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Summary
In this work, we investigate means of reducing the computation costs to finetune pre-trained

morphology-aware policies to target morphologies with on-policy learning. Morphology-
aware learning is a paradigm which attempts to learn several optimal policies across agent
embodiments in a single neural network. A limitation of prior works have been focusing on
end-to-end finetuning to adapt these policies to a target morphology. We address this gap by
exploring parameter efficient techniques used successfully in other domains such as computer
vision or natural language processing to specialize a policy. Our results suggest that using as
few as 1% of total learnable parameters as the pre-trained model, we can achieve statistically
significant performance improvements.

Contribution(s)
1. We conduct an extensive series of experiments to compare the effects of parameter-efficient

finetuning methods in the morphology-aware policy learning setting.
Context: Prior works which include transfer learning experiments have generally focused
on end-to-end finetuning or else at most consider low-rank adapter layers (LoRA), a form
of delta weight learning, as part of their experiments (Octo Model Team, 2024). When
LoRA has been used, experiments have only been conducted only in the behavioral cloning
setting. This is a limitation in the literature because a wide variety of parameter-efficient
techniques have been investigated in other fields such as prefix tuning in large language
models (Li & Liang, 2021) and direct-finetuning in computer vision (Lee et al., 2023).

2. We are the first work to successfully learn policies using prefix tuning methods in the rein-
forcement learning settings.
Context: Prefix tuning has been almost exclusively investigate in supervised learning set-
tings such as natural language processing (Li & Liang, 2021), computer vision (Nie et al.,
2023), or continual learning (Wang et al., 2022). The closest related to our work is Liu et al.
(2024) who investigate prefix tuning techniques in the imitation learning setting and across
tasks as opposed to agent morphology.

3. Our experiments reveal a number of trends in the morphology-aware policy setting. Gener-
ally we find that both input-adapter and prefix tuning methods converge to behaving similar
to tuning the decoder head of the base model. Prefix tuning is particularly sensitive to hyper-
parameter choices where some configurations notably affect performance at the beginning
of training and never recover. Generally, more parameters are always beneficial to improv-
ing policy performance in the tasks we considered.
Context: Other such prescriptive research has been done in computer vision or language
when investigating different PEFT techniques. The work of Lester et al. (2021) demon-
strated the potential of prefix tuning over a number of factors including prompt initializa-
tion and number of prompt tokens. The work of Liu et al. (2022) highlights the benefits of
injecting prompts in multiple layers in transformers. The work of Lee et al. (2023) suggests
that intelligent layer different types of domain shifts in computer vision.
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Abstract

Morphology-aware policy learning is a means of enhancing policy sample efficiency by
aggregating data from multiple agents. These types of policies have previously been
shown to help generalize over dynamic, kinematic, and limb configuration variations
between agent morphologies. Unfortunately, these policies still have sub-optimal zero-
shot performance compared to end-to-end finetuning on morphologies at deployment.
This limitation has ramifications in practical applications such as robotics because fur-
ther data collection to perform end-to-end finetuning can be computationally expensive.
In this work, we investigate combining morphology-aware pretraining with parameter
efficient finetuning (PEFT) techniques to help reduce the learnable parameters neces-
sary to specialize a morphology-aware policy to a target embodiment. We compare
directly tuning sub-sets of model weights, input learnable adapters, and prefix tuning
techniques for online finetuning. Our analysis reveals that PEFT techniques in conjunc-
tion with policy pre-training generally help reduce the number of samples to necessary
to improve a policy compared to training models end-to-end from scratch. We further
find that tuning as few as less than 1% of total parameters will improve policy perfor-
mance compared the zero-shot performance of the base pretrained a policy.

1 Introduction

Learning agents that can reuse knowledge across tasks demonstrate improved sample efficiency and
better learning capabilities (Reed et al., 2022; Driess et al., 2023; Deng et al., 2023). Deep reinforce-
ment learning (RL), despite its potential, faces significant challenges when applied to multiple tasks
due to its sensitivity to even minor environmental variations and sample inefficiency (Henderson
et al., 2018; Du et al., 2020). Prior research suggests that even subtle dynamic or kinematic differ-
ences can notably affect policy performance (Chen et al., 2018; Schaff et al., 2019). This brittleness
and inefficiency create substantial barriers when developing versatile agents that can adapt to new
scenarios. Morphology-aware learning is one means of enabling knowledge transfer across different
physical agent configurations. Morphology adaptation techniques can improve policy robustness
and sample efficiency by explicitly accounting for agent embodiments.

Morphology-aware policy learning incorporates agent morphology knowledge by representing em-
bodiments as graphs processed through GNNs (Scarselli et al., 2009) or transformers (Vaswani et al.,
2017). Representing agents as graphs is valuable because it enables policies to represent agents with
changing limb configurations, and thus varying action spaces (Wang et al., 2018; Huang et al., 2020;
Kurin et al., 2021). Research has focused on effective graph structure utilization through adjacency
matrices (Hong et al., 2022; Li et al., 2024), feature grouping (Trabucco et al., 2022; Xiong et al.,
2023; Sferrazza et al., 2024), and geometric symmetries (Chen et al., 2023). Morphology-aware
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learning can improve sample efficiency as supported by theoretical sample bounds in multi-task
learning (Brunskill & Li, 2013; Maurer et al., 2016; D’Eramo et al., 2020; Bohlinger et al., 2025),
with empirical results suggesting policies optimized over morphology distributions outperform spe-
cialized ones (Gupta et al., 2022; Xiong et al., 2023). Applications include autonomous robot design
(Pathak et al., 2019; Luck et al., 2020; Yuan et al., 2022) and large-scale control models (Bousmalis
et al., 2024; Open X-Embodiment Team, 2024; Octo Model Team, 2024).

