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Summary
The integration of AI into high-stakes decision-making domains demands safety and

accountability. Traditional contextual bandit algorithms for online and adaptive decision-
making must balance exploration and exploitation, posing significant risks when applied to
critical environments where exploratory actions can lead to severe consequences. To ad-
dress these challenges, we propose MixUCB, a flexible human-in-the-loop contextual ban-
dit framework that enhances safe exploration by incorporating human expertise and over-
sight with machine automation. Based on the model’s confidence and the associated risks,
MixUCB intelligently determines when to seek human intervention. The reliance on human
input gradually reduces as the system learns and gains confidence. Theoretically, we ana-
lyzed the regret and query complexity in order to rigorously answer the question of when to
query. Empirically, we validate the effectiveness through extensive experiments on both syn-
thetic and real-world datasets. Our findings underscore the importance of designing decision-
making frameworks that are not only theoretically and technically sound, but also align with
societal expectations of accountability and safety. Our experimental code is available at:
https://github.com/sdean-group/MixUCB.

Contribution(s)
1. We introduce MixUCB, a novel human-in-the-loop contextual bandit framework that dy-

namically determines when to seek human intervention based on uncertainty, enhancing
safe exploration in high-stakes decision-making tasks. MixUCB is flexible in accepting
various types of expert feedback.
Context: Our approach unifies learning from experts (as in active learning, imitation learn-
ing, etc.) with learning from experience (as in reinforcement learning).

2. We provide a theoretical analysis of our framework, offering guarantees on regret and query
complexity. This addresses the fundamental question of when to rely on expert input while
balancing the cost and quality of the feedback.
Context: While traditional online learning or bandit algorithms focus on fixed feedback
settings, our analysis demonstrates MixUCB’s adaptability to varying levels of expert in-
volvement.

3. We demonstrate the practical effectiveness of MixUCB through experiments on both syn-
thetic and real-world datasets, showing that the combination of human expertise and AI can
outperform fully automated decision-making. We highlight the importance of designing AI
systems that are not only technically sound but also emphasize safety, accountability, and
human-centric decision-making.
Context: Our experiments cover a range of feedback settings, showcasing MixUCB’s abil-
ity to maintain high performance even when expert feedback is limited or noisy, for a
domain-specific appropriate querying threshold.

https://github.com/sdean-group/MixUCB
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Abstract
The integration of AI into high-stakes decision-making domains demands safety and ac-
countability. Traditional contextual bandit algorithms for online and adaptive decision-
making must balance exploration and exploitation, posing significant risks when ap-
plied to critical environments where exploratory actions can lead to severe conse-
quences. To address these challenges, we propose MixUCB, a flexible human-in-
the-loop contextual bandit framework that enhances safe exploration by incorporat-
ing human expertise and oversight with machine automation. Based on the model’s
confidence and the associated risks, MixUCB intelligently determines when to seek
human intervention. The reliance on human input gradually reduces as the system
learns and gains confidence. Theoretically, we analyze the regret and query complexity
in order to rigorously answer the question of when to query. Empirically, we vali-
date the effectiveness through extensive experiments on both synthetic and real-world
datasets. Our findings underscore the importance of designing decision-making frame-
works that are not only theoretically and technically sound, but also align with soci-
etal expectations of accountability and safety. Our experimental code is available at:
https://github.com/sdean-group/MixUCB.

1 Introduction

Distinct from typical machine learning applications that focus on tasks with limited risks, the
deployment of AI algorithms in high-stakes decision-making domains—such as self-driving cars
(Sikar et al., 2024), medical diagnostics (Esteva et al., 2017), and criminal justice (Dressel & Farid,
2018)—can have profound impacts and carry much greater responsibility (Amodei et al., 2016).
The potential consequences of actions taken in these domains are far-reaching, spanning from life-
and-death situations for individuals, to the broader societal, ethical, and legal challenges that affect
humanity as a whole. Therefore, it is crucial that AI decision-making processes are built upon
safety, accountability, responsibility, trustworthiness, and transparency, instead of excessively pur-
suing maximum efficiency.

However, despite the necessity of safe, reliable, and responsible AI systems, implementing them in
high-stakes environments presents significant challenges. Traditional learning and decision-making
algorithms, such as the contextual bandits (Wang et al., 2005), rely on balancing exploration and
exploitation. While this exploration is acceptable and often beneficial in lower-risk domains like
recommendation systems (Li et al., 2010), in high-stakes settings, exploratory actions can lead to
unacceptable risks and severe consequences. For example, a self-driving car experimenting with
unfamiliar maneuvers could result in accidents, endangering human lives.

To address these challenges, we propose a human-in-the-loop contextual bandit framework (Fig-
ure 1) that can balance the benefits of automation with the need for human expertise and oversight

https://github.com/sdean-group/MixUCB
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Figure 1: Illustration of our setting, which augments the traditional feedback loop between algorithm
(left) and environment (middle) to include the presence of a human expert (right).

in critical situations. In particular, our approach allows for human intervention when the AI model
lacks confidence or when decisions carry significant risk, preventing potential catastrophic errors
and ensuring safe exploration. One of the key strengths of our framework is its ability to incorporate
both observed consequences and expert advice. As the learner interacts more with the environment
and gathers data—both from autonomous actions and expert interventions—it becomes more con-
fident so the reliance on expert intervention reduces over time. Beyond the immediate benefits of
safety, our framework offers several additional advantages. Firstly, the high-quality data collected
during expert interventions/feedback can significantly accelerate the model’s learning process. Sec-
ondly, actively involving humans in the decision-making process allows for a clearer assignment of
responsibility, clarifying liability in cases of failure or harm.

In summary, our main contributions are as follows: (1) We develop a flexible human-in-the-loop
contextual bandit algorithm MixUCB that dynamically determines when to seek human intervention.
MixUCB accepts various types of expert advice. (2) We provide theoretical analyses on the regret
and query complexity, answering the question of when to rely on expert advice. (3) We validate our
approach through experiments on both synthetic and real-world datasets, showcasing the practical
applicability and benefits of MixUCB. (4) A key finding is that combining AI and human expertise
outperforms alternatives, underscoring the importance of complementing AI and human to achieve
more robust and effective decision-making.

2 Related Work

Contextual bandits The standard setting in contextual bandit does not assume the existence of
human experts and the learner can only learn from the feedback (i.e., reward signals) by interacting
with the environment by herself (Langford & Zhang, 2007; Beygelzimer et al., 2011; Dani et al.,
2008; Abbasi-Yadkori et al., 2011; Li et al., 2010). While these algorithms achieve near-optimal
regret bounds in the long term, they can play potentially unsafe actions during their exploration
phases. Thus, these algorithms cannot be directly applied to safety-critical applications.

