, βE and βH being regularization parameters.

Alternating Training Objectives After the warm start procedure, we alternatively optimize two
objectives: the TD loss, to sharpen the agent’s policy, and the joint objective used during warm
start, to establish a well-structured latent space and meaningful prototypes that form the basis for
effective event table construction. This alternating training strategy is designed to find a balance
between maintaining a robust and interpretable latent structure and optimizing the agent’s decision-
making capabilities. This design not only automates the discovery of significant event states but also
improves the overall performance of the agent in continual learning environments.

5 Experiments

We test ProtoCRL on a sequence of 3 MiniGrid (Chevalier-Boisvert et al., 2018) tasks - DoorKey,
LavaCrossing, and SimpleCrossing - using DDQN algorithm (Hasselt et al., 2016). The environ-
ments are episodic and terminate when the agent reaches the goal or when we reach the maximum
episode length (set to 200 at evaluation time). The agent receives a reward of −0.05 for each
environment step, +1 for reaching the goal, and −5 for falling into lava. Further details on the en-
vironments, architectures and hyperparameters needed for reproducibility are given in Appendix A.
In our experiments, an epoch corresponds to 2000 environment steps. We train all agents for 3K

Reinforcement Learning Journal 2025

Algorithm 1 ProtoCRL Training Procedure

Require: Task sequence {M1,M2, . . . ,MT }, VGMM components K, start steps Ninit

Ensure: Trained ProtoCRL network with prototypical event tables
1: Initialize encoder fe, VGMM parameters {π, µ,Σ}, output layer fo
2: Initialize experience replay buffer partitions: {B0

i ,B
νk
i } for i ∈ [1, T], k ∈ [1,K]

3: for task i = 1 to T do
4: if i = 1 then ▷ VGMM warm start for first task
5: for step t = 1 to Nwarm do
6: Collect experience ⟨st, at, rt, st+1⟩ using random policy
7: Observe state st, compute ht = fe(st)
8: Determine prototype assignment: k∗ = argmaxj p(j|ht)
9: Store experience in event tables Bνk∗ and B0

10: end for
11: for epoch e = 1 to VGMM warm start epochs do
12: Sample batch from all event tables
13: Compute LProtoCRL = LTD − λ(LELBO − βELE + βHLH)
14: Update VGMM parameters πk, µk,Σk for k ∈ [1,K]
15: end for
16: end if
17: for epoch e = 1 to training epochs per task do
18: Environment Interaction:
19: for step t = 1 to steps per epoch do
20: Observe state st, compute ht = fe(st)
21: Select action at using ϵ-greedy policy based on Q(ht ⊕ µk, a)
22: Execute at, observe rt, st+1

23: Determine prototype assignment: k∗ = argmaxj p(j|ht)
24: Store ⟨st, at, rt, st+1⟩ in event tables Bνk∗

i and B0

25: end for
26: Alternating Training:
27: if epoch e is odd then ▷ Policy improvement phase
28: Sample batch from all event tables with probabilities {ηi}
29: Optimize TD loss: LTD using DDQN updates
30: else ▷ Prototype refinement phase
31: Sample batch from all event tables
32: Optimize joint objective: LProtoCRL

33: Update VGMM parameters {π, µ,Σ} via SVI
34: end if
35: if e % target network update frequency = 0 then
36: Update target network parameters
37: end if
38: end for
39: end for

epochs (1K epochs for each task) and evaluate them with a frequency of 20 epochs, averaging re-
sults over 10 seeds. For each experiment, we report average performance and average forgetting
CRL metrics (Woł czyk et al., 2021), whose formal definitions are provided in Appendix B. The
former measures how well the agents performs on average on all tasks at the end of the training,
while the latter captures the drop in the agent’s performance on previous tasks after learning the
entire task sequence.

A central goal of ProtoCRL is to eliminate the need for manually selecting event states while pre-
serving performance in CRL settings. For this reason, we compare it to (1) a baseline using a single
FIFO ERB with no event tables (NoET), (2) a simplified variant of event-based replay in which

ProtoCRL: Prototype-based Network for Continual Reinforcement Learning

we introduce a single event table holding transitions related to the goal state, (3) an event-based
strategy using multiple event tables (goal, at_door, pickup_key for DoorKey, goal and at_lava
for LavaCrossing, and goal and at_gap for SimpleCrossing), (4) ContinualDreamer (Kessler et al.,
2023), which leverages both experience replay and world models. In particular, we expect Continu-
alDreamer to be a strong baseline, as its learned dynamic model can generate additional transitions
and thus provide more frequent revisits of past tasks.

