
Reinforcement Learning Journal 2025
∣∣ Cover Page

PufferLib 2.0: Reinforcement Learning at 1M steps/s
Joseph Suarez

Keywords: PufferLib, Reinforcement Learning, Library, Tools

Summary
PufferLib is an open-source reinforcement learning project built around efficient and

broadly compatible simulation. Our first-party suite of 12 environments each run at 1M
steps/second. For existing environments, PufferLib provides one-line wrappers that eliminate
common compatibility problems and fast vectorization to accelerate training. With PufferLib,
you can use familiar libraries like CleanRL and SB3 to scale from classic benchmarks like
Atari and Procgen to complex simulators like NetHack and Neural MMO 3. Code, documen-
tation, demos, and less formal blog coverage are available at puffer.ai.

Contribution(s)
1. One-line wrappers that make complex environments like Nethack, Neural MMO, Griddly,

etc. compatible with any RL library that supports standard Gymnasium/PettingZoo formats.
Context: Gymnasium and PettingZoo are the most widely used environment formats. This
means PufferLib is compatible with the vast majority of environments using only a 1-line
wrapper.

2. Drop-in vectorization for simulating environments in parallel. Most environments will see
at least a 30% speed boost and 50%-3x with pooling. This is a broadly compatible contri-
bution applicable to nearly all environments.
Context: Gymnasium provides the most common vectorization backend. It is slow for the
reasons outlined in the paper.

3. Puffer Ocean, a suite of 12 environments written in C that each simulate at >1M
steps/second on a single CPU core.
Context: A few of these have built-in AI opponents that can slow performance when
search depth is increased. Base speed is >1M steps/second on a high end desktop core.
Some environments run 10M steps/second.

4. A PPO demo that trains Ocean environments at 300k-1.2M steps/second on a single RTX
4090. Our standard architectures are MLP-LSTM or CNN-LSTM from 150k-1M parame-
ters.
Context: It’s compatible with all third-party environments. Training is up to 30k
steps/second on Atari, which is still 30x faster than the original CleanRL.



PufferLib 2.0

PufferLib 2.0: Reinforcement Learning at 1M steps/s

Joseph Suarez
jsuarez@puffer.ai

PufferAI

Abstract

PufferLib is an open-source reinforcement learning project built around efficient and
broadly compatible simulation. Our first-party suite of 12 environments each run at
1M steps/second. For existing environments, PufferLib provides one-line wrappers that
eliminate common compatibility problems and fast vectorization to accelerate training.
With PufferLib, you can use familiar libraries like CleanRL and SB3 to scale from
classic benchmarks like Atari and Procgen to complex simulators like NetHack and
Neural MMO 3.

Versioning Note

We developed and released PufferLib 3.0 during the review cycle for RLC. The latest version in-
cludes core algorithmic improvements over PPO and a new hyperparameter tuning algorithm. Ocean
has grown to over 25 environments, and small models now train 3-5M steps/second. Our baselines
solve Ocean Pong in 3-5 seconds, Breakout in 20-30 seconds, and most other environments in 1-10
minutes on a single RTX 5090. The largest experiment so far on 3.0 trains Neural MMO 3 for 640B
steps in 3 days and 8 hours on 6 RTX 4090s. This is over a petabyte of observations, or roughly
12,000 years of games. All of these changes are too material to introduce in this manuscript after
acceptance, but they are covered by a series of blogs on puffer.ai and 3.0 is fully open source.

1 Background and Introduction

Reinforcement learning research is slow and cumbersome. Atari games have been the most widely
used benchmark since the introduction of the Arcade Learning Environment (Bellemare et al., 2012)
in 2012. These are single-agent tasks that run at a few thousand steps per second on a modern CPU
core. Standard learning libraries like CleanRL and SB3 then introduce old, unoptimized multipro-
cessing and expensive Python environment wrappers. The result is training that runs at hundreds
to thousands of steps per second, leaving modern GPUs at 5-20% utilization. This is particularly
limiting for RL research given the common sensitivity to hyperparameters. Accurately comparing
methods often requires hundreds or thousands of experiments. This is impractical without large-
scale industry resources.