Unfortunately, deploying morphology-aware policies on new embodiments continues to be chal-
lenging because of the employment of computationally inefficient transfer learning techniques. Prior
works suggest that pre-training morphology-aware policies provide better policy initialization when
transferring, but additional finetuning is necessary to elicit optimal performance on new morpholo-
gies (Gupta et al., 2022; Xiong et al., 2023; Furuta et al., 2023). These works have focused mainly
on end-to-end finetuning algorithms, which can be computationally intensive for larger monolithic
policies. In resource-constrained settings like robotics (Huai et al., 2019; Neuman et al., 2022),
reducing further computation for learning is referable for transferring policies.

In this work, we investigate parameter-efficient finetuning (PEFT) algorithms as a solution to im-
prove policy transfer performance with reduced computational resources. PEFT algorithms use
subsets of a model’s parameters to finetune a pre-trained neural network or otherwise introduce a
small set of new learning parameters that specialize to a target task (Dong et al., 2023; Kirk et al.,
2023). The latter approach is more flexible because these new parameters can be introduced in ways
that do not directly change the pre-trained model (Tsai et al., 2020). Researchers have shown that
PEFT methods work well on large networks in natural language tasks (Li & Liang, 2021) and in
computer vision problems (Lee et al., 2023) while reducing additional computation costs to perform
gradient updates on a small set of PEFT parameters compared to the entire model. Closely related
to our work is the work of Liu et al. (2024), who investigate PEFT methods in continual imitation
learning. Our research is different as we deal with morphology transfer and evaluate PEFT methods
with deep RL, which presents other challenges from supervised learning.

In summary, the primary contribution of our work is the analysis of several PEFT techniques for
morphology-aware policy transfer. Our results demonstrate that it is generally achievable to sub-
stantially reduce the total parameters used and achieve statistically measurable improvement over
zero-shot performance, even with strong initial zero-shot performance. Using even 1% total learn-
able parameters relative to the base model’s total parameter count leads to measurable performance
improvement while significantly reducing learning computation costs compare to end-to-end fine-
tuning. As part of our work, we show how input-learnable PEFT algorithms preserve strong zero-
shot capabilities as a performance floor and consistently outperform these initial capabilities as train-
ing progresses, making them particularly suitable for online reinforcement learning scenarios with
limited data collection opportunities. This research has potential in real-world applications like
robotic learning. Our results provide practical guidelines for researchers to determine which PEFT
techniques best balance sample efficiency, computational requirements, and performance gains for
their specific deployment settings.

2 Background

2.1 Contextual Markov Decision Process

Morphology-aware policy learning can be understood as a form of contextual Markov decision pro-
cess (CMDP) (Hallak et al., 2015). A CMDP is characterized by a distribution C, where for c ∼ p(C)
we have an induced tuple M(c) = (Sc,Ac, pc(s′|s, a), r, pc(s0)). For each c, Sc is a finite set of
states, pc(s0) represents the initial state distribution, and Ac is a finite set of actions. The state tran-
sition probability function, pc(s′|s, a) = Pr(st+1 = s′ | st = s, at = a; c), defines the probability
of transitioning from state s to state s′ when action a occurs. The reward function, rc(s, a, s′), rep-
resents the immediate value of transitioning from s to s′ due to a. A policy π : S × C → P(A) is a
mapping from states and contexts to a probability distribution over actions, where π samples actions
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a ∼ π(s, c) to transition following pc(s′|s, a). For a given CMDP, the objective is to maximize the
expected sum of rewards over the distribution of contexts,

π⋆(s, c) = argmax
π∈Π

Ep(c)[Gc],

where Gc = Epc(τ)[
∑T

t=0 γ
tr(st, at)] is the expected cumulative reward for a given context with

discount factor γ ∈ [0, 1). We only consider the finite horizon case where the tasks will termi-
nate after T ∈ N+ steps, and pc(τ) = pc(s0)

∏T
t=0 π(st, c)Pc(st+1|st, at) is the distribution over

trajectories in the environment.

In our work, the context c is the morphology information, which we represent as a sequence c ∈
Rl(c)×dc

which has l(c) ∈ N+ limbs and dc ∈ N+ features. Each token ci contains information
such as the limb adjacency matrix, link dynamic values (mass, friction, etc.), and link kinematic
information (e.g. joint limits and values). We optimize MDPs with continuous action and state
spaces, a ∈ Rl(c) and s ∈ Rl(c)×ds

with ds ∈ N+ are state features. This differs from typical
CMDPs which usually assume a fixed dimensionality of states and actions.

2.2 Transformers

An essential component of the morphology-aware policies in previous works are transformer models
(Gupta et al., 2022; Vaswani et al., 2017; Xiong et al., 2023). We treat our data as an observation se-
quence o ∈ Rl(c)×d with l(c) limb embeddings with d ∈ N+ features. Each token oi = [si; ci] con-
tains limb-level state and context variables of a morphology for i ∈ [1, 2, ..., l(c)]. A morphology-
independent linear transformation projects the limb-specific features to a shared embedding space
ō = LN(oW embed +W position[1 : l]), where W embed ∈ Rd×h is a linear projection operation that
transforms the input features to the hidden dimension h ∈ N+. W position ∈ RL×h represents the
positional embeddings up to some assumed max sequence length L ∈ N+, where only the first l
columns of W position are used. LN refers to the LayerNorm function (Ba et al., 2016).

The major component of transformers are the self-attention mechanism, which generates weighted
combinations of the sequence ō, f(ō) = softmax(ϵQKT )V. We call Q = ōWQ, V = ōWV ,
and K = ōWK the query, key, and value, respectively, and ϵ = 1/

√
h is a constant cho-

sen to prevent the dot products from causing extremely peaked softmax distributions. The soft-
max operator, which converts vectors of real numbers to vectors of probabilities, softmax(o)i =

exp (oi)/
∑l

j=1 exp(oj), defines the weight each vector oi contributes. The parameter set W attn =

{WQ,WV ,WK} ∈ {Rh×h,Rh×h,Rh×h} are linear projections. We learn model parameters with
gradient descent. Self-attention is followed by a nonlinear transformation function f(ō) and residual
connection to form transformer layer Ti(ō) = W outσ(W in(LN(ō+f(ō)))+LN(f(ō))+ ō, where
W out,W in ∈ Rh×h, and σ are ReLU functions.