Selective sampling and active learning Active learning or selective sampling is a learning
paradigm that is designed to reduce query complexity by only querying for labels at selected data
points (Cesa-Bianchi et al., 2005; Dekel et al., 2012; Agarwal, 2013; Hanneke & Yang, 2015; 2021;
Zhu & Nowak, 2022; Sekhari et al., 2024b;a). These prior work do not assume the learner can
receive reward feedback at the rounds where they do not query experts.

Interactive learning from humans Querying human experts for inputs has been studied in the
context of imitation learning (Ross et al., 2011; Ross & Bagnell, 2014; Sun et al., 2017b; Pan et al.,
2017). While these prior works focus on the more general Markov Decision Processes, they do not
study how to reduce the number of expert queries using active learning techniques. While we focus
on the contextual bandit setting (i.e., RL with horizon being one), our technique can be potentially
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extended to the full MDP setting by treating each step in the MDP as a contextual bandit problem
(Sekhari et al., 2024b). Interaction-grounded learning (Xie et al., 2022; Maghakian et al.; Zhang
et al.) models the feedback with latent reward.

Learning to defer and safe exploration Madras et al. (2018) proposed learning to defer, demon-
strating its effects in improving system accuracy and fairness. Follow up works such as those by
Raghu et al. (2019); Keswani et al. (2021); Narasimhan et al. (2022); Mozannar & Sontag (2020);
Joshi et al. (2021); Sikar et al. (2024) studied when to defer to human judgment and when to accept
automated predictions in standard ML and supervised learning settings, rather than an active learn-
ing setting. (Jagerman et al., 2020; Sun et al., 2017a) studied safe exploration where the learned new
policy is at least as good as the base policy.

3 Problem Formulation

3.1 Contextual Bandit

We consider the following contextual bandit setting with arbitrary (potentially adversarial) contexts
and stochastic rewards. At each round t ∈ [T ], the learner observes the contextual information
xt ∈ X for the context space X , which it may use to inform its choice of action. For example, in
recommendation system, context xt could be features of a user logging onto the system. The learner
chooses an action at ∈ A, where A is the learner’s action space. We assume that A is a finite set
with cardinality K. Then, only the reward rt ∼ R(xt, at) of the chosen action at is observed, where
R : X ×A → ∆([0, 1]) is the reward function.

Assume that the learner has access to a class of functions F ⊂ (X×A → [0, 1]) that model the mean
of the reward function, such as linear functions or neural networks. Assume there exists f∗ ∈ F
such that f∗(x, a) = Er∼R(x,a)[r], i.e., the class F is rich enough to contain a function that can
perfectly predict the expected reward of any action under any context. This realizability assumption
is rather standard and has been used in many previous works (Chu et al., 2011; Foster & Rakhlin,
2020; Foster et al., 2018a; Agarwal et al., 2012).

The learner’s goal is to compete against the optimal policy π∗ : X → A that picks the action with
the highest expected reward, i.e., a∗ = argmaxa∈A f∗(x, a). Formally, the learner’s goal is to
minimize the expected regret

Reg(T ) =

T∑
t=1

f∗(xt, a
∗
t )− f∗(xt, at) . (1)

3.2 Expert Feedback

We augment the decision-making setting by considering the presence of human experts who can be
queried for guidance. In addition to selecting an action at, the learner can opt to query a human
expert (Zt = 1) or take an action autonomously (Zt = 0). Different human experts may offer
different types of feedback, either directly suggesting an action or predicting the rewards associated
with each action. In particular, we explore three types of expert feedback. These types of feedback
vary in the level of information provided to the learner and the cognitive or computational burden
placed on the expert.

I: Action Only The expert selects and takes an action ã∗. The learner observes the action but does
not observe the resulting reward.
II: Action + Associated Reward The expert selects and takes an action ã∗. The learner observes
both the action and the resulting reward rt.
III: Rewards for All Actions The expert provides predicted rewards r̃t,a for all actions a ∈ A.

These three types of feedback capture the fact that experts vary in their level of expertise and access
to information, which influences the quality and depth of the feedback they can offer. Type-I feed-
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back is applicable in situations where reward feedback is not available once the human expert takes
over. For example, in a medical setting, once a doctor takes over selecting a treatment, the learner
may never observe the patient’s outcome. Type-II feedback is slightly more informative since the
learner is able to observe the outcome of the expert’s action. For example, a robot may be guided
by an expert operator who suggests manipulation actions. The robot can then observe whether this
action successfully picks up an object. Type-III feedback is applicable in situations where an expert
has full information and can analyze all potential outcomes. By providing information about not
only the action taken but also the alternatives, the expert provides the learner with a comprehen-
sive view of the reward landscape. This type of feedback is highly informative, but it comes at a
significant cost.

Beyond the type of feedback, experts vary in the quality of feedback. Humans often exhibit bounded
rationality in decision-making, so the expert action ã∗ is not necessarily equal to the optimal action.
We model the Type-I and Type-II expert choices using the a reward-rational choice model, in
particular the Boltzmann-rational model (Luce, 1959; 1977; Ziebart et al., 2010) with rationality
parameter α ≥ 0:

P (ã∗t = a|xt) ∝ exp(αf∗(xt, a)). (2)

When α → ∞, the expert behaves perfectly rationally, always selecting the optimal action; when
α = 0, the expert chooses actions at random, independent of the rewards. This model allows us to
capture the natural variability in human decision-making and reflect different levels of competence
across experts.

For Type-III feedback, we assume that the expert predicted rewards are bounded and unbiased, i.e.
that they satisfy E[r̃t,a|xt] = f∗(xt, a).

4 Human-in-the-loop Contextual Bandit Framework

4.1 Online Regression Oracles

For a contextual bandit learner to be successful, it is necessary to learn efficiently from interactions
with the environment and the human expert. This is formalized by the following definition.
Definition 1 (Online Regression Oracle). An online regression oracle for a convex loss ℓ w.r.t.
the class F , provides, for any sequence {(z1, y1), · · · , (zT , yT )}, predictors ft ∈ F such that the
prediction regret is bounded:

T∑
t=1

ℓ(ft(xt), yt)− inf
f∈F

T∑
t=1

ℓ(f(xt), yt) ≤ Regℓ(F ;T )

Different regression oracles are appropriate for different types of feedback available to the learner.
The square loss online regression oracle is appropriate for learning from observed rewards. In
this setting, ℓ is the standard square loss, and the sequence contains context, action, reward tuples
{((x1, a1), r1), · · · , ((xt, at), rt), · · · ((xT , aT ), rT )}. If the learner has Type-III expert feedback,
the predicted rewards for all actions can be incorporated into this sequence as well. The square
loss oracle regret bound Regsq(F , T ) typically grows sublinearly with T and can be implemented
efficiently (Krishnamurthy et al., 2019; Foster et al., 2018a; Rakhlin & Sridharan, 2014). For ex-
ample, for finite function classes F , the regret bound is Regsq(F ;T ) = O(log(T ) log(|F|)), while
Regsq(F ;T ) = O(d log(T )) when F is a d-dimensional linear class as in (5).