The problem quickly becomes much worse on more complex environments. Gym/Gymnasium do
not have multi-agent support natively. Every single work claiming to have a multi-agent Gym in-
terface is hacking the API slightly differently from every other project. PettingZoo provides native
multi-agent support, but it does not have native multiprocessing support for parallel simulation, and
the API itself introduces heavy overhead. Given that most new environments are written by re-
searchers in Python, they are not particularly fast to begin with. All of this makes doing RL research
on progressively more interesting tasks slow and cumbersome.



Reinforcement Learning Journal 2025

Figure 1: Ocean is PufferLib’s suite of first-party environments. There are currently 12 environments
that run 1M+ steps/second on a single CPU core. They range from as simple as Pong to as complex
as Neural MMO 3.

Gym/Gymnasium (Brockman et al., 2016; Towers et al., 2023) These libraries define the API for the
vast majority of environments used in research and provide associated tools, such as the spaces
module for defining data shapes and vector for vectorization. An important piece of historical
context: OpenAI originally published Gym in 2016, and nearly all non-DeepMind environments
from 2016-2022 used it. Maintenance was taken over by an independent open source group in 2021,
but since they did not have full control of the repository required for maintenance, they forked it as
Gymnasium in 2022. The Gym library is no longer maintained.

PettingZoo: (Terry et al., 2020) A multiagent analog to Gym/Gymnasium. It aims to support very
complex environments, including those with heterogeneous observation and action spaces, but some
of the surrounding tooling suffers in performance as a result.

DM Env: (Muldal et al., 2019) DeepMind’s counterpart to Gym. Both provide comparable APIs,
and there is no real reason to use one over the other, but most modern research has standardized on
Gymnasium. PufferLib converts to the Gymnasium API by default for this reason.

PufferLib is a library of environments and broadly-compatible tools for fast and simple reinforce-
ment learning. In contrast, the main purpose of the libraries above is to define standards on how
environments should be implemented. They are compatible with but not directly comparable to
PufferLib.

Compared to other reinforcement learning libraries, PufferLib does not aim to be a collection of
algorithm implementations. You can integrate our tools with the library of your choice. Our main
demo is built on CleanRL, but with added integrations for performance, logging, experiment man-
agement, and hyperparameter sweeps. We include a list of related libraries that may include some
utilities, though they primarily target learning itself.



PufferLib 2.0

1. CleanRL: (Huang et al., 2021) Single-file implementations with research-friendly features.

2. Stable Baselines 3 (SB3): (Raffin et al., 2021) Reliable implementations for a wide range of
algorithms.

3. Sample Factory 2.0: (Petrenko et al., 2020) High-throughput reinforcement learning with a
smaller selection of algorithms

4. Tianshou: (Weng et al., 2022a) Another widely used RL library. Comparable in design to SB3
with similar tradeoffs.

5. TorchRL: (Bou et al., 2023) Official PyTorch RL library. This is a relatively newer project.

Note that this list omits libraries focused on control and robotics environments, most of which are
simulated on the GPU or are in the process of being ported to the GPU. PufferLib currently focuses
on tooling for CPU environments. Only certain types of environments, such as those with heavy
physics, are sensible to implement on GPU. As a result, we consider these parallel areas of tooling,
each of which is unlikely to replace the other. Recently, we have included bindings for a few GPU
environments, though these are mainly for groups that have wanted to use our demo script for its
speed, logging, and hyperparameter tuning utilities.

2 PufferTank

Problem: Setting up a development environment for RL is difficult and time consuming. Extensive
system package dependencies, slow source builds, and versioning obstacles prevent otherwise useful
environments from attaining broader adoption.