3 Efficient Morphology Transfer Learning

This section discusses our work investigating the efficacy of PEFT algorithms for morphology-
aware online RL. Control policies can require immense computation and physical resources to learn
for real world systems (e.g. robotics). If policies can explicitly account for agent morphology, this
can reduce computation costs by aggregating knowledge between morphologies and improve the
policy’s generalization capabilities to new embodiments.

Unfortunately, a morphology-aware policy may not elicit the optimal performance of a target mor-
phology due to these generalization capabilities. For real-world applications, it is likely necessary
that pretrained model components continue to learn to maximize task performance. Reducing the
total necessary learnable parameters is thus significant to achieving this result because, at deploy-
ment, it may not be feasible to access sufficient computation resources to perform learning updates.
These limitations motivate the potential of PEFT solutions, which are applicable in varying resource
limitations when deploying these policies.
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We formalize the parameter efficient finetuning problem by first assuming access to a trained policy
π(s, c ; θ⋆) with optimized parameters θ⋆. For a new morphology c̄ ∼ p(C), we expect this policy to
have some initial performance Eπ(s,c̄;θ⋆)[Gc̄] which we call the zero-shot policy performance. The
goal of our work is to optimize new parameters ϕ to maximize the cumulative reward objective,

ϕ⋆ = argmax
ϕ

Eπ(s,c̄ ;θ⋆∪ϕ)[Gc̄(s)],

where the new parameters are optimized only for the specific morphology c̄. We hypothesize that
learning a small set ϕ will perform measurably better than the base policy’s zero-shot performance,
Eπ(s,c̄ ;θ⋆∪ϕ⋆)[Gc̄(s)] > Eπ(s,c̄ ;θ⋆)[Gc̄(s)] where |ϕ| ≪ |θ|. We investigate this problem learning
policies using the Metamorph framework and then finetuning this pre-trained policy with one of
several PEFT techniques, which describe next.

3.1 Metamorph Framework

Metamorph is morphology-aware learning framework that is an instantiation of the CMDP formu-
lation we described in Section 2. In Metamorph, a policy is trained over a set of 100 training
morphologies.1 Each morphology c induces an observation sequence o = [o1,o2,o3, ...,ol(c)] for
each time step. To account for varying l(c) ∈ N+ between morphologies the policy is a transformer
(Section 2). The transformer encoders hidden representations h ∈ Rl(c)×h with h ∈ N+ hidden fea-
tures per limb. Actions are predicted with a multi-layer perceptron per limb as ai = gθ(hi), where
g : H → A is a mapping from hidden representations to actions. Here, ai ∈ R while hi ∈ Rh. Hav-
ing a token per limb enables a metamorph policy to adapt to varying limb configurations in practice.
The policy πθ(o) is optimized using Proximal Policy Optimization (Schulman et al., 2017).

We chose to use this framework because it uses transformer-based policies as the morphology-aware
policy. Several PEFT techniques we consider in this paper are designed specifically for use with
transformer models. The framework code is open sourced, making it accessible to researchers to
reproduce our results and compare other PEFT techniques in potential future work. Several works
have also built off this repository to improve the base-architecture design (Xiong et al., 2023; 2024).

Figure 1: A visualization of the various PEFT techniques considered in this paper. We investigate
applying PEFT techniques independently from each other.

3.2 Parameter Efficient Finetuning Across Morphologies

We group PEFT approaches as either direct, input, or prefix adaptation techniques. Direct adaptive
PEFT approaches modify some subset of the weights ϕ ⊆ θ⋆ or else add learnable delta weights

1We explicitly mention training on 100 morphologies because that is done in the original paper. Any number of training
morphologies can be used in practice.
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Ŵ = W + ∆W . Input-adaptive PEFT approaches perform some transformation of the inputs to
elicit the optimal performance in the model. Prefix tuning prepends a learnable sequenes of tokens
to each input sequence. We visualize the various types of PEFT algorithms evaluated in Figure 1.

We consider tuning subsets of θ⋆ for direct adaptive PEFT learning. We list the combinations studied
and their experiment result identifiers in Appendix A, for example Layer 5 represents directly tuning
the final transformer layer. For attention and nonlinear transformer layers, we used low-lank adapters
(LoRA) (Hu et al., 2022), to learn ∆W ∈ Rh1×h2

= AB, where A ∈ Rh1×r and B ∈ Rr×h2

are
low-rank matrices of rank r ∈ N+ to reduce learnable weights for the weight dimensions h1 ∈
N+, h2 ∈ N+. We describe LoRA initialization details in the Appendix B.

For input-adaptive PEFT approaches, we consider learning an extra input adapter layer. We consider
an input adapter layer that modifies the policy observation as h : Rdc → Rdc

, so that policy uses
modified inputs a ∼ πθ⋆(h(o)). We consider two variations of the function h where one is a
direct nonlinear transform h(o) = Houtσ(Hino) or else a nonlinear transformation with a residual
connection h(o) = o+Houtσ(Hino), with learnable weights ϕ = {Hin, Hout}. We use a hidden
layer size of 256 units. The input adapter transforms observations to elicit better performance from
a frozen pre-trained model.

Prefix-tuning is a PEFT approach where a set of learnable tokens are pre-pended to the input se-
quence to elicit desired outputs from the model (Li & Liang, 2021). These prefixes are a se-
quence ϕ = [w1,w2, ...,wm] of m ∈ N+ tokens, where wi ∈ Rh is a vector. These tokens
are then pre-pended to the observations oprefix = [ϕ;o1,o2, ...,ol(c)] and otherwise processed nor-
mally by the transformer layers. Tokens optionally can be pre-pended deeper in the model (e.g.,
oprefix
l = [ϕ;T l(ol−1)] for layer l > 1) or multiples prefix sets can be used (e.g., ϕ = {ϕ1, ϕ2, ..., ϕl}

would be learnable prefixes for each layer).

