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Summary
Reinforcement learning from human feedback (RLHF) aims to learn or fine-tune policies

via human preference data when a ground-truth reward function is not known. However, many
conventional RLHF methods provide no performance guarantees and have an unacceptably
high probability of returning poorly performing policies. We propose Policy Optimization
and Safety Test for Policy Improvement (POSTPI), an algorithm that provides high-confidence
policy performance guarantees without direct knowledge of the ground-truth reward function,
given only a preference dataset. The user of the algorithm may select any initial policy πinit
and confidence level 1− δ, and POSTPI will ensure that the probability it returns a policy with
performance worse than πinit under the unobserved ground-truth reward function is at most δ.
We show theory as well as empirical results in the Safety Gymnasium suite that demonstrate
that POSTPI reliably provides the desired guarantee.

Contribution(s)
1. We formalize the problem of high-confidence policy improvement from human feedback

(HCPI-HF).
Context: Reinforcement learning from human feedback has been popular in recent years.
However, the problem of performing high-confidence policy improvement from human
preference data has not been formalized.

2. To address the HCPI-HF problem, we propose a novel algorithm Policy Optimization and
Safety Test for Policy Improvement (POSTPI), and demonstrate both theoretically and em-
pirically that POSTPI reliably provides the desired high-confidence policy improvement
guarantee.
Context: Many prior works in RLHF (Brown et al., 2019b; 2020; Javed et al., 2021; Hejna
et al., 2024) provide no performance guarantees on the returned policy. While there exist
some works that provide performance guarantees (Zhu et al., 2023; Chen et al., 2022; Xu
et al., 2020; Pacchiano et al., 2023; Novoseller et al., 2020; Wang et al., 2023), different
from these works, we focus specifically on the setting of improving with respect to a user-
provided policy with high probability.

3. We propose a novel policy optimization objective that allows POSTPI to return a policy
with high probability when the initial policy is sub-optimal, and derive the gradient of this
objective.
Context: Unlike PG-BROIL (Javed et al., 2021), which optimizes the conditional value-
at-risk, we optimize the value-at-risk, and explicitly allow the objective to depend on the
user-provided initial policy.

4. We propose a novel method for computing high-confidence policy performance bounds in
the RLHF setting.
Context: Unlike a prior approach (Brown et al., 2020), which only considers the uncer-
tainty in the ground-truth reward function, our approach further considers the uncertainty in
using a finite number of rollouts to estimate the expected value of a policy.
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Abstract

Reinforcement learning from human feedback (RLHF) aims to learn or fine-tune poli-
cies via human preference data when a ground-truth reward function is not known.
However, many conventional RLHF methods provide no performance guarantees and
have an unacceptably high probability of returning poorly performing policies. We
propose Policy Optimization and Safety Test for Policy Improvement (POSTPI), an
algorithm that provides high-confidence policy performance guarantees without direct
knowledge of the ground-truth reward function, given only a preference dataset. The
user of the algorithm may select any initial policy πinit and confidence level 1 − δ, and
POSTPI will ensure that the probability it returns a policy with performance worse than
πinit under the unobserved ground-truth reward function is at most δ. We show theory as
well as empirical results in the Safety Gymnasium suite that demonstrate that POSTPI
reliably provides the desired guarantee.

1 Introduction

In recent years, reinforcement learning (RL) has found success in many areas, including video
games (Mnih et al., 2015; Vinyals et al., 2019), board games (Silver et al., 2016), and healthcare (Yu
et al., 2023). These successes rely on the specification of an appropriate reward function that allows
an agent to learn the desirable behavior. However, the translation of desirable behavior to an actual
reward function can be difficult, especially for complex problems, and misspecified reward functions
can lead to undesirable behavior such as reward hacking (Skalse et al., 2022; Pan et al., 2022).

Reinforcement learning from human feedback (RLHF) is one popular technique to address this
problem. Instead of relying on a pre-specified reward function, RLHF aims to learn or fine-tune a
policy under a reward function inferred from human preference data. In light of its power to learn
human-desired behavior from only human preferences, RLHF has found applications in many areas,
such as improving RL policies (Christiano et al., 2017), fine-tuning large language models (Ouyang
et al., 2022) and improving text-to-image models (Lee et al., 2023; Wu et al., 2023).

However, RLHF still suffers from the following problems. First, optimizing with respect to a learned
reward function for too long can hinder performance under the ground-truth reward function of
the preference provider, known as over-optimization, since the learned reward function is often an
imperfect proxy (Gao et al., 2023). Second, even minor misalignment between human intent and
the learned reward function can lead to severe performance loss (Zhuang & Hadfield-Menell, 2020).
Unfortunately, misalignment can easily arise due to human errors, finite data, or biases in data
collection (Casper et al.). In light of these issues, it is in general not guaranteed that policies learned
using RLHF will perform well under the ground-truth reward function. As we will demonstrate
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in experiments, state-of-the-art RLHF methods often return poorly performing policies with non-
negligible probabilities. Furthermore, without access to the ground-truth reward function, we cannot
evaluate the performance of the learned policies under it to decide whether to employ these policies.
In safety-critical applications where a poorly performing policy can be dangerous, simply employing
policies learned from conventional RLHF methods can lead to undesirable outcomes. Therefore, an
algorithm that returns a policy with high-confidence performance guarantees in the absence of the
ground-truth reward function is especially important.

To solve this problem, we propose Policy Optimization and Safety Test for Policy Improvement
(POSTPI). POSTPI consists of two components: 1) candidate proposal, which proposes a candidate
policy for the algorithm to return, and 2) the safety test, which evaluates whether the proposed policy
is safe to return. The key idea is that the safety test acts as a gatekeeper that only accepts candidate
policies that are deemed better than the initial policy under the ground-truth reward function with
high confidence. When a candidate policy is not deemed better with sufficient confidence, the algo-
rithm returns No Solution Found (NSF). Assuming a correct model of the preference data, given any
initial policy and confidence level 1 − δ, POSTPI guarantees that the probability it returns a policy
worse than the initial policy under the ground-truth reward function is at most δ. Given the form of
this guarantee, POSTPI can be considered a type of Seldonian algorithm (Thomas et al., 2019).

In the safety test, we propose a novel method of computing high-confidence performance bounds,
which explicitly considers both the uncertainty in the ground-truth reward function, and the uncer-
tainty associated with using rollouts to estimate the expected value of a policy. On the other hand,
despite the high-confidence guarantee provided by POSTPI, if candidate proposal proposes policies
that are likely to be rejected by the safety test, POSTPI returns NSF frequently and has little prac-
tical use. To address this issue, we propose to optimize a novel objective for candidate proposal,
which allows POSTPI to return a policy with high probability when the user-provided initial policy
is sub-optimal. We provide a derivation of the gradient of this objective, which can be optimized
with any policy gradient algorithms.

We prove that POSTPI ensures policy improvement with high confidence and also compare our al-
gorithm with several state-of-the-art RLHF algorithms on two domains from the Safety Gymnasium
suite (Ji et al., 2023). We demonstrate empirically that out of the algorithms we tested, POSTPI is
the only one that performs policy improvement at a user-specified probability level. Furthermore,
we find empirically that most policies accepted by the safety test are improvements over the initial
policy under the ground-truth reward function. To the best of our knowledge, our work is the first to
ensure high-confidence policy improvement in the RLHF setting.

2 Related Work

2.1 Reinforcement Learning from Human Feedback

Reinforcement learning from human feedback (RLHF) aims to learn or fine-tune a policy using only
preferences over trajectories and has received much attention recently.

RLHF typically involves two steps: 1) learning a reward function from preferences, which are usu-
ally pairwise comparisons of possibly partial and sub-optimal trajectories, and 2) policy optimization
using the learned reward function. Some work requires active query for human preferences (Chris-
tiano et al., 2017; Lee et al., 2021a; Ibarz et al., 2018; Palan et al., 2019; Hejna & Sadigh, 2022;
Shin et al., 2021; Lee et al., 2021b). Some consider learning a reward function from an offline
dataset of preferences before using an RL algorithm for policy optimization. T-REX (Brown et al.,
2019a) treats learning the reward function from an offline preference dataset as a supervised learn-
ing problem, while B-REX infers a Bayesian posterior distribution over reward functions (Brown
et al., 2020). D-REX and SSRR automatically generate preferences by injecting noise into trajecto-
ries generated from a learned policy when preferences are not available (Brown et al., 2019b; Chen
et al., 2020). Sikchi et al. (2023) utilize both an offline preference dataset and automatically gener-
ated preferences. PG-BROIL builds on B-REX and optimizes a policy while taking the epistemic
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uncertainty in the reward into consideration (Javed et al., 2021). Recently, Hejna et al. (2024) and
Rafailov et al. (2024) convert RLHF into a supervised learning task, circumventing the need to learn
a reward function. However, none of these provide probabilistic guarantees on the performance of
policies learned from only an offline and finite preference dataset. While there exist other works
that provide performance guarantees (Zhu et al., 2023; Chen et al., 2022; Xu et al., 2020; Pacchi-
ano et al., 2023; Novoseller et al., 2020; Wang et al., 2023), different from these works, we focus
specifically on the setting of improving with respect to a user-provided policy with high probability.