Solution: PufferTank is a Docker container with dependencies set up correctly and tricky versioning
issues handled. The current version has CUDA 12.1, PyTorch 2.4, Python 3.11, dozens of environ-
ments, and convenient development features such as rendering settings for Linux and WSL. We
are aware that containerized development is not ubiquitous in AI and thoroughly considered lighter
weight options. Unfortunately, the dependencies for many third-party environments take hours to
build and contain a mix of system and python packages. Our prebuilt images allow you to get up and
running in minutes and to reset to the base installation instantly if anything goes wrong. Most IDEs,
including VSCode, have plugins for seamless development in both local and remote containers. For
minimalists, NeoVim with SuperMaven code completion is preinstalled.

Note that you can use PufferLib without PufferTank. PufferLib itself is a PyPI package – Puffer-
Tank exists because specific common environments have tricky dependencies, not PufferLib itself.

3 PufferLib

3.1 Ocean

Problem: The vast majority of reinforcement learning environments are 10-100x too slow to keep
up with an optimized GPU trainer, even after heavy optimization. This problem will only get worse
in the future, as GPU performance is improving faster than CPU performance. Using only GPU-
accelerated environments is not realistic for reasons already discussed.

Solution: PufferLib ships 20,000 lines worth of C environments. These are far easier to develop than
high-performance GPU environments. The proof of this is that around half of this code was written
by independent open-source contributors, many of whom had no prior RL experience. We effectively
turned high-performance environment creation into low-level game development. Another 6,000
lines are currently under review. The current list of environments includes pong, breakout, and
enduro implementations as analogs to the standard Atari tasks, Connect4, TripleTriad, and Go as
board/card games, RWare and TrashPickup as grid-world pick-and-place tasks, Snake for multi-
agent research, and three scale-up tasks:



Reinforcement Learning Journal 2025

1. Neural MMO 3: A massively multiagent game environment featuring hundreds to thousands of
agents, procedural map generation, foraging, combat, leveling, items, equipment, and trade.

2. MOBA: A miniature version of DoTA, the 5v5 esport tackled by OpenAI Five. Our version has
5 heros with 3 unique abilities each as well as lane creeps, neutrals, and tower placement mostly
consistent with the original game.

3. Tactics: A CRPG-style 2d combat simulator based on games like Fire Emblem and Dofus. This
is the only environment in our suite for which we do not yet have a benchmark – we will be done
with this tuning soon.

A key innovation of PufferLib is that all of these environments can simulate their observations
directly into shared memory. This eliminates several redundant data copies. To our knowledge,
these are present in every other RL library and environment. Puffer Ocean also provides a small
suite of sanity environments designed to catch common RL implementation errors:

• Squared: Agent starts at the center of a square grid. Targets are placed on the perimeter of the
grid. Reward is 1 minus the L-inf distance to the closest target. This means that reward varies
from -1 to 1. Reward is not given for targets that have already been hit.

• Password: Guess the password, which is a static binary string. The policy has to not determinize
before it happens to get the reward, and it also has to latch onto the reward within a few instances
of getting it.

• Stochastic: The optimal policy is to play action 0 p percent of the time and action 1 (1−p) percent
of the time. This is a test of whether the algorithm can learn a nonuniform stochastic policy.

• Memory: Repeat the observed sequence after a delay. It is randomly generated upon every reset.
The sequence is presented one digit at a time, followed by a string of 0.

• Multiagent: Agent 1 must pick action 0 and Agent 2 must pick action 1.

• Spaces: A simple environment with hierarchical observation and action spaces. Obtaining maxi-
mal score requires taking into account all subspaces.

• Bandit: Simulates a classic multiarmed bandit problem.

3.2 Emulation

Problem: Learning libraries make strong assumptions that are incompatible with cognitively inter-
esting and efficient environments. This is partially a historical problem and partially an engineering
limitation. Most learning libraries were designed with Atari in mind, which is single-agent with flat
tensor (image) observations and single discrete actions. The most interesting environments usually
do not adhere to these constraints. For example, NetHack is rendered in ASCII with additional infor-
mation contained in a panel at the bottom of the console. There is no sensible way to represent this
information as a flat tensor, so the NetHack Learning Environment (Küttler et al., 2020) is forced to
expose it as a dictionary of arrays with different shapes. Even when flat representations are possible,
they are not always optimal. For example, Neural MMO (Suarez et al., 2021) provides isometric
rendering, but the training API instead exposes local state data for each of a variable number of
agents because it is 1000x faster, enabling users to train on a desktop instead of a supercomputer.