4 Experiments

(a) Flat Terrain (b) Variable Terrain (c) Obstacle Avoidance

Figure 2: Locomotion environments. Diagrams are reproduced from Gupta et al. (2022).

Morphology 1 Morphology 2∗ Morphology 3 Morphology 4∗∗ Morphology 5∗ Morphology 6∗∗

Figure 3: The six testing morphologies used in our evaluation. Morphology numbers correspond to
those shown in relevant results. Morphologies {2, 4}∗ and {4, 6}∗∗ have the same limb configura-
tions but different kinematic and dynamic parameters.

This research aims to evaluate the efficacy of PEFT approaches for online learning on target mor-
phologies. These experiments strive to address the following research questions: (1) How effectively
does each PEFT learning approach compare between each other and end-to-end finetuning?
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(2) What is the relationship between the total number of learnable parameters and the performance
when adapting to target morphologies? (3) What are the relevant factors for using prefix tuning and
LoRA in online reinforcement learning? Our results contribute to understanding the efficacy of these
approaches in online learning, and can help guide future research developing PEFT algorithms for
morphology-aware policy transfer. As part of our experiments, we also compare to learning a policy
from scratch to determine whether or not if pretraining does help policy transfer.

We report experimental findings on the efficacy of different forms of parameter-efficient finetuning
in morphological transfer. We use three locomotion tasks that differ in the terrain types shown in
Figure 2; these include a flat surface, randomized variable terrain, and rectangular obstacle avoid-
ance. Each task’s reward function emphasizes running as fast as possible to the right. To evaluate
the PEFT techniques, we randomly sampled six morphologies from the Metamorph test dataset
(Gupta et al., 2022). We visualize the testing morphologies in Figure 3 which include four unique
limb configurations and two sets of varying kinematic and dynamic differences. We evaluate PEFT
techniques on eighteen environment-morphology combinations.

As mentioned in Section 3, we generate our pre-trained models using the Metamorph framework
with default hyperparameters (Gupta et al., 2022). We train five base models using one hundred
training morphologies for ten million time steps for each environment. We then apply each PEFT
approach with the pre-trained models on the six test morphologies for five million timesteps each.
We repeat experiments for five random seeds for every set of PEFT hyperparameters we report. For
each seed, we use one of the pre-trained models without replacement. We use the same learning
hyperparameters for the pre-training phase, except we do not use Dropout in the transformer em-
bedding. Previous research shows that Dropout is helpful for Metamorph pre-training (Xiong et al.,
2023), but in preliminary evaluations, we found Dropout was not helpful for finetuning models.

4.1 Best Performances Across Methods

In this section, we report results towards answering our first two research questions on the efficacy of
different PEFT techniques. We report results in Figure 4 which shows the performance of different
PEFT techniques. We normalize cumulative rewards after performing parameter-efficient finetun-
ing by the pre-trained policy’s zero-shot performance averaging these scores across the six testing
morphologies. The x-axis shows percentage of learnable parameters to the base-models original
parameter counts. We include the original cumulative reward scores by best PEFT hyperparameter
configuration in Appendix C.

Our results reveal a number of notable trends across PEFT approaches. An interesting finding sug-
gests that morphology-pretraining utility is dependent on task complexity. On the flat terrain tasks,
learning from scratch is comparable to end-to-end finetuning but between variable terrain or ob-
stacle avoidance learning-from-scratch performs substantially worse. Across morphologies, results
suggest that the best input-learnable configurations behave similarly to directly tuning the input Em-
bedding and Decoder, suggesting some equivalence between the two approaches for the model sizes
used in our experiments. We observed substantial performance improvements tuning just the fifth
transformer block, suggesting that if direct model access is possible and a more generous computa-
tion budget is available, this layer substantially influences the policy performance. When possible,
results suggest more learning parameters are generally favorable given end-to-end finetuning results.

4.2 Ablation of LoRA and Prefix Tuning

In this section, we report results comparing different hyperparameter choices for LoRA and Prefix
approaches to address our third research question. We include additional results in Appendix D. The
reported results represent the consistent behaviours observed between the evaluations in each envi-
ronment. Figure 5b shows the results of using LoRA in either the nonlinear transformations (MLP)
or attention layer (Attn.) of the fifth transformer layer. The results show that across morphologies
for a single layer’s full rank matrices are necessary. Applying LoRA to the nonlinear transformation
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Figure 4: Percentage of trainable ratios to total base model parameters vs achieved normalized re-
sults. Results suggest total learnable parameters are a contributing factor in final policy performance.

is preferable for adaption to elicit optimal performance, but results suggest that directly tuning a
single layer can be better to avoid introducing more learning parameters.

Prefixing tuning results have more nuanced conclusions. We consider three major factors for ef-
fective prefix usage: (1) the number of tokens, (2) the injection layer, and (3) comparing token
initialization approaches. Each factor has been shown to substantially impact performance (Ding
et al., 2023; Li & Liang, 2021). For (3), we propose a second pretraining stage to learn morphology-
aware tokens. This second stage repeats the Metamorph training but keeps the base model frozen
while learning the tokens.

We generally observe that more learnable parameters are beneficial, such as by increasing the num-
ber of tokens used (see Figure 5a), which agrees with our other findings previously discussed. In our
experiments, a complication with prefix tuning is that introducing un-trained tokens can negatively
impact policy zero-shot performance. This performance drop can occur because the base model is
not trained jointly with the prefix which initially are noisy observations. This problem is largely
missed in supervised learning applications because performance is evaluated after training. In con-
trast, we care for performance during training especially because it’s preferable policies have strong
initial performance for real-world systems to avoid consequences of poor-performing policies (e.g.,
damage to the hardware). We conducted experiments adding 50 prefix tokens as input before differ-
ent transformer blocks to investigate their impact on learning performance. We compared different
token initializations, including zero vectors, small Gaussian noise (N(0; 10−4)), or the pretrained
tokens as previously described in this section. We include results when learning from scratch to
understand the value of pretraining for sample efficiency. Figure 6 show’s learning curves.