5.1 Performance Comparison

In this section, we compare the agents’ performance when using an ERB with capacity of 2M. Note
that event tables are partitions within the ERB, therefore the total memory usage remains fixed at
2M transitions, regardless of the number of event tables. Figure 2 shows episodic returns for all
tasks across the whole training. In the DoorKey task (Figure 2a), all methods steadily improve over
the training epochs, but experience different performance drops when encountering the second task
in the sequence, at epoch 1K. While ProtoCRL, GoalET, and ET manage to recover from this drop,
NoET keeps losing its ability to perform the DoorKey task, reaching the lowest final performance. In
these experiments, we also show that ProtoCRL benefits from storing a longer history of transitions
in the event tables, namely τ = 500 compared to τ = 50, which is the value used for GoalET
and ET. ProtoCRL-2M and ProtoCRL-2M-h50 identify the variants using τ = 500 and τ = 50,
respectively. ProtoCRL-2M-h50 obtains a lower final return than ProtoCRL-2M, as despite not
experiencing forgetting, ProtoCRL-2M-h50 fails to reach a high performance on the DoorKey task.
On the other hand, ContinualDreamer is the approach that converges faster and maintains the highest
final return, indicating that the integration of world models and experience replay is well suited for
CRL settings. This result is expected, as ContinualDreamer trains a single latent-dynamics network
that is shared across tasks, then “imagines” roll-outs inside that latent space to generate synthetic
transitions. This synthesis should allow more frequent and flexible revisits of earlier tasks than any
buffer-only method. On the subsequent tasks, all methods obtain similar returns, except GoalET-
2M and ET-2M, which reach the lowest final performances but do not experience much forgetting.
Overall, ProtoCRL-2M achieves an average performance of −0.45±1.11 and a near-zero forgetting
of 0.03 ± 1.72, as reported in Table 1. This outcome is markedly better than the NoET and ET
baselines, whose average performance stays around −2. Negative average forgetting (i.e., the final
performance is higher at the end of the entire training than after training the individual tasks) appears
for GoalET and ProtoCRL-h50 only because both variants start from a lower DoorKey score and
then maintain roughly the same return throughout training.

0 500 1000 1500 2000 2500 3000
Training Epoch

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

Ep
iso

de
 R

et
ur

n

(a) DoorKey task.

0 500 1000 1500 2000 2500 3000
Training Epoch

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

Ep
iso

de
 R

et
ur

n

(b) LavaCrossing task.

0 500 1000 1500 2000 2500 3000
Training Epoch

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

Ep
iso

de
 R

et
ur

n

NoET-2M
ProtoCRL-2M
ProtoCRL-2M-h50

GoalET-2M
ET-2M
ContinualDreamer

(c) SimpleCrossing task.

Figure 2: Episodic return on 3 MiniGrid tasks using a 2M memory budget. The task ordering is
DoorKey-LavaCrossing-SimpleCrossing. Each agent is trained on each task for 1K epochs and eval-
uated every 20 epochs across the entire training sequence. Shaded areas indicate standard deviations
across 10 seeds.

5.2 Decreasing Buffer Capacity

Sample efficiency is a crucial requirement in CRL settings. A major drawback of using a fixed-size
experience-replay buffer in continual learning is that, as new tasks arrive, the portion of the buffer

Reinforcement Learning Journal 2025

Table 1: Average performance (AvgP) and forgetting (AvgF) on three MiniGrid tasks using 2M
memory budget.

AvgP AvgF
NoET −2.35± 3.79 2.32± 3.28
GoalET −1.75± 0.01 −0.02± 0.02
ET −2.92± 1.36 1.78± 2.35
ContinualDreamer 0.19± 0.07 0.05± 0.09
ProtoCRL-h50 −0.82± 1.64 −0.28± 0.61
ProtoCRL −0.45± 1.11 0.03± 1.72

devoted to earlier tasks shrinks, effectively diluting the agent’s memory of past experiences. It is
therefore necessary for CRL methods to perform well even in the presence of memory constraints.
For this reason, we test the effectiveness of NoET, GoalET, ET, and ProtoCRL with different buffer
capacities.

In Table 2, we compare the effectiveness of these methods in terms of average performance. In Ap-
pendix C, we additionally provide the average forgetting and plots showing the episodic returns for
the three environments across the entire training. Overall, ET and GoalET are the approaches that
suffer from the greatest performance drops (i.e., increased forgetting) when decreasing the mem-
ory budget, reaching performances that are much lower than the NoET baseline with 1M and 100K
memory budgets. This might be due to manually defined tables oversampling a narrow subset of
transitions, thus limiting the agent’s exposure to broader context. If event definitions or table sam-
pling probabilities are not well tuned, uniform replay (NoET) might maintain a more diverse set
of experiences, resulting in better overall performance. On the contrary, ProtoCRL, with its ability
to automatically build event tables, manages to achieve high performance with very low memory
budgets.

Table 2: Average performance over 3 MiniGrid tasks with different memory budgets. All metrics
are an average and standard deviation over 10 seeds. We highlight in bold the best performing
approaches.

100K 500K 1M 2M
NoET −5.36± 3.79 −4.82± 4.22 −4.24± 4.10 −2.35± 3.79
GoalET −8.62± 0.98 −6.90± 1.46 −7.82± 1.55 −1.75± 0.01
ET −9.66± 0.49 −5.87± 2.23 −8.54± 1.03 −2.92± 1.36
ProtoCRL −1.74± 2.24 −2.84± 1.43 −0.83± 1.63 −0.45± 1.11

5.3 Robustness To Task Order

To assess whether the superior performance of ProtoCRL was due to task ordering, we ran all six
permutations of the three MiniGrid tasks, using the same experimental setup (seeds, hyperparame-
ters) of the previous experiments. Table 3 reports the average performance and forgetting over all 6
permutations, together with standard deviations across permutations, using 100K and 2M memory
budgets. In Appendix D, we provide details on the exact permutations, and report per-permutation
average metrics and episodic return.