Solution: PufferLib provides one-line wrappers that make simple learning libraries work with com-
plex environments. It does so by flattening observations to tensors and actions to a single multidis-
crete variable. This means that, from the perspective of the learning library, the environment looks
like Atari, thereby emulating a simpler environment. PufferLib provides a function to undo this
operation, which you can call in the first line of your model’s forward pass. This means that there is
no loss of generality.

Normally, to use an environment like NetHack, you would first have to write a single-purpose envi-
ronment wrapper to do something similar to what PufferLib does more generally. Since this requires
packing and unpacking arbitrary data, it is an error prone operation that is difficult to test. PufferLib



PufferLib 2.0

does all of this for you with an efficient implementation tested against dozens of real and mocked
environments.

PufferLib’s approach is so simple as to seem obvious, but there are many seemingly reasonable
ways to accomplish the same task that do not work. For example, several reinforcement learning
libraries attempt to natively support hierarchical observation and action data with no flattening.
This dramatically complexifies the code base and also prevents multiple important optimizations
later in the data pipeline, most notably during vectorization. Emulation overhead is negligible for
environments slower than several thousand steps per second per core.

PufferLib’s emulation layer also handles other niche but important compatibility issues. For exam-
ple, it will perform shape checks on the first batch of data. This catches nearly all user errors but
does not add any overhead, since the checks are only performed at startup. In multiagent environ-
ments, PufferLib ensures that observations and actions are returned in a canonical sorted order. If
the environment has a variable number of agents, PufferLib will pad observations to maintain fixed
size data buffers. These are all common sources of difficult to diagnose bugs.

3.3 Environments

PufferLib currently provides bindings for atari, procgen, nethack, neural mmo, minigrid, minihack,
crafter, griddly, pokemon, and more. These are not the only supported environments, just the ones
that we have manually tested for dependency and versioning quirks.

Problem: Many widely used environments have unresolved versioning and API compatibility issues
with Gym/Gymnasium. This is in addition to the system dependencies resolved by PufferTank.

Solution: PufferLib provides known-good bindings for dozens of popular environments. These
include Gym/Gymnasium conversion, the standard emulation wrapper, and sometimes addi-
tional fixes for specific quirks. There are installation options for each package, e.g. pip
install pufferlib[atari] or pip install pufferlib[nethack]. PufferLib
provides additional insurance against poor dependency management – for example, we pin ver-
sions for sub-packages that are know to commonly ship breaking changes. There is also a
pufferlib[common] option, which installs the broadest set of mutually compatible environ-
ments. This is included with PufferTank by default, so most users should have an out-of-the-box
development experience. It was also one of the motivations for building PufferTank in the first
place, since some of the common environments require additional system packages. Note that
pufferlib does not have a registry by design, so there are no additional requirements for custom
environments.

3.4 Vectorization

Vectorization is the process of simulating many environments, usually on different cores,
which requires aggregating observations and distributing actions. Learning libraries either use
Gym/Gymnasium’s builtin vectorization or ship their own.

Problem: Existing vectorization methods are slow and provide limited or no support for complex
environments with e.g. structured observations, multiple agents, variable population size, etc.

Solution: PufferLib implements fast and broadly compatible vectorization from scratch. We pro-
vide serial, multiprocessing, and Ray backends with the same API. The greatest focus is on the
multiprocessing backend. All of the above combined are implemented in only a few hundred
lines. For additional details, the code is truly quite simple to read.