Generally, we observed that the initial zero-shot performance is often negatively affected by zero
or random initialization approaches, especially when introducing prefix tokens to the earlier trans-
former layers. This result suggests that deep layers are less sensitive to the base models’ pertur-
bations and better steer feature representations for target morphologies. Interestingly, pre-trained
prompting embeddings significantly improved policy performance during learning compared to
other initialization approaches, especially on Morphology #3, which we found most PEFT ap-
proaches struggled to learn. This demonstrates that prefix initialization can mitigate loss in zero-shot
performance during finetuning in online learning.
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(a) Number of randomly initialized prefix tokens (b) Lora in different layers of fifth transformer block.

Figure 5: Ablation studies on prefix tokens and LoRA in variable terrain.

Figure 6: Choice of initialization and injection layers of prefix tuning in variable terrain. Initial
zero-shot results of E2E learning are plotted to compare affect of prefixes.

5 Conclusions and Future Work

In this paper, we have investigated the impact of PEFT approaches for finetuning morphology-
aware policies. We demonstrate that in most cases, one should train as many parameters online
as possible to elicit the best performances of a pre-trained policy. Our analysis reveals that many
PEFT approaches provide substantial benefits in deeper layers, so tuning the final transformer block
is likely effective for policy finetuning. In scenarios where directly finetuning the base model is
difficult, learnable inputs perform similarly to tuning either the input embeddings or decoder layers
of the transformer-based policy.

There are several promising future research directions to extend our findings. One crucial factor,
particularly for prefix tuning, is the scale of the model. Many reported successes of PEFT approaches
are on models with tens of millions to billions of parameters (Li & Liang, 2021). In this work, we
used relatively small models (∼3.5 million parameters at most between policy and value function
in PPO). We also focused on vanilla transformer architectures used in Metamorph, but researchers
have proposed variations for morphology-aware policies (Trabucco et al., 2022; Xiong et al., 2023).
Given the promise of PEFT techniques in RL, we see much potential for future development in
PEFT development for online learning.
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Broader Impact Statement

Although our work focuses on the positives of input adapter and prefix tuning techniques, an undesir-
able consequences of this work is revealing a means of adversarially attacking deep learning-based
control policies. In AI security research this is called adversarial reprogramming in which models
are repurposed for nefarious uses (Elsayed et al., 2019; Zheng et al., 2023; Englert & Lazic, 2022).
Our results show that input adapter finetuning approaches can measurably affect policy performance
without changing the base policy weights. We hypothesize that these techniques could be used to
re-purpose pre-trained policies for other tasks, potentially in adversarial ways. Some scenarios we
imagine this could arise is through benign adversarial action decisions by the pre-trained policy
(delaying purchase in investment agent systems, adding extra torque during control, etc.). Given
these implications, we caution that research in PEFT techniques should also consider the negative
consequence of using input adapter or prefix tuning approaches for control tasks.
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Table 1: Layer tuning parameters and experiment identifiers

Layer Tuned Parameters ϕ Exp. Identifier

End-to-end θ∗ E2E
Transformer layers {Ti; i ∈ [1, L]} Layer 5
Attention layers {W attn

i ; i ∈ [1, L]} Lora
Nonlinear transformation {W in

i ,W out
i ; i ∈ [1, L]} Lora

Input Embedding {W embed,W position} Embedding
Decoder {W decoder

i ; i ∈ [1, Ldec]} Decoder

Supplementary Materials
The following content was not necessarily subject to peer review.

A Direct Finetuning Configurations

In our experiments, we consider various finetuning scenarios in our evaluations. For direct finetun-
ing methods, we include combinations of subsets we finetune online in Table 1. Our evaluations
included subsets of the direct tuning configurations of weight combinations. For example, Input
Embedding includes combinations in which just W embed, W position and both {W emebed,W position} are
tuned online during training.

B LoRA Initialization Details

When using LoRA in our experiments, we initialize B to small Gaussian noise bij ∼ N(0; 10−4)
and A to a zero matrix which eliminates LoRA adapters affect on the zeros-hot performance at the
beginning of training. LoRA was included as a finetuning method because we want to reduce the
total number of parameters used which LoRA can explicitly do via the rank.

C Morphology-Aware Policy Performance

This section reports results for the best-performing PEFT algorithms for each significant grouping
of methods we consider. Table 2 show flat terrain results, Table 3 shows variable terrain results, and
Table 4 shows results for obstacle avoidance. These results report statistical significance when com-
paring results to zero-shot pretraining performance and training policies from scratch. Surprisingly,
training from scratch worked surprisingly well in flat terrain. Still, most PEFT techniques perform
better after five million samples than training from scratch on more complex tasks.

D Prefix Tuning Additional Results

In this section, we include plots similar to those in the main paper for our prefix-tuning ablation
experiments. Flat terrain results are shown in Figure 7 and obstacle avoidance in Figure 8. We also
show similar ablation results for LoRA and prefix tuning for flat terrain in Figure 9 and obstacle
avoidance in Figure 10.
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Table 2: Flat Terrain Cumulative Rewards for each testing morphology. Values show mean (top)
and standard deviation (bottom). † statistical significance compared to Zero Shot and ‡ statistical
significance to Scratch (p < 0.01). P-values and the hypothesis test run (T: t-test, M: Mann-Whitney)
comparing against Zero shot and Scratch results.