The online logistic regression oracle is appropriate for learning from actions selected by bounded-
rational experts. In this setting, ℓ is the logistic loss, and the sequence contains context and action
tuples {(x1, a1), · · · , (xT , aT )} observed through either Type-I or Type-II feedback. Similar to the
square loss oracle, when F is finite, we have a regret bound Reglr(F ;T ) = O(log(T ) log(|F|))
(Cesa-Bianchi & Lugosi, 2006), while for Flin, there exists efficient improper learner with regret
bound Reglr(F ;T ) = O(d log(T )) (Foster et al., 2018b).
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Algorithm 1 MixUCB (Type-I and II feedback)

Input: Query threshold ∆, total rounds T , function class F , initial confidence set Esq
1 = E lr

1

for t = 1, · · · , T do
Let Et = Esq

t ∩ E lr
t

aucbt = argmaxa∈A maxf∈Et
f(xt, a) and wt = maxf∈Et f(xt, a

ucb
t )−minf∈Et f(xt, a

ucb
t )

if wt ≥ ∆ then
Query (Zt = 1) and play expert action ã∗t . Update Dlr

t , E lr
t with (xt, ã

∗
t ) according to (4).

if Type-II Feedback then
Observe rt ∼ r(xt, ã

∗
t ) and update Dsq

t and Esq
t with (xt, ã

∗
t , rt) according to (3).

else
Set Zt = 0. Play aucbt and observe rt ∼ r(xt, a

ucb
t ). Update Dsq

t and Esq
t with (xt, a

ucb
t , rt)

according to (3).

We present a framework for seeking and incorporating expert advice in a contextual bandit setting.
We call this framework MixUCB. In Algorithm 1, we present the typical scenario where experts
recommend actions directly (Type-I or Type-II) according to a Boltzmann-rational model. This
setting highlights the key challenges in leveraging diverse types of feedback. An extension to Type-
III feedback is presented in the appendix and investigated in numerical experiments in Section 5.

Designing a human-in-the-loop contextual bandit framework presents two primary challenges: de-
ciding when to query and effectively learning from feedback. To address the first challenge, our
algorithm uses a measure of uncertainty. First, the learner follows the standard “optimism in the
face of uncertainty" principle to compute the upper confidence bound (UCB) action, aucbt . Then,
the learner computes a pessimistic lower bound on the reward of this action. The uncertainty is
defined as the difference between the optimistic upper bound and the pessimistic lower bound. If the
learner’s uncertainty in aucbt falls above a predefined threshold ∆, i.e., the learner is not confident
about this action, it queries the expert for the optimal action rather than taking the risk.

The second challenge is to integrate various types of feedback to enhance learning. Accurate con-
fidence sets are crucial for optimism/pessimism during action selection and the querying decision.
Ideally, the learner should become more confident over time through interaction with the environ-
ment or expert. In the standard bandit setting, only autonomous environment interactions are con-
sidered, while in active learning settings, only expert advice is considered. Our approach combines
these two sources of information to construct confidence sets from both expert advice and observed
rewards. In the next section, we discuss how to overcome a key challenge of Type-I and Type-II
feedback, which is that experts don’t provide information on rewards directly, but rather provide a
(noisy) suggested action.

4.2 Constructing Confidence Sets

In Algorithm 1, we construct two confidence sets: one based on rewards observed after interaction
with the environment, and another based on expert feedback.

Given a sequence of context-action-reward data observed up to time t, Dsq
t = {(xk, ak, rk)}, the

estimated reward function fsq
t is given by the square loss oracle. Then the confidence set is defined

Esq
t = {f ∈ F |

∑
x,a∈Dsq

t

(fsq
t (xt, at)− f(xt, at))

2 ≤ βsq
t } . (3)

This expression is justified because for stochastic rewards following the realizability assumption,
Foster & Rakhlin (2020) show that when βsq

t = Regsq(F ; t) from the online regression oracle
(Definition 1), f∗ ∈ Esq

t with high probability.

Similarly, given a sequence of expert context-action data observed up to time t, Dlr
t = {(xk, ak)},

the estimated reward function f lr
t is given by the logistic regression oracle. Then the confidence set
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is defined as

E lr
t = {f ∈ F |

∑
x,a∈Dlr

t

(f lr
t (xt, at)− f(xt, at))

2 ≤ βlr
t } . (4)

This expression is justified because for bounded-rational experts and rewards following the real-
izability assumption, Sekhari et al. (2024b) show that when βlr

t = Reglr(F ; t) from the online
regression oracle (Definition 1), f∗ ∈ E lr

t with high probability.

Therefore, with high probability, the true reward function lies in the intersection of these sets f∗ ∈
Esq
t ∩ E lr

t . Algorithm 1 makes use of both estimates and both confidence sets, to combine bandit
feedback with expert advice.

Linear Contextual Bandits (Chu et al., 2011) We focus on the special case of linear contextual
bandits, where the online regression oracles and confidence sets can be written concretely. Consider
a featurization of context-action pairs ϕ : X ×A → Rd, and a linear function class,

Flin = {(x, a) → θ⊤ϕ(x, a) | θ ∈ Rd, ∥θ∥2 ≤ 1} . (5)

Linear contextual bandit operates under the linear realizability assumption, i.e that there exists
weight vector θ∗ ∈ Rd with ∥θ∗∥ ≤ 1 and E[rt|xt, at] = ϕ(xt, at)

⊤θ∗ for all xt and at.

In this case, the regression oracles are simply standard linear and logistic regression algorithms with
regularization parameters λsq and λlr. The regression oracle regret scales as O(d log(T )). The
confidence sets over linear functions are equivalent to ellipsoidal confidence sets over parameters θ,
taking the form: 1

∥θ − θt∥2Vt
≤ βt, Vt =

∑
x,a∈Dt

ϕ(x, a)ϕ(x, a)⊤ + λI

Therefore, the optimistic/pessimistic computation in algorithm 1 involves solving a conic optimiza-
tion problem over possible parameters θ: the objective function is linear and there are two ellipsoidal
constraints. While this problem does not have a clean closed-form solution, it is computationally
feasible to solve to high precision with modern optimizers.