A hard assumption on PufferLib emulation. Earlier, we said that other libraries attempting to imple-
ment native structured data processing would cause issues. This is one such instance. Gymnasium
and SB3, the two most popular vectorization implementations, both attempt native support. The
Gymnasium implementation misses several crucial opportunities for optimization as a result. The
SB3 implementation simply flattens observations, without giving the user any way to unflatten them.



Reinforcement Learning Journal 2025

For some reason, it does this on the main process and with a rather inefficient implementation. By
comparison, PufferLib’s implementation is shorter, faster, and more flexible. The features described
below would be quite difficult to implement otherwise.

Native multiagent support. Most vectorization implementations, including PettingZoo’s, bolt this
on with unoptimized wrappers. Both SB3 and Gymnasium have made clear that there will never be
official multiagent support.

A Python implementation of EnvPool (Weng et al., 2022b). Standard vectorization simulates M
environments in parallel and requires waiting on all M before returning observations. PufferLib can
instead retrieve N << M observations. This has two important implications. First, by setting M =
2N , simulation becomes approximately double-buffered. This means that CPU cores are processing
half of the environments while the GPU computes actions for the other half. Second, by setting
M ≫ 2N , the model no longer has to wait on the slowest environments before returning a batch
of observations. This feature is especially important in complex environments, which tend to have
more branching logic paths. At time of writing, this is the only existing Python implementation of
EnvPool, as opposed to the original EnvPool implementation that supports select C++ environments.

Multiple environments per worker. PufferLib allows you to specify the number of environments and
the number of workers separately. When a worker is responsible for multiple environments, it effi-
ciently stacks data returned by each sub-environment in preallocated arrays without performing any
extra copies. This feature is important when running many more environments than your machine
has cores, as it avoids clogging the system with small processes.

Shared memory for data communication. We load observations, rewards, terminals,
truncations, and actions signals into large shared arrays. We use pipes, which are up to
10x faster than queues due to a Python quirk, for communicating infos. Empty infos are pruned,
and we provide wrappers to aggregate them over episodes. As a result, only one step per episode
requires any inter-process communication. By comparison, SB3 does not have shared memory.
Gymnasium provides a slower shared memory implementation that attempts to handle structured
data natively, requiring multiple small copy operations and additional Python logic.

Shared flags for signaling. Worker processes busy-wait on an unlocked shared array flag to detect
when actions are ready and update the flag after computing observations. This almost completely
eliminates inter-process communication overhead. Pipes are only used when an environment returns
non-empty infos, which will be once per episode when using our wrappers.

Zero-copy batching. For environments with large observations, we provide a setting to load batches
of data directly from shared memory by waiting on a contiguous subset of worker process indices.
Other settings require one copy. A naive implementation not using shared memory would require
two or three copies.

Four separately optimized code paths. For fast environments, main process overhead has to be
optimized to within a few microseconds. Even operations like manipulating process IDs in a list can
result in noticeable performance drops. We identify and separately optimize four common workload
cases. In the synchronous case, environments are split evenly across cores and loading into a single
batch in shared memory with no extra copy operations. In the fully asynchronous case, data is taken
from the first workers to finish, requiring a single copy operation to load the batch into contiguous
memory. There is a special case of the latter where each batch is simulated on a single worker, so it
can be loaded without additional copies. There is also the above zero-copy case, which is roughly
equivalent to a circular buffer of batches.

An autotune utility. Obtaining the best configuration for your environment and hardware requires
testing all four code paths. We provide an utility that benchmarks valid vectorization settings.



PufferLib 2.0

Environment SPS % Reset % Step STD % Overhead
Neural MMO 2 2400 68 59 7.2

Nethack 39k 0.63 45.3 64
MiniHack 11k 2.1 28 4.9

Pokemon Red 700 0.00 43 0.08
Cartpole 270k 18 37 13

Ocean Squared 240k 55 53 14
Procgen Bigfish 25k 0.36 14 2.5
Atari Breakout 1.2k 54 4.3 0.16

Crafter 320 80 26 0.04
Minigrid 16k 4.5 8.1 2.7

Table 1: Updated single-core throughput and emulation overhead of various environments, evaluated
on the desktop. Steps per second (SPS) is timed with emulation. Some environments have slow
resets or high per-step variance.

