
Reinforcement Learning Journal 2025
∣∣ Cover Page

Uncovering RL Integration in SSL Loss:
Objective-Specific Implications for Data-Efficient RL

Ömer Veysel Çağatan, Barış Akgün

Keywords: Data Efficient RL, Self Predictive RL, Self Supervised Learning

Summary
This paper presents a systematic analysis of the role of self-supervised learning (SSL) ob-

jectives and their modifications in data-efficient reinforcement learning. We investigate pre-
viously undocumented modifications in the Self-Predictive Representations (SPR) (Schwarzer
et al., 2020) framework that significantly impact agent performance. We demonstrate that fea-
ture decorrelation-based SSL objectives can achieve comparable performance without relying
on domain-specific modifications and show that the impact of these modifications persists even
in more advanced models.

By conducting extensive experiments on the Atari 100k benchmark and DeepMind Con-
trol Suite, we provide insights into how different SSL objectives and their modifications af-
fect learning efficiency across diverse environments. Our findings reveal that the choice and
adaptation of SSL objectives play a crucial role in achieving data efficiency in self-predictive
reinforcement learning, with implications for the design of future algorithms in this space.

Contribution(s)
1. We demonstrate that previously undocumented SSL modifications in SPR (Schwarzer et al.,

2020) - terminal state masking and prioritized replay weighting - are crucial for perfor-
mance, with their removal leading to an 18% decrease in IQM score on Atari 100k
Context: These modifications were silently adopted by subsequent work (D’Oro et al.,
2023; Nikishin et al., 2022; Schwarzer et al., 2023) and their impact was not previously
analyzed

2. We show that the Barlow Twins SSL objective (Zbontar et al., 2021) can come within 5%
of SPR’s performance without using domain-specific modifications, and VICReg (Bardes
et al., 2021) can match PlayVirtual’s (Yu et al., 2021) performance in continuous control
tasks.
Context: Prior work on SSL in reinforcement learning relied heavily on problem-specific
modifications to achieve strong performance (Schwarzer et al., 2020; D’Oro et al., 2023;
Schwarzer et al., 2023).

3. We establish that the impact of SSL modifications remains proportionally consistent in more
sophisticated models, with unmodified versions of SR-SPR and BBF showing similar rela-
tive performance degradation despite having base IQM scores 3x and 2x higher than SPR,
respectively.
Context: Previous work on SR-SPR (D’Oro et al., 2023; Nikishin et al., 2022) and
BBF (Schwarzer et al., 2023) did not investigate the role of these modifications in their
improved performance.

Uncovering RL Integration in SSL Loss: Objective-Specific Implications for Data-Efficient RL

Uncovering RL Integration in SSL Loss: Objective-
Specific Implications for Data-Efficient RL

Ömer Veysel Çağatan1,2, Barış Akgün1,2

{ocagatan19,baakgun}@ku.edu.tr

1Department of Computer Engineering, Koç University, Turkey
2KUIS AI Center, Koç University, Turkey

Abstract
In this study, we investigate the effect of SSL objective modifications within the SPR
framework, focusing on specific adjustments such as terminal state masking and pri-
oritized replay weighting, which were not explicitly addressed in the original design.
While these modifications are specific to RL, they are not universally applicable across
all RL algorithms. Therefore, we aim to assess their impact on performance and ex-
plore other SSL objectives that do not accommodate these adjustments, like Barlow
Twins and VICReg. We evaluate six SPR variants on the Atari 100k benchmark, in-
cluding versions both with and without these modifications. Additionally, we test the
performance of these objectives on the DeepMind Control Suite, where such modifi-
cations are absent. Our findings reveal that incorporating specific SSL modifications
within SPR significantly enhances performance, and this influence extends to subse-
quent frameworks like SR-SPR and BBF, highlighting the critical importance of SSL
objective selection and related adaptations in achieving data efficiency in self-predictive
reinforcement learning.

1 Introduction

Self-supervised learning (SSL) has become increasingly popular in data-efficient reinforcement
learning (RL) due to its benefits in enhancing both efficiency and performance (Schwarzer et al.,
2023; Ye et al., 2021; Hafner et al., 2023; Srinivas et al., 2020; Tomar et al., 2021; Li et al., 2023;
Cagatan & Akgun, 2023). However, the application of SSL methods is often problem/domain-
specific to maximize the performance of the RL agents. Although this approach is rational given the
nature of these methods, it raises questions about generalization and transferability.

One of the key challenges in Deep RL is understanding the factors driving performance improve-
ments, whether through hyperparameter tuning or novel algorithmic approaches (Obando-Ceron
et al., 2024). The lack of transparency in hyperparameter selection often causes issues while algo-
rithmic innovations are usually well-documented. However, our study of different SSL objectives
within the Self-Predictive Representations (SPR) framework (Schwarzer et al., 2020) revealed that
the SSL loss used in SPR differs from what is described in the original publication and its following
works (Nikishin et al., 2022; D’Oro et al., 2023; Schwarzer et al., 2023) built upon it. This moti-
vated us to investigate the effects of the undocumented modifications and further evaluate additional
SSL objectives.

Unlike conventional SSL methods in RL, which often follow vision pretraining approaches (Chen
et al., 2020) and directly combine SSL and RL losses (Srinivas et al., 2020), SPR modifies the SSL
loss before integrating it with the RL objective. To further clarify, SPR employs the BYOL/SimSiam
(Grill et al., 2020; Chen & He, 2020) auxiliary objective and incorporates two algorithm-specific

Reinforcement Learning Journal 2025

adjustments to the SSL objective: (i) masking SSL loss with a boolean non-terminal state matrix
and (ii) applying prioritized replay weighting to the batch loss. Consequently, this poses an essential
question: How do these modifications affect the base performance of SSL objectives in the RL agent,
and can they be effectively applied to other SSL techniques in the RL domain? In addition, could
this be a recurring phenomenon across the following models (Nikishin et al., 2022; Schwarzer et al.,
2023) that adopt SPR as their baseline?

Concurrently, a plethora of novel self-supervised representation learning objectives has emerged
(Zbontar et al., 2021; Bardes et al., 2021; Ozsoy et al., 2022; Caron et al., 2021), demonstrating
performance improvements beyond image pretraining (Lee et al., 2023b; Goulão & Oliveira, 2023;
Zhou et al., 2022; Ömer Veysel Çağatan, 2024). These objectives, based on feature decorrelation, do
not inherently support the modifications used in SPR because the loss is computed along the feature
dimension instead of the batch dimension, which we detail in Section 4.

This divergence raises another important question: How do these alternative objectives perform rel-
ative to the original SPR without SSL modifications? This inquiry is particularly significant because
the information required to modify SSL objectives may not always be available in the environment.
Understanding the performance of these unmodified objectives could provide valuable insights into
the generalizability and robustness of different SSL approaches in RL contexts. Towards this end,
we incorporate Barlow Twins and VICReg SSL objectives within SPR.

In essence, we frame our investigation around the following questions:

1. How do these modifications affect the performance of SPR, and do their impacts extend
to SPR-based models such as SR-SPR and BBF? Additionally, how do these alternative
objectives compare to the original SPR when no SSL modifications are implemented?

Our findings reveal that modifications to SSL significantly affect SPR performance, leading to an
18% decrease in IQM when these modifications are removed. Additionally, SR-SPR and BBF ex-
hibit a similar decline in performance. Among these modifications, prioritized replay weighting
stands out as the most influential. Notably, Barlow Twins achieves results comparable to those of
the original SPR, while VICReg’s performance aligns with that of prioritized replay weighting.
This indicates that these problem-specific modifications can be mitigated by employing alterna-
tive SSL objectives. Overall, our results underscore the importance of SSL modifications in SPR,
which persist in strong models that utilize SPR

2. How effectively do these SSL objectives perform in an environment in which SPR modifi-
cations are not applicable?

To address this, we examine VICReg, Barlow Twins, and SPR (BYOL/SimSiam) within the
DeepMind Control Suite, where the popular SAC agent does not utilize prioritized replay weight-
ing and the environment lacks a terminal state. Unlike in the Atari 100k benchmark, our results
show VICReg as the top performer, even outpacing PlayVirtual, a more sophisticated variant of
SPR. Meanwhile, SPR and Barlow Twins exhibit comparable performance levels. These findings
highlight that algorithms tailored for specific domains may not consistently excel across different
problem sets. Therefore, transferability should be a key factor in the design of new Deep RL
algorithms.

2 Related Work

Tomar et al. (2021) tackles a more challenging setting for representation learning within RL with
background distractors, using a simple baseline approach that avoids metric-based learning, data
augmentations, world-model learning, and contrastive learning. They analyze why previous methods
may fail or perform similarly to the baseline in this tougher scenario and stress the importance of
detailed benchmarks based on reward density, planning horizon, and task-irrelevant components.
They propose new metrics for evaluating algorithms and advocate for a data-centric approach to
better apply RL to real-world tasks.

Uncovering RL Integration in SSL Loss: Objective-Specific Implications for Data-Efficient RL

Encoder Latent RL Head RL Loss

Transition Model

Predicted Latent MLP

SSL Objective

ZA

ZBEncoder Ground Truth Latent MLP

Stop Gradient

Figure 1: General flow diagram of SPR based methods. An encoder is used to create representa-
tions used for reinforcement learning and predicting future representations via a transition model
and ground truth representations are created by the same encoder. MLPs differ when the predictor
layer is used as in the case of BYOL/SimSiam. While we show the kth step here, the actual loss
computation covers steps 1 to K. The SSL objective and RL loss changes between specific methods.

Li et al. (2023) explore whether SSL can enhance online RL from pixel data. By extending the
contrastive reinforcement learning framework (Srinivas et al., 2020) to jointly optimize SSL and
RL losses, and experimenting with various SSL losses, they find that the current SSL approaches
offer no significant improvement over baselines that use image augmentation alone, given the same
data and augmentation. Even after evolutionary searches for optimal SSL loss combinations, these
methods do not outperform carefully designed image augmentations. Their evaluation across various
environments, including real-world robots, reveals that no single SSL loss or augmentation method
consistently excels.

2.1 Data Efficient RL in Atari 100k

The introduction of the Atari 100k benchmark (Kaiser et al., 2019) has expedited the advancement of
sample-efficient reinforcement learning algorithms. Model-based approach, SimPLe (Kaiser et al.,
2019), outperformed Rainbow DQN (Hessel et al., 2017), showcasing superior performance. Build-
ing on Rainbow’s framework, Hasselt et al. (2019) enhanced its efficacy through minor hyperpa-
rameter adjustments, resulting in Data-Efficient Rainbow (DER), which achieved a higher score
compared to SimPLe.