ProtoCRL achieves the best average performance in both memory regimes. With only 100K tran-
sitions it outperforms the strongest baseline (NoET) by 0.29 points. The gap widens to more than
1.25 when the buffer is enlarged to 2M. At the same time, ProtoCRL records the lowest forget-
ting, despite using a single sampling schedule for all permutations. NoET shows a slightly lower
average forgetting with the 100 K buffer, but at the cost of a lower return, indicating it avoids for-

ProtoCRL: Prototype-based Network for Continual Reinforcement Learning

getting mainly by learning less. The small standard deviations confirm that each method’s behavior
is similar across curricula. The results demonstrate that automatically constructed prototype tables
make ProtoCRL more robust to task order than manual event-table variants, a desirable property for
continual learning agents deployed in uncontrolled settings.

Table 3: Average performance (AvgP) and average forgetting (AvgF) across all 6 task-order permu-
tations, reported for each method with buffer size 100K and 2M. We report the standard deviation
across task-order permutations. Bold denotes the best value in a column, underlined the second best.

Method 100K 2M
AvgP AvgF AvgP AvgF

NoET −6.20± 0.84 −0.48± 0.93 −5.16± 0.41 −0.43± 1.00
GoalET −8.43± 0.76 1.49± 1.04 −3.41± 2.25 −0.60± 1.39
ET −8.74± 0.72 1.41± 1.54 −4.98± 2.58 −0.03± 1.81
ProtoCRL −5.91± 0.62 0.03± 0.63 −2.15± 1.47 −1.24± 1.00

5.4 Prototypes Analysis

To shed light on what types of events each prototype, i.e., each VGMM’s mixture component, is
representing, we inspect which states or transitions predominantly fall into each cluster. To this aim,
we took the agent trained on the entire task sequence and made it perform 1 episode in each envi-
ronment following the learned policy, and 10 episodes by choosing a random action with probability
70% in order to collect more diverse states, thus collecting 2959 states in total.

Figure 3: Distribution of environment-defined event types within each discovered prototype cluster.
The automatically learned prototypes frequently match to key environment events, demonstrating
ProtoCRL’s ability to partition states in an event-centric manner.

In Figure 3, we show the percentage of states assigned to each cluster that are related to specific
event states. Specifically, for goal, key, and lava we consider all states in which the agent is in
the position of the object or in an adjacent position but oriented towards the object. For door and
gap, instead, we consider only states in which the agent is exactly at the door and gap positions.
Interestingly, around 25% of the states in Cluster 3 represent key, door, and goal states relevant
for the DoorKey task. Additionally, the same cluster has an important coverage of the gap state,
which is similar to the door state, together with smaller percentages of lava states and goal states
for the LavaCrossing and SimpleCrossing tasks. Overall, Cluster 3 appears to be an event cluster,
as it captures many state transitions that are important to the agent’s task progression. Similarly,
around 17% of the states in Cluster 5 seem to be capturing event-related states. Lava-related events,

Reinforcement Learning Journal 2025

instead, are predominantly collected in Cluster 1, although there was 1 state among the 2959 we
collected that was the only one assigned to Cluster 9. Because no cluster stands out with more
than 50% of its states representing a particular event, it appears that the VGMM’s components
might be capturing more nuanced distinctions (e.g., each cluster is partially capturing key states
under different local configurations, such as the agent’s orientation or position near the key) or
sub-trajectories leading to overcoming the obstacles or reaching the goal. This might seem the
case by looking at Figure 4, which shows an overlay of the states visited by the agent’s policy
that are assigned to each cluster. In accordance with our previous analysis, Cluster 3 collects the
states corresponding to door opening and the subtrajectory leading to the goal in the DoorKey task.
Clusters 5 and 8, instead, seem more focused on subtrajectories that allow overcoming obstacles
and reaching the goal in the other two environments. Finally, Cluster 11 collects the state relative
to key collection in the DoorKey task. These results confirm that ProtoCRL effectively identifies
and groups pivotal states for each environment, supporting more efficient experience replay and
removing the need for manually defined event tables.

Figure 4: Overlayed states visited by the agent’s policy that are assigned to each cluster.

6 Conclusions

In this work, we introduce ProtoCRL, a prototype-based network for CRL that automatically discov-
ers event states via a VGMM. By replacing the manual event definitions with an adaptive, data-driven
mechanism for organizing the ERB, ProtoCRL allows the agent to effectively mitigate forgetting.
Our experiments demonstrate that under stringent memory constraints and shuffled task sequences,
ProtoCRL outperforms conventional baselines that rely on manually defined event tables or uniform
sampling. While ProtoCRL shows promising sample efficiency and robustness, some limitations re-
main. The effectiveness of the VGMM-based clustering can be highly sensitive to hyperparameters
and may capture nuanced distinctions across subtrajectories rather than isolating single dominant
event states. Additionally, the results ProtoCRL achieves are still lower than state-of-the-art CRL
approaches integrating experience replay with world models (Kessler et al., 2023). Future work
should explore tighter integration between ProtoCRL and world-model-based approaches. More-
over, investigating adaptive hyperparameter schemes that allow learning other sensitive hyperpa-
rameters, such as the sampling probabilities for the automatically built event tables, could further
enhance the stability and performance of ProtoCRL in more complex settings.

ProtoCRL: Prototype-based Network for Continual Reinforcement Learning

Acknowledgments

We thank Varun Kompella and Thomas J. Walsh for answering our questions on event tables and for
valuable discussions.