3.5 Models

PufferLib provides an optional model format that splits the normal PyTorch forward function into
separate encode and decode functions. This allows PufferLib to sandwich an LSTM between the
computation of hidden state and actions. We apply this operation as a wrapper, meaning that LSTM
support becomes optional and configurable per-experiment, without having to write two models.
Users are free to disregard this feature and use other frameworks for LSTM support or implement
it manually. However, our users have found this feature important, since LSTM state reshaping
operations are one of the most common sources of difficult to diagnose bugs.

Pufferlib includes a few baseline models such as the original NatureCNN and ResNet models from
DQN (Mnih et al., 2013) Impala (Espeholt et al., 2018), respectively. There is also a default architec-
ture which defines an MLP sized to the flat observation and action spaces. This is useful for small
test environments. All base models directly subclass torch.nn.Module. There is no additional
model layer required by PufferLib.

4 Performance

PufferLib’s emulation layer typically adds a few tens of microseconds to simulation time. As shown
in Table 1, the overhead is negligible for environments slower than a few thousand steps per sec-
ond. Emulation works by inferring a numpy structured array datatype from the environment’s
Gym/Gymnasium observation and action spaces. This is an analog to C structs that provides an
efficient numpy interface over structured data in contiguous memory. Conveniently, we can use
structured arrays as flat bytes, as is required for efficient vectorization, or with dict-like accessors,
as is required by the model and environment. This critical piece of code is Cythonized and tested to
be faster than a half dozen implementations from earlier in development, including efforts to write it
in C and Rust. Suffice that our implementation is, at the least, probably faster than the naive one-off
script that users would have to write for any specific environment otherwise.

PufferLib’s vectorization is faster than both the Gymnasium and SB3 implementations in almost
all cases, even without our EnvPool feature enabled, which provides most of the speedup. The
following comparisons are a worst case scenario for PufferLib because they also rely on Puffer-
Lib’s emulation. The fairer comparison would be to time PufferLib’s emulation + vectorization vs.
other implementations without PufferLib emulation. This would trigger inefficient code paths, such
as Gymnasium’s structured shared memory processing and SB3’ main-thread flattening. However,
several of the test environments simply would not work without PufferLib’s emulation. By compar-
ison, we had never explicitly tested any of these environments with Gymnasium/SB3 vectorization,
and they all worked on the first try.



Reinforcement Learning Journal 2025

Environment Pufferlib (D/L) Puffer Pool (D/L) Gymnasium (D/L) SB3 (D/L)
Neural MMO 13k / 4.5k 19k / 7.2k - / - - / -

Nethack 96k / 18k - / - 7k / 7k 6k / -
Minihack 55k / 8k - / - 11k / 7k 12k / 6k

Pokemon Red 5k / 650 7.2k / 830 5k / 960 4.7k / 1k
Cartpole 460k / 110k 3M / 200k 82k / 14k 100k / 11k

Ocean Squared 490k / 110k 4M / 190k 116k / 12k 99k / 12k
Procgen Bigfish 33k / 6.2k 150k / 9.6k 41k / 5k 30k / 4.8k
Atari Breakout 11.8k / 2k 25.6k / 3k 4.8k / 2.5k 3.3k / 2.3k

Crafter 360 / 170 2.8k / 450 340 / 135 350 / 203
Minigrid 151k / 16k 210k / 20k 54k / 10k 44k / 10k

Table 2: Vectorized throughput of PufferLib (with and without EnvPool), SB3, and Gymnasium.
Evaluated on the desktop (D) and laptop (L).

We benchmark a variety of real environments with different step times, step time variances, and
observation/action spaces. We use two separate machines for testing. The first machine is a com-
mercial desktop with a 24-core i9-14900k processor and an RTX 4090 GPU. The second machine
is a laptop with a 6-core i7-10750H processor and an RTX 3070 GPU. Table 2 reports the results of
these experiments.