DrQ (Kostrikov et al., 2020) employs a multi-augmentation strategy to regularize the value function
during training of both Soft Actor-Critic (Haarnoja et al., 2018) and Deep Q-Network (Mnih et al.,
2015). This approach effectively reduces overfitting and enhances training efficiency, leading to
performance improvements for both algorithm

Several prevalent methods adopt the Atari 100k dataset, and these can be classified as follows:
Model-Based (Hafner et al., 2023; Robine et al., 2023; Micheli et al., 2022; Ayton & Asai, 2021;
Robine et al., 2021), Pretraining (Goulão & Oliveira, 2022; Schwarzer et al., 2021b; Lee et al.,
2023a; Liu & Abbeel, 2021), Model-Free (Schwarzer et al., 2023; Huang et al., 2022; Nikishin
et al., 2022; Cetin et al., 2022a; Lee et al., 2023a; Liang et al., 2022)

2.2 Representation Learning in Atari 100k

Cetin et al. (2022b) presents a deep reinforcement learning method using hyperbolic space for latent
representations. Their innovative approach tackles optimization challenges in existing hyperbolic
deep learning, ensuring stable end-to-end learning through deep hyperbolic representations.

Huang et al. (2022) proposes a Multiview Markov Decision Process (MMDP) with View-Consistent
Dynamics (VCD), a method that enhances traditional MDPs by considering multiple state perspec-

Reinforcement Learning Journal 2025

tives. VCD trains a latent space dynamics model for consistent state representations, achieved
through data augmentation.

Srinivas et al. (2020) incorporate the InfoNCE (van den Oord et al., 2019) as an auxiliary component
within DER. Cagatan & Akgun (2023) uses Barlow Twins (Zbontar et al., 2021) instead of a con-
trastive objective to further improve results. This integration serves to enhance the learning process.
SPR (Schwarzer et al., 2020) outperforms all previous model-free approaches by predicting its latent
state representations multiple steps into the future with BYOL (Grill et al., 2020).

PlayVirtual (Yu et al., 2021) introduces a novel transition model as an alternative to the simplis-
tic module in SPR. The methodology enriches actual trajectories by incorporating a multitude of
cycle-consistent virtual trajectories. These virtual trajectories, generated using both forward and
backward dynamics models, collectively form a closed ’trajectory cycle.’ The crucial aspect is en-
suring the consistency of this cycle, validating the projected states against real states and actions.
This approach significantly improves data efficiency by acquiring robust feature representations with
reduced reliance on real-world experiences. This method proves particularly advantageous for tasks
where obtaining real-world data is costly or challenging.

3 SPR

SPR is a performant data-efficient agent and a baseline of many other performant agents (Schwarzer
et al., 2023; Nikishin et al., 2022; D’Oro et al., 2023; Yu et al., 2021) and its general architecture
is depicted in Figure 1. The approach trains an agent by having it predict the latent state based on
the current state. It encodes the present state, forecasts the latent representation of the next state
using a transition model, and calculates loss by measuring the mean squared error between normal-
ized embeddings. Additionally, SPR adjusts its loss through terminal masking and prioritized replay
weighting. These two modifications inject RL-specific information into the auxiliary self-supervised
learning task. While the utilization of these ideas is not explicitly mentioned by Schwarzer et al.
(2020), it is possible that these techniques were considered self-evident and consequently were in-
cluded in their implementation (Schwarzer et al., 2021a). We mention them here so as to be able to
better differentiate between SPR and other SPR variants.

SSL loss matrix in SPR denoted as L, encompasses negative cosine similarities between predicted
latent representations and ground truth latent representations, with dimensions of B×(K+1), where
B is the batch size, and K is the prediction horizon with 1 coming from the current observation. The
batch of interactions is drawn from the replay buffer, and their terminal status is known. The terminal
mask matrix, M , is composed of 0s and 1s denoting terminal and non-terminal states. The process
involves updating L through a Hadamard product with M , denoted as L ◦M , effectively modifying
the loss matrix.

The loss matrix is divided into two components: SPR loss and Model SPR loss. SPR loss is between
the latent representations of the augmented views of the present state. Model SPR loss is between
the latent representations of the augmented views of the future states and the predicted future latent
representations, generated by the transition model. Model SPR is averaged across the temporal
dimension and as a result, both components have N × 1 dimensionality.

The loss of each transition is multiplied by the prioritized replay weight, determined by the temporal
difference errors. Then the final loss is computed as the weighted sum of the average SPR loss and
half the average of the Model SPR loss across a batch as follows:

LSPR =
1

N

N∑
i=1

ωi(λSPRi + γModel SPRi) (1)

where N is the batch size, ωi is the priority weight (
∑

i ωi = 1), and i indexes individual transitions,
where λ,γ are hyperparameters.

Uncovering RL Integration in SSL Loss: Objective-Specific Implications for Data-Efficient RL

Median IQM Mean Opt.Gap
Barlow 0.324 0.320 0.605 0.593
VICReg 0.281 0.289 0.600 0.610
VICReg+Non 0.221 0.279 0.554 0.617
Barlow+Non -0.009 -0.011 -0.171 1.171
ZeroJump 0.270 0.262 0.528 0.636

Table 1: Human-normalized aggregate metrics in
Atari 100k. Scores were collected from 10 ran-
dom runs.

Median IQM Mean Opt.Gap
Stop-Grad 0.271 0.303 0.615 0.577
No Stop-Grad 0.266 0.282 0.595 0.611

Table 2: Human-normalized ag-
gregate metrics in Atari 100k by
VICReg-High. Scores, collected
from 10 random runs to assess the
efficacy of including stop-gradient.

4 SPR-*

Despite variations in SSL objectives and RL algorithms across different benchmarks, the architec-
ture remains largely consistent, as depicted in Figure 1. SPR employs a BYOL (Grill et al., 2020)
objective with a momentum of 1, essentially adopting the SimSiam (Chen & He, 2020) approach.
The primary architectural distinction lies in the inclusion of an extra predictor layer in the online
MLP of BYOL or SimSiam to prevent collapse, a feature omitted in the original Barlow Twins and
VICReg formulations as their objectives inherently mitigate the risk of collapse.

SPR-Nakeds While SPR demonstrates considerable efficacy, the fundamental question remains
unanswered—what is the impact of pure self-supervised learning and potential adaptations leading
to SPR? Consequently, we introduce SPR-Naked, representing pure SSL. To assess the effects of
prioritized replay weighting and terminal masking, we further establish SPR-Naked+Prio and SPR-
Naked+Non, respectively.

In addition to the original SPR and its naked versions, we implement two additional types of agents
with different SSL objectives.

SPR-Barlow To extend the Barlow Twins to future predictions, we compute individual cross-
correlation matrices for both the current and predicted latent representations at each time step. This
results in a total of K + 1 matrices, each with dimensions d × d, where d denotes the embedding
dimension within a single batch. Subsequently, we calculate the loss for each matrix and average
the results. To make it easier to compare, we can define SPR Loss and Model SPR Loss analogously
to their SPR counterparts, where the first is about the current state and the latter is about the future
states. The final loss is then;

LSPR−Barlow = SPR +
1

K

K∑
k=1

Model SPRk (2)

where K is the number of predicted future observations.

SPR-VICRegs We employ a parallel procedure as in Barlow Twins for VICReg. We introduce
two variations of VICReg-High and VICReg-Low, featuring high or low covariance weights in the
VICReg loss (Equation 11) while maintaining consistency in other hyperparameters. The primary
objective is to observe the impact of feature decorrelation without inducing model collapse.

Why not employ replay weighting and terminal state masking in Barlow/VICReg? The key
limitation preventing the use of replay weighting or terminal masking in feature decorrelation-based
methods lies in their reliance on covariance regularization. These methods employ either a cross-
correlation matrix or a covariance matrix, both with dimensions matching the feature dimension.
This structure prohibits applying the weighting of a feature dimension matrix using a batch di-
mension matrix. Consequently, these methods produce a unified loss for the entire batch, unlike
approaches such as BYOL or SimSiam, which generate losses on a per-sample basis.

Why use stop-gradient in Barlow/VICReg? Barlow Twins and VICReg effectively prevent col-
lapse without resorting to symmetry-breaking architectural techniques such as predictor layers or
stop-gradient mechanisms. While not strictly necessary in this scenario, we choose to include a

Reinforcement Learning Journal 2025

stop-gradient due to its empirically observed performance improvement, as depicted in Table 2. A
more grounded reason stems from the architectural asymmetry introduced by the transition model.
In the absence of a stop-gradient, gradients from the encoder’s upper branch flow through the transi-
tion model, whereas gradients from the lower branch directly influence the encoder. This asymmetry
can potentially lead to suboptimal encoder updates. Despite collapse avoidance in both cases, the
inclusion of a stop-gradient is maintained for its superior performance outcomes.

Why not other objectives? Even though there are newly proposed SSL objectives (Silva et al.,
2024; Zhang et al., 2024; Weng et al., 2024), it is impractical to include all objectives in experiments
due to limited computational resources and the need to prioritize rigorous evaluation to draw precise
conclusions however, we attempt to cover the two main families of SSL methods within SPR. The
first is self-distillation, represented by BYOL (Grill et al., 2020) or SimSiam (Chen & He, 2020),
which are already incorporated into SPR. The second family includes canonical correlation methods,
such as VICReg and Barlow. Another category is Deep Metric Learning, which includes contrastive
learning variants (Balestriero et al., 2023). However, we do not separately test contrastive objectives,
as they have already been shown to be ineffective in SPR (Schwarzer et al., 2020).

Removing Features with Masking We discussed why post-loss-calculation modifications cannot
be applied to objectives that involve components in the feature dimension rather than the batch
dimension. However, non-terminal masking can be employed to exclude samples from the batch
before calculating the SSL loss. Thus, we masked features during the training of the SPR-VICReg
and SPR-Barlow agents, leading to unexpected results. As shown in Table 1, the SPR-Barlow agent
performed even worse than the random agent. A likely explanation is that the Barlow Twins’ ob-
jective relies on batch normalization to compute the cross-covariance matrix. Since masking causes
the batch size to vary dynamically, the batch statistics become inconsistent, adversely affecting the
batch normalization process. However, this degradation is not observed to the same extent in the
SPR-VICReg agent, as the VICReg objective does not rely on batch normalization.

Continuous Control Formulation Although SPR is created specifically for discrete control, delv-
ing into the impact of SSL objectives solely within discrete control domains doesn’t provide a com-
prehensive understanding. This is why we adopt a parallel setup to that of PlayVirtual (Yu et al.,
2021), where they establish an SPR-like scheme referred to as SPR† as a baseline for continuous
control. They utilize the soft actor-critic algorithm (Haarnoja et al., 2018), instead of q-learning
due to the continuous nature of the actions. They do not use terminal state masking (since termi-
nal states for control problems are target states) and prioritized replay weighting (since they use a
uniform buffer). This shows the importance of generally applicable auxiliary tasks for data-efficient
RL.