Morphology 1 2 3 4 5 6
Full Model 4281.46†‡ 4552.77†‡ 1635.82† 5545.44†‡ 5019.71†‡ 5558.61†‡

±181.77 ±239.11 ±405.64 ±280.16 ±143.13 ±286.80

Layer 4 3761.11† 4121.84† 1491.06† 5183.88†‡ 4666.95†‡ 5192.58†‡

±102.11 ±120.48 ±230.10 ±167.91 ±255.22 ±152.33

Lora 3798.90† 4208.41†‡ 1639.69† 5223.47†‡ 4761.58†‡ 5223.47†‡

±138.55 ±77.12 ±41.31 ±174.25 ±210.57 ±174.25

Decoder Only 2732.26†‡ 3112.46†‡ 1398.42† 4868.54‡ 3404.67†‡ 4858.76‡

±71.35 ±221.65 ±210.79 ±263.81 ±92.07 ±248.01

Embeding 3308.43†‡ 3684.66† 1554.28† 4986.16‡ 4062.05† 4997.82‡

±115.83 ±104.99 ±190.82 ±183.78 ±248.20 ±191.07

Input Adapt 3231.84†‡ 3529.41† 1510.46† 4927.72‡ 3946.59† 4963.53‡

±100.03 ±104.58 ±242.36 ±225.75 ±220.78 ±222.35

Prefix 3332.33†‡ 3750.54† 1604.92† 5064.15‡ 4199.89† 5066.47‡

±126.28 ±201.62 ±336.88 ±133.91 ±276.27 ±137.63

Scratch 3754.15† 3840.33† 2191.50† 3727.29 4085.82† 3608.55
±210.65 ±211.59 ±624.72 ±733.60 ±217.00 ±777.33

Zero Shot 1867.58 1703.19 253.70 4392.08 1849.41 4431.93
±82.55 ±447.69 ±188.25 ±434.01 ±338.10 ±405.78

P-Values comparing against Zeroshot Performance†

Full Model 9.1× 10−9(T ) 3.6× 10−6(T ) 2.6× 10−4(T ) 2.1× 10−3(T ) 1.3× 10−7(T ) 1.9× 10−3(T )
Layer 4 2.3× 10−9(T ) 6.2× 10−6(T ) 3.3× 10−5(T ) 9.3× 10−3(T ) 9.7× 10−7(T ) 8.0× 10−3(T )
Lora 9.8× 10−9(T ) 4.1× 10−6(T ) 5.3× 10−7(T ) 7.5× 10−3(T ) 4.7× 10−7(T ) 7.1× 10−3(T )
Decoder Only 2.5× 10−7(T ) 4.9× 10−4(T ) 4.0× 10−5(T ) 9.7× 10−2(T ) 2.1× 10−5(T ) 1.1× 10−1(T )
Embeding 3.7× 10−8(T ) 2.5× 10−5(T ) 7.9× 10−3(M) 3.6× 10−2(T ) 5.7× 10−6(T ) 3.6× 10−2(T )
Input Adapt 2.7× 10−8(T ) 4.6× 10−5(T ) 7.9× 10−3(M) 6.0× 10−2(T ) 6.4× 10−6(T ) 5.1× 10−2(T )
Prefix 5.1× 10−8(T ) 3.2× 10−5(T ) 1.1× 10−4(T ) 1.8× 10−2(T ) 4.9× 10−6(T ) 1.8× 10−2(T )
Scratch 0.0(T ) 2.9× 10−8(T ) 2.7× 10−5(T ) 1.1× 10−1(T ) 2.2× 10−9(T ) 5.9× 10−2(T )
Zero Shot 1.0(T ) 1.0(T ) 1.0(T ) 1.0(T ) 1.0(T ) 1.0(T )

P-Values comparing against Scratch Performance‡

Full Model 6.6× 10−4(T ) 1.1× 10−4(T ) 1.2× 10−1(T ) 2.5× 10−4(T ) 1.9× 10−6(T ) 2.2× 10−4(T )
Layer 4 9.5× 10−1(T ) 2.3× 10−2(T ) 4.2× 10−2(T ) 1.3× 10−3(T ) 8.9× 10−4(T ) 1.0× 10−3(T )
Lora 6.9× 10−1(T ) 3.9× 10−3(T ) 8.9× 10−2(T ) 1.1× 10−3(T ) 1.3× 10−4(T ) 9.1× 10−4(T )
Decoder Only 2.2× 10−7(T ) 6.7× 10−5(T ) 2.3× 10−2(T ) 7.8× 10−3(T ) 2.9× 10−5(T ) 6.1× 10−3(T )
Embeding 1.2× 10−3(T ) 1.7× 10−1(T ) 1.6× 10−1(M) 3.8× 10−3(T ) 8.6× 10−1(T ) 2.9× 10−3(T )
Input Adapt 2.9× 10−4(T ) 1.3× 10−2(T ) 9.9× 10−2(M) 5.4× 10−3(T ) 3.0× 10−1(T ) 3.5× 10−3(T )
Prefix 2.1× 10−3(T ) 4.8× 10−1(T ) 9.1× 10−2(T ) 2.4× 10−3(T ) 4.3× 10−1(T ) 1.9× 10−3(T )
Scratch 1.0(T ) 1.0(T ) 1.0(T ) 1.0(T ) 1.0(T ) 1.0(T )
Zero Shot 0.0(T ) 2.9× 10−8(T ) 2.7× 10−5(T ) 1.1× 10−1(T ) 2.2× 10−9(T ) 5.9× 10−2(T )
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Table 3: Variable Terrain Cumulative Rewards for each testing morphology. Values show mean (top)
and standard deviation (bottom). † statistical significance compared to Zero Shot and ‡ statistical
significance to Scratch (p < 0.01). P-values and the hypothesis test run (T: t-test, M: Mann-Whitney)
comparing against Zero shot and Scratch results.