2.2 Safety in Reinforcement Learning

In this subsection, we review the most closely related work in RL. The Seldonian framework focuses
on providing safety guarantees with high confidence, where the definition of safety is chosen by
the user of the algorithm (Thomas et al., 2019). Note that Seldonian algorithms are a class of
algorithms, and there is no single algorithm that is referred to as the Seldonian algorithm. However,
Seldonian algorithms typically involve candidate selection and safety test mechanisms. Candidate
selection proposes a solution to be returned by the algorithm, while the safety test evaluates whether
the proposed solution is safe to return. Seldonian algorithms allow users to specify the definition
of safety, and provide high-confidence guarantees that a solution returned will not produce unsafe
behavior. In this paper, we present an algorithm having a similar structure. However, unlike a typical
Seldonian algorithm where the user provides the safety definition, we define safety as improvement
with respect to a user-specified initial policy under the ground-truth reward function.

Much work has considered computing high-confidence bounds in RL when a reward function is
available. Thomas et al. (2015a) focus on providing high-confidence guarantees that the learned
policy is not worse than a user-selected threshold. Other work focuses on high-confidence off-
policy evaluation (Thomas et al., 2015b; Hanna et al., 2017). Chandak et al. (2021) consider the
high-confidence off-policy estimation of the variance of returns. In the absence of a reward func-
tion, Brown & Niekum (2018) provide high-confidence bounds of performance, but require solving
an MDP in the inner loop. B-REX (Brown et al., 2020) provides a way to compute high-confidence
performance bounds efficiently from high-dimensional visual trajectories in the RLHF setting. How-
ever, B-REX has not considered using the computed bounds to guide a policy search. Furthermore,
such bounds do not take the uncertainty of estimating the performance of a policy from rollouts into
consideration. As we will demonstrate in experiments, these bounds can in fact be overly optimistic.

3 Preliminaries

3.1 Markov Decision Process

We model the environment as a Markov decision process (MDP) (S,A, R, T, d0, γ), where S is the
state space, A is the action space, R : S → R is the reward function, T : S × A × S → [0, 1] is
the transition function, d0 is the initial state distribution, and γ is the discount factor. At every time
step t, the agent observes the state St and selects an action At. After executing the action At, the
environment transitions to St+1 and the agent receives a reward R(St). We consider a stochastic
policy π mapping from states to a probability distribution over actions. We denote the expected
value of a policy π under the reward function R by J(π,R) = Eπ[

∑∞
t=0 γ

tR(St)].

3.2 RLHF

In the RLHF setting, we do not have access to the ground-truth reward function, denoted as R∗,
and are left with an MDP\R (S,A, T, d0, γ). We assume access to a labeled dataset of preferences
over pairwise trajectories P = {τi ≺ τj}(i,j), where τj is preferred over τi. In order to provide our
high-confidence guarantee, we need to reason about the epistemic uncertainty in the ground-truth
reward function R∗ given the preference data P . To do this, we apply B-REX (Brown et al., 2020).
B-REX, similar to Christiano et al. (2017), assumes that the preferences follow the Bradley-Terry
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model (Bradley & Terry, 1952), and infers the posterior distribution over reward functions P (R|P)
given the preferences P . B-REX then uses Markov chain Monte Carlo (MCMC) to generate reward
samples from the Bayesian posterior distribution P (R|P) in an efficient manner. These reward
samples are central to the ability of our algorithm to provide our probabilistic guarantee. We denote
the set of reward samples by R = {ri}, where each ri is a distinct reward sample.

3.3 Value-at-Risk

Risk measures have been used as optimization criteria in RL (García & Fernández, 2015). Given
a risk-aversion parameter α ∈ [0, 1], the VaRα of a random variable X is the largest value that X
exceeds with probability at least α. Mathematically, it is the (1− α)-quantile of X:

VaRα[X] = sup{x : Pr(X ≥ x) ≥ α}. (1)

4 High-Confidence Policy Improvement from Human Feedback

Before detailing our approach, we first formalize the problem of high-confidence policy improve-
ment from human feedback. We consider the RLHF setting and model the problem as an MDP\R,
where the ground-truth reward function R∗ is not available. We assume access to a labeled dataset
of preferences over pairwise trajectories P = {τi ≺ τj}(i,j), where τ is a possibly partial trajec-
tory comprised of either states or state-action pairs, and the trajectory τj is preferred over τi. We
assume access to an initial policy πinit and a confidence level 1 − δ. The High-Confidence Policy
Improvement from Human Feedback (HCPI-HF) problem is to return a solution πreturn such that

Pr(J(πreturn, R
∗) ≥ J(πinit, R

∗)) ≥ 1− δ. (2)

Note that we allow an algorithm to indicate that it has not been able to find an improved policy by
returning No Solution Found (NSF). We define J(NSF, R∗) := J(πinit, R

∗) since NSF is considered
safe and not worse than the initial policy πinit.

In Equation 2, πreturn is the only term that is random. πreturn is determined using an algorithm taking
the set of preferences P , the initial policy πinit, and the confidence level 1− δ as input. We assume
that we are given a set of trajectories, which are fixed and have no randomness. However, we
assume that the preferences over the trajectories P are random. For example, in a practical scenario,
such preferences will be provided by a human, and if a human were to assign preferences multiple
times, the preferences may slightly vary every time. On the other hand, πinit and the confidence
level 1 − δ are provided by the user of the algorithm and have no randomness. Apart from the
randomness in the preferences P , the algorithm also causes randomness in πreturn. Common sources
of randomness in an algorithm involving policy optimization include the on-policy rollouts collected,
and the randomly initialized policy and value networks.

5 Policy Optimization and Safety Test for Policy Improvement

In this section, we describe our approach Policy Optimization and Safety Test for Policy Improvement
(POSTPI) for addressing the HCPI-HF problem. Our approach consists of two main components: 1)
candidate proposal, and 2) the safety test. In candidate proposal, we perform policy optimization and
return a candidate policy πC . The candidate policy πC is then subject to the safety test, where we de-
termine whether πC is an improvement over πinit with high confidence. A trivial design of the safety
test is to simply return NSF with probability 1−δ, and return the candidate policy with probability δ,
regardless of the performance of the candidate policy. While this is a valid solution to the HCPI-HF
problem, this solution still returns NSF with high probability, even in scenarios where a candidate
policy better than the initial policy can be easily learned. We now describe our design of the safety
test, which considers the performance of the candidate policy. As we demonstrate later in our exper-
iments, our safety test does not ensure safety simply by returning NSF with high probability. The
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frequency that our safety test returns a solution other than NSF, when provided with a safe policy,
increases as the amount of data increases, and tends towards one with reasonable amounts of data.

5.1 Safety Test

The safety test in POSTPI is the mechanism by which the high-confidence guarantee of our proposed
approach is provided. It determines whether the candidate policy πC returned by candidate proposal
is an improvement over the initial policy πinit under the ground-truth reward function R∗ with high
confidence. If the safety test is sufficiently confident that πC is an improvement, the algorithm
returns πC . Otherwise, the algorithm returns No Solution Found (NSF).

To determine whether πC passes the safety test, we are interested in the following inequality:

J(πC , R
∗)− J(πinit, R

∗) ≥ 0. (3)

Ideally, we want to return πC as the output of the algorithm if this inequality holds, and return NSF
otherwise. However, we cannot directly compute J(πC , R

∗) − J(πinit, R
∗), for two reasons. First,

we do not have access to the ground-truth reward function R∗. Second, the expected value J(π,R)
usually cannot be computed exactly for arbitrary π and R in practice, for example, due to a lack of
access to the transition function T . Often, J(π,R) can only be estimated using rollouts.

Instead of computing J(πC , R
∗)−J(πinit, R

∗) directly, we compute a high-confidence lower bound
on this quantity. We first define a high-confidence lower bound formally:

Definition 5.1 HCLB(θ, 1 − δ) denotes the high-confidence lower bound on a parameter θ with
confidence level 1− δ, i.e., Pr(HCLB(θ, 1− δ) ≤ θ) ≥ 1− δ.