We evaluate PlayVirtual and SPR† from scratch since we were not able to replicate Yu et al. (2021)’s
results, potentially due to different benchmark versions. Furthermore, we assess the performance of
VICReg-High and Barlow Twins within the SPR† configuration. We exclude VICReg-Low in this
setting due to the minimal performance difference observed in Atari.

Finally, we explore the potential impact of incorporating the predictor network into Barlow Twins
and VICReg, even though they inherently do not need it to prevent dimension collapse. Although
the addition of a predictor network is novel in Barlow Twins, VICReg becomes similar to the SPR
with this addition like SPR with variance-covariance regularization. The decision to refrain from
conducting similar experiments in Atari stems from the substantially higher experimental costs,
which are at least 10 times greater than those in the control setting.

5 Evaluation Setup

5.1 Benchmarking: Rliable Framework

Agarwal et al. (2021) discusses the limitations of using mean and median scores as singular estimates
in RL benchmarks and highlights the disparities between conventional single-point estimates and

Uncovering RL Integration in SSL Loss: Objective-Specific Implications for Data-Efficient RL

the broader interval estimates, emphasizing the potential ramifications for benchmark dependability
and interpretation. In alignment with their suggestions, we provide a succinct overview of human-
normalized scores, furnished with stratified bootstrap confidence intervals, in Figures 2 and 3.

5.2 Atari 100k

We assess the SPR framework in a reduced-sample Atari setting, called the Atari 100k bench-
mark (Kaiser et al., 2019). In this setting, the training dataset comprises 100,000 environment
steps, which is equivalent to about 400,000 frames or slightly under two hours of equivalent hu-
man experience. This contrasts with the conventional benchmark of 50,000,000 environment steps,
corresponding to approximately 39 days of accumulated experience.

The main metric for this setting, widely acknowledged for assessing performance in the Atari 100k
context, is the human-normalized score. This measure is mathematically defined as in equation 3,
where the random score represents outcomes from a random policy, while the human score comes
from human player performance (Wang et al., 2015).

scoreagent − scorerandom

scorehuman − scorerandom
(3)

5.3 Deep Mind Control Suite

In the Deep Mind Control Suite (Tassa et al., 2018), the agent is configured to function solely
based on pixel inputs. This choice is justified by several reasons: the environments involved offer a
reasonably challenging and diverse array of tasks, the sample efficiency of model-free reinforcement
learning algorithms is notably low when operating directly from pixels in these benchmarks and the
performance on the DM control suite is comparable to the context of robot learning in real-world
benchmarks.

We use the following six environments (Yarats et al., 2020) for benchmarking: ball-in-cup, finger-
spin, reacher-easy, cheetah-run, walker-walk and cartpole-swingup, for 100k steps each.

6 Results and Discussion

6.1 Atari 100k

We mainly investigate the following new SPR models, along with the original SPR: (i) SPR-
Naked, featuring no modifications, (ii) SPR-Naked+Non, incorporating terminal masking, (iii) SPR-
Naked+Prio, integrating prioritized replay weighting, (iv) SPR-Barlow, (v) SPR-VICReg-High,
characterized by a high covariance weight, and (vi) SPR-VICReg-Low, characterized by a low co-
variance weight. Moreover, we discuss SR-SPR and BBF with their no modifications versions.

Figure 2 shows the performance of the seven agents in the Atari 100k benchmark, calculated us-
ing the rliable framework (Agarwal et al., 2021). The individual game performances are given in
Appx. 11 and we describe the evaluation setup in Section 5.

SPR and SSL Modifications. The original SPR agent performs the best (top row of Fig. 2). The
modifications to the SPR’s SSL objective (see Section 3) have significant impact on the performance
but they are not mentioned in the relevant papers (SPR (Schwarzer et al., 2020), SR-SPR (D’Oro
et al., 2023; Nikishin et al., 2022), or BBF (Schwarzer et al., 2023)). The no modifications ver-
sion, SPR-Naked, performs the worst with a nearly 20% performance drop based on the IQM score
(last row of Fig. 2). This is crucial because such modifications may not be suitable for all problem
domains, which limits their transferability and generalizability. On the other hand, the role of ter-
minal masking and prioritized replay weighting in SPR is especially interesting, as they help boost
performance in situations where pure representation learning struggles.

Incorporating prioritized replay weights has a positive effect on SPR (5th row of Fig. 2). These
weights act as markers for Bellman errors that mirror the agent’s Q-value approximation perfor-

Reinforcement Learning Journal 2025

0.24 0.30 0.36 0.42
Naked

Naked+Non
Naked+Prio
VICReg-Low

VICReg-High
Barlow

SPR
Median

0.275 0.300 0.325 0.350

IQM

0.52 0.56 0.60 0.64

Mean

0.58 0.60 0.62

Optimality Gap

Human Normalized Score

Figure 2: Mean, median, interquartile mean human normalized scores and optimality gap (lower
is better) computed with stratified bootstrap confidence intervals in Atari 100k. 50 runs for SPR-
Barlow, SPR-VICReg-High, SPR-VICReg-Low, SPR-Naked+Prio, SPR-Naked+Non,SPR-Naked,
100 runs for SPR from (Agarwal et al., 2021).

0.66 0.72 0.78
Barlow
VICReg

SPR
Barlow+Pred
VICReg+Pred

Virtual
Median

0.65 0.70 0.75 0.80

IQM

0.60 0.65 0.70 0.75

Mean

0.25 0.30 0.35 0.40

Optimality Gap

Max Normalized Score

Figure 3: Mean, median, interquartile mean max normalized scores and optimality gap (lower is
better) computed with stratified bootstrap confidence intervals in Deep Mind Control Suite 100k, 10
runs for all agents.

mance on particular transitions. Introducing these weights into the representation loss intensifies the
emphasis on refining representations that the agent struggles with.

Empirically, terminal state masking shows negligible positive effects, unlike replay weighting, (6th

row of Fig. 2). The limited impact of masking might be attributed to the episode lengths, where
the agent encounters many regular states but only a single terminal state. The SSL loss may be
primarily influenced by intermediate states, which could reduce the effectiveness of masking in
these scenarios.

On the other hand, there is a clear synergy between these modifications within SPR. Masking termi-
nal states might be advantageous when agents encounter frequent failures during the initial stages
of training or due to the nature of the games. In such cases, terminal states may dominate the replay
buffer, which could introduce biased representations that become challenging to correct later on and
make it harder for the agent to adapt and improve as it progresses

SPR-Barlow. The performance of the Barlow Twins agent is close to the SPR’s (2nd row of Fig. 2),
with only a 5% difference, where as SPR-Naked has a 20% gap. As described in Section 4, mod-
ifications related to SSL do not directly apply to Barlow Twins, VICReg, or any other method of
regularization in the feature dimension. As such, performing similarly to a method with RL-specific
modifications suggests that Barlow Twins has the potential to serve as a substitute, indicating its
promise as a versatile SSL objective for data-efficient RL.

The performance gap between SPR-naked and the feature decorrelation methods (Barlow and VI-
CReg) in this context is somewhat surprising since BYOL or Simsiam outperforms them in image
classification. In vision pretraining, the goal is to obtain embeddings with well-defined clusters
based on the training corpora, enhancing classification performance, where feature decorrelation
may be of hindrance. In RL, it is important to differentiate between states (good, bad, or promising
if they have not been explored yet) that may not be too different in the image space. As such, meth-
ods that emphasize the use of the entire embedding space potentially have a better chance of state
separation.

To test this, we evaluate the rank (Kumar et al., 2021) of the advantage and value heads, as well
as the output of the convolution head, which is shared by both the RL and SSL objectives. We
evaluated multiple methods like Barlow Twins and VICReg, in addition to a variant without SSL

Uncovering RL Integration in SSL Loss: Objective-Specific Implications for Data-Efficient RL

SPR SR-SPR BBF
0.2

0.4

0.6

0.8

1.0

IQ
M

17.5%

0.337

0.278

17.7%

0.631

0.519

16.7%

1.045

0.871

Original
Naked

Figure 4: Comparison of IQM performance for the SPR, SR-SPR, and BBF agents alongside their
corresponding naked versions. Naked results of SR-SPR and BBF are averaged out across 10 differ-
ent runs

loss. We found that the rank converges similarly across different games and even if they don’t, this
does not correlate with performance. We also measured dormant neurons (Sokar et al., 2023) and
observed that the results were consistent with the rank findings. These evaluations are detailed in
Appx. 9.

SPR-VICRegs. Initially, we used the default VICReg hyperparameters given in the original pa-
per (Bardes et al., 2021). Surprisingly, VICReg exhibits a 13% lower performance (4th row of
Fig. 2) compared to SPR although it surpasses SPR-Naked. It also falls short of Barlow Twins.
This outcome is not immediately evident given that it has a high similarity to the Barlow Twins’
objective. One plausible explanation could be the presence of multiple loss components, possibly
undermining covariance. To address this, we explore alternative hyperparameters, selecting the set
with the highest covariance hyperparameter that avoids collapse and denoting it as SPR-VICReg-
High, while the previous one is referred to as SPR-VICReg-Low. However, the performance only
marginally increases by 2% (3rd row of Fig. 2), lacking behind Barlow Twins once again. The un-
derlying reasons for this performance gap remain subject to further exploration. Nonetheless, it still
showcases the effectiveness of feature decorrelation-based objectives since both types outperform
SPR-Naked.

BBF and SR-SPR. It could be argued that modifications to SPR significantly influence performance,
particularly due to its relatively low score on Atari 100k, where such changes may have an amplified
effect, whereas they might have a more limited impact on stronger models. BBF, the leading value-
based agent achieving human-level results on Atari 100k, is built upon SR-SPR, a variant of SPR.
Notably, both SR-SPR and BBF exhibit IQM values nearly 3x and 2x higher than SPR, respectively.
Thus, their unmodified results will provide insight into whether modifications still play a significant
role, even when the model is highly efficient and performing at a human level.

As shown in Figure 4, we observe that modifications result in a fairly consistent performance decline
across all models. Due to computational constraints, we did not conduct experiments to determine
which modifications have the greatest impact or whether certain SSL objectives could reduce the
need for modifications. However, our findings further support and strengthen our earlier conclusions
regarding the impact of modifications on SPR.

6.2 DMControl

We further evaluate the SSL objectives with the DMControl suite, described in Section 5) since this
domain can provide additional insights into the efficacy of SSL objectives in RL. However, since
there is no terminal state in this environment and a uniform replay buffer is used, modifications
to the SPR loss are not feasible. As such, this evaluation will focus on the generalization of used
objectives across domains without targeted optimization for specific problems.