References
Caterina Borzillo, Alessio Ragno, and Roberto Capobianco. Understanding deep rl agent decisions:

a novel interpretable approach with trainable prototypes. In XAI.it@AI*IA, 2023. URL https:
//api.semanticscholar.org/CorpusID:264491932.

Chaofan Chen, Oscar Li, Chaofan Tao, Alina Jade Barnett, Jonathan Su, and Cynthia Rudin. This
looks like that: deep learning for interpretable image recognition. Curran Associates Inc., Red
Hook, NY, USA, 2019.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

Adrian Corduneanu and Christopher M Bishop. Variational bayesian model selection for mixture
distributions. In Artificial intelligence and Statistics, volume 2001, pp. 27–34. Morgan Kaufmann
Waltham, MA, 2001.

Fei Deng, Ingook Jang, and Sungjin Ahn. DreamerPro: Reconstruction-free model-based rein-
forcement learning with prototypical representations. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th Inter-
national Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 4956–4975. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/deng22a.html.

Robert M. French. Catastrophic forgetting in connectionist networks. Trends in Cog-
nitive Sciences, 3(4):128–135, 1999. ISSN 1364-6613. DOI: https://doi.org/10.
1016/S1364-6613(99)01294-2. URL https://www.sciencedirect.com/science/
article/pii/S1364661399012942.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16,
pp. 2094–2100. AAAI Press, 2016.

Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley. Stochastic variational infer-
ence. J. Mach. Learn. Res., 14(1):1303–1347, may 2013. ISSN 1532-4435.

Patrik O. Hoyer. Non-negative matrix factorization with sparseness constraints. J. Mach. Learn.
Res., 5:1457–1469, December 2004. ISSN 1532-4435.

Eoin M. Kenny, Mycal Tucker, and Julie Shah. Towards interpretable deep reinforcement learning
with human-friendly prototypes. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=hWwY_Jq0xsN.

Samuel Kessler, Jack Parker-Holder, Philip Ball, Stefan Zohren, and Stephen J. Roberts. Same state,
different task: Continual reinforcement learning without interference. Proceedings of the AAAI
Conference on Artificial Intelligence, 36(7):7143–7151, Jun. 2022. DOI: 10.1609/aaai.v36i7.
20674. URL https://ojs.aaai.org/index.php/AAAI/article/view/20674.

Samuel Kessler, Mateusz Ostaszewski, MichałPaweł Bortkiewicz, Mateusz Żarski, Maciej Wolczyk,
Jack Parker-Holder, Stephen J Roberts, Piotr Mi, et al. The effectiveness of world models for con-
tinual reinforcement learning. In Conference on Lifelong Learning Agents, pp. 184–204. PMLR,
2023.

https://api.semanticscholar.org/CorpusID:264491932
https://api.semanticscholar.org/CorpusID:264491932
https://github.com/maximecb/gym-minigrid
https://proceedings.mlr.press/v162/deng22a.html
https://proceedings.mlr.press/v162/deng22a.html
https://www.sciencedirect.com/science/article/pii/S1364661399012942
https://www.sciencedirect.com/science/article/pii/S1364661399012942
https://openreview.net/forum?id=hWwY_Jq0xsN
https://ojs.aaai.org/index.php/AAAI/article/view/20674

Reinforcement Learning Journal 2025

Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual reinforce-
ment learning: A review and perspectives. Journal of Artificial Intelligence Research, 75:1401–
1476, 2022.

James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic for-
getting in neural networks. Proceedings of the National Academy of Sciences, 114:3521 – 3526,
2016. URL https://api.semanticscholar.org/CorpusID:4704285.

Varun Raj Kompella, Thomas Walsh, Samuel Barrett, Peter R. Wurman, and Peter Stone. Event
tables for efficient experience replay. Transactions on Machine Learning Research, 2023. ISSN
2835-8856. URL https://openreview.net/forum?id=XejzjAjKjv.

Chunmao Li, Yang Li, Yinliang Zhao, Peng Peng, and Xupeng Geng. Sler: Self-generated long-
term experience replay for continual reinforcement learning. Applied Intelligence, 51(1):185–201,
2021.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine learning, 8:293–321, 1992.

Pierre Liotet, Francesco Vidaich, Alberto Maria Metelli, and Marcello Restelli. Lifelong hyper-
policy optimization with multiple importance sampling regularization. In AAAI Conference on
Artificial Intelligence (AAAI), pp. 7525–7533. AAAI Press, 2022. URL https://doi.org/
10.1609/aaai.v36i7.20717.

Xin Liu, Yaran Chen, Haoran Li, Boyu Li, and Dongbin Zhao. Cross-domain random pre-training
with prototypes for reinforcement learning. arXiv preprint arXiv:2302.05614, 2023.

Jun Lu. A survey on bayesian inference for gaussian mixture model. arXiv preprint
arXiv:2108.11753, 2021.

Yongle Luo, Yuxin Wang, Kun Dong, Qiang Zhang, Erkang Cheng, Zhiyong Sun, and Bo Song.
Relay hindsight experience replay: Self-guided continual reinforcement learning for sequential
object manipulation tasks with sparse rewards. Neurocomputing, 557:126620, 2023.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7765–
7773, 2017. URL https://api.semanticscholar.org/CorpusID:35249701.

Bogdan Mazoure, Ahmed M Ahmed, Patrick MacAlpine, R Devon Hjelm, and Andrey Kolobov.
Cross-trajectory representation learning for zero-shot generalization in rl. International Confer-
ence on Learning Representations, 2022.

Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. Psychology of Learning and Motivation - Advances in Research
and Theory, 24(C):109–165, January 1989. ISSN 0079-7421. DOI: 10.1016/S0079-7421(08)
60536-8.

Martial Mermillod, Aurélia Bugaiska, and Patrick Bonin. The stability-plasticity dilemma: inves-
tigating the continuum from catastrophic forgetting to age-limited learning effects. Frontiers in
Psychology, 4, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Kirkeby Fidjeland, Georg Ostrovski, Stig
Petersen, Charlie Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforce-
ment learning. Nature, 518:529–533, 2015. URL https://api.semanticscholar.org/
CorpusID:205242740.

https://api.semanticscholar.org/CorpusID:4704285
https://openreview.net/forum?id=XejzjAjKjv
https://doi.org/10.1609/aaai.v36i7.20717
https://doi.org/10.1609/aaai.v36i7.20717
https://api.semanticscholar.org/CorpusID:35249701
https://api.semanticscholar.org/CorpusID:205242740
https://api.semanticscholar.org/CorpusID:205242740

ProtoCRL: Prototype-based Network for Continual Reinforcement Learning

Nikolaos Nasios and Adrian G Bors. Variational learning for gaussian mixture models. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 36(4):849–862, 2006.

Ronilo Ragodos, Tong Wang, Qihang Lin, and Xun Zhou. Explaining a reinforcement learning agent
via prototyping. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=nyBJcnhjAoy.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019a. URL https://proceedings.neurips.cc/paper_
files/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in neural information processing systems, 32, 2019b.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirk-
patrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural net-
works. ArXiv, abs/1606.04671, 2016. URL https://api.semanticscholar.org/
CorpusID:15350923.

Dawid Rymarczyk, Łukasz Struski, Michał Górszczak, Koryna Lewandowska, Jacek Tabor, and
Bartosz Zieliński. Interpretable image classification with differentiable prototypes assignment. In
European Conference on Computer Vision, pp. 351–368. Springer, 2022.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Junjie Wang, Qichao Zhang, Yao Mu, Dong Li, Dongbin Zhao, Yuzheng Zhuang, Ping Luo, Bin
Wang, and Jianye Hao. Prototypical context-aware dynamics for generalization in visual control
with model-based reinforcement learning. IEEE Transactions on Industrial Informatics, pp. 1–11,
2024. DOI: 10.1109/TII.2024.3396525.

Maciej Woł czyk, MichałZając, Razvan Pascanu, Ł ukasz Kuciński, and Piotr Mił oś. Con-
tinual world: A robotic benchmark for continual reinforcement learning. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neu-
ral Information Processing Systems, volume 34, pp. 28496–28510. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/ef8446f35513a8d6aa2308357a268a7e-Paper.pdf.

Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al. Out-
racing champion gran turismo drivers with deep reinforcement learning. Nature, 602(7896):223–
228, 2022.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement learning with pro-
totypical representations. In International Conference on Machine Learning, pp. 11920–11931.
PMLR, 2021.

https://openreview.net/forum?id=nyBJcnhjAoy
https://openreview.net/forum?id=nyBJcnhjAoy
https://proceedings.neurips.cc/paper_files/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
https://api.semanticscholar.org/CorpusID:15350923
https://api.semanticscholar.org/CorpusID:15350923
https://proceedings.neurips.cc/paper_files/paper/2021/file/ef8446f35513a8d6aa2308357a268a7e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/ef8446f35513a8d6aa2308357a268a7e-Paper.pdf

Reinforcement Learning Journal 2025

Supplementary Materials
The following content was not necessarily subject to peer review.

A Experimental Setup

A.1 Environments

In our experiments, we evaluate ProtoCRL on the DoorKey, LavaCrossing, and SimpleCrossing
MiniGrid tasks (Chevalier-Boisvert et al., 2018). Figure 5 shows a random instantiations of each
environment. The exact positions of lava, gap in the wall, door, key, and the color of the key-door
combination are randomly set in each episode. The goal of the agent is to reach the green square
starting from the top-left corner of the grid. The agent’s action space includes 5 actions: forward,
left, right, pickup key, and toggle door. In each environment, the agent receives an observations
consisting of:

• An egocentric 9x9 localized forward-view image (highlighted in Figure 5).

• A boolean flag indicating whether the agent is carrying an object.

• A 2D representation (category, color) of the object it is carrying. The default value is (−1,−1).

• The agent’s 3D grid position and orientation (x, y, θ).

The agent gets a reward of −0.05 for each environment step, +1 for reaching the goal, and −5 for
falling into lava. The episode terminates when the agents reaches the goal, falls into lava, or we have
reached the maximum episode length. The latter is set to 2000 while collecting experiences and 200
at evaluation time for all environments. During training, instead, the maximum episode length is set
to 500 for LavaCrossing and SimpleCrossing, and to 1000 for DoorKey.

(a) DoorKey task (b) LavaCrossing task (c) SimpleCrossing task

Figure 5: Random instantiations of the used MiniGrid environments.

A.2 Learning Parameters

Tables 4, 5, 7, and 6 list the parameters used in our experiments. Event conditions check whether
the agent has reached the goal (done), has picked up a key (pickup_key), has opened the door
(at_door), has fallen into lava (at_lava), or has traversed the gap in the wall (at_gap). In order to
produce results for ContinualDreamer (Kessler et al., 2023), we have used the author’s original im-
plementation. The only changes we made concerned the reward function, updated to match the one
described in Appendix A.1, the number of environment interactions and the evaluation frequency.