4.3 Theoretical results

We provide a theoretical analysis of Algorithm 1 that characterizes its safety, performance, and
querying behavior. For ease of exposition, the theoretical results focus on the linear contextual
bandit setting. We present all proofs in the appendix.

Assumption 1. The reward function is linear as in (5) with dimension d, and the feature function
satisfies ∥ϕ(xt, a)∥2 ≤ L,∀t ∈ [T ], a ∈ A.

The above assumption is standard in linear bandits (Abbasi-Yadkori et al., 2011). Next, we assume
that the confidence sets Esq

t and E lr
t are valid, i.e. that they contain the true reward function. In the

appendix, we use results from Foster & Rakhlin (2020); Sekhari et al. (2024b) to define βsq
t and βlr

t

such that this assumption holds with high probability.

Assumption 2. The confidence sets satisfy

1. 1 ≤ βsq
1 ≤ βsq

2 ≤ · · · ≤ βsq
T and 1 ≤ βlr

1 ≤ βlr
2 ≤ · · · ≤ βlr

T .

2. ∀t ∈ [T ], f∗ ∈ Esq
t ∩ E lr

t .

Under these assumptions, we characterize the performance of MixUCB. First, we show that the
query condition prevents the learner from autonomously taking highly sub-optimal actions. As
such, MixUCB guarantees that autonomous actions are always safe.

1Here we use the elliptical norm ∥x∥Vt ≜
√

xTVtx (Abbasi-Yadkori et al., 2011)
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Lemma 1 (Autonomous Sub-optimality). Under Assumptions 1 and 2, a learner following Algo-
rithm 1 never autonomously takes an action aucbt with sub-optimality greater than ∆.

Next, we consider the fact that experts may take sub-optimal actions due to their bounded rationality.
The following lemma bounds the cost of the expert’s bounded rationality.

Lemma 2 (Expert Sub-optimality). Let R∞ = maxx∈X ,a∈A f∗(x, a). Then under the Boltzmann-
rational model, the expected sub-optimality of an α rational expert is bounded by

c(α) ≤ R∞(K − 1)

exp(αR∞) +K − 1
(6)

The cost of bounded rationality increases as the rationality α decreases. It also increases with the
number of actions K. Combining these results, we characterize the regret of MixUCB (Algorithm
1) in terms of the total number of queries that it makes.

Proposition 1 (MixUCB Regret). Under Assumptions 1 and 2, the expected regret of Algorithm 1
satisfies

Reg(T ) ≤
2∆βsq

T

√
T −Q√

log2(1 + ∆2)

√
d log2(1 +

(T−Q)L2

λd ) +Qc(α) (7)

where Q =
∑T

t=1 Zt is the total number of queries made by the algorithm.

Next, we upper bound the query complexity Q.

Theorem 1 (Query complexity). Under Assumptions 1 and 2, the query complexity of Algorithm 1
is bounded:

Q =

T∑
t=1

Zt ≤
10max{1, βsq

T , βlr
T }d

∆2
. (8)

Note that max{βsq
T , βlr

T } = O(d log T ), therefore, the query complexity has only a weak depen-
dence on the horizon T . In other words, expert feedback will be sought for a small, almost constant,
portion of the interaction horizon. The proof of this result crucially relies on the fact that MixUCB
uses the logistic regression oracle to learn from expert feedback. In the absence of incorporating
expert advice, it is possible that the learner would never shrink the confidence set and would thus
query indefinitely. We therefore emphasize that observing the expert’s action is crucial to this online
bandit setting. Interestingly, observing the outcome of the expert’s action is not so important—the
above results hold for either Type-I or Type-II feedback.

Finally, we address the question of how to set the query threshold ∆. In some applications, this
threshold may be determined purely by safety considerations (Lemma 1). In such settings, it is
undesirable to allow a learner to try sub-optimal actions. In other applications, the overall perfor-
mance may be the main criterion. Our final result is a summary theorem which provides guidance
on setting ∆. We also characterize when MixUCB will outperform the purely autonomous LinUCB
(Abbasi-Yadkori et al., 2011), which is equivalent to MixUCB with ∆ → ∞.

Theorem 2. Assume that max{1, βsq
T , βlr

T } = O(d log T ) and Assumptions 1 and 2 holds. Then by

setting ∆ = Θ( 3

√
d2c(α)

T ), the regret of MixUCB bounded by

Reg(T ) = O( 3
√
c(α)d2T 2) (9)

Moreover, if c(α) ≤ O( d√
T
), the regret is no worse than LinUCB.

Proof. By Lemmas 1 and 2, the total regret on the rounds that we don’t query is bounded by ∆,
while the regret on the rounds that we query is bounded by c(α), thus, MixUCB-I regret is at most

c(α)Q+∆(T −Q) = (c(α)−∆)Q+∆T = O

(
d2c(α)

∆2
+∆T

)
= O( 3

√
c(α)d2T 2) (10)
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Categories Algorithms Action taken Information/Feedback
Zt = 0 Zt = 1 Zt = 0 Zt = 1

Human-AI hybrid
MixUCB-I

aucb
t

ã∗
t

r(xt, a
ucb
t )

ã∗
t

MixUCB-II ã∗
t r(xt, ã

∗
t ) and ã∗

t
MixUCB-III a∗

t f∗(xt, a), ∀a ∈ A

AI LinUCB aucb
t r(xt, a

ucb
t )

Linear Oracle Classification argmaxa θ̂⊤
lrϕ(xt, a) -

Regression argmaxa θ̂⊤
sqϕ(xt, a) -

Experts Noisy Expert ã∗
t -

Perfect Expert a∗
t -

Table 1: Summary of the algorithms and baselines.

where we take ∆ = Θ( 3

√
d2c(α)

T ). To ensure that this is no worse than the LinUCB regret O(d
√
T )

(Abbasi-Yadkori et al., 2011), we need c(α) ≤ O( d√
T
).

This theorem shows that the querying threshold should increase for higher dimensions or expert
costs (i.e. noisier experts), and decrease for longer interaction horizons. Furthermore, by compar-
ing against the performance of LinUCB, this result justifies the intuition that MixUCB performs
best when the cost is sufficiently small. In particular, the cost should be small compared with the
dimension of the reward function, and inversely with the interaction horizon.

As a final remark, we note that the cost of bounded rationality c(α) could be replaced with c(α) + c
where c is some additional cost of obtaining expert advice, e.g. due to monetary payment or degraded
user experience.

5 Experiments

While the theoretical results in section 4 provide upper bounds on the query complexity and regret
of all three MixUCB variants, they do not make claims about performance differences between the
variants themselves. Thus, in this section, we conduct experiments in multiple settings to illustrate
the effectiveness of our approach and understand the empirical differences between the variants,
using both synthetic and real world datasets.