Reinforcement Learning Journal 2025

Moreover, SPR is not explicitly designed for continuous control. As such, we use a different set of
agents modified for continuous control as described in Section 4 but keep the same SSL hyperparam-
eters from the Atari benchmark. We pick SPR-VICReg-High due to its better performance over the
lower covariance version. We additionally evaluate SPR-Barlow and SPR-Vicreg with an MLP layer
as an additional predictor, reflecting Bardes et al. (2021)’s findings on the enhanced performance of
BYOL with variance regularization. We build upon the PlayVirtual (Yu et al., 2021) methodology,
which is an SPR equipped with an improved transition model, and use it as our baseline.

We observe from Fig. 3 that the Barlow Twins objective exhibits the lowest performance, although
it closely aligns with SPR, with IQM scores of 0.656, and 0.677 respectively. An interesting obser-
vation is that VICReg with an IQM of 0.75 is as good as PlayVirtual (Yu et al., 2021) with 0.744.
This underscores the potential of SSL objectives in continuous control. While their impact is vi-
tal in discrete control as well, the overall effect, especially when considering the maximum score
(representing human performance), is relatively modest. Nevertheless, a substantial improvement
is evident in continuous control, even when compared to the highest achievable score. We also see
that adding a predictor network has a minimal but positive impact on the IQM performances of both
Barlow and VICReg.

7 Conclusion

Our study demonstrates the significant impact of SSL objective modifications within the SPR frame-
work for reinforcement learning, particularly in data-efficient scenarios. We show that specific ad-
justments like terminal state masking and prioritized replay weighting substantially improve per-
formance on the Atari 100k benchmark, with benefits extending to derivative frameworks such as
SR-SPR and BBF. However, our experiments on the DeepMind Control Suite reveal that these en-
hancements are not universally applicable across all RL environments. Investigation of alternative
SSL objectives (e.g., Barlow Twins, VICReg) further elucidates the nuanced relationship between
objective choice and RL task characteristics. These findings emphasize the critical role of carefully
tailored SSL objectives in achieving data efficiency in self-predictive reinforcement learning, high-
lighting the need for a context-sensitive approach to SSL modification in RL algorithm development.
Our work provides valuable insights for researchers and practitioners seeking to optimize RL algo-
rithms across diverse applications, potentially leading to more efficient and effective reinforcement
learning systems.

Acknowledgements

This work was funded by the KUIS AI Center at Koç University, Turkey.

References
Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, and Marc G. Belle-

mare. Deep reinforcement learning at the edge of the statistical precipice. In Neural Information
Processing Systems, 2021.

Benjamin J. Ayton and Masataro Asai. Width-based planning and active learning for atari. In
International Conference on Automated Planning and Scheduling, 2021. URL https://api.
semanticscholar.org/CorpusID:238226837.

Randall Balestriero, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar, Tom Goldstein, Flo-
rian Bordes, Adrien Bardes, Gregoire Mialon, Yuandong Tian, Avi Schwarzschild, Andrew Gor-
don Wilson, Jonas Geiping, Quentin Garrido, Pierre Fernandez, Amir Bar, Hamed Pirsiavash,
Yann LeCun, and Micah Goldblum. A cookbook of self-supervised learning, 2023.

Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regularization
for self-supervised learning. ArXiv, abs/2105.04906, 2021.

https://api.semanticscholar.org/CorpusID:238226837
https://api.semanticscholar.org/CorpusID:238226837

Uncovering RL Integration in SSL Loss: Objective-Specific Implications for Data-Efficient RL

Omer Veysel Cagatan and Baris Akgun. Barlowrl: Barlow twins for data-efficient reinforcement
learning, 2023.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments, 2021.

Edoardo Cetin, Philip J. Ball, Steve Roberts, and Oya Çeliktutan. Stabilizing off-policy deep rein-
forcement learning from pixels. In International Conference on Machine Learning, 2022a. URL
https://api.semanticscholar.org/CorpusID:250265109.

Edoardo Cetin, Benjamin Paul Chamberlain, Michael M. Bronstein, and Jonathan J. Hunt. Hy-
perbolic deep reinforcement learning. ArXiv, abs/2210.01542, 2022b. URL https://api.
semanticscholar.org/CorpusID:252693361.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework
for contrastive learning of visual representations. ArXiv, abs/2002.05709, 2020. URL https:
//api.semanticscholar.org/CorpusID:211096730.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15745–15753, 2020.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G. Bellemare, and
Aaron C. Courville. Sample-efficient reinforcement learning by breaking the replay ratio bar-
rier. In International Conference on Learning Representations, 2023. URL https://api.
semanticscholar.org/CorpusID:259298604.

Manuel Goulão and Arlindo L. Oliveira. Pretraining the vision transformer using self-supervised
methods for vision based deep reinforcement learning. ArXiv, abs/2209.10901, 2022. URL
https://api.semanticscholar.org/CorpusID:252439214.

Manuel Goulão and Arlindo L. Oliveira. Pretraining the vision transformer using self-supervised
methods for vision based deep reinforcement learning, 2023.

Jean-Bastien Grill, Florian Strub, Florent Altch’e, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own
latent: A new approach to self-supervised learning. ArXiv, abs/2006.07733, 2020. URL https:
//api.semanticscholar.org/CorpusID:219687798.

Tuomas Haarnoja, Aurick Zhou, P. Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. ArXiv, abs/1801.01290, 2018.
URL https://api.semanticscholar.org/CorpusID:28202810.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

H. V. Hasselt, Matteo Hessel, and John Aslanides. When to use parametric models in reinforcement
learning? ArXiv, abs/1906.05243, 2019. URL https://api.semanticscholar.org/
CorpusID:186206746.

Matteo Hessel, Joseph Modayil, H. V. Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining im-
provements in deep reinforcement learning. In AAAI Conference on Artificial Intelligence, 2017.
URL https://api.semanticscholar.org/CorpusID:19135734.

Tao Huang, Jiacheng Wang, and Xiao Chen. Accelerating representation learning with view-
consistent dynamics in data-efficient reinforcement learning. ArXiv, abs/2201.07016, 2022. URL
https://api.semanticscholar.org/CorpusID:246035501.

https://api.semanticscholar.org/CorpusID:250265109
https://api.semanticscholar.org/CorpusID:252693361
https://api.semanticscholar.org/CorpusID:252693361
https://api.semanticscholar.org/CorpusID:211096730
https://api.semanticscholar.org/CorpusID:211096730
https://api.semanticscholar.org/CorpusID:259298604
https://api.semanticscholar.org/CorpusID:259298604
https://api.semanticscholar.org/CorpusID:252439214
https://api.semanticscholar.org/CorpusID:219687798
https://api.semanticscholar.org/CorpusID:219687798
https://api.semanticscholar.org/CorpusID:28202810
https://api.semanticscholar.org/CorpusID:186206746
https://api.semanticscholar.org/CorpusID:186206746
https://api.semanticscholar.org/CorpusID:19135734
https://api.semanticscholar.org/CorpusID:246035501

Reinforcement Learning Journal 2025

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell,
K. Czechowski, D. Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiud-
din, Ryan Sepassi, G. Tucker, and Henryk Michalewski. Model-based reinforcement learning
for atari. ArXiv, abs/1903.00374, 2019. URL https://api.semanticscholar.org/
CorpusID:67856232.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. ArXiv, abs/2004.13649, 2020. URL https://api.
semanticscholar.org/CorpusID:216562627.

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization
inhibits data-efficient deep reinforcement learning, 2021. URL https://arxiv.org/abs/
2010.14498.

Hojoon Lee, Hanseul Cho, Hyunseung Kim, Daehoon Gwak, Joonkee Kim, Jaegul Choo, Se-Young
Yun, and Chulhee Yun. Enhancing generalization and plasticity for sample efficient reinforcement
learning. ArXiv, abs/2306.10711, 2023a. URL https://api.semanticscholar.org/
CorpusID:259203876.

Hojoon Lee, Koanho Lee, Dongyoon Hwang, Hyunho Lee, Byungkun Lee, and Jaegul Choo. On
the importance of feature decorrelation for unsupervised representation learning in reinforcement
learning, 2023b.

Xiang Li, Jinghuan Shang, Srijan Das, and Michael S. Ryoo. Does self-supervised learning re-
ally improve reinforcement learning from pixels?, 2023. URL https://arxiv.org/abs/
2206.05266.

Litian Liang, Yaosheng Xu, Stephen McAleer, Dailin Hu, Alexander T. Ihler, P. Abbeel, and
Roy Fox. Reducing variance in temporal-difference value estimation via ensemble of deep
networks. ArXiv, abs/2209.07670, 2022. URL https://api.semanticscholar.org/
CorpusID:250341019.

Hao Liu and P. Abbeel. Aps: Active pretraining with successor features. In International Conference
on Machine Learning, 2021. URL https://api.semanticscholar.org/CorpusID:
235825462.

Vincent Micheli, Eloi Alonso, and Franccois Fleuret. Transformers are sample efficient world
models. ArXiv, abs/2209.00588, 2022. URL https://api.semanticscholar.org/
CorpusID:251979354.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Kirkeby Fidjeland, Georg Ostrovski, Stig
Petersen, Charlie Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforce-
ment learning. Nature, 518:529–533, 2015. URL https://api.semanticscholar.org/
CorpusID:205242740.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron C. Courville. The
primacy bias in deep reinforcement learning. In International Conference on Machine Learning,
2022. URL https://api.semanticscholar.org/CorpusID:248811264.

Johan Obando-Ceron, João G. M. Araújo, Aaron Courville, and Pablo Samuel Castro. On the
consistency of hyper-parameter selection in value-based deep reinforcement learning, 2024. URL
https://arxiv.org/abs/2406.17523.

Serdar Ozsoy, Shadi S. Hamdan, Sercan Ö. Arik, Deniz Yuret, and Alper Tunga Erdogan. Self-
supervised learning with an information maximization criterion. ArXiv, abs/2209.07999, 2022.

https://api.semanticscholar.org/CorpusID:67856232
https://api.semanticscholar.org/CorpusID:67856232
https://api.semanticscholar.org/CorpusID:216562627
https://api.semanticscholar.org/CorpusID:216562627
https://arxiv.org/abs/2010.14498
https://arxiv.org/abs/2010.14498
https://api.semanticscholar.org/CorpusID:259203876
https://api.semanticscholar.org/CorpusID:259203876
https://arxiv.org/abs/2206.05266
https://arxiv.org/abs/2206.05266
https://api.semanticscholar.org/CorpusID:250341019
https://api.semanticscholar.org/CorpusID:250341019
https://api.semanticscholar.org/CorpusID:235825462
https://api.semanticscholar.org/CorpusID:235825462
https://api.semanticscholar.org/CorpusID:251979354
https://api.semanticscholar.org/CorpusID:251979354
https://api.semanticscholar.org/CorpusID:205242740
https://api.semanticscholar.org/CorpusID:205242740
https://api.semanticscholar.org/CorpusID:248811264
https://arxiv.org/abs/2406.17523

Uncovering RL Integration in SSL Loss: Objective-Specific Implications for Data-Efficient RL

Jan Robine, Tobias Uelwer, and Stefan Harmeling. Smaller world models for reinforcement learning,
2021.