The values reported in Tables 4–6 are the best performers from a small, systematic grid search that
we applied to every agent variant (NoET, GoalET, ET and ProtoCRL). Our search started from the
ranges recommended in Kompella et al. (2023) and explored the following settings:

ProtoCRL: Prototype-based Network for Continual Reinforcement Learning

• Value-function network: {[128,128], [64,64], [128,128,128], [128,128,64]}

• Learning rate: {0.01, 0.005, 0.001, 0.0005}

• Batch size {32, 64}

• Epsilon-greedy (ϵ): {0.3, 0.4}

• Phase-1 steps ratio (ProtoCRL only): {0.5, 0.7, 0.8}

• # VGMM components (ProtoCRL only): K ∈ {3, 4, 6, 8, 10, 12, 15}
• VGMM warm-start epochs (ProtoCRL only): {0, 1, 5, 10}

For ProtoCRL, the additional loss coefficients (αlogp, αKL, βE , βH) were set once per experiment
by matching the typical magnitude of each term to that of the TD loss during a short pilot run; they
were not tuned further.

Table 4: Learning parameters for experiments with no event tables (NoET).

Parameter Value
Number of tasks (T) 3
Value function networks 3 hidden layers of 128, 128, and 64 ReLU units
Learning rate 0.0005
Batch size 64
Epsilon-greedy (ϵ) 0.3
Stale network refresh rate 0.01
Discount factor 0.99

Table 5: Learning parameters for experiments with just goal event tables (GoalET).

Parameter Value
Number of tasks (T) 3
Event conditions (ωi) donet with t = [0, T]
Event history length (τ) 50
Event sampling probabilities (ηi) B0

0 : 0.3529, B0
1 : 0.1765, B0

2 : 0.2941, donet :
0.0588 with t = [0, T]

Value function networks 3 hidden layers of 128, 128, and 64 ReLU units
Learning rate 0.0005
Batch size 64
Epsilon-greedy (ϵ) 0.3
Stale network refresh rate 0.01
Discount factor 0.99

Reinforcement Learning Journal 2025

Table 6: Learning parameters for experiments with multiple event tables per task (ET).

Parameter Value
Number of tasks (T) 3
Event conditions (ωi) donet with t = [0, T], pickup_key, at_door,

at_lava
Event history length (τ) 50
Event sampling probabilities (ηi) B0

0 : 0.34, done0 : 0.03, at_door : 0.07,
pickup_key : 0.03, B0

1 : 0.16, done1 : 0.02,
at_lava : 0.05, B0

2 : 0.23, done2 : 0.02, at_gap :
0.05

Value function networks 3 hidden layers of 128, 128, and 64 ReLU units
Learning rate 0.0005
Batch size 64
Epsilon-greedy (ϵ) 0.3
Stale network refresh rate 0.01
Discount factor 0.99

Table 7: Learning parameters for experiments with ProtoCRL.

Parameter Value
Number of tasks (T) 3
Number of VGMM components (K) 12

Event conditions (ωi) 1

{
k = argmaxj∈{1,...,K} p(j | fe(s))

}
Event history length (τ) 500
Event sampling probabilities (ηi) B0

0 : 0.6, B0
1 : 0.3, B0

2 : 0.6, prototypek,t : 0.1
with k ∈ [0,K − 1], t ∈ [1, T]

Value function networks 3 hidden layers of 128, 128, and 64 LeakyReLU
units

Phase 1 (LTD) learning rate 0.001
Phase 1 steps ratio 0.5
Phase 2 (LProtoCRL) learning rate 0.001
Phase 2 regularization parameter (λ) 0.1
VGMM warm start epochs 10
αlogp 0.1
αKL 0.001
βE 1000
βH 1.0
Batch size 64
Epsilon-greedy (ϵ) 0.3
Stale network refresh rate 0.01
Discount factor 0.99

ProtoCRL: Prototype-based Network for Continual Reinforcement Learning

0 500 1000 1500 2000 2500 3000
Training Epoch

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

Ep
iso

de
 R

et
ur

n

(a) DoorKey task.

0 500 1000 1500 2000 2500 3000
Training Epoch

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

Ep
iso

de
 R

et
ur

n

(b) LavaCrossing task.

0 500 1000 1500 2000 2500 3000
Training Epoch

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

Ep
iso

de
 R

et
ur

n

NoET-100K
NoET-500K
NoET-1M
NoET-2M
ProtoCRL-100K
ProtoCRL-500K
ProtoCRL-1M
ProtoCRL-2M

GoalET-100K
GoalET-500K
GoalET-1M
GoalET-2M
ET-100K
ET-500K
ET-1M
ET-2M

(c) SimpleCrossing task.

Figure 6: Episode return on 3 MiniGrid tasks using decreasing memory budget. The task ordering
is DoorKey-LavaCrossing-SimpleCrossing. Each agent is trained on each task for 1K epochs and
evaluated every 20 epochs across the entire training sequence.

B Continual Reinforcement Learning Metrics

In order to evaluate the CRL performance of the trained agents, we use two popular metrics: the
average performance and the average forgetting.