Then, we are interested in computing the high-confidence lower bound HCLB(J(πC , R
∗) −

J(πinit, R
∗), 1 − δ). If this lower bound is greater than or equal to 0, we return πC . Otherwise,

we return NSF. An algorithm following this approach of using this high-confidence lower bound to
determine whether to return πC or NSF always satisfies Equation 2, and solves the HCPI-HF prob-
lem. When πC is actually better than πinit, regardless of whether we return πC or NSF, the returned
solution is not worse than πinit. When πC is worse than πinit, i.e., J(πC , R

∗)− J(πinit, R
∗) < 0, the

high-confidence lower bound computed is less than 0 with probability at least 1−δ, so we return πC

with probability at most δ. Note that the guarantee that this approach provides is independent of the
candidate policy πC . For example, we can return random candidate policies in candidate proposal,
and the safety test will still ensure that the entire algorithm provides the desired guarantee.

We now describe how to compute HCLB(J(πC , R
∗) − J(πinit, R

∗), 1 − δ). To do so, we need to
reason probabilistically about the uncertainty associated with J(πC , R

∗) − J(πinit, R
∗), which in-

cludes 1) the uncertainty in the ground-truth reward function R∗, and 2) the uncertainty in estimating
J(π, r) using a finite number of rollouts.

To address the first source of uncertainty, we apply B-REX (Brown et al., 2020), which infers the
posterior distribution over reward functions P (R|P) given the preferences P . By sampling from
this posterior distribution, we can utilize the reward samples to reason about the uncertainty in R∗

probabilistically. Note that this source of uncertainty is not perfectly accounted for, since we do not
have the analytical form of the posterior distribution, and are only drawing a finite number of samples
from it. However, since sampling from the posterior distribution using B-REX is computationally
cheap, we can simply draw a large number of reward samples.

On the other hand, it is not always possible to generate a large number of rollouts to address the
uncertainty in using a finite number of rollouts to approximate policy values J(π, r), for example,
in safety-critical applications where generating rollouts using an unsafe policy can be dangerous, or
in applications where generating rollouts is very expensive. In scenarios where only a small number
of rollouts can be generated, not explicitly accounting for this source of uncertainty can lead to unre-
liable performance bounds. As we demonstrate in Supplementary Materials D.1, when the number
of rollouts is small, a prior approach (Brown et al., 2020), which only accounts for the uncertainty
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Algorithm 1 Safety Test

Input: candidate policy πC , initial policy πinit, a set of reward samples R, confidence level
parameter δ
Compute HCLB(J(πC , r)− J(πinit, r), 1− δ/2) using rollouts for all r ∈ R.
Compute L as the (δ/2)-quantile of HCLB(J(πC , R)− J(πinit, R), 1− δ/2).
if L ≥ 0 then

return πC

else
return NSF

end if

in R∗ and does not consider the uncertainty in using a finite number of rollouts, can compute overly
optimistic lower bounds on J(πC , R

∗)− J(πinit, R
∗). A safety test using this approach to compute

high-confidence lower bounds fails to ensure the desired high-confidence guarantee.

To address this issue, we propose a novel approach to compute an estimate of the desired high-
confidence lower bound, which explicitly accounts for both sources of uncertainty. First, we sample
from the posterior distribution P (R|P) to obtain a set of reward samples R. Then, we directly
compute a single quantity, denoted by L, that, with probability 1 − δ/2, is simultaneously a lower
bound on J(πC , r)− J(πinit, r) for 1− δ/2 portion of the reward samples in R.

We now show that L is an estimate of the desired high-confidence lower bound HCLB(J(πC , R
∗)−

J(πinit, R
∗), 1 − δ). Assuming that we have an infinite number of reward samples, we know the

following two facts: First, a quantity that lower bounds J(πC , r)− J(πinit, r) for 1− δ/2 portion of
the reward samples is a lower bound on J(πC , R

∗)− J(πinit, R
∗) with probability 1− δ/2. Second,

the single quantity L that we compute is such a lower bound with probability 1 − δ/2. Therefore,
by Boole’s inequality, this single quantity L is HCLB(J(πC , R

∗)− J(πinit, R
∗), 1− δ). Note that,

in practice, we only use a finite number of reward samples, so the L we compute is only an estimate
of HCLB(J(πC , R

∗)− J(πinit, R
∗), 1− δ). To compute L, we prove the following theorem:

Theorem 5.2 Consider a set of reward samples R′. minr∈R′ HCLB(J(πC , r)− J(πinit, r), 1− δ)
is a lower bound on J(πC , r)− J(πinit, r) simultaneously for all r ∈ R′ with probability 1− δ.

We now present a proof sketch for Theorem 5.2, and defer the full proof to Supplementary Materi-
als A. Consider the reward sample r′ = argminr∈R′ J(πC , r) − J(πinit, r). The high-confidence
lower bound HCLB(J(πC , r

′) − J(πinit, r
′), 1 − δ) is at the same time a high-confidence lower

bound of J(πC , r) − J(πinit, r) for all r ∈ R′. However, we cannot identify r′ as we cannot
compute J(πC , r) − J(πinit, r) exactly. To address this, we compute minr∈R′ HCLB(J(πC , r −
J(πinit, r)), 1− δ), which lower bounds HCLB(J(πC , r

′)− J(πinit, r
′), 1− δ).

Using Theorem 5.2, we can pick any subset of reward samples R′ that contains at least 1 − δ/2
portion of the reward samples, and compute L as minr∈R′ HCLB(J(πC , r)− J(πinit, r), 1− δ/2).
One obvious choice of R′ is simply the 1 − δ/2 portion of reward samples that correspond to the
highest values of HCLB(J(πC , r) − J(πinit, r), 1 − δ/2). If we choose this R′, L is simply the
(δ/2)-quantile of HCLB(J(πC , R) − J(πinit, R), 1 − δ). We can then use L, which is an estimate
of HCLB(J(πC , R

∗) − J(πinit, R
∗), 1 − δ), to determine whether to accept or reject the candidate

policy. The full algorithm of the safety test is shown in Algorithm 1.

In practice, we compute HCLB(J(πC , r) − J(πinit, r), 1 − δ/2) using Student’s t-test. Note that
we can replace Student’s t-test with other statistical tests. We use Student’s t-test in all of our
experiments as it is easy to compute and works well in practice.
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Algorithm 2 Candidate Proposal

Input: the initial policy πinit, a set of reward samples R, confidence level parameter δ
Initialize policy πθ.
repeat

Estimate J(πθ, r)− J(πinit, r) for all r ∈ R using rollouts.
Estimate ∂

∂θ VaR1−δ/2[J(πθ, R)− J(πinit, R)] using Equation 5.
Perform one step of gradient ascent.

until convergence
return πθ

5.2 Candidate Proposal

In candidate proposal, we perform policy optimization to propose a candidate policy πC . In fact,
we can employ any algorithm to optimize a policy. This is because the high-confidence guarantee
provided by our algorithm only relies on the safety test, and is not contingent on candidate proposal.
However, policy optimization methods not taking the knowledge of the safety test into account will
likely produce candidate policies πC that do not pass the safety test. This will lead to the algorithm
outputting NSF frequently, reducing its practical use. In this subsection, we present a candidate
proposal mechanism specifically designed to return policies that will likely pass the safety test.

Recall that in the safety test, we accept a candidate policy πC when the (δ/2)-quantile of
HCLB(J(πC , R)−J(πinit, R), 1−δ/2) is greater than or equal to 0. To increase the probability of a
candidate policy being accepted, we propose to directly maximize an estimate of this (δ/2)-quantile,
leading to the following objective:

VaR-EVD = VaR1−δ/2[J(πC , R)− J(πinit, R)], (4)

where VaR1−δ of a random variable is equivalent to the δ-quantile of the random variable. Note
that we do not compute the high-confidence lower bounds of J(πC , R)−J(πinit, R) in the objective
for efficiency. The VaR-EVD objective (VaR of the Expected Value Difference) allows plugging in
any initial policy πinit in the form of J(πinit, R). By allowing the specification of an initial policy
in the objective, maximizing our objective increases the probability of obtaining a policy that is an
improvement over the initial policy.