Jan Robine, Marc Hoftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world mod-
els are happy with 100k interactions. ArXiv, abs/2303.07109, 2023. URL https://api.
semanticscholar.org/CorpusID:257496038.

Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron C. Courville, and
Philip Bachman. Data-efficient reinforcement learning with self-predictive representations.
In International Conference on Learning Representations, 2020. URL https://api.
semanticscholar.org/CorpusID:222163237.

Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron C. Courville, and Philip
Bachman. Repository published by the spr. https://github.com/mila-iqia/spr,
2021a.

Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, De-
von Hjelm, Philip Bachman, and Aaron C. Courville. Pretraining representations for data-
efficient reinforcement learning. In Neural Information Processing Systems, 2021b. URL
https://api.semanticscholar.org/CorpusID:235377401.

Max Schwarzer, Johan S. Obando-Ceron, Aaron C. Courville, Marc G. Bellemare, Rishabh Agar-
wal, and Pablo Samuel Castro. Bigger, better, faster: Human-level atari with human-level ef-
ficiency. ArXiv, abs/2305.19452, 2023. URL https://api.semanticscholar.org/
CorpusID:258987895.

Thalles Silva, Helio Pedrini, and Adín Ramírez Rivera. Learning from memory: Non-parametric
memory augmented self-supervised learning of visual features. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 45451–45467. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/silva24c.html.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-
nomenon in deep reinforcement learning, 2023. URL https://arxiv.org/abs/2302.
12902.

A. Srinivas, Michael Laskin, and P. Abbeel. Curl: Contrastive unsupervised representa-
tions for reinforcement learning. ArXiv, abs/2004.04136, 2020. URL https://api.
semanticscholar.org/CorpusID:215415964.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Ried-
miller. Deepmind control suite, 2018.

Manan Tomar, Utkarsh A. Mishra, Amy Zhang, and Matthew E. Taylor. Learning representations
for pixel-based control: What matters and why?, 2021. URL https://arxiv.org/abs/
2111.07775.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding, 2019.

Ziyun Wang, Tom Schaul, Matteo Hessel, H. V. Hasselt, Marc Lanctot, and Nando de Freitas.
Dueling network architectures for deep reinforcement learning. In International Conference
on Machine Learning, 2015. URL https://api.semanticscholar.org/CorpusID:
5389801.

https://api.semanticscholar.org/CorpusID:257496038
https://api.semanticscholar.org/CorpusID:257496038
https://api.semanticscholar.org/CorpusID:222163237
https://api.semanticscholar.org/CorpusID:222163237
https://github.com/mila-iqia/spr
https://api.semanticscholar.org/CorpusID:235377401
https://api.semanticscholar.org/CorpusID:258987895
https://api.semanticscholar.org/CorpusID:258987895
https://proceedings.mlr.press/v235/silva24c.html
https://arxiv.org/abs/2302.12902
https://arxiv.org/abs/2302.12902
https://api.semanticscholar.org/CorpusID:215415964
https://api.semanticscholar.org/CorpusID:215415964
https://arxiv.org/abs/2111.07775
https://arxiv.org/abs/2111.07775
https://api.semanticscholar.org/CorpusID:5389801
https://api.semanticscholar.org/CorpusID:5389801

Reinforcement Learning Journal 2025

Xi Weng, Yunhao Ni, Tengwei Song, Jie Luo, Rao Muhammad Anwer, Salman Khan, Fahad Shah-
baz Khan, and Lei Huang. Modulate your spectrum in self-supervised learning, 2024. URL
https://arxiv.org/abs/2305.16789.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improv-
ing sample efficiency in model-free reinforcement learning from images, 2020.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data, 2021.

Tao Yu, Cuiling Lan, Wenjun Zeng, Mingxiao Feng, Zhizheng Zhang, and Zhibo Chen. Playvirtual:
Augmenting cycle-consistent virtual trajectories for reinforcement learning. Advances in Neural
Information Processing Systems, 34, 2021.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. ArXiv, abs/2103.03230, 2021. URL https:
//api.semanticscholar.org/CorpusID:232110471.

Yifan Zhang, Zhiquan Tan, Jingqin Yang, Weiran Huang, and Yang Yuan. Matrix information theory
for self-supervised learning. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian
Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st
International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pp. 59897–59918. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.
press/v235/zhang24bi.html.

Jinghao Zhou, Li Dong, Zhe Gan, Lijuan Wang, and Furu Wei. Non-contrastive learning meets
language-image pre-training, 2022. URL https://arxiv.org/abs/2210.09304.

Ömer Veysel Çağatan. Unsee: Unsupervised non-contrastive sentence embeddings, 2024. URL
https://arxiv.org/abs/2401.15316.

https://arxiv.org/abs/2305.16789
https://api.semanticscholar.org/CorpusID:232110471
https://api.semanticscholar.org/CorpusID:232110471
https://proceedings.mlr.press/v235/zhang24bi.html
https://proceedings.mlr.press/v235/zhang24bi.html
https://arxiv.org/abs/2210.09304
https://arxiv.org/abs/2401.15316

Uncovering RL Integration in SSL Loss: Objective-Specific Implications for Data-Efficient RL

Supplementary Materials
The following content was not necessarily subject to peer review.

8 Background

8.1 Barlow Twins

The Barlow Twins (Zbontar et al., 2021) employs a symmetric network with twin branches, each
processing a different augmented perspective of input data. It aims to minimize off-diagonal com-
ponents and align diagonal elements of a cross-covariance matrix derived from the representations
of these branches. The process involves generating two altered views (Y A and Y B) using data
augmentations, inputting them into a function fθ to produce embeddings (ZA and ZB).

The Barlow Twins loss is defined as:

LBT ≜
∑
i

(1− Cii)2︸ ︷︷ ︸
invariance term

+ λ
∑
i

∑
j ̸=i

Cij2︸ ︷︷ ︸
redundancy reduction term

(4)

where λ > 0 balances the invariance (diagonal elements) and redundancy reduction (off-diagonal)
in the loss function. C is the cross-correlation matrix from embedding outputs of identical networks
in the batch. A matrix element is defined as:

Cij ≜
∑

b z
A
b,iz

B
b,j√∑

b (z
A
b,i)

2
√∑

b (z
B
b,j)

2
(5)

where b represents the samples in the batch, and i and j represent dimension indices of the networks’
output. Each dimension of the square covariance matrix, C, is the same as the embedding dimension
(output dimensionality of the networks). Its values range between -1 (indicating complete anti-
correlation) and 1 (representing perfect correlation).

8.2 VICReg

VICReg (Bardes et al., 2021) is a method designed to tackle the challenge of collapse directly.
It achieves this by introducing a straightforward regularization term that specifically targets the
variance of the embeddings along each dimension independently. In addition to addressing the
variance, VICReg includes a mechanism to diminish redundancy and ensure decorrelation among
the embeddings, accomplished through covariance regularization.

The variance regularization term is a hinge function on the standard deviation of the embeddings
along the batch dimension:

v(Z) =
1

d

d∑
j=1

max(0, γ − S(zj , ϵ)) (6)

where S is the regularized standard deviation defined by:

S(x; ϵ) =
√

Var(x) + ϵ (7)

Covariance matrix of Z is defined as:

C(Z) =
1

n− 1

n∑
i=1

(zi − z̄)(zi − z̄)T (8)

Reinforcement Learning Journal 2025

where z̄ = 1
n

∑n
i=1 zi. Covariance regularization is defined as:

c(Z) =
1

d

∑
i

∑
j ̸=i

Cij2 (9)

where d is the feature dimension. The invariance criterion between Z and Z ′ is the mean-squared
Euclidean distance between each pair of vectors, without any normalization.

s(Z,Z ′) =
1

n

n∑
i=1

||zi − z′i||2 (10)

The overall loss function is a weighted average of the invariance, variance, and covariance terms:

l(Z,Z ′) = αv(Z) + βc(Z) + γs(Z,Z ′) (11)

where α, λ, and γ hyper-parameters control the importance of each term in the loss.

VICReg is quite similar to Barlow Twins in terms of its loss formulation. However, instead of
decorrelating the cross-correlation matrix directly, it regularizes the variance along each dimension
of the representation, reduces correlation and minimizes the difference of embeddings. This prevents
dimension collapse and also forces the two views to be encoded similarly. Additionally, reducing
covariance encourages different dimensions of the representation to capture distinct features.

9 Rank and Dormant Neuron

Kumar et al. (2021) introduced the concept of *effective rank* for representations, represented as
srankδ(ϕ), with δ being a threshold parameter, set to 0.01 as per their study. They proposed that
effective rank is linked to the expressivity of a network, where a decrease in effective rank implies
an implicit under-parameterization. The study provides evidence indicating that bootstrapping is the
primary factor contributing to the collapse of effective rank, which in turn degrades performance.

To investigate how SSL objectives might mitigate rank collapse, we computed the rank of the con-
volution output and the outputs of the penultimate layers from the advantage and value heads of
three different agents: SPR-VICReg, SPR-Barlow, and ZeroJump (SPR without a transition model),
scores in 1. Our observations indicate that, although there are some rank differences among the
agents, they often converge to the same rank, and these differences do not correlate with the perfor-
mance scores. Figure 5, 7 and 6 include ranks across all games.

To explore this further, we examined the proportion of dormant neurons, which are neurons that have
near-zero activations. Sokar et al. (2023) showed that deep reinforcement learning agents experience
a rise in the number of dormant neurons within their networks. Additionally, a higher prevalence of
dormant neurons is associated with poorer performance.

We also do not observe a clear pattern in the fractions of dormant neurons, in Figure 8 that could
account for the disparities in performance scores, similar to what was seen in the case of neuron
ranks. Unlike rank-based observations, where patterns may emerge, the distribution of dormant
neurons does not offer an explanation for the differences in the scores across models. This suggests
that the relationship between neuron activity and performance metrics might be more complex and
not directly attributable to the proportion of inactive neurons.

10 Experimental Details

We retain all hyperparameters of SPR, SR-SPR, and BBF, except for SPR-Barlow and SPR-VICReg,
where we adjust the SPR loss weight and increase the batch size from 32 to 64. The official reposi-
tories of the models are used, and all experiments are conducted on a Tesla T4 GPU.