The average performance metric estimates the average performance of the agent on all tasks at the
end of the task sequence and is computed as:

p(tf) =
1

T

T∑
i=1

pi(tf)

where tf is the final timestep and pi(tf) is the performance of the agent on the i-th task at timestep
tf .

The average forgetting, instead, is measured as the average difference between the performance of
each task after its own training and at the end of the task sequence:

F =
1

T

T∑
i=1

Fi with Fi = pi(i×N)− pi(tf)

where N is the number of steps per task. The forgetting for the last task in the sequence is FT = 0.
Finally, forgetting can also take negative values if the performance of a task i is higher at the end of
the task sequence compared to after task i training.

C Episodic Return with Decreasing Buffer Capacity

Figure 6 shows the episodic return for each MiniGrid task in the tested sequence (DoorKey,
LavaCrossing, SimpleCrossing) obtained by ProtoCRL and the NoET, GoalET, and ET baselines.
All baselines experience severe performance drop after encountering the second task at epoch 1K,
with NoET-100K/500K/1M, GoalET-100K/1M, and ET-100K/1M obtaining the lowest return of
−10 at the end of the task sequence. On the other hand, ProtoCRL maintains a performance that
is higher than all baselines with memory budget up to 1M transitions. Similar observations can be
made for the performance on subsequent tasks, in which ProtoCRL obtains episodic returns that
are slightly lower than 0 for the LavaCrossing task and slightly above 0 (highest achievable) for the
SimpleCrossing task.

Table 8 reports the average forgetting achieved by ProtoCRL and the baselines under different mem-
ory budgets. ProtoCRL is the approach experiencing the lowest forgetting with stricter memory
constraints.

Reinforcement Learning Journal 2025

Table 8: Average forgetting over 3 MiniGrid tasks with different memory budgets. All metrics are an
average and standard deviation over 10 seeds. We highlight in bold the best performing approaches.

100K 500K 1M 2M
NoET 4.63± 3.43 4.76± 3.73 3.16± 3.63 2.32± 3.28
GoalET 3.40± 4.11 3.78± 3.40 3.65± 4.69 −0.02± 0.02
ET 4.44± 4.27 2.71± 3.14 3.36± 4.18 1.78± 2.35
ProtoCRL 1.26± 2.72 2.08± 1.62 0.46± 0.62 0.03± 1.72

0 500 1000 1500 2000 2500 3000
Training Epoch

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

Ep
iso

de
 R

et
ur

n

(a) DoorKey task.

0 500 1000 1500 2000 2500 3000
Training Epoch

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

Ep
iso

de
 R

et
ur

n

(b) SimpleCrossing task.

0 500 1000 1500 2000 2500 3000
Training Epoch

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

Ep
iso

de
 R

et
ur

n

NoET-2M
NoET-100K
ProtoCRL-2M
ProtoCRL-100K
GoalET-2M
GoalET-100K
ET-2M
ET-100K

(c) LavaCrossing task.

Figure 7: Episode return on DoorKey-SimpleCrossing-LavaCrossing task sequence using memory
buffers with size 2M and 100K. We report the average and standard deviation across 10 seeds. Each
agent is trained on each task for 1K epochs and evaluated every 20 epochs across the entire training
sequence.

D Ablation Study: Robustness to Task Order

Table 9 details the average performance (AvgP) and average forgetting (AvgF) scores for each of the
five remaining permutations of the SimpleCrossing (SC), LavaCrossing (LC) and DoorKey (DK)
tasks. Results (means and standard deviations over 10 seeds) are reported for both the tight 100K
buffer and the larger 2M buffer.

ProtoCRL delivers the highest AvgP in four of the five permutations when memory is scarce and
remains either best or a close second with the 2M buffer. Additionally, ProtoCRL consistently keeps
forgetting low, or even negative, while maintaining its AvgP advantage. NoET occasionally records
the numerically smallest forgetting value, but this always coincides with a lower AvgP (except for
LCßDKßSC, 100K), indicating that it “forgets less” largely because it never learns the later tasks
as well. GoalET and ET frequently exhibit positive forgetting, indicating that the manual event
tables needs much more careful tuning to work with each task order.

Overall, these permutation-specific findings, together episodic return curves for every permutation
(see Figures 7–11), reinforce the aggregate analysis in Section 5.3: automatically constructed pro-
totype event tables allow ProtoCRL to sustain high return regardless of task order, even with low
memory budgets, a property that hand-crafted event tables fail to guarantee.

ProtoCRL: Prototype-based Network for Continual Reinforcement Learning

Table 9: Average performance (AvgP) and average forgetting (AvgF) on the remaining task-order
permutations of the three MiniGrid tasks: SimpleCrossing (SC), LavaCrossing (LC), and DoorKey
(DK). Values are means and standard deviations over 10 seeds. Values in bold identify the best
values for AvgP and AvgF, while the underlined values are the second best.