We now present the gradient of the VaR-EVD objective. Consider a policy πθ parameterized
by θ. Let r ∈ R be the reward sample that satisfies the condition J(πθ, r) − J(πinit, r) =
VaR1−δ/2[J(πθ, R)− J(πinit, R)]. The gradient is:

∂

∂θ
VaR1−δ/2[J(πθ, R)− J(πinit, R)] =

∂

∂θ
J(πθ, r). (5)

We now provide a high-level description of the derivation, and defer the full derivation to Sup-
plementary Materials B. The gradient measures the change in VaR1−δ/2[J(πθ, R) − J(πinit, R)]
when the policy parameters θ change. When the change in θ is small enough, the changes induced
in J(πθ, R) − J(πinit, R) do not change which reward sample r satisfies J(πθ, r) − J(πinit, r) =
VaR1−δ/2[J(πθ, R)− J(πinit, R)]. We can therefore simply compute the policy gradient under r.

We present a general algorithm for candidate proposal in Algorithm 2. Note that the gradient in
Equation 5 can be optimized with any policy gradient algorithm. For example, it can be opti-
mized with PPO by just using the advantage of the reward sample r in the clipped surrogate ob-
jective (Schulman et al., 2017). In our experiments, we use the version of Algorithm 2 using PPO.

We now describe some practical considerations. In both the safety test and candidate proposal,
we use the initial policy πinit for generating rollouts for computing estimates of J(πinit, r) for all
r ∈ R. In practice, these estimates can be computed in advance to any desired level of accuracy.
One common misconception is that, when estimating J(π, r) for different r’s, we need to generate
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distinct rollouts for each r. In fact, we only need to use π to generate one set of rollouts, and
then evaluate the same set of rollouts under different r’s. This is because the choice of the reward
sample r only changes the rewards received, and has no impact on the trajectories. If the rewards
can be computed efficiently, increasing the number of reward samples induces little computational
overhead. Another practical consideration is related to the set of reward samples R. In the case of
drawing an infinite number of reward samples, using the same set for both candidate proposal and
the safety test does not introduce any bias. However, when using a finite sample, using the same set
of reward samples for both policy optimization and the safety test could induce bias in the safety
test. To reduce bias, we generate two sets of reward samples of the same size, one for candidate
proposal and one for the safety test.

6 Experiments

In this section, we want to answer the following questions: (1) Do empirical studies support our
theoretical claims that our algorithm achieves policy improvement with high confidence? (2) How
does the probability of returning a policy vary for different initial policies πinit? To answer these
questions, we perform experiments in two domains, Circle and Goal, from the Safety Gymnasium
suite (Ji et al., 2023). In Circle, the agent has to travel as fast as possible along the circumference of a
large circle, while avoiding a forbidden region that overlaps with the circle. In Goal, the agent has to
navigate to goals randomly generated on the map while avoiding dangerous regions called hazards.
Details of the two domains can be found in Supplementary Materials C. We further justify the design
of our candidate proposal and safety test by comparisons with state-of-the-art alternatives. We also
apply POSTPI to high-dimensional image inputs. Details and results of these additional experiments
can be found in Supplementary Materials D.

6.1 High-Confidence Policy Improvement

In this subsection, we aim to find out whether experiments support our claims that our algorithm
achieves policy improvement with high confidence. Note that the claim that our algorithm performs
high-confidence policy improvement is supported primarily by theory, and the experiments merely
serve to provide empirical support for established theory.

We compare our algorithm to the following state-of-the-art RLHF baselines: T-REX (Brown et al.,
2019a), B-REX (Brown et al., 2020), PG-BROIL (Javed et al., 2021) and CPL (Hejna et al., 2024).
For B-REX, we consider optimizing both the mean and MAP rewards. Apart from PG-BROIL, these
baselines do not explicitly consider the uncertainty in the ground-truth reward function when per-
forming policy optimization. While PG-BROIL reasons about the ground-truth reward probabilisti-
cally, it does not provide performance guarantees on the learned policy. Unlike POSTPI, these base-
lines were not designed to address the HCPI-HF problem, so poor performance at high-confidence
policy improvement should not be misconstrued as experimental evidence that these baselines are
not effective for the settings that they were designed for. Nevertheless, these are the most relevant
baselines to help us understand 1) the consequences of a lack of performance guarantees, and 2)
the benefits of POSTPI. All of these methods, including POSTPI, require a preference dataset. B-
REX, PG-BROIL, and POSTPI further involve sampling from the posterior distribution over reward
functions given preferences P (R|P). Details of preference label and reward sample generation, and
hyperparameter settings can be found in Supplementary Materials C and E respectively.

Our algorithm POSTPI requires specifying the confidence level 1− δ and the initial policy πinit. In
all of our experiments, we use a confidence level of 0.95, i.e., δ = 0.05. To examine the performance
of our algorithm under different initial policies, we generate a range of initial policies with varying
performance. We consider a set of initial policies, denoted as πϵ

init, where ϵ ∈ [0, 1] is a parameter
determining the level of performance of the initial policy. The larger the ϵ, the better the initial
policy, with π1

init corresponding to a policy trained under the ground-truth reward till convergence,
and π0

init corresponding to a policy that always receives 0 reward. In our experiments, we consider
ϵ ∈ {0, 0.25, 0.5, 0.75, 1}. Details on the initial policies can be found in Supplementary Materials C.
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For all algorithms, we evaluate the probability of returning a policy worse than the initial policy
under the ground-truth reward function R∗ over 20 trials. We approximate the expected value of
the returned and initial policies under the ground-truth reward function with 200 rollouts. Since our
algorithm ensures policy improvement with high confidence, we hypothesize that this probability
for POSTPI is at most δ = 0.05, while the probabilities for baselines may exceed δ. Recall that
our algorithm requires generating rollouts to compute high-confidence lower bounds of J(πC , r)−
J(πinit, r) for all r ∈ R in the safety test. We vary the number of rollouts we generate from 2 to 1000
and report the maximum probability of returning a policy worse than πϵ

init. This is to demonstrate
that, since our algorithm accounts for the uncertainty in expected value estimates, our algorithm
provides the desired guarantee regardless of the number of rollouts used for the safety test.

Table 1 shows the probability of returning a policy worse than πϵ
init for different ϵ for the Circle and

Goal domains. It can be seen that our algorithm, as predicted by our theoretical work, returns a policy
worse than πϵ

init with probability not more than the selected δ = 0.05. We also demonstrate that
there are in general no guarantees on the performance of policies returned by contemporary RLHF
algorithms. T-REX and B-REX return poorly performing policies with high probability regardless
of ϵ. PG-BROIL and CPL, on the other hand, are able to more frequently return policies performing
better than πϵ

init when ϵ is small. However, they still have non-negligible probabilities of returning
policies worse than the initial policies. Out of the algorithms tested, only POSTPI returns a policy
not worse than any chosen initial policy at a user-specified probability.

Table 1: Probability of returning a policy worse than πϵ
init over 20 trials in Circle and Goal.

DOMAIN CIRCLE GOAL

ϵ 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

T-REX 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
B-REX (Mean) 1.0 1.0 1.0 1.0 1.0 0.8 0.85 0.9 0.95 1.0
B-REX (MAP) 0.7 0.7 0.7 0.75 0.95 0.8 0.85 0.9 1.0 1.0
PG-BROIL 0.0 0.0 0.0 0.1 0.9 0.1 0.2 0.35 0.7 0.9
CPL 0.6 0.65 0.7 0.9 1.0 0.35 0.45 0.7 0.85 1.0
POSTPI (Ours) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6.2 Probability of Returning a Policy

Our algorithm returns either a policy or NSF. Although our algorithm provides a high-confidence
guarantee on policy improvement, if our algorithm returns NSF most of the time, it has little practical
use. We now present the probability of POSTPI returning a policy, computed over 20 trials.

Figure 1 shows the probability of POSTPI returning a policy over 20 trials in the Circle (left) and
Goal (right) domains for different initial policies πϵ

init. For the Circle domain, when ϵ < 1, i.e., when
the initial policies are sub-optimal and there is room for improvement, POSTPI returns a policy with
high probabilities (≥ 0.75). For the Goal domain, POSTPI returns a policy with probability 0.55
when ϵ = 0.75, and returns a policy with high probabilities (≥ 0.9) when ϵ ≤ 0.5. For both domains,
POSTPI returns a policy with very low probability when ϵ = 1, which is reasonable since improving
over π1

init, which is trained under the ground-truth reward function till convergence, is difficult. To
conclude, POSTPI, by optimizing the useful VaR-EVD objective in candidate proposal, is capable
of proposing policies that are likely to pass the safety test when the initial policy is sub-optimal.