Query threshold ∆ For each dataset setting in this section, we present results for a single repre-
sentative ∆ value, and include results for other ∆ values in [0, 1] in the appendix. We selected ∆
values for each dataset setting (along with βsq and βlr) that have reasonably-sized confidence sets
throughout the interaction horizon, similar to prior work in the contextual bandits literature (Bietti
et al., 2021).

Baselines We compare MixUCB (I, II, III) with LinUCB, the standard purely autonomous algo-
rithm which always takes aucbt and corresponds to MixUCB with ∆ → ∞, and two Linear Oracles,
which select actions according to the best linear model in hindsight. The Oracles represent the per-
formance of (unrealistically) having access to all information about the contexts and rewards ahead
of time. The Linear Classification Oracle computes the best linear classifier θ̂lr for action selection
using the (multiclass) logistic loss. The Linear Regression Oracle computes the best linear predictor
θ̂lr of rewards using the squared loss.

Additionally, we include two experts, which correspond to the types of expert feedback provided
to the MixUCB variants. The Noisy Expert corresponds to the Boltzmann-rational feedback pro-
vided to MixUCB-I and MixUCB-II, and the Perfect Expert corresponds to the unbiased feedback
provided to MixUCB-III.

The algorithms and baselines are summarized in Table 1.
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Figure 2: Cumulative Reward, Average Autonomous Reward, and Cumulative Queries for MixUCB
(with query threshold ∆ = 0.75) on synthetic data. Plots show means across 5 random seeds, with
shaded regions indicating one standard deviation.

Online Regression and Confidence Sets For all methods and datasets, we define ϕ(x, a) = x⊗ea
where ea is a standard basis vector, so that d = dxK and we can write θ = (θ1, . . . , θK). For
computational simplicity, we define a joint estimate and confidence set which directly combines the
squared and logistic losses on the datasets Dsq

t and Dlr
t respectively. This formulation results in a

single estimate θ̂t and an ellipsoidal confidence set. The advantage of this joint formulation is that
the optimistic/pessimistic optimization has a closed form solution. Further details are provided in
the appendix.

Evaluation Metrics We report Cumulative Reward and Average Autonomous Reward. Cumula-
tive reward measures the actual rewards accumulated over time (thus mixing autonomous and expert
actions), while average autonomous reward is the reward averaged over the time steps in which the
algorithm didn’t query. We report the average autonomous reward to assess whether the MixUCB
variants are effectively learning from human feedback. Additionally, we evaluate the cost of Mix-
UCB with Cumulative Queries. We report these metrics averaged across 5 random seeds, where the
randomness is over the sequence of sampled contexts, the observed rewards, and the noisy expert
feedback.

5.1 Synthetic Experiments

For synthetic data, we set dx = 2 and fix a true parameter θ∗a ∼ N (0, I) for a = 1, 2, 3 and define
f∗(xt, a) = ⟨θ∗a, xt⟩. The observed reward is r(xt, a) = f∗(xt, a) + N (0, σ2). For Type I and II
feedback, the expert selects an action according to (2) with rationality α = 1. For Type III feedback,
the expert reveals f∗(xt, a) for a = 1, ...,K. We sample xt ∼ N (0, I) at each time step.

As shown in Figure 2, MixUCB-III achieves a cumulative reward comparable to that of the linear
oracles, while MixUCB-II attains a slightly lower cumulative reward. MixUCB-III outperforms
LinUCB in terms of cumulative reward, whereas MixUCB-I and MixUCB-II perform worse than
LinUCB. However, despite the limited initial information, MixUCB-I and MixUCB-II eventually
achieve autonomous rewards similar to MixUCB-II and III and the linear oracles. This indicates
that the poor overall performance of MixUCB-I arises from the fact that the noisy expert takes sub-
optimal actions, which is also evidenced by the poor reward performance of the noisy expert. Also
notice that, unlike LinUCB, the MixUCB algorithms never attain very low or negative autonomous
reward, highlighting the safety guarantees. The cumulative queries plot further illustrates the ef-
ficiency of the MixUCB variants: MixUCB-I stops querying after approximately 100 time steps,
whereas MixUCB-II and MixUCB-III cease querying in fewer than 30 steps. So, all the MixUCB
variants efficiently reduce their dependence on queries while achieving strong performance. This
demonstrates that all MixUCB variants effectively balance expert feedback with autonomous learn-
ing, reducing reliance on queries while maintaining strong performance. Additionally, MixUCB-II
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(a) Robot Manipulation Dataset (Feng et al., 2019).
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(b) Heart Disease Dataset (Bou Rjeily et al., 2019).
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(c) MedNIST Dataset (Yang et al., 2023).

Figure 3: Cumulative Reward, Average Autonomous Reward, and Cumulative Queries for MixUCB
on Robot Manipulation Dataset (3a), Heart Disease Dataset (3b), and MedNIST Dataset (3c) using
∆ = 0.5, ∆ = 0.625, and ∆ = 0.625 respectively.
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and MixUCB-III leverage expert feedback more efficiently, quickly transitioning to autonomous
decision-making.

5.2 Real Data Experiments

Full details on data preprocessing are in the appendix.

Robot Manipulation We consider a robot-assisted bite acquisition setting where contexts are
pieces of food, K = 6 actions are different orientations of the end-effector, and rewards are suc-
cessful acquisition. We use a dataset from Feng et al. (2019) which contains images of food and
success rates of the actions. We perform PCA on the embeddings of the images to define contexts
with dx = 5. We define f∗(xt, a) as the success rate and sample the observed reward r(xt, a) from
a Bernoulli distribution. We define expert feedback using f∗(xt, a) as in the synthetic setting.

Medical Classification Datasets We define additional settings using medical classification
datasets: heart disease (Bou Rjeily et al., 2019) and MedNIST (Yang et al., 2023). We use PCA
on the features to define contexts with dx = 6, define each class as an action (K = 2 and 6 re-
spectively), and define the observed reward r(xt, a) as 1 when a is the correct classification and 0
otherwise. Since we do not have access to the expected reward f∗(xt, a), we define expert feed-
back based on the observed rewards for Type-III, and give the true class label for Types-I and II.
Additionally, for these datasets, we do not include results for the Noisy Expert or the Perfect Ex-
pert, because both experts default to selecting the action that maximizes the observed rewards when
expected rewards are not present (and so both would yield identical results).