Task order Method 100K 2M
AvgP AvgF AvgP AvgF

DK→SC→LC

NoET −6.55± 4.89 1.60± 6.48 −2.07± 3.42 −0.76± 6.77
GoalET −9.31± 0.49 3.36± 4.14 −4.15± 2.13 −1.12± 3.90
ET −8.96± 1.47 3.04± 4.37 −5.54± 2.97 0.46± 4.50
ProtoCRL −5.14± 3.09 0.20± 4.74 −2.08± 2.72 −0.39± 4.65

SC→LC→DK

NoET −6.79± 4.22 0.24± 7.78 −5.22± 2.91 −0.99± 5.47
GoalET −8.62± 0.48 1.73± 3.99 −5.54± 0.49 0.72± 4.24
ET −8.97± 0.83 2.08± 4.46 −7.59± 0.50 1.39± 3.52
ProtoCRL −5.88± 0.83 0.36± 4.63 −1.07± 1.30 −2.38± 3.40

SC→DK→LC

NoET −6.54± 4.89 −2.97± 4.20 −5.87± 3.38 −3.33± 2.46
GoalET −9.66± 0.49 0.47± 0.66 −6.55± 2.44 −0.92± 1.30
ET −8.27± 1.76 −1.38± 1.96 −5.86± 2.24 −1.78± 1.83
ProtoCRL −5.03± 1.45 −2.47± 1.77 −1.24± 0.75 −4.88± 3.46

LC→DK→SC

NoET −5.24± 3.49 −1.53± 2.17 −5.53± 2.11 −1.03± 2.23
GoalET −7.59± 1.75 0.35± 0.49 −1.05± 1.96 −2.06± 2.91
ET −7.93± 1.47 −0.35± 0.49 −2.43± 0.99 −2.07± 2.91
ProtoCRL −6.55± 2.44 −0.69± 0.98 −3.82± 2.22 −0.50± 1.91

LC→SC→DK

NoET −6.42± 4.75 −2.24± 5.87 −9.16± 0.88 2.27± 4.73
GoalET −9.32± 0.48 2.08± 3.68 −3.12± 0.50 −1.37± 4.32
ET −10.00± 0.00 2.42± 3.42 −3.49± 0.95 −1.33± 4.27
ProtoCRL −4.84± 0.01 0.01± 4.22 −2.70± 2.74 −0.78± 1.93

0 500 1000 1500 2000 2500 3000
Training Epoch

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

Ep
iso

de
 R

et
ur

n

(a) SimpleCrossing task.

0 500 1000 1500 2000 2500 3000
Training Epoch

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

Ep
iso

de
 R

et
ur

n

(b) LavaCrossing task.

0 500 1000 1500 2000 2500 3000
Training Epoch

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

Ep
iso

de
 R

et
ur

n

NoET-2M
NoET-100K
ProtoCRL-2M
ProtoCRL-100K
GoalET-2M
GoalET-100K
ET-2M
ET-100K

(c) DoorKey task.

Figure 8: Episode return on SimpleCrossing-LavaCrossing-DoorKey task sequence using memory
buffers with size 2M and 100K. We report the average and standard deviation across 10 seeds. Each
agent is trained on each task for 1K epochs and evaluated every 20 epochs across the entire training
sequence.

Reinforcement Learning Journal 2025

0 500 1000 1500 2000 2500 3000
Training Epoch

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

Ep
iso

de
 R

et
ur

n

(a) SimpleCrossing task.

0 500 1000 1500 2000 2500 3000
Training Epoch

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

Ep
iso

de
 R

et
ur

n

(b) DoorKey task.

0 500 1000 1500 2000 2500 3000
Training Epoch

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

Ep
iso

de
 R

et
ur

n

NoET-2M
NoET-100K
ProtoCRL-2M
ProtoCRL-100K
GoalET-2M
GoalET-100K
ET-2M
ET-100K

(c) LavaCrossing task.

Figure 9: Episode return on SimpleCrossing-DoorKey-LavaCrossing task sequence using memory
buffers with size 2M and 100K. We report the average and standard deviation across 10 seeds. Each
agent is trained on each task for 1K epochs and evaluated every 20 epochs across the entire training
sequence.

0 500 1000 1500 2000 2500 3000
Training Epoch

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

Ep
iso

de
 R

et
ur

n

(a) LavaCrossing task.

0 500 1000 1500 2000 2500 3000
Training Epoch

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

Ep
iso

de
 R

et
ur

n

(b) DoorKey task.

0 500 1000 1500 2000 2500 3000
Training Epoch

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

Ep
iso

de
 R

et
ur

n

NoET-2M
NoET-100K
ProtoCRL-2M
ProtoCRL-100K
GoalET-2M
GoalET-100K
ET-2M
ET-100K

(c) SimpleCrossing task.

Figure 10: Episode return on LavaCrossing-DoorKey-SimpleCrossing task sequence using memory
buffers with size 2M and 100K. We report the average and standard deviation across 10 seeds. Each
agent is trained on each task for 1K epochs and evaluated every 20 epochs across the entire training
sequence.

0 500 1000 1500 2000 2500 3000
Training Epoch

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

Ep
iso

de
 R

et
ur

n

(a) LavaCrossing task.

0 500 1000 1500 2000 2500 3000
Training Epoch

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

Ep
iso

de
 R

et
ur

n

(b) SimpleCrossing task.

0 500 1000 1500 2000 2500 3000
Training Epoch

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

Ep
iso

de
 R

et
ur

n

NoET-2M
NoET-100K
ProtoCRL-2M
ProtoCRL-100K
GoalET-2M
GoalET-100K
ET-2M
ET-100K

(c) DoorKey task.

Figure 11: Episode return on LavaCrossing-SimpleCrossing-DoorKey task sequence using memory
buffers with size 2M and 100K. We report the average and standard deviation across 10 seeds. Each
agent is trained on each task for 1K epochs and evaluated every 20 epochs across the entire training
sequence.