Our algorithm provides the high-confidence guarantee that the solution returned (either the candidate
policy πC or NSF) is not worse than the initial policy. In the NSF case, it is trivial that this holds.
In the other case, it is informative to look at whether the accepted πC is actually an improvement
over the initial policy with high probability. Note that our algorithm does not provide any guarantees
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on this probability. For example, if an algorithm always returns a policy worse than πinit as πC in
candidate proposal, this probability will always be 0. We observe that in our experiments, a policy
accepted by the safety test is always an improvement over the initial policy in both domains. While
not guaranteed by our algorithm, a returned policy has a very high probability of being an actual
improvement over the initial policy.

Figure 1: The probability of returning a policy in the Circle (left) and Goal (right) domains over 20
trials for different initial policies πϵ

init. The shaded areas indicate ±1 standard error.

7 Discussion

In this work, we formalize the problem of high-confidence policy improvement from human feed-
back (HCPI-HF). We introduce a novel algorithm POSTPI to address this problem. We propose a
novel VaR-EVD objective for policy optimization and provide a derivation of its gradient that can
be optimized with any standard policy gradient algorithms. We propose a safety test that takes both
the uncertainty in the expected value estimates of the evaluated policies and the uncertainty in the
ground-truth reward function into consideration. We provide both theoretical and empirical evidence
that POSTPI provides the high-confidence guarantee that the solution returned is not worse than a
user-specified initial policy. Furthermore, we find that empirically, policies returned by POSTPI are
very frequently better than the initial policy.

Limitations. The guarantee provided by our algorithm relies on a few assumptions: 1) The
Bradley-Terry model (Bradley & Terry, 1952) is an accurate model of human preferences. How-
ever, as pointed out by Laidlaw & Dragan (2022), this is likely not the case. Nevertheless, we expect
that our work can be generalized to support other models of human preferences. Note, also, that
as long as the model of preferences matches the model used in preference annotation, our theoret-
ical guarantees hold, and can handle noise and potentially cyclic preferences. 2) The set of reward
samples R accurately represents the posterior distribution over reward functions given preferences
P (R|P). In the case of the Bradley-Terry model, this requires a matching inverse temperature pa-
rameter β during preference label generation and Bayesian inference. This is easy to ensure when
generating preference labels ourselves for experiments, but can be difficult when using preference
labels annotated by humans. This assumption also requires enough samples from the posterior,
which can be relatively easier to overcome by simply generating a large number of reward samples
using B-REX (Brown et al., 2020), though it necessitates a trade-off between the efficiency of the
algorithm and the soundness of the provided guarantee. 3) The ground-truth reward function lies in
the space of reward samples. In our experiments, similar to Javed et al. (2021), we hand-craft state
features that allow the ground-truth reward function to be expressed linearly in the state features.
In many real-world applications, such construction of state features is often not feasible. While B-
REX (Brown et al., 2020) uses a neural network to automatically learn the state features, the size
of the neural network required for the learned state features to be expressive enough can be hard to
determine in practice. Future work can focus on addressing these issues.
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A Proof of Theorem 5.2

Consider a set of reward samples R′, we now show that with probability 1 − δ,
minr∈R′ HCLB(J(πC , r) − J(πinit, r), 1 − δ) is a lower bound on J(πC , r) − J(πinit, r) si-
multaneously for all r ∈ R′. Note that for the proof, we use a confidence level of 1 − δ,
while in the main text, the application of this theorem uses a confidence level of 1 − δ/2. Let
L = minr∈R′ HCLB(J(πC , r)− J(πinit, r), 1− δ). Mathematically, we want to show that

Pr(∀r ∈ R′ : L ≤ J(πC , r)− J(πinit, r)) ≥ 1− δ. (6)

Let r′ = argminr∈R′ J(πC , r)− J(πinit, r). We have

∀r ∈ R′ : J(πC , r
′)− J(πinit, r

′) ≤ J(πC , r)− J(πinit, r). (7)

Now consider the high-confidence lower bound on J(πC , r
′)− J(πinit, r

′), we know that

Pr(HCLB(J(πC , r
′)− J(πinit, r

′), 1− δ) ≤ J(πC , r
′)− J(πinit, r

′)) ≥ 1− δ, (8)

which, using Equation 7, implies that

Pr(∀r ∈ R′ : HCLB(J(πC , r
′)− J(πinit, r

′), 1− δ) ≤ J(πC , r)− J(πinit, r)) ≥ 1− δ. (9)

In other words, HCLB(J(πC , r
′) − J(πinit, r

′), 1 − δ) is a lower bound on J(πC , r) − J(πinit, r)
simultaneously for all r ∈ R′ with probability 1 − δ. However, we cannot identify r′, since we
cannot compute J(πC , r) − J(πinit, r) exactly. Instead of trying to compute HCLB(J(πC , r

′) −
J(πinit, r

′), 1− δ) directly, we observe the following fact:

L = min
r∈R′

HCLB(J(πC , r)− J(πinit, r), 1− δ) ≤ HCLB(J(πC , r
′)− J(πinit, r

′), 1− δ), (10)

since r′ ∈ R′.

Now, we know that

Pr(∀r ∈ R′ : L ≤ J(πC , r)− J(πinit, r)) ≥ 1− δ. (11)

That is, with probability 1 − δ, minr∈R′ HCLB(J(πC , r) − J(πinit, r), 1 − δ) is a lower bound on
J(πC , r)− J(πinit, r) simultaneously for all r ∈ R′.

B Gradient of VaR-EVD

We present the full derivation of the gradient of the VaR-EVD objective (see Equation 4) under a
mild assumption. Let R be the set of reward samples drawn from P (R|P), πθ be the policy with
parameters θ being optimized, and πinit be the initial policy. We first start with the assumption:

Assumption B.1 ∀ri ̸= rj ∈ R, J(πθ, ri)− J(πinit, ri) ̸= J(πθ, rj)− J(πinit, rj).

Assumption B.1 states that the expected value difference of the policy being optimized πθ and the
initial policy πinit under any two distinct reward samples ri and rj are different. When πθ is not
equal to πinit, this is likely to be true. When πθ = πinit, the assumption does not hold. However,
recall that the only information required from the initial policy πinit is the (estimates of) expected
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values under all reward samples, i.e., J(πinit, r) for all r ∈ R, which can be computed in advance to
any desired level of accuracy. We can simply add a small positive noise to J(πinit, r) for all r ∈ R
while ensuring that the values of the noise added for different r’s are different. This simple injection
of noise induces minimal change to the values J(πinit, r), at the same time making the assumption
hold. In fact, unless we initialize πθ using the parameters of πinit, the case when πθ = πinit is
extremely rare. Finally, note that even when this assumption does not hold, it does not affect the
high-confidence guarantee that our algorithm provides, since our guarantee solely depends on the
safety test, and is unaffected by candidate proposal.

We now derive the gradient by first deriving each dimension of the gradient. Let ehi denote the vector
with all zero entries except for the i-th dimension, where the entry takes the value h. Simply put, it
is the i-th standard basis vector multiplied by h. We have

∂

∂θi
VaR1−δ/2[J(πθ, R)− J(πinit, R)] (12)

= lim
h→0

1

h
(VaR1−δ/2[J(πθ+eh

i
, R)− J(πinit, R)]−VaR1−δ/2[J(πθ, R)− J(πinit, R)]). (13)

Applying Assumption B.1, we know that the expected value difference is different for different
reward samples r. This means that we can compute the minimum distance between pairs of expected
value differences:

dmin = min
ri,rj∈R,ri ̸=rj

|(J(πθ, ri)− J(πinit, ri))− (J(πθ, rj)− J(πinit, rj))| > 0. (14)

We know that when h is small enough, the change induced to the expected value differences is
not enough to overcome the minimum distance between any pairs of expected value differences.
Mathematically, this can be written as:

∃h : ∀r ∈ R, |(J(πθ+eh
i
, r)− J(πinit, r))− (J(πθ, r)− J(πinit, r))| < dmin/2. (15)

Note that we need dmin/2 instead of dmin here since there is a pair of reward samples involved in
dmin, and the expected value difference of each of the two reward samples can change. Then, when
h is small enough, for the two VaR terms in Equation 13, if we sort all reward samples twice, once
using the expected value differences corresponding to the first VaR term and another time using that
corresponding to the second VaR term, the two orders of the reward samples obtained from the two
sorts will be the same. Therefore, the reward samples that correspond to expected value differences
equal to the two VaR terms are the same. Mathematically, let r1 be the reward sample such that

J(πθ+eh
i
, r1)− J(πinit, r1) = VaR1−δ/2[J(πθ+eh

i
, R)− J(πinit, R)], (16)

and r2 be the reward sample such that

J(πθ, r2)− J(πinit, r2) = VaR1−δ/2[J(πθ, R)− J(πinit, R)], (17)

we then know that r1 = r2. Note that r2 does not depend on the dimension of the gradient i.
Also note that here we assume that only one reward sample satisfies each of Equations 16 and 17,
since we almost never generate identical reward samples from MCMC and we have assumed (by
Assumption B.1) that different reward samples correspond to different expected value differences.