Results We present the results for all the three real world dataset (Robot Manipulation, Heart
Disease, and MedNIST) in Figure 3. Unlike in the synthetic setting, the rewards are not necessarily
linearly realizable. This is illustrated by the performance of the Linear Oracles: the regression
oracle (which attempts to predict rewards) performs poorly compared with the classification oracle
(which need only distinguish between actions). As a result, methods that rely most heavily on
linear regression (LinUCB and the Linear Regression Oracle) do not perform well. On the other
hand, methods that follow the experts advice and learn from classification feedback (MixUCB and
the Linear Classification Oracle) perform better. In the MedNIST dataset, the realizability issue
is particularly pronounced: the Linear Regression Oracle attains 10% performance of the Linear
Classification Oracle. The violation of the linear realizability assumption is worse for algorithms
that rely on linear regression, like LinUCB and MixUCB-III. The effect on total reward is mitigated
for MixUCB-III because of the high rewards from expert actions.

MixUCB-I and II fare better in the real data settings due to 1) learning from classification style feed-
back and 2) gaining high rewards from expert actions. This second point is particularly pronounced
for the classification datasets, where we do not directly simulate the noisiness of the expert—as a
result, for the heart disease data, MixUCB-I outperforms the Linear Classification Oracle in terms
of total reward. Even in the robot manipulation setting, which has noisy expert advice, MixUCB-I
and II are still able to perform well.

Among the three MixUCB variants, MixUCB-I queries the most frequently, while MixUCB-III
queries the least, with MixUCB-II falling in between. This aligns with expectations—MixUCB-III
gains more information per query, while MixUCB-I obtains the least. All three MixUCB variants
query the most in the beginning, but then slowly stop querying. Finally, we observe that when Mix-
UCB stops querying, there is a brief period of performance fluctuation before stabilization. This can
be attributed to the sudden shift from relying on expert feedback to autonomous decision-making.
However, within 100 steps, the model effectively adapts, demonstrating its ability to generalize from
the acquired knowledge.

Ultimately, the experimental results provide additional insights that complement the theoretical find-
ings. We find that all three MixUCB variants perform well in the realizable synthetic setting, but that
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MixUCB-I and MixUCB-II counterintuitively perform better than MixUCB-III in the real settings,
because the inherent non-realizability of these settings degrades the ability of the squared-loss oracle
to learn from the richer reward feedback. We additionally find that the performance of MixUCB-I
and MixUCB-II depends on the quality of the noisy expert (which depends on the reward distri-
bution across actions), although these MixUCB variants are still able to perform competitively or
better than LinUCB across all data settings.

6 Conclusion

In this paper, we propose MixUCB, a flexible human-in-the-loop contextual bandit framework that
enhances safe exploration by integrating human expertise with machine automation. Our results
demonstrate that human and AI can complement each other to enable safer and more effective
decision-making. Our experiments highlight the effectiveness of MixUCB in balancing query ef-
ficiency and reward maximization. Compared with LinUCB, MixUCB consistently achieves a fa-
vorable trade-off, efficiently navigating between querying experts and autonomous decision-making.
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7 Main Proofs

Proof of Lemma 2. Let R∞ = maxx∈X ,a∈A f∗(x, a),

c(α) = max
x∈X

(
max
a∈A

f∗(x, a)

)
− Ea[f

∗(x, a)]

≤ max
x∈X

R∞ −
∑
a∈A

exp(αf∗(x, a))∑
a′∈A exp(αf∗(x, a′))

f∗(x, a)

≤ R∞ − min
∥r⃗∥∞=R∞

⟨exp(αr⃗), r⃗⟩
⟨exp(αr⃗), 1⟩

= R∞ − R∞ exp(αR∞)

exp(αR∞) +K − 1

where the final equality holds when r⃗ has one element being R∞ while the rest being 0. (For
example, when r⃗ = [R∞, 0, · · · , 0]). Such r⃗ attain the minimum, as the element-wise derivative of
⟨exp(αr⃗),r⃗⟩
⟨exp(αr⃗),1⟩ is increasing. The final expression holds by simplifying the difference of fractions.

Proof of Proposition 1. Let Esq
t = {θ ∈ Rd, ∥θ∥ ≤ 1 : ∥θ − θsqt−1∥2V sq

t−1
≤ βsq

t } and E lr
t = {θ ∈

Rd, ∥θ∥ ≤ 1 : ∥θ − θlrt−1∥2V lr
t−1

≤ βlr
t } be the confidence set from square loss oracle and logistic

regression oracle, respectively, and let Et = E lr
t ∩Esq

t be the confidence set that contains the true pa-
rameter θ∗. Recall from Algorithm 1 that the UCB action aucbt = argmaxa∈A maxθ∈Et

θ⊤ϕ(xt, a)
and the confidence width of aucbt is wt = maxθ∈Et

θ⊤ϕ(xt, a
ucb
t )−minθ∈Et

θ⊤ϕ(xt, a
ucb
t ).

Case 1. The algorithm is not confident about its predicted action, i.e., wt ≥ ∆, which satisfies the
query condition. In this case, the algorithm takes action from noisy expert ã∗t , and incurs regrets
RExP

t (ã∗t ), which is controlled by how noisy the expert is.

Case 2. the algorithm is confidence about its predicted action aucbt , i.e, wt < ∆, so it will play the
UCB action aucbt . Let a∗t be the optimal action at round t, i.e., a∗t = argmaxa∈A⟨θ∗, ϕ(xt, a)⟩, the
regret of playing this action is bounded as

RNoE
t = ⟨θ∗, ϕ(xt, a

∗
t )⟩ − ⟨θ∗, ϕ(xt, a

ucb
t )⟩

≤ max
a∈A

max
θ∈Et

θ⊤ϕ(xt, a)−min
θ∈Et

θ⊤ϕ(xt, a
ucb
t )

= max
θ∈Et

θ⊤ϕ(xt, a
ucb
t )−min

θ∈Et

θ⊤ϕ(xt, a
ucb
t )

= wt < ∆

(11)

On the other hand, let θ̄t = argmaxθ∈Et
θ⊤ϕ(xt, a

ucb
t ) and θt = argminθ∈Et

θ⊤ϕ(xt, a
ucb
t ), it

holds that
RNoE

t ≤ max
θ∈Et

θ⊤ϕ(xt, a
ucb
t )−min

θ∈Et

θ⊤ϕ(xt, a
ucb
t )

= θ̄⊤t ϕ(xt, a
ucb
t )− θ⊤t ϕ(xt, a

ucb
t )

= ⟨θ̄t − θt, ϕ(xt, a
ucb
t )⟩

≤ ∥θ̄t − θt∥V sq
t−1

· ∥ϕ(xt, a
ucb
t )∥(V sq

t−1)
−1

≤ 2
√
βsq
t · ∥ϕ(xt, a

ucb
t )∥(V sq

t−1)
−1

(12)
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Putting them together, we have

RNoE
t ≤ min{∆, 2

√
βsq
t · ∥ϕ(xt, a

ucb
t )∥(V sq

t−1)
−1} (13)

From assumption 2, we have that βsq
T ≥ max{1, βsq

t }, and thus

RNoE
t ≤ 2

√
βsq
T min{∆, ∥ϕ(xt, a

ucb
t )∥(V sq

t−1)
−1} (14)

and
(RNoE

t )2 ≤ 4βsq
T min{∆2, ∥ϕ(xt, a

ucb
t )∥2(V sq

t−1)
−1}

≤ 4βsq
T · ∆2

log2(1 + ∆2)
· log2(1 + ∥ϕ(xt, a

ucb
t )∥2(V sq

t−1)
−1)

(15)

where we used the fact that for any ∆ < 1 and u ≥ 0, min{∆2, u} ≤ logv(1+u) = log2(1+u)
log2 v with

log2 v = log2(1+∆2)
∆2 .