Uncovering RL Integration in SSL Loss: Objective-Specific Implications for Data-Efficient RL

11 Full Results on Atari 100k

Table 3: Returns on the 26 games of Atari 100k after 2 hours of real-time experience, and human-
normalized aggregate metrics. (VR: VICReg, results with 5 integral digits are rounded to the first
integer to fit the table)

Game Rand. Human Naked Non Prio VR-L VR-H Barlow SPR

Alien 227.8 7127.7 868.9 881.7 872.7 902.9 922.4 891.8 841.9
Amidar 5.8 1719.5 165.6 179.1 164.2 181.1 176.4 177.1 179.7
Assault 222.4 742.0 544.5 564.6 589.2 536.4 575.7 581.4 565.6
Asterix 210 8503.3 972.0 951.0 977.8 955.4 1021.7 981.2 962.5
BankHeist 14.2 753.1 61.6 70.1 60.2 79.9 82.9 73.5 345.4
BattleZone 2360 37188 7552.4 9424.2 13102 12557 14892 14954 14834
Boxing 0.1 12.1 27.3 30.4 36.4 31.3 33.9 35.1 35.7
Breakout 1.7 30.5 16.7 18.0 18.2 16.9 16.3 17.0 19.6
ChopComm 811 7387.8 906.8 949.8 901.0 832.9 929.9 938.9 946.3
CrzyClmbr 10781 35829 30056 32667 35829 27035 29023 29229 36701
DemonAtt 152.1 1971.0 514.7 511.0 522.9 461.2 547.2 519.2 517.6
Freeway 0.0 29.6 17.4 13.71 16.3 28.0 27.7 29.5 19.3
Frostbite 65.2 4334.7 1137.2 1010.9 1014.2 1353.0 1181.4 1191.3 1170.7
Gopher 257.6 2412.5 585.0 660.1 548.4 737.9 713.5 691.2 660.6
Hero 1027 30826 6937.8 6497.8 5686.6 5495.1 5559.6 5746.8 5858.6
Jamesbond 29 302.8 327.2 359.9 349.1 357.6 384.3 404.2 366.5
Kangaroo 52 3035.0 2970.9 2812.1 3016.5 2290.6 1998.3 1771.2 3617.4
Krull 1598 2665.5 3980.4 4061.8 4213.1 4166.6 4513.9 4363.2 3681.6
KFMaster 258.5 22736 13126 14595 15757 1488.4 15548 15998 14783
MsPacman 307.3 6951.6 1262.1 1162.6 1324.6 1366.8 1588.2 1388.2 1318.4
Pong -20.7 14.6 -1.8 -6.0 -7.2 -6.3 -10.1 -6.7 -5.4
PrivateEye 24.9 69571 85.6 77.0 88.0 100.9 96.6 99.6 86.0
Qbert 163.9 13455 847.2 758.6 759.8 796.9 687.6 765.8 866.3
RoadRunner 11.5 7845.0 12595 12713 11211 10683 9531.5 12412 12213
Seaquest 68.4 42055 524.0 524.2 523.2 576.3 651.0 669.1 558.1
UpNDown 533.4 11693 9569.3 8130.6 10331 7952.7 9415.3 10818 10859

#Sprhmn(↑) 0 N/A 4 3 3 4 4 4 6
Mean (↑) 0.00 1.000 0.542 0.555 0.608 0.558 0.585 0.608 0.616
Median (↑) 0.00 1.000 0.225 0.221 0.308 0.297 0.280 0.312 0.396
IQM (↑) 0.00 1.000 0.273 0.278 0.298 0.292 0.298 0.321 0.337
Opt. Gap (↓) 1.00 0.000 0.617 0.615 0.603 0.609 0.605 0.587 0.577

Reinforcement Learning Journal 2025

12 Full Results on DMControl 100k

Table 4: Returns on the of DMControl 100k, and Max-normalized aggregate metrics.

Environment Virtual VICReg+Pred Barlow+Pred SPR VICReg Barlow

FINGER, SPIN 896.2 760.6 781.0 755.9 730.0 861.8
CARTPOLE, SWINGUP 815.1 791.6 784.0 826.0 780.1 778.6
REACHER, EASY 827.0 790.7 589.6 671.5 736.1 526.5
CHEETAH, RUN 489.6 504.3 461.6 435.2 493.5 478.6
WALKER, WALK 404.7 622.8 521.7 404.7 765. 182.2
BALL IN CUP, CATCH 835.4 891.6 622.8 835.4 937.5 924.9

Mean (↑) 0.705 0.738 0.673 0.660 0.740 0.625
Median (↑) 0.803 0.772 0.703 0.726 0.750 0.652
IQM (↑) 0.744 0.773 0.670 0.677 0.750 0.656
Optimality Gap (↓) 0.294 0.260 0.326 0.339 0.29 0.374

Uncovering RL Integration in SSL Loss: Objective-Specific Implications for Data-Efficient RL

13 Rank and Dormant Neuron Results

Figure 5: Rank of the output from the penultimate layer of the value head, measured every 10,000
steps and averaged across 10 different runs for every game.

0 100002000030000400005000060000700008000090000100000
Iteration

160

180

200

220

240
Ra

nk
 o

f v
al

ue

alien
Barlow
Average: 831.2, Std: 113.2
VICReg
Average: 882.0, Std: 201.8
Zero Jump
Average: 820.6, Std: 109.7

0 100002000030000400005000060000700008000090000100000
Iteration

80

100

120

140

160

180

200

220

Ra
nk

 o
f v

al
ue

amidar
Barlow
Average: 178.0, Std: 58.9
VICReg
Average: 148.7, Std: 39.9
Zero Jump
Average: 134.7, Std: 33.0

0 100002000030000400005000060000700008000090000100000
Iteration

227.5

230.0

232.5

235.0

237.5

240.0

242.5

245.0

Ra
nk

 o
f v

al
ue

assault
Barlow
Average: 589.2, Std: 51.5
VICReg
Average: 569.3, Std: 52.6
Zero Jump
Average: 524.7, Std: 39.3

0 100002000030000400005000060000700008000090000100000
Iteration

200

210

220

230

240

Ra
nk

 o
f v

al
ue

asterix
Barlow
Average: 950.1, Std: 129.5
VICReg
Average: 947.6, Std: 102.0
Zero Jump
Average: 1008.3, Std: 159.2

0 100002000030000400005000060000700008000090000100000
Iteration

25

50

75

100

125

150

175

200

Ra
nk

 o
f v

al
ue

bank_heist
Barlow
Average: 68.7, Std: 39.7
VICReg
Average: 121.1, Std: 199.1
Zero Jump
Average: 105.7, Std: 198.1

0 100002000030000400005000060000700008000090000100000
Iteration

75

100

125

150

175

200

225

Ra
nk

 o
f v

al
ue

battle_zone
Barlow
Average: 17418.0, Std: 4583.7
VICReg
Average: 12015.0, Std: 5475.1
Zero Jump
Average: 16640.0, Std: 7522.4

0 100002000030000400005000060000700008000090000100000
Iteration

210

220

230

240

Ra
nk

 o
f v

al
ue

boxing

Barlow
Average: 35.5, Std: 11.2
VICReg
Average: 34.3, Std: 14.1
Zero Jump
Average: 36.3, Std: 15.1

0 100002000030000400005000060000700008000090000100000
Iteration

60

80

100

120

140

160

180

200

220

Ra
nk

 o
f v

al
ue

breakout

Barlow
Average: 15.5, Std: 1.9
VICReg
Average: 15.6, Std: 2.3
Zero Jump
Average: 14.6, Std: 1.8

0 100002000030000400005000060000700008000090000100000
Iteration

140

160

180

200

220

240

Ra
nk

 o
f v

al
ue

chopper_command
Barlow
Average: 940.4, Std: 511.5
VICReg
Average: 891.5, Std: 274.7
Zero Jump
Average: 866.8, Std: 329.3

0 100002000030000400005000060000700008000090000100000
Iteration

0

20

40

60

80

100

120

140

Ra
nk

 o
f v

al
ue

crazy_climber
Barlow
Average: 28373.7, Std: 10570.7
VICReg
Average: 25722.1, Std: 3676.2
Zero Jump
Average: 27010.9, Std: 4121.1

0 100002000030000400005000060000700008000090000100000
Iteration

225

230

235

240

245

Ra
nk

 o
f v

al
ue

demon_attack
Barlow
Average: 575.9, Std: 127.2
VICReg
Average: 508.2, Std: 90.6
Zero Jump
Average: 334.2, Std: 96.1

0 100002000030000400005000060000700008000090000100000
Iteration

25

50

75

100

125

150

175

200

225

Ra
nk

 o
f v

al
ue

freeway

Barlow
Average: 23.4, Std: 11.8
VICReg
Average: 25.1, Std: 8.9
Zero Jump
Average: 21.4, Std: 11.3

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220

Ra
nk

 o
f v

al
ue

frostbite
Barlow
Average: 1396.7, Std: 1330.4
VICReg
Average: 1282.4, Std: 1264.5
Zero Jump
Average: 700.0, Std: 705.4

0 100002000030000400005000060000700008000090000100000
Iteration

75

100

125

150

175

200

225

Ra
nk

 o
f v

al
ue

gopher
Barlow
Average: 925.3, Std: 312.3
VICReg
Average: 672.1, Std: 235.0
Zero Jump
Average: 735.1, Std: 154.7

0 100002000030000400005000060000700008000090000100000
Iteration

75

100

125

150

175

200

225

Ra
nk

 o
f v

al
ue

hero
Barlow
Average: 5569.3, Std: 1993.8
VICReg
Average: 4767.8, Std: 1925.7
Zero Jump
Average: 4425.7, Std: 1988.8

0 100002000030000400005000060000700008000090000100000
Iteration

205

210

215

220

225

230

235

240

245

Ra
nk

 o
f v

al
ue

jamesbond
Barlow
Average: 379.8, Std: 59.9
VICReg
Average: 399.5, Std: 65.0
Zero Jump
Average: 304.9, Std: 101.3

0 100002000030000400005000060000700008000090000100000
Iteration

25

50

75

100

125

150

175

200

Ra
nk

 o
f v

al
ue

kangaroo
Barlow
Average: 2189.9, Std: 2907.2
VICReg
Average: 3275.6, Std: 3691.0
Zero Jump
Average: 1565.6, Std: 2297.1

0 100002000030000400005000060000700008000090000100000
Iteration

50

75

100

125

150

175

200

225

Ra
nk

 o
f v

al
ue

krull
Barlow
Average: 4398.6, Std: 795.1
VICReg
Average: 4509.0, Std: 770.9
Zero Jump
Average: 4244.1, Std: 471.6