Therefore, Equation 13 can be written as:

lim
h→0

1

h
(J(πθ+eh

i
, r2)− J(πinit, r2)− J(πθ, r2) + J(πinit, r2)) (18)

= lim
h→0

1

h
(J(πθ+eh

i
, r2)− J(πθ, r2)) (19)

=
∂

∂θi
J(πθ, r2). (20)
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Combining all dimensions of the gradient, we have

∂

∂θ
VaR1−δ/2[J(πθ, R)− J(πinit, R)] (21)

=
∂

∂θ
J(πθ, r), (22)

where r is the reward sample that satisfies J(πθ, r)−J(πinit, r) = VaR1−δ/2[J(πθ, R)−J(πinit, R)].

Based on our derivation above, it may seem that optimizing a policy using this gradient will never
allow the ordering of the reward samples according to the expected value differences to change.
An immediate result of this is that the reward sample r that satisfies J(πθ, r) − J(πinit, r) =
VaR1−δ/2[J(πθ, R) − J(πinit, R)] will always be the same, meaning that we will always optimize
with respect to the same reward sample. This would mean that our algorithm would be no different
from those that optimize a point estimate of the ground-truth reward function. However, note that
the argument that the changes induced to the expected value differences are not enough to over-
come dmin only serves to prove the existence of the gradient, and only holds for small enough h. In
practice, with the use of an optimizer, we often use a step size that is much larger than the small
h we used above in our arguments, inducing changes to θ substantial enough that the ordering of
the reward samples changes. In fact, we empirically observe that the reward sample r that satisfies
J(πθ, r)− J(πinit, r) = VaR1−δ/2[J(πθ, R)− J(πinit, R)] changes throughout optimization.

C Full Experiment Details

In this section, we provide full experiment details. Section C.1 presents details on the domains used
for our experiments. Section C.2 presents details on constructing the preference dataset. Section C.3
presents details on generating reward samples from the posterior distribution P (R|P). Section C.4
presents details on the initial policies used for our experiments. Section C.5 presents details on
computing the standard error for our experimental results.

C.1 Domains

We consider two domains from Safety Gymnasium (Version 1.2.0, Apache-2.0 license) (Ji et al.,
2023), a suite of environments with safety constraints for safe RL built on top of Safety Gym (Ray
et al., 2019). We choose to perform experiments in this suite since unsafe behavior is well-defined.
The suite consists of a wide range of tasks. For each task, the suite provides several built-in difficulty
levels. The suite also allows the design of custom levels. Our experiments focus on safety navigation
tasks. We carry out experiments in two specific tasks: Goal and Circle. At every time step, apart
from the reward, a domain in the Safety Gymnasium suite also indicates whether a safety constraint
is violated. We simply subtract the cost of violating a safety constraint, which is by default 1, from
the reward at every time step, and treat this quantity as the reward. The Safety Gymnasium provides
a set of agents to choose from and we use the Point agent for all experiments.

Circle. As shown in Figure 2 (left), in Circle, the agent has to travel as fast as possible along the
circumference of a large circle placed at the center of the environment. The faster the agent and the
closer the agent is to the circumference, the higher the reward. The exact reward function can be
found in the Safety Gymnasium paper (Ji et al., 2023). Apart from the circle, there are forbidden
regions slightly overlapping with the circle, giving the agent −1 reward for every time step the agent
is in a forbidden region. Therefore, the agent cannot simply travel in circular motion, and has to
learn to avoid these regions. We use the provided level 1 Circle environment.

Goal. As shown in Figure 2 (right), Goal is one of the navigation tasks in the suite, where the agent
has to navigate towards a goal. When the goal is reached, the agent receives a reward of +1, and a
new goal with a random position is generated. The agent has to learn to navigate to successive goals
while avoiding dangerous zones called hazards in the environment. Hazards are simple circular
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zones in the environment that give a reward of −1 for every time step an agent is in a hazard. We
noticed that the random placements of goals and hazards of the built-in levels allow some policies
to achieve good performance even without learning to avoid a hazard, so we designed our custom
Goal environment, where four hazards are placed at the center of the environment, and goals are
generated around this grid of hazards.

Figure 2: The level 1 Circle domain (left) and the custom Goal domain (right). For the Circle
domain, the green circle indicates the circle that the agent should circle around, while the regions
beyond the yellow lines are forbidden. For the Goal domain, each blue circle is a hazard that the
agent should avoid, while the green cylinder represents the goal.

C.2 Preference Label Generation

In the RLHF setting, we assume access to a preference dataset. Similar to prior work (Brown et al.,
2020; Javed et al., 2021), we generate preference data for the purpose of experiments. To generate
preferences, we first need a set of trajectories. To generate trajectories, we first use PPO (Schulman
et al., 2017) to train a policy under the ground-truth reward function R∗ till convergence. We denote
the obtained policy as the demonstration policy πdemo. Details of training the demonstration policy
can be found in Section C.4.

After training the demonstration policy, we use it to generate a set of trajectories. We treat a full
episode as a trajectory. It is good to ensure that RLHF learns to avoid unsafe behavior, even when
it has not been directly observed and dispreferred. To test whether our algorithm POSTPI can
achieve this, we generate preferences over trajectories with minimal unsafe behavior. Note that this
makes the experimental settings more challenging, instead of the opposite. To do so, we generate
trajectories using the trained πdemo, but filter out trajectories with unsafe behavior. For the two
domains we consider, we find the empirical return of an episode to be a good indicator of whether
unsafe behavior has occurred, and filter trajectories using their returns. For the Circle domain, we
generate 30 trajectories with returns above 30. For the Goal domain, we generate 30 trajectories
with returns above 15.

After generating trajectories, we compute preference labels following the Bradley-Terry
model (Bradley & Terry, 1952). We randomly sample two distinct trajectories τi, τj from the set
of generated trajectories, and assign preference labels according to the following probability:

Pr(τi ≺ τj) =
eβR(τj)

eβR(τi) + eβR(τj)
, (23)
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where τi ≺ τj indicates that τj is preferred over τi, β is the inverse temperature parameter, and
R(τ) =

∑
s∈τ R(s) is the return of trajectory τ . We choose β = 5 in all of our experiments. We

generate a total of 50 preferences for both domains.

Unlike other work which assumes that the preferences follow the Bradley-Terry model (Bradley &
Terry, 1952), CPL (Hejna et al., 2024) assumes that preferences follow the regret preference model.
To obtain preferences based on regret, while maintaining a fair comparison with POSTPI, we reuse
the pairs of trajectories generated for POSTPI, but regenerate the preference labels according to the
regret model. In particular, we compute the advantage of a state-action pair using the value network
trained while training the demonstration policy πdemo.

C.3 Reward Sample Generation

Using the set of preferences, we can sample from the posterior distribution over reward functions
given preferences P (R|P) using B-REX (Brown et al., 2020). B-REX involves pre-training a reward
model to automatically learn state features. B-REX represents each reward sample as a vector of the
same dimensions as the state features, and computes rewards as the dot product between the learned
state features and the vector representation of the reward sample. However, it is not guaranteed that
following this method, the learned state features are expressive enough to represent the ground-truth
reward function linearly. Our algorithm cannot provide the desired guarantee when the ground-
truth reward function does not lie in the space of reward samples. In our experiments, we intend to
focus on studying our high-confidence guarantee in ideal conditions. Therefore, similar to a prior
work (Javed et al., 2021), we hand-craft state features to allow the ground-truth reward function R∗

to be expressed linearly in the state features. This ensures that the ground-truth reward function lies
within the space of reward samples, which is necessary to provide our high-confidence guarantee.

For the Goal domain, the reward function has the following form:

rt = (Dt−1 −Dt) + 1{ agent in goal} −
4∑

i=1

1{ agent in hazard i}, (24)

where Dt is the distance between the agent and the goal at time t, 1{ condition} is the indicator function
that evaluates to 1 when the condition is true and 0 otherwise. Simply put, the agent receives a small
dense reward Dt−1 −Dt that guides the agent towards the goal. The agent also receives a reward of
+1 for reaching the goal and a penalty of −1 for reaching any of the four hazards.