Now, we will bound the sum over log2(1 + ∥ϕ(xt, a
ucb
t )∥2

(V sq
t−1)

−1):

For any t ≥ 1, we have

V sq
t =V sq

t−1 + Z̄t · ϕ(xt, a
ucb
t )ϕ(xt, a

ucb
t )⊤

=(V sq
t−1)

1/2(I + Z̄t(V
sq
t−1)

−1/2ϕ(xt, a
ucb
t )ϕ(xt, a

ucb
t )⊤(V sq

t−1)
−1/2)(V sq

t−1)
1/2

(16)

and thus

det(V sq
t ) =det(V sq

t−1) det(I + Z̄t(V
sq
t−1)

−1/2ϕ(xt, a
ucb
t )ϕ(xt, a

ucb
t )⊤(V sq

t−1)
−1/2)

=det(V sq
t−1) ·

(
1 + Z̄t∥ϕ(xt, a

ucb
t )∥2(V sq

t−1)
−1

) (17)

where it follows because matrix I + yy⊤ has eigenvalues 1+ ∥y∥22 and 1, as well as the fact that the
determinant of a matrix is the product of its eigenvalues.

T∑
t=1

Z̄t · log2(1 + ∥ϕ(xt, a
ucb
t )∥2(V sq

t−1)
−1)

=

T∑
t=1

log2(1 + Z̄t∥ϕ(xt, a
ucb
t )∥2(V sq

t−1)
−1)

=

T∑
t=1

log
det(V sq

t )

det(V sq
t−1)

= log
det(V sq

T )

det(V sq
0 )

≤ log
Πd

i=1λ
sq
i

det(V sq
0 )

≤ log
( 1dTr(V

sq
T ))d

det(V sq
0 )

≤ log
( 1d (dλ+

∑T
t=1 Z̄tL

2))d

λd

≤d log(1 +
(
∑T

t=1 Z̄t)L
2

λd
)

(18)

where λsq
1 , · · · , λsq

d are the eigenvalues of V sq
T .
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The total regret on the rounds that we don’t query is

T∑
t=1

RNoE
t Z̄t ≤

√√√√( T∑
t=1

Z̄t

)
·

(
T∑

t=1

Z̄t · (RNoE
t )2

)

≤

√√√√( T∑
t=1

Z̄t

)
·

(
T∑

t=1

Z̄t · 4βsq
T · ∆2

log2(1 + ∆2)
· log2(1 + ∥ϕ(xt, aucbt )∥2

(V sq
t−1)

−1)

)

=
2∆βsq

T√
log2(1 + ∆2)

√√√√ T∑
t=1

Z̄t

√√√√ T∑
t=1

Z̄t log2(1 + ∥ϕ(xt, aucbt )∥2
(V sq

t−1)
−1)

≤
2∆βsq

T√
log2(1 + ∆2)

√√√√ T∑
t=1

Z̄t

√
d log2(1 +

(
∑T

t=1 Z̄t)L2

λd
)

(19)
Putting case 1 and case 2 together, we have the overall regret

Reg(T ) =
T∑

t=1

Z̄tR
NoE
t +

T∑
t=1

ZtR
ExP
t

≤
2∆βsq

T√
log2(1 + ∆2)

√√√√ T∑
t=1

Z̄t

√
d log2(1 +

(
∑T

t=1 Z̄t)L2

λd
) +

T∑
t=1

ZtR
ExP
t (ã∗t )

(20)

Proof of Theorem 1. let θ̄t = argmaxθ∈Et
θ⊤ϕ(xt, a

ucb
t ), θt = argminθ∈Et

θ⊤ϕ(xt, a
ucb
t ), and

a∗t = argmaxa∈A⟨θ∗, ϕ(xt, a)⟩. Recall that wt = maxθ∈Et
θ⊤ϕ(xt, a

ucb
t )−minθ∈Et

θ⊤ϕ(xt, a
ucb
t )

T∑
t=1

Zt =

T∑
t=1

1{wt ≥ ∆}

=

T∑
t=1

1{⟨θ̄t − θt, ϕ(xt, a
ucb
t )⟩ ≥ ∆}

≤
T∑

t=1

1{⟨θ̄t − θ∗, ϕ(xt, a
ucb
t )⟩ ≥ ∆

2
}+

T∑
t=1

1{⟨θ∗ − θt, ϕ(xt, a
ucb
t )⟩ ≥ ∆

2
}

(21)

Using Lemma 7 from Sekhari et al. (2024b), we have

T∑
t=1

1{⟨θ̄t − θ∗, ϕ(xt, a
ucb
t )⟩ ≥ ∆

2
}

=

T∑
t=1

Zt1{⟨θ̄t − θ∗, ϕ(xt, a
ucb
t )⟩ ≥ ∆

2
}+

T∑
t=1

Z̄t1{⟨θ̄t − θ∗, ϕ(xt, a
ucb
t )⟩ ≥ ∆

2
}

≤
(
4βsq

T

∆2
+ 1

)
d+

(
4βlr

T

∆2
+ 1

)
d

≤10βT d

∆2

(22)
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Algorithm 2 MixUCB-I (Detailed)

Input: Query threshold ∆, total rounds T .
Let V sq

0 = V lr
0 = λI , the initial confidence set Esq

1 = E lr
1 = {θ ∈ Rd, ∥θ∥ ≤ 1}

for t = 1, · · · , T do
Construct the current parameter space Et = Esq

t ∩ E lr
t

Learner predict the UCB action aucbt = argmaxa∈A maxθ∈Et θ
⊤ϕ(xt, a)

Compute the confidence of aucbt : wt = maxθ∈Et θ
⊤ϕ(xt, a

ucb
t )−minθ∈Et θ

⊤ϕ(xt, a
ucb
t )

if wt ≥ ∆ then
Query the expert to get the noisy optimal action ã∗t and play ã∗t , and Zt = 1.

else
Play the UCB action aucbt and observe the reward rt and Zt = 0.