Morphology 1 2 3 4 5 6
Full Model 2253.96†‡ 1983.81†‡ 2001.18†‡ 3560.43†‡ 2047.49†‡ 3595.38†‡

±41.47 ±154.82 ±42.14 ±317.89 ±117.06 ±368.99

Layer 4 2093.75†‡ 1871.09†‡ 1879.22†‡ 3254.06†‡ 1912.17†‡ 3279.03‡

±34.23 ±79.86 ±33.91 ±353.70 ±135.29 ±379.46

Lora 2141.39†‡ 1848.53†‡ 1786.88†‡ 3230.13†‡ 1878.93†‡ 3234.25‡

±53.29 ±113.44 ±72.97 ±327.39 ±107.89 ±329.42

Decoder Only 1969.63†‡ 1623.70†‡ 1299.89† 3164.72†‡ 1672.47†‡ 3180.90‡

±28.01 ±126.14 ±70.71 ±307.28 ±112.14 ±316.43

Embeding 1836.54†‡ 1529.38† 1441.65† 2872.51‡ 1549.29† 2887.67‡

±25.22 ±84.38 ±41.51 ±307.30 ±106.71 ±311.40

Input Adapt 1820.01†‡ 1521.18† 1338.57† 2869.53‡ 1512.25† 2895.01‡

±48.63 ±106.76 ±61.81 ±293.57 ±109.46 ±299.56

Prefix 1902.95†‡ 1643.33†‡ 1406.55† 2930.13‡ 1601.95† 2918.47‡

±43.36 ±165.26 ±83.55 ±261.58 ±134.90 ±300.10

Scratch 1679.33† 1406.59† 1406.58† 1735.22† 1449.59† 1758.99†

±82.91 ±101.71 ±164.55 ±166.72 ±69.66 ±168.21
Zero Shot 1259.92 591.83 136.82 2452.59 685.54 2476.77

±61.93 ±67.70 ±103.66 ±291.96 ±71.67 ±349.00

P-Values comparing against Zeroshot Performance†

Full Model 4.6× 10−9(T ) 2.1× 10−6(T ) 5.2× 10−6(T ) 4.7× 10−9(T ) 3.5× 10−8(T ) 1.5× 10−8(T )
Layer 4 1.8× 10−7(T ) 1.5× 10−6(T ) 5.1× 10−5(T ) 6.7× 10−4(M) 1.9× 10−6(T ) 6.7× 10−4(M)
Lora 9.5× 10−8(T ) 8.0× 10−6(T ) 5.1× 10−4(T ) 6.7× 10−4(M) 9.4× 10−7(T ) 6.7× 10−4(M)
Decoder Only 8.2× 10−6(T ) 5.3× 10−3(T ) 2.2× 10−1(T ) 6.7× 10−4(M) 7.2× 10−4(T ) 6.7× 10−4(M)
Embeding 2.0× 10−3(T ) 4.9× 10−2(T ) 6.7× 10−1(T ) 6.7× 10−4(M) 6.4× 10−2(T ) 6.7× 10−4(M)
Input Adapt 6.2× 10−3(T ) 8.2× 10−2(T ) 4.2× 10−1(T ) 6.7× 10−4(M) 2.3× 10−1(T ) 6.7× 10−4(M)
Prefix 4.8× 10−4(T ) 7.2× 10−3(T ) 1.0× 100(T ) 6.7× 10−4(M) 1.9× 10−2(T ) 6.7× 10−4(M)
Scratch 1.0(T ) 1.0(T ) 1.0(T ) 1.0(T ) 1.0(T ) 1.0(T )
Zero Shot 4.1× 10−7(T ) 1.3× 10−9(T ) 1.8× 10−9(T ) 2.7× 10−3(M) 0.0(T ) 2.4× 10−4(T )

P-Values comparing against Scratch Performance‡

Full Model 1.5× 10−3(T ) 3.2× 10−8(T ) 1.3× 10−2(T ) 3.7× 10−7(T ) 9.3× 10−8(T ) 1.3× 10−7(T )
Layer 4 2.7× 10−1(T ) 1.1× 10−6(T ) 2.6× 10−3(T ) 2.9× 10−6(T ) 2.3× 10−7(T ) 2.7× 10−6(T )
Lora 5.6× 10−3(T ) 1.5× 10−4(T ) 3.6× 10−3(T ) 7.3× 10−6(T ) 1.3× 10−6(T ) 1.2× 10−6(T )
Decoder Only 3.8× 10−1(T ) 2.1× 10−4(T ) 7.5× 10−4(T ) 5.2× 10−5(T ) 2.3× 10−4(T ) 1.5× 10−6(T )
Embeding 9.8× 10−7(T ) 4.1× 10−1(T ) 6.7× 10−4(M) 3.6× 10−4(T ) 1.0× 10−1(T ) 3.7× 10−4(T )
Input Adapt 1.5× 10−6(T ) 5.9× 10−1(T ) 5.7× 10−4(T ) 2.0× 10−4(T ) 2.1× 10−1(T ) 7.7× 10−5(T )
Prefix 1.3× 10−5(T ) 1.3× 10−2(T ) 1.2× 10−3(T ) 2.2× 10−4(T ) 2.3× 10−3(T ) 1.2× 10−5(T )
Scratch 1.0(T ) 1.0(T ) 1.0(T ) 1.0(T ) 1.0(T ) 1.0(T )
Zero Shot 0.0(T ) 5.6× 10−7(T ) 0.0(T ) 2.0× 10−2(T ) 8.8× 10−8(T ) 8.3× 10−3(T )
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Table 4: Obstacle Avoidance Cumulative Rewards for each testing morphology. Values show mean
(top) and standard deviation (bottom). † statistical significance compared to Zero Shot and ‡ statis-
tical significance to Scratch (p < 0.01). P-values and the hypothesis test run (T: t-test, M: Mann-
Whitney) comparing against Zero shot and Scratch results.