We simply construct the state features as a 6-dimension vector as follows:

ϕ(st) = [Dt−1 −Dt,1{ agent in goal},1{ agent in hazard 1}, . . . ,1{ agent in hazard 4}]. (25)

Then, the ground-truth reward function R∗ can be represented as the vector wR∗ =
[1, 1,−1,−1,−1,−1]. The ground-truth reward at every time step t can be computed as R∗(st) =
wT

R∗ϕ(st). We apply a similar approach to the Circle domain.

With the state features available, we now draw reward samples from the posterior distribution
P (R|P) as vectors of unit L2 norm with the same dimension as the state features. Constraining
the reward samples to have unit L2 norm is a standard approach. Note that the ground-truth reward
function can still be expressed as a vector lying on the L2 unit norm ball, since scaling the reward
function by a positive constant does not affect the set of corresponding optimal policies.

We run MCMC to generate reward samples. We use a uniform prior assigning the same probability
density to all reward samples. We follow the likelihood function in B-REX (Brown et al., 2020),
using β = 5 that matches the β used when generating preference labels. We propose reward samples
by adding independent Gaussian noise to each dimension of the current reward sample. The standard
deviation of the Gaussian noise is chosen so that the probability of accepting a proposed reward
sample lies between 0.2 and 0.8. The standard deviation of the Gaussian noise is 1 for the Circle
domain and 0.1 for the Goal domain. We run a total of 20K MCMC steps with a burn-in of 4K
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steps. We sample from the chain every 20 steps to reduce auto-correlation. For the sampled reward
functions, we split them into two sets by taking the ones with odd indices into one set, and taking
the remaining ones into another set. We use one set for candidate proposal and the other set for the
safety test to reduce bias in the safety test. Each set contains a total of 400 reward samples, which
we find to be sufficient empirically.

C.4 Initial Policies

In this subsection, we describe our approach to generate the set of initial policies πϵ
init used in the

experiments in Section 6. We are interested in a set of initial policies with varying performance
under the ground-truth reward function.

First, we would like to train a policy with good performance under the ground-truth reward function.
To do this, we train a policy using PPO (Schulman et al., 2017) under the ground-truth reward
function till convergence. We use the implementation of PPO by Stable-Baselines3 (Version 2.2.0a6,
MIT license) (Raffin et al., 2021), and default hyperparameters apart from the ones listed in Table 5.
We use the same set of hyperparameters for both the Circle and Goal domains, apart from the total
number of time steps to run, which is 3M and 5M for the Circle and Goal domains respectively. For
each domain, we trained 5 policies with different random seeds for each of the three learning rates:
3e−5, 1e−4, and 3e−4. We pick the policy with the highest expected return out of the 15 policies.
This policy, referred to as the demonstration policy πdemo, has good performance under the ground-
truth reward function. Note that this policy is the same as the one used to generate trajectories during
preference label generation (see Section C.2). We use πdemo as one of the initial policies, simulating
the case of improving with respect to a policy already performing well under the ground-truth reward
function. This policy πdemo corresponds to the case when ϵ = 1, i.e., πdemo = π1

init.

We now describe our approach to obtain policies performing worse than πdemo to different extents.
Recall that the only information of the initial policy πinit required by our algorithm is the expected
value J(πinit, r) for all reward samples r ∈ R, and these expected values can be computed in
advance to any desired level of accuracy (see the final paragraph of Section 5.2). Therefore, instead
of training different policies with varying performance, we simply multiply J(πdemo, r) for all r
by a constant ϵ to simulate varying levels of sub-optimal policies. Mathematically, we provide
ϵJ(πdemo, r) for all r ∈ R to our algorithm, where ϵ ∈ [0, 1] and J(πdemo, r) is estimated using 200
rollouts. We refer to these policies as πϵ

init. Note that πϵ
init corresponds to a policy that always obtains

ϵ fraction of the rewards obtained by πdemo, for all reward samples. For example, for a particular
trajectory, if πdemo obtains a reward of 1 at time step t under the reward sample r, πϵ

init will obtain a
reward of ϵ at time step t under the reward sample r. Furthermore, since πdemo is trained under the
ground-truth reward function till convergence, for the two domains we consider, it obtains positive
rewards most of the time. Therefore, ϵ < 1 corresponds to policies worse than πdemo, with lower ϵ
corresponding to worse policies.

In our experiments, we consider ϵ ∈ {0, 0.25, 0.5, 0.75, 1}. While it is possible to consider ϵ > 1,
since πdemo is obtained by training a policy under the ground-truth reward function till convergence,
we expect that it would be difficult to improve with respect to π1

init, let alone an initial policy πϵ
init

with ϵ > 1. Therefore, we focus on ϵ ∈ [0, 1] in our experiments.

For evaluation purposes, we also need to compute the expected value of the initial policies under the
ground-truth reward function R∗. When ϵ = 1, i.e., the initial policy is πdemo, we simply estimate
J(πdemo, R

∗) using 200 rollouts. For ϵ < 1, since we already have the estimate of J(πdemo, R
∗), we

simply estimate J(πϵ
init, R

∗) by multiplying the estimate of J(πdemo, R
∗) by ϵ.

C.5 Statistical Significance

In Figure 1, which presents the probability of our algorithm returning a policy, the shaded area
indicates ±1 standard error of this probability. Factors of variability include the randomness in
generating preference labels, random initialization of the policy and value networks, and the rollouts
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generated during training and evaluating the policy. The standard error is computed as σ̂√
Ntrial

, where
σ̂ is the sample standard deviation, and Ntrial = 20 is the number of trials.

D Additional Experiments

In this section, we present additional experiments not covered in the main text. Section D.1 com-
pares our safety test with one that uses a previous approach (Brown et al., 2020) to compute high-
confidence bounds. Section D.2 compares our candidate proposal with state-of-the-art alternatives.
Section D.3 presents experiments generalizing our algorithm to high-dimensional image inputs.

D.1 Comparison to B-REX’s Bound

In this subsection, we empirically demonstrate that our safety test is more reliable than a counterpart
that does not account for the uncertainty in using a finite number of rollouts to estimate the expected
values of policies. In B-REX, Brown et al. (2020) proposed a method to compute high-confidence
lower bounds that reasons only about the uncertainty in the ground-truth reward function R∗, but
does not take the number of rollouts used to estimate J(πC , r) − (πinit, r) into consideration. This
approach can compute overly optimistic bounds, especially when the number of samples is small.
We empirically demonstrate that a safety test using this approach of computing high-confidence
bounds, which we refer to as B-REX style, fails to provide the high-confidence guarantee as claimed.

Table 2 shows the comparison of using the B-REX style safety test and using our safety test in the
Goal domain when using a small number of rollouts (20) for the safety test. It can be seen that our
safety test returns policies worse than the initial policy with probability not larger than δ = 0.05, but
the B-REX style safety test returns policies worse than the initial policy with probabilities greater
than δ = 0.05 for ϵ = 0.75 and 1. This is because when the number of rollouts used is small, the B-
REX style safety test is prone to computing overly optimistic bounds. As a result, the B-REX style
safety test more frequently accepts policies that are in fact not better than the initial policy, causing
it to not provide the high-confidence guarantee. On the other hand, our algorithm duly accounts
for the uncertainty in the expected value estimates and provides the high-confidence guarantee as
expected regardless of the number of rollouts used in the safety test. In light of this, our safety test
is safer to employ in practice.

Table 2: Probability of POSTPI returning a policy worse than πϵ
init for different ϵ over 20 trials in the

Goal domain when using a B-REX style safety test and our safety test, and using a small number of
rollouts (20) for the safety test.

ϵ 0 0.25 0.5 0.75 1

B-REX Style Safety Test 0.05 0.0 0.05 0.15 0.1
Our Safety Test 0.05 0.0 0.0 0.0 0.0

D.2 Choice of candidate proposal

We now empirically justify the choice of optimizing the VaR-EVD objective in candidate proposal.
In candidate proposal, the goal is to return a policy that is likely to pass the safety test. In fact,
any policy optimization algorithm can be used in candidate proposal. However, we hypothesize that
our candidate proposal that optimizes the novel VaR-EVD objective, which allows the specification
of an initial policy and takes into account knowledge of the safety test, should produce candidate
policies that are more likely to be accepted in the safety test than other policy optimization methods.

As seen in Section 6.1, T-REX (Brown et al., 2019a) and B-REX (Brown et al., 2020) frequently
return policies that are worse than π0

init with high probabilities. Therefore, we mainly compare our
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candidate proposal with PG-BROIL (Javed et al., 2021) and CPL (Hejna et al., 2024), two state-of-
the-art RLHF methods.

We compare the probability of returning a policy for our candidate proposal and using PG-BROIL
and CPL as candidate proposal for different initial policies πϵ

init. We use 1000 rollouts for computing
high-confidence bounds in the safety test to ensure that the difference in results is not caused by
insufficient data in the safety test.