Update V sq
t = V sq

t−1 + Z̄t · xt
aucb
t

(xt
aucb
t

)⊤ and V lr
t = V lr

t−1 + Zt ·
∑

a∈A xt
a(x

t
a)

⊤, where
xt
a = ϕ(xt, a)

\\ Update the square loss oracle and its confidence set
Update the square loss parameter estimation θsqt = (V sq

t )
−1

(
∑t−1

s=1 x
s
aucb
s

rs+ Z̄t ·xt
aucb
t

rt) and

confidence set Esq
t+1 = {θ ∈ Rd, ∥θ∥ ≤ 1 : ∥θ − θsqt ∥2

V sq
t

≤ βsq
t }

\\ Update the logistic loss oracle and its confidence set
Update logistic regression oracle and get the new parameter estimation θlrt =
Oθlr

t−1
({xt, ã

∗
t })Zt + Oθlr

t−1
(∅)Z̄t, then update the confidence set E lr

t+1 = {θ ∈ Rd, ∥θ∥ ≤
1 : ∥θ − θlrt ∥2

V lr
t

≤ βlr
t }

Return

8 Detailed Algorithms

Let xt
a = ϕ(x, a) be the feature vector of action a at step t.

Algorithm 3 MixUCB (Type-III feedback)

Input: Query threshold ∆, total rounds T , function class F , initial confidence set E1
for t = 1, · · · , T do
aucbt = argmaxa∈A maxf∈Et

f(xt, a)
wt = maxf∈Et f(xt, a

ucb
t )−minf∈Et f(xt, a

ucb
t )

if wt ≥ ∆ then
Set Zt = 1. Query the experts and observe the rewards for all the actions rt,a ∼
r(xt, a),∀a ∈ A and play optimal action a∗t = argmaxa∈A r(xt, a).
Update Dt and Et with (xt, a, rt,a) according to

Et = {f ∈ F |
∑

x,a∈Dt

(ft(xt, at)− f(xt, at))
2 ≤ βt} . (23)

.
else

Set Zt = 0. Play aucbt and observe rt ∼ r(xt, a
ucb
t ).

Update Dt and Et with (xt, a
ucb
t , rt) according to (23).

Return

9 Experimental details

Online regression and confidence sets The joint loss is defined as∑
x,a∈Dlr

t

ℓlr(θ, x, a) +
∑

x,a,r∈Dsq
t

ℓsq(θ, (x, a), r) + λ∥θ∥22
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where ℓlr is the cross entropy loss and ℓsq is the squared loss. Then we define θ̂t for all algorithms
as the minimizer of this loss and the confidence set as Et = {θ | ∥θ − θ̂t∥2Vt(β)

≤ 1} where

Vt(β) =
1

(βlr)2

∑
x,a∈Dlr

t

ϕ(x, a)ϕ(x, a)⊤ +
1

(βsq)2

∑
x,a∈Dsq

t

ϕ(x, a)ϕ(x, a)⊤ +
1

(βsq)2
λI .

The advantage of this joint definition is that the optimistic/pessimistic optimization has a closed
form solution: maxf∈Et f(x, a) = θ̂⊤t ϕ(x, a) + ∥x∥Vt(β).

Robotics dataset We consider a dataset from the challenging robot manipulation problem of
robot-assisted bite acquisition (Feng et al., 2019), in which the task of the robotic agent is to ac-
quire bite-sized food items. The dataset include images from 16 different food types. In this setting,
the raw observation space O consists of RGB images of the bite-sized food items. We derive a
context space X ⊂ R5 by first extracting a lower-dimensional intermediate context xint ∈ R2048

by passing the each image through the SPANet network (a supervised network developed in (Feng
et al., 2019) for this domain) and extracting the penultimate layer (which is a linear layer). We then
run PCA with n = 5 components to get the final context x ∈ R5. The action space A consists
of 6 discrete actions, corresponding to different orientations of the robot end-effector. The rewards
r ∈ R represent the probability of a successful acquisition.

Medical datasets In this study, we utilize a heart disease dataset sourced from the UCI Machine
Learning Repository, which is publicly available (Bou Rjeily et al., 2019). The dataset comprises
297 instances and 14 attributes. These attributes include age, sex, cholesterol levels, chest pain type
(e.g., typical or non-anginal), resting blood pressure, maximum heart rate, and results from tests
like resting ECG and Thallium stress tests. Additional variables such as exercise-induced angina
and ST depression assess heart performance under stress. The dataset also includes attributes like
the number of major vessels and fasting blood sugar. The target variable, ’Diagnosis,’ indicates
whether a patient has heart disease (1 = yes, 0 = no), and serves as the dependent variable, while
the remaining 13 attributes act as independent variables. No personally identifiable information is
included. We derive a context space x ∈ R6 by running PCA with n = 6 components from the
original context xint ∈ R13. The action space A consists of 2 discrete actions.

MedNIST (Yang et al., 2023) consists of 28×28 images with corresponding classification labels. We
randomly select 20 samples from each of the 6 classes: ’BreastMRI’, ’HeadCT’, ’CXR’, ’ChestCT’,
’Hand’, and ’AbdomenCT’. We derive a context space x ∈ R6 by running PCA with n = 6 compo-
nents. The action space A consists of 6 discrete actions.

10 Complete experimental results

In Figure 4, Figure 5, Figure 6 and Figure 7, we show results for different query threshold values ∆
for synthetic data, robot manipulation dataset, MedNIST dataset and Heart Disease dataset, respec-
tively. For the synthetic dataset, we use (βsq, βlr) = (1.25, 2.5), while for the real datasets, we use
(βsq, βlr) = (0.625, 1.25). Additionally, we use λ = 0.001 for all datasets.
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Figure 4: Cumulative Reward, Average Autonomous Reward, and Cumulative Queries for MixUCB
on synthetic data with different query threshold ∆ = {0.5, 0.75, 1.0}.
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Figure 5: Cumulative Reward, Average Autonomous Reward, and Cumulative Queries for MixUCB
on Robot manipulation dataset with different query threshold ∆ = {0.5, 0.625, 0.75}.
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Figure 6: Cumulative Reward, Average Autonomous Reward, and Cumulative Queries for MixUCB
on MedNIST dataset with different query threshold ∆ = {0.5, 0.625, 0.75}.
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Figure 7: Cumulative Reward, Average Autonomous Reward, and Cumulative Queries for MixUCB
on Heart disease dataset with different query threshold ∆ = {0.5, 0.625, 0.75}.