0 100002000030000400005000060000700008000090000100000
Iteration

25

50

75

100

125

150

175

200

Ra
nk

 o
f v

al
ue

kung_fu_master
Barlow
Average: 18698.2, Std: 7081.0
VICReg
Average: 14043.7, Std: 9806.8
Zero Jump
Average: 16677.6, Std: 7550.8

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220

Ra
nk

 o
f v

al
ue

ms_pacman
Barlow
Average: 1342.5, Std: 250.6
VICReg
Average: 1419.4, Std: 330.4
Zero Jump
Average: 1204.9, Std: 289.1

0 100002000030000400005000060000700008000090000100000
Iteration

80

100

120

140

160

180

200

220

Ra
nk

 o
f v

al
ue

pong

Barlow
Average: -8.8, Std: 6.8
VICReg
Average: -9.4, Std: 6.0
Zero Jump
Average: -9.4, Std: 8.9

0 100002000030000400005000060000700008000090000100000
Iteration

120

140

160

180

200

220

240

Ra
nk

 o
f v

al
ue

private_eye
Barlow
Average: 69.2, Std: 62.4
VICReg
Average: 92.0, Std: 24.1
Zero Jump
Average: 90.0, Std: 30.0

0 100002000030000400005000060000700008000090000100000
Iteration

75

100

125

150

175

200

225

Ra
nk

 o
f v

al
ue

qbert
Barlow
Average: 675.2, Std: 134.3
VICReg
Average: 712.5, Std: 169.7
Zero Jump
Average: 421.4, Std: 58.3

0 100002000030000400005000060000700008000090000100000
Iteration

120

140

160

180

200

220

240

Ra
nk

 o
f v

al
ue

road_runner
Barlow
Average: 14276.6, Std: 5956.2
VICReg
Average: 10199.4, Std: 5160.0
Zero Jump
Average: 8521.0, Std: 4528.5

0 100002000030000400005000060000700008000090000100000
Iteration

160

180

200

220

240

Ra
nk

 o
f v

al
ue

seaquest
Barlow
Average: 693.4, Std: 192.4
VICReg
Average: 619.3, Std: 184.9
Zero Jump
Average: 555.1, Std: 171.3

0 100002000030000400005000060000700008000090000100000
Iteration

160

180

200

220

240

Ra
nk

 o
f v

al
ue

up_n_down
Barlow
Average: 6119.3, Std: 2016.4
VICReg
Average: 12139.8, Std: 10935.1
Zero Jump
Average: 7648.4, Std: 5323.4

Reinforcement Learning Journal 2025

Figure 6: Rank of the output from the convolution encoder, measured every 10,000 steps and aver-
aged across 10 different runs for every game.

0 100002000030000400005000060000700008000090000100000
Iteration

400

600

800

1000

1200

1400

1600

Ra
nk

 o
f c

on
v_

ou
t

Alien
Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

200

400

600

800

1000

Ra
nk

 o
f c

on
v_

ou
t

Alien
Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

1800

2000

2200

2400

2600

2800

Ra
nk

 o
f c

on
v_

ou
t

assault

Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

1000

1200

1400

1600

1800

2000

Ra
nk

 o
f c

on
v_

ou
t

asterix
Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

0

200

400

600

800

1000

1200

Ra
nk

 o
f c

on
v_

ou
t

bank_heist
Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

200

400

600

800

1000

1200

Ra
nk

 o
f c

on
v_

ou
t

battle_zone
Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

1000

1200

1400

1600

1800

2000

Ra
nk

 o
f c

on
v_

ou
t

boxing

Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

100

200

300

400

500

600

700

800

Ra
nk

 o
f c

on
v_

ou
t

breakout
Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

600

800

1000

1200

1400

1600

Ra
nk

 o
f c

on
v_

ou
t

chopper_command
Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

50

100

150

200

250

Ra
nk

 o
f c

on
v_

ou
t

crazy_climber
Barlow
Average: 28373.7, Std: 10570.7
VICReg
Average: 25722.1, Std: 3676.2
Zero Jump
Average: 27010.9, Std: 4121.1

0 100002000030000400005000060000700008000090000100000
Iteration

1800

1900

2000

2100

2200

2300

2400

2500

2600
Ra

nk
 o

f c
on

v_
ou

t

demon_attack

Barlow
Average: 575.9, Std: 127.2
VICReg
Average: 508.2, Std: 90.6
Zero Jump
Average: 334.2, Std: 96.1

0 100002000030000400005000060000700008000090000100000
Iteration

400

600

800

1000

1200

Ra
nk

 o
f c

on
v_

ou
t

freeway

Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

200

400

600

800

1000

1200

1400

1600

Ra
nk

 o
f c

on
v_

ou
t

frostbite
Barlow
Average: 1396.7, Std: 1330.4
VICReg
Average: 1282.4, Std: 1264.5
Zero Jump
Average: 700.0, Std: 705.4

0 100002000030000400005000060000700008000090000100000
Iteration

200

400

600

800

1000

1200

1400

Ra
nk

 o
f c

on
v_

ou
t

gopher
Barlow
Average: 925.3, Std: 312.3
VICReg
Average: 672.1, Std: 235.0
Zero Jump
Average: 735.1, Std: 154.7

0 100002000030000400005000060000700008000090000100000
Iteration

200

300

400

500

600

700

800

900

Ra
nk

 o
f c

on
v_

ou
t

hero
Barlow
Average: 5569.3, Std: 1993.8
VICReg
Average: 4767.8, Std: 1925.7
Zero Jump
Average: 4425.7, Std: 1988.8

0 100002000030000400005000060000700008000090000100000
Iteration

1400

1600

1800

2000

2200

Ra
nk

 o
f c

on
v_

ou
t

jamesbond

Barlow
Average: 379.8, Std: 59.9
VICReg
Average: 399.5, Std: 65.0
Zero Jump
Average: 304.9, Std: 101.3

0 100002000030000400005000060000700008000090000100000
Iteration

100

150

200

250

300

350

400

Ra
nk

 o
f c

on
v_

ou
t

kangaroo

Barlow
Average: 2189.9, Std: 2907.2
VICReg
Average: 3275.6, Std: 3691.0
Zero Jump
Average: 1565.6, Std: 2297.1

0 100002000030000400005000060000700008000090000100000
Iteration

400

600

800

1000

1200

1400

Ra
nk

 o
f c

on
v_

ou
t

krull
Barlow
Average: 4398.6, Std: 795.1
VICReg
Average: 4509.0, Std: 770.9
Zero Jump
Average: 4244.1, Std: 471.6

0 100002000030000400005000060000700008000090000100000
Iteration

100

200

300

400

500

600

Ra
nk

 o
f c

on
v_

ou
t

kung_fu_master
Barlow
Average: 18698.2, Std: 7081.0
VICReg
Average: 14043.7, Std: 9806.8
Zero Jump
Average: 16677.6, Std: 7550.8

0 100002000030000400005000060000700008000090000100000
Iteration

200

400

600

800

1000

1200

Ra
nk

 o
f c

on
v_

ou
t

ms_pacman
Barlow
Average: 1342.5, Std: 250.6
VICReg
Average: 1419.4, Std: 330.4
Zero Jump
Average: 1204.9, Std: 289.1

0 100002000030000400005000060000700008000090000100000
Iteration

300

400

500

600

700

800

900

Ra
nk

 o
f c

on
v_

ou
t

pong
Barlow
Average: -8.8, Std: 6.8
VICReg
Average: -9.4, Std: 6.0
Zero Jump
Average: -9.4, Std: 8.9

0 100002000030000400005000060000700008000090000100000
Iteration

800

1000

1200

1400

1600

Ra
nk

 o
f c

on
v_

ou
t

private_eye
Barlow
Average: 69.2, Std: 62.4
VICReg
Average: 92.0, Std: 24.1
Zero Jump
Average: 90.0, Std: 30.0

0 100002000030000400005000060000700008000090000100000
Iteration

200

400

600

800

1000

1200

Ra
nk

 o
f c

on
v_

ou
t

qbert
Barlow
Average: 675.2, Std: 134.3
VICReg
Average: 712.5, Std: 169.7
Zero Jump
Average: 421.4, Std: 58.3

0 100002000030000400005000060000700008000090000100000
Iteration

400

600

800

1000

1200

1400

Ra
nk

 o
f c

on
v_

ou
t

road_runner
Barlow
Average: 14276.6, Std: 5956.2
VICReg
Average: 10199.4, Std: 5160.0
Zero Jump
Average: 8521.0, Std: 4528.5

0 100002000030000400005000060000700008000090000100000
Iteration

400

600

800

1000

1200

1400

1600

Ra
nk

 o
f c

on
v_

ou
t

seaquest
Barlow
Average: 693.4, Std: 192.4
VICReg
Average: 619.3, Std: 184.9
Zero Jump
Average: 555.1, Std: 171.3

0 100002000030000400005000060000700008000090000100000
Iteration

200

400

600

800

1000

1200

1400

1600

1800

Ra
nk

 o
f c

on
v_

ou
t

up_n_down
Barlow
Average: 6119.3, Std: 2016.4
VICReg
Average: 12139.8, Std: 10935.1
Zero Jump
Average: 7648.4, Std: 5323.4

Uncovering RL Integration in SSL Loss: Objective-Specific Implications for Data-Efficient RL

Figure 7: Rank of the output from the penultimate layer of the advantage head, measured every
10,000 steps and averaged across 10 different runs for every game.