Morphology 1 2 3 4 5 6
Full Model 2652.41†‡ 3101.42†‡ 1705.64† 3577.09†‡ 3219.75†‡ 3558.26†‡

±193.57 ±177.17 ±4.16 ±341.74 ±199.13 ±365.21

Layer 4 2246.88† 2684.70†‡ 1592.29†‡ 3276.76†‡ 2888.34†‡ 3194.19‡

±184.03 ±85.63 ±140.05 ±314.17 ±64.04 ±351.87

Lora 2137.75†‡ 2585.71†‡ 1672.75†‡ 3191.40†‡ 2851.48†‡ 3189.01‡

±116.21 ±191.00 ±12.63 ±320.51 ±107.16 ±319.76

Decoder Only 2263.74† 2531.13†‡ 1456.02†‡ 3061.26‡ 2672.06†‡ 3132.18‡

±186.99 ±161.72 ±218.88 ±360.37 ±160.55 ±302.67

Embeding 1863.25†‡ 2189.46† 1556.72†‡ 2882.24‡ 2398.29† 2877.35‡

±94.00 ±167.27 ±151.65 ±361.86 ±139.50 ±417.09

Input Adapt 1839.40†‡ 2159.73† 1458.49†‡ 2929.91‡ 2367.39† 2833.04‡

±117.50 ±125.84 ±206.98 ±356.45 ±142.90 ±312.07

Prefix 1841.45†‡ 2334.01† 1514.42†‡ 2877.43‡ 2538.31†‡ 2935.63‡

±142.33 ±133.00 ±186.34 ±324.42 ±119.05 ±293.07

Scratch 2334.75† 2119.16† 1843.23† 2112.34 2265.47† 2144.60†

±92.45 ±124.11 ±99.74 ±216.38 ±124.23 ±123.50
Zero Shot 1300.21 1184.87 332.64 2467.45 1295.92 2488.64

±117.01 ±248.07 ±114.42 ±246.89 ±202.99 ±274.84

P-Values comparing against Zeroshot Performance†

Full Model 2.2× 10−6(T ) 1.5× 10−6(T ) 9.7× 10−9(T ) 7.6× 10−4(T ) 8.5× 10−7(T ) 1.6× 10−3(T )
Layer 4 2.4× 10−5(T ) 3.1× 10−6(T ) 6.8× 10−7(T ) 3.7× 10−3(T ) 3.9× 10−7(T ) 1.3× 10−2(T )
Lora 7.6× 10−6(T ) 1.9× 10−5(T ) 1.2× 10−8(T ) 7.2× 10−3(T ) 8.4× 10−7(T ) 1.1× 10−2(T )
Decoder Only 2.3× 10−5(T ) 1.7× 10−5(T ) 1.7× 10−5(T ) 2.6× 10−2(T ) 5.4× 10−6(T ) 1.4× 10−2(T )
Embeding 6.9× 10−5(T ) 1.5× 10−4(T ) 7.9× 10−3(M) 9.5× 10−2(T ) 1.9× 10−5(T ) 1.6× 10−1(T )
Input Adapt 1.9× 10−4(T ) 1.1× 10−4(T ) 1.2× 10−5(T ) 6.5× 10−2(T ) 2.5× 10−5(T ) 1.4× 10−1(T )
Prefix 8.9× 10−4(T ) 3.8× 10−5(T ) 4.7× 10−6(T ) 7.9× 10−2(T ) 5.6× 10−6(T ) 5.7× 10−2(T )
Scratch 0.0(T ) 5.6× 10−7(T ) 0.0(T ) 2.0× 10−2(T ) 8.8× 10−8(T ) 8.3× 10−3(T )
Zero Shot 1.0(T ) 1.0(T ) 1.0(T ) 1.0(T ) 1.0(T ) 1.0(T )

P-Values comparing against Scratch Performance‡

Full Model 1.5× 10−3(T ) 3.2× 10−8(T ) 1.3× 10−2(T ) 3.7× 10−7(T ) 9.3× 10−8(T ) 1.3× 10−7(T )
Layer 4 2.7× 10−1(T ) 1.1× 10−6(T ) 2.6× 10−3(T ) 2.9× 10−6(T ) 2.3× 10−7(T ) 2.7× 10−6(T )
Lora 5.6× 10−3(T ) 1.5× 10−4(T ) 3.6× 10−3(T ) 7.3× 10−6(T ) 1.3× 10−6(T ) 1.2× 10−6(T )
Decoder Only 3.8× 10−1(T ) 2.1× 10−4(T ) 7.5× 10−4(T ) 5.2× 10−5(T ) 2.3× 10−4(T ) 1.5× 10−6(T )
Embeding 9.8× 10−7(T ) 4.1× 10−1(T ) 6.7× 10−4(M) 3.6× 10−4(T ) 1.0× 10−1(T ) 3.7× 10−4(T )
Input Adapt 1.5× 10−6(T ) 5.9× 10−1(T ) 5.7× 10−4(T ) 2.0× 10−4(T ) 2.1× 10−1(T ) 7.7× 10−5(T )
Prefix 1.3× 10−5(T ) 1.3× 10−2(T ) 1.2× 10−3(T ) 2.2× 10−4(T ) 2.3× 10−3(T ) 1.2× 10−5(T )
Scratch 1.0(T ) 1.0(T ) 1.0(T ) 1.0(T ) 1.0(T ) 1.0(T )
Zero Shot 0.0(T ) 5.6× 10−7(T ) 0.0(T ) 2.0× 10−2(T ) 8.8× 10−8(T ) 8.3× 10−3(T )
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Figure 7: Choice of initialization and injection layers of prefix tuning in flat terrain. Initial zero-shot
results of E2E learning are plotted to compare affect of prefixes.

Figure 8: Choice of initialization and injection layers of prefix tuning in obstacle avoidance. Initial
zero-shot results of E2E learning are plotted to compare affect of prefixes.

(a) Number of randomly initialized prefix tokens (b) Lora in different layers of fifth transformer block.

Figure 9: Ablation studies on number of prefix tokens and LoRA in flat terrain task.
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(a) Number of randomly initialized prefix tokens (b) Lora in different layers of fifth transformer block.

Figure 10: Ablation studies on number of prefix tokens and LoRA in obstacle avoidance task.