Table 3 shows the probability of returning a policy when using our candidate proposal, PG-BROIL
as candidate proposal, and CPL as candidate proposal for the Circle and Goal domains. It can
be seen that CPL returns policies that are rejected by the safety test with high probabilities. PG-
BROIL and our candidate proposal return policies that are accepted with similar probabilities in
the Circle domain, but our candidate proposal largely outperforms PG-BROIL in the Goal domain.
By allowing the specification of an initial policy, and taking the knowledge of the safety test into
account, maximizing the VaR-EVD objective in candidate proposal returns policies that are accepted
by the safety test more often than state-of-the-art alternatives.

Table 3: Probability of returning a policy for the Circle and Goal domains using our candidate
proposal and using PG-BROIL and CPL as candidate proposal.

DOMAIN CIRCLE GOAL

ϵ 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

PG-BROIL 1.0 0.95 0.9 0.8 0.0 0.9 0.8 0.65 0.25 0.05
CPL 0.3 0.25 0.2 0.0 0.0 0.6 0.3 0.2 0.05 0.0
POSTPI (Ours) 0.95 1.0 0.9 0.75 0.0 0.95 0.95 0.95 0.6 0.15

D.3 High-Dimensional Image Input

In this subsection, we demonstrate that our algorithm POSTPI scales to high-dimensional image
inputs. We use the same two domains as before and adopt the same procedures of generating pref-
erence labels and reward samples (see Section C for more details). The only change we make here
is the observations used when performing policy optimization in candidate proposal. We replace the
original vector observations with pixels captured by a camera placed in front of the agent. We note
that the original observations come from lidar sensors detecting all directions of the agent, while the
camera only captures information in front of the agent. This reduction in the information contained
in observations, coupled with the increased difficulty of learning from pixels, causes a drop in the
performance of the candidate policies. As a result, the probability of returning a policy drops, espe-
cially for the more difficult Goal domain. We focus on the probability of returning a policy worse
than the initial policy in this subsection.

Table 4 shows the probability of returning a policy worse than different initial policies in both do-
mains. It can be seen that even in a setting where learning a well-performing policy is difficult, our
algorithm still provides the desired guarantee. As discussed in Section 6.2, we are also interested in
seeing whether the accepted πC is actually an improvement over the initial policy with high proba-
bility. Note, again, that our algorithm provides no guarantees on this probability. Nevertheless, we
find that a policy accepted by the safety test has a high probability (> 0.85) of being an improvement
over the initial policy in both domains.

One thing to note is that for the results presented in Table 4, the candidate policies were trained for
the same number of steps as in the case of the original observations (3M and 5M for the Circle and
Goal domains respectively). Due to the increased training time for image inputs, we initially trained
the policies for only 2M steps for both domains, and we observed that the probability of returning a
policy worse than the initial policy was sometimes 0.1, which is slightly higher than δ. This is likely
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Table 4: Probability of POSTPI returning a policy worse than πϵ
init for different ϵ over 20 trials in the

Circle and Goal domains with image observations.

ϵ 0 0.25 0.5 0.75 1

Circle 0.0 0.05 0.0 0.0 0.0
Goal 0.0 0.0 0.05 0.0 0.0

caused by a failure to fulfill the assumptions made by Student’s t-test. In POSTPI’s safety test, we
use Student’s t-test to compute HCLB(J(πC , r) − J(πinit, r), 1 − δ/2). Student’s t-test makes the
normality assumption, but we observed that empirically the data distribution was not normal. We
experimented with other statistical tests, and some more conservative tests were able to ensure the
desired guarantee, at the expense of the probability of returning a policy. We suggest using Student’s
t-test for users who do not strictly require the high-confidence policy improvement guarantee, and
are merely interested in an algorithm that is safer than algorithms without any guarantees. For
users who are interested in an algorithm that strictly provides the guarantee, we suggest replacing
Student’s t-test with more conservative statistical tests or tests with weaker assumptions.

E Hyperparameters

For POSTPI, B-REX (Mean), B-REX (MAP), PG-BROIL, and T-REX, the major difference during
policy optimization is the reward functions used. B-REX (Mean) is trained under the mean reward of
the posterior distribution P (R|P). B-REX (MAP) is trained under the MAP reward of the posterior
distribution. T-REX is trained under a reward function learned in the T-REX manner (Brown et al.,
2019a). Our algorithm chooses the reward sample at every iteration using the VaR, while PG-BROIL
chooses reward samples using their BROIL objective (Javed et al., 2021).

As the reward functions used by these algorithms have the same magnitude of unit L2 norm, we
share most hyperparameters for these algorithms. We adapt the implementation of PPO in Stable-
Baselines3 (Version 2.2.0a6, MIT license) (Raffin et al., 2021) to optimize the policy for these
algorithms, and use default hyperparameters apart from the ones presented in Table 5. The learning
rate is picked by grid search from the following values [1e−5, 3e−5, 1e−4, 3e−4, 1e−3] by training
five policies with different random seeds under each learning rate. We find the learning rate 1e−4
to perform best for both domains, and use this value for all of these algorithms. These algorithms
are trained for 3M and 5M steps in the Circle and Goal domains respectively. We use the Adam
optimizer (Kingma & Ba, 2015) for all experiments. We present details and hyperparameters specific
to each algorithm below.

Table 5: Hyperparameters of algorithms built on PPO.

HYPERPARAMETER VALUE

Number of hidden layers 2
Number of hidden units 128
Activation Function ReLU
Number of environment steps per update 4000

PG-BROIL. As mentioned in the main text, we choose a confidence level of 0.95, i.e., δ = 0.05,
for POSTPI. For PG-BROIL, for a fair comparison with our algorithm POSTPI, we choose α =
0.95. We choose λ = 0 as we observe it to perform best empirically.
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B-REX. We compute the mean reward and select the MAP reward using the set of reward samples
reserved specifically for candidate proposal (see the final paragraph of Section 5.2). These rewards
are then maximized using PPO, leading to the results of B-REX (Mean) and B-REX (MAP) in the
main text respectively.

T-REX. We follow the approach detailed in Section 4 of the T-REX paper (Brown et al., 2019a) to
learn the reward function. For a fair comparison with POSTPI, we use the same set of preferences
used by POSTPI to train the T-REX reward function. We pick the learning rate by grid search from
the following values [3e−3, 1e−2, 3e−2, 1e−1, 3e−1, 1]. We find the best learning rate to be 1e−1
for both domains, and observe 200 epochs to be sufficient for convergence. We normalize the trained
T-REX reward function to have unit L2 norm.

CPL. Different from POSTPI and other baselines, CPL assumes that the preferences follow the
regret preference model (Hejna et al., 2024). For a fair comparison with POSTPI, we use the same
set of pairs of trajectories used by POSTPI, but re-generate the preferences according to the regret
preference model. When generating preferences according to the regret model, we follow the CPL
paper and use γ = 1. After obtaining the CPL preferences, we train a policy using the CPL variant
with regularization presented in Section 3 of the CPL paper (Hejna et al., 2024). We keep the policy
architecture the same as POSTPI and other baselines. We pick the learning rate by grid search from
the following values [3e−4, 1e−3, 3e−3, 1e−2]. We find the best learning rate to be 1e−3, and
find 1000 epochs to be sufficient for convergence. For other hyperparameters, we follow the CPL
paper (Hejna et al., 2024), and use α = 0.1, λ = 0.5, and β = 0.0.

F Compute Resources

The experiments are performed on a compute server, mainly using NVIDIA GeForce GTX TITAN
X (12GB) GPUs. POSTPI, PG-BROIL, B-REX, and T-REX have similar runtimes. Each trial of
these algorithms takes 5 hours and 7 hours in the Circle and Goal domains respectively. For the
experiments in Section D.3 that involve image inputs, each trial takes 26 hours and 48 hours for
the Circle and Goal domains respectively. On the other hand, due to the small number of prefer-
ences, each trial of CPL can be trained in under 10 minutes. For evaluating the trained policies, all
algorithms share similar runtimes. Evaluating the expected value of the policies using 200 rollouts
takes 1 hour and 1.5 hours for the Circle and Goal domains respectively. Evaluating the policies for
experiments in Section D.3 takes 5 hours and 7 hours for the Circle and Goal domains respectively.
Note that the number of hours presented above is approximate. The experiments presented in this
paper were run in a highly parallel manner using 60 to 100 GPUs simultaneously, and finished in
approximately one week. Running the experiments in a sequential manner is expected to take a
much longer time.