0 100002000030000400005000060000700008000090000100000
Iteration

170

180

190

200

210

220

230

240

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

alien
Barlow
Average: 831.2, Std: 113.2
VICReg
Average: 882.0, Std: 201.8
Zero Jump
Average: 820.6, Std: 109.7

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

amidar
Barlow
Average: 178.0, Std: 58.9
VICReg
Average: 148.7, Std: 39.9
Zero Jump
Average: 134.7, Std: 33.0

0 100002000030000400005000060000700008000090000100000
Iteration

234

236

238

240

242

244

246

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

assault
Barlow
Average: 589.2, Std: 51.5
VICReg
Average: 569.3, Std: 52.6
Zero Jump
Average: 524.7, Std: 39.3

0 100002000030000400005000060000700008000090000100000
Iteration

210

215

220

225

230

235

240

245

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

asterix
Barlow
Average: 950.1, Std: 129.5
VICReg
Average: 947.6, Std: 102.0
Zero Jump
Average: 1008.3, Std: 159.2

0 100002000030000400005000060000700008000090000100000
Iteration

25

50

75

100

125

150

175

200

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

bank_heist
Barlow
Average: 68.7, Std: 39.7
VICReg
Average: 121.1, Std: 199.1
Zero Jump
Average: 105.7, Std: 198.1

0 100002000030000400005000060000700008000090000100000
Iteration

120

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

battle_zone

Barlow
Average: 17418.0, Std: 4583.7
VICReg
Average: 12015.0, Std: 5475.1
Zero Jump
Average: 16640.0, Std: 7522.4

0 100002000030000400005000060000700008000090000100000
Iteration

215

220

225

230

235

240

245

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

boxing

Barlow
Average: 35.5, Std: 11.2
VICReg
Average: 34.3, Std: 14.1
Zero Jump
Average: 36.3, Std: 15.1

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

breakout

Barlow
Average: 15.5, Std: 1.9
VICReg
Average: 15.6, Std: 2.3
Zero Jump
Average: 14.6, Std: 1.8

0 100002000030000400005000060000700008000090000100000
Iteration

180

190

200

210

220

230

240

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

chopper_command

Barlow
Average: 940.4, Std: 511.5
VICReg
Average: 891.5, Std: 274.7
Zero Jump
Average: 866.8, Std: 329.3

0 100002000030000400005000060000700008000090000100000
Iteration

234

236

238

240

242

244

246

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

demon_attack
Barlow
Average: 575.9, Std: 127.2
VICReg
Average: 508.2, Std: 90.6
Zero Jump
Average: 334.2, Std: 96.1

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220
Ra

nk
 o

f a
dv

an
ta

ge
_h

id
de

n

freeway

Barlow
Average: 23.4, Std: 11.8
VICReg
Average: 25.1, Std: 8.9
Zero Jump
Average: 21.4, Std: 11.3

0 100002000030000400005000060000700008000090000100000
Iteration

120

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

frostbite
Barlow
Average: 1396.7, Std: 1330.4
VICReg
Average: 1282.4, Std: 1264.5
Zero Jump
Average: 700.0, Std: 705.4

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

hero
Barlow
Average: 5569.3, Std: 1993.8
VICReg
Average: 4767.8, Std: 1925.7
Zero Jump
Average: 4425.7, Std: 1988.8

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

hero
Barlow
Average: 5569.3, Std: 1993.8
VICReg
Average: 4767.8, Std: 1925.7
Zero Jump
Average: 4425.7, Std: 1988.8

0 100002000030000400005000060000700008000090000100000
Iteration

220

225

230

235

240

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

jamesbond
Barlow
Average: 379.8, Std: 59.9
VICReg
Average: 399.5, Std: 65.0
Zero Jump
Average: 304.9, Std: 101.3

0 100002000030000400005000060000700008000090000100000
Iteration

40

60

80

100

120

140

160

180

200

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

kangaroo

Barlow
Average: 2189.9, Std: 2907.2
VICReg
Average: 3275.6, Std: 3691.0
Zero Jump
Average: 1565.6, Std: 2297.1

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220

240

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

krull
Barlow
Average: 4398.6, Std: 795.1
VICReg
Average: 4509.0, Std: 770.9
Zero Jump
Average: 4244.1, Std: 471.6

0 100002000030000400005000060000700008000090000100000
Iteration

60

80

100

120

140

160

180

200

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

kung_fu_master
Barlow
Average: 18698.2, Std: 7081.0
VICReg
Average: 14043.7, Std: 9806.8
Zero Jump
Average: 16677.6, Std: 7550.8

0 100002000030000400005000060000700008000090000100000
Iteration

120

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

ms_pacman
Barlow
Average: 1342.5, Std: 250.6
VICReg
Average: 1419.4, Std: 330.4
Zero Jump
Average: 1204.9, Std: 289.1

0 100002000030000400005000060000700008000090000100000
Iteration

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

pong

Barlow
Average: -8.8, Std: 6.8
VICReg
Average: -9.4, Std: 6.0
Zero Jump
Average: -9.4, Std: 8.9

0 100002000030000400005000060000700008000090000100000
Iteration

160

170

180

190

200

210

220

230

240

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

private_eye
Barlow
Average: 69.2, Std: 62.4
VICReg
Average: 92.0, Std: 24.1
Zero Jump
Average: 90.0, Std: 30.0

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

qbert
Barlow
Average: 675.2, Std: 134.3
VICReg
Average: 712.5, Std: 169.7
Zero Jump
Average: 421.4, Std: 58.3

0 100002000030000400005000060000700008000090000100000
Iteration

160

180

200

220

240

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

road_runner
Barlow
Average: 14276.6, Std: 5956.2
VICReg
Average: 10199.4, Std: 5160.0
Zero Jump
Average: 8521.0, Std: 4528.5

0 100002000030000400005000060000700008000090000100000
Iteration

180

190

200

210

220

230

240

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

seaquest
Barlow
Average: 693.4, Std: 192.4
VICReg
Average: 619.3, Std: 184.9
Zero Jump
Average: 555.1, Std: 171.3

0 100002000030000400005000060000700008000090000100000
Iteration

170

180

190

200

210

220

230

240

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

up_n_down

Barlow
Average: 6119.3, Std: 2016.4
VICReg
Average: 12139.8, Std: 10935.1
Zero Jump
Average: 7648.4, Std: 5323.4

Reinforcement Learning Journal 2025

Figure 8: Fraction of dormant neurons averaged across 10 different runs for every game.

0 20000 40000 60000 80000 100000
Iteration

5

10

15

20

25

30

35

40

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Krull
Barlow
Average: 4398.6, Std: 795.1
VICReg
Average: 4509.0, Std: 770.9
Zero Jump
Average: 4244.1, Std: 471.6

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

60

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Private_eye
Barlow
Average: 69.2, Std: 62.4
VICReg
Average: 92.0, Std: 24.1
Zero Jump
Average: 90.0, Std: 30.0

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Asterix
Barlow
Average: 950.1, Std: 129.5
VICReg
Average: 947.6, Std: 102.0
Zero Jump
Average: 1008.3, Std: 159.2

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Bank_heist
Barlow
Average: 68.7, Std: 39.7
VICReg
Average: 121.1, Std: 199.1
Zero Jump
Average: 105.7, Std: 198.1

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

60

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Alien
Barlow
Average: 831.2, Std: 113.2
VICReg
Average: 882.0, Std: 201.8
Zero Jump
Average: 820.6, Std: 109.7

0 20000 40000 60000 80000 100000
Iteration

20

30

40

50

60

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Chopper_command
Barlow
Average: 940.4, Std: 511.5
VICReg
Average: 891.5, Std: 274.7
Zero Jump
Average: 866.8, Std: 329.3

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

60

70

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Freeway
Barlow
Average: 23.4, Std: 11.8
VICReg
Average: 25.1, Std: 8.9
Zero Jump
Average: 21.4, Std: 11.3

0 20000 40000 60000 80000 100000
Iteration

20

30

40

50

60

70

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Pong
Barlow
Average: -8.8, Std: 6.8
VICReg
Average: -9.4, Std: 6.0
Zero Jump
Average: -9.4, Std: 8.9

0 20000 40000 60000 80000 100000
Iteration

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Jamesbond
Barlow
Average: 379.8, Std: 59.9
VICReg
Average: 399.5, Std: 65.0
Zero Jump
Average: 304.9, Std: 101.3

0 20000 40000 60000 80000 100000
Iteration

20

30

40

50

60

70

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Kung_fu_master
Barlow
Average: 18698.2, Std: 7081.0
VICReg
Average: 14043.7, Std: 9806.8
Zero Jump
Average: 16677.6, Std: 7550.8

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

60

70

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Ms_pacman
Barlow
Average: 1342.5, Std: 250.6
VICReg
Average: 1419.4, Std: 330.4
Zero Jump
Average: 1204.9, Std: 289.1

0 20000 40000 60000 80000 100000
Iteration

20

25

30

35

40

45

50

55

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Breakout
Barlow
Average: 15.5, Std: 1.9
VICReg
Average: 15.6, Std: 2.3
Zero Jump
Average: 14.6, Std: 1.8

0 20000 40000 60000 80000 100000
Iteration

20

25

30

35

40

45

50

55

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Road_runner
Barlow
Average: 14276.6, Std: 5956.2
VICReg
Average: 10199.4, Std: 5160.0
Zero Jump
Average: 8521.0, Std: 4528.5

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

60

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Qbert
Barlow
Average: 675.2, Std: 134.3
VICReg
Average: 712.5, Std: 169.7
Zero Jump
Average: 421.4, Std: 58.3

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Assault
Barlow
Average: 589.2, Std: 51.5
VICReg
Average: 569.3, Std: 52.6
Zero Jump
Average: 524.7, Std: 39.3

0 20000 40000 60000 80000 100000
Iteration

20

30

40

50

60

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Battle_zone
Barlow
Average: 17418.0, Std: 4583.7
VICReg
Average: 12015.0, Std: 5475.1
Zero Jump
Average: 16640.0, Std: 7522.4

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Demon_attack
Barlow
Average: 575.9, Std: 127.2
VICReg
Average: 508.2, Std: 90.6
Zero Jump
Average: 334.2, Std: 96.1

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Frostbite
Barlow
Average: 1396.7, Std: 1330.4
VICReg
Average: 1282.4, Std: 1264.5
Zero Jump
Average: 700.0, Std: 705.4

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Up_n_down
Barlow
Average: 6119.3, Std: 2016.4
VICReg
Average: 12139.8, Std: 10935.1
Zero Jump
Average: 7648.4, Std: 5323.4

0 20000 40000 60000 80000 100000
Iteration

20

25

30

35

40

45

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1
Gopher

Barlow
Average: 925.3, Std: 312.3
VICReg
Average: 672.1, Std: 235.0
Zero Jump
Average: 735.1, Std: 154.7

0 20000 40000 60000 80000 100000
Iteration

20

30

40

50

60

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Boxing
Barlow
Average: 35.5, Std: 11.2
VICReg
Average: 34.3, Std: 14.1
Zero Jump
Average: 36.3, Std: 15.1

0 20000 40000 60000 80000 100000
Iteration

30

40

50

60

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Kangaroo
Barlow
Average: 2189.9, Std: 2907.2
VICReg
Average: 3275.6, Std: 3691.0
Zero Jump
Average: 1565.6, Std: 2297.1

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Hero
Barlow
Average: 5569.3, Std: 1993.8
VICReg
Average: 4767.8, Std: 1925.7
Zero Jump
Average: 4425.7, Std: 1988.8

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Crazy_climber
Barlow
Average: 28373.7, Std: 10570.7
VICReg
Average: 25722.1, Std: 3676.2
Zero Jump
Average: 27010.9, Std: 4121.1

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Seaquest
Barlow
Average: 693.4, Std: 192.4
VICReg
Average: 619.3, Std: 184.9
Zero Jump
Average: 555.1, Std: 171.3

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

60

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Amidar
Barlow
Average: 178.0, Std: 58.9
VICReg
Average: 148.7, Std: 39.9
Zero Jump
Average: 134.7, Std: 33.0