The Gymnasium and SB3 multiprocessing implementations experience significant scaling degrada-
tion above 1000 synchronizations per second per core. Instead of clogging the system with small
processes, PufferLib provides an optimized implementation for running multiple environments/core.
This allows it to scale even to environments that run at 100k+ steps/second.

The other major source of performance improvement is PufferLib’s EnvPool implementation. This
is another place where our benchmarks are unfair to our own implementation: the tests are run
without a model in a loop. A major benefit of EnvPool is allowing the environments to continue
computing observations while the policy is computing actions. This can drive GPU idle time to 0.

Even in this worst case scenario, we generally obtain at least a 30-40% performance improvement
with EnvPool. There are important cases where the improvement can be much larger. For example,
Crafter is 6x faster with Puffer Pool. The reason for this is that Crafter has especially long reset times
and high step time variance. You may have also noticed that PufferLib scales better on the desktop
(D) than on the laptop (L). The chipset used has 8 performance cores and 16 slower efficiency cores.
This is an increasingly common design in high-end Intel chips. SB3 and Gymansium are bottle-
necked by the slowest environment and the slowest core, while PufferLib will retrieve observations
from the first environments to finish processing.

5 First-party Training with Clean PuffeRL

By design, PufferLib does not include a library of learning algorithm implementations and we have
no plans to develop one. We do maintain one heavily customized version of CleanRL’s PPO (Schul-
man et al., 2017) implementation for testing and baselines. It has been expanded to allow separate
training and evaluation, model saving and checkpointing, faster LSTM support, better logging and
WandB integration, asynchronous environment simulation, and additional features for multiagent
learning. We include a runner file with a CLI for all included PufferLib environments, clean YAML
configs, and integration with WandB for tracking, baselines, and hyperparameter tuning.

6 Limitations

PufferLib is missing some of the newer Gymnasium spaces. Few environments use these, and
integrations are planned based on user demand. There are a few edge cases in vectorization where



PufferLib 2.0

PufferLib’s synchronous multiprocessing is slower than Gymnasium/SB3. This is a quirk of OS
process switching. We have not received any user reports of particularly egregious cases.

While we provide our integration with Neural MMO 2 as evidence of our library’s efficacy in com-
plex multiagent domains, there are simply no good multiagent vectorization implementations to
compare against. We fought with deprecated PettingZoo wrappers for a while, but they did not work
with Neural MMO. This alone should be a good indicator of PufferLib’s impact.

7 Conclusion

PufferLib provides fast and flexible tools for reinforcement learning. The majority of new users will
benefit immediately from improved performance and a smoother development experience. However,
the real value of PufferLib is the ease with which researchers can move their work to more complex
and interesting environments, which have traditionally been difficult to work with. We hope that
PufferLib will allow the field to explore new ideas hitherto constrained by the simplicity of readily
available environments.

References
Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning en-

vironment: An evaluation platform for general agents. CoRR, abs/1207.4708, 2012. URL
http://arxiv.org/abs/1207.4708.

Albert Bou, Matteo Bettini, Sebastian Dittert, Vikash Kumar, Shagun Sodhani, Xiaomeng Yang,
Gianni De Fabritiis, and Vincent Moens. Torchrl: A data-driven decision-making library for
pytorch, 2023.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016. URL http://arxiv.org/
abs/1606.01540.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IM-
PALA: scalable distributed deep-rl with importance weighted actor-learner architectures. CoRR,
abs/1802.01561, 2018. URL http://arxiv.org/abs/1802.01561.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, and Jeff Braga. Cleanrl: High-quality
single-file implementations of deep reinforcement learning algorithms. CoRR, abs/2111.08819,
2021. URL https://arxiv.org/abs/2111.08819.

Heinrich Küttler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu, Marco Selvatici, Edward
Grefenstette, and Tim Rocktäschel. The nethack learning environment. CoRR, abs/2006.13760,
2020. URL https://arxiv.org/abs/2006.13760.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013. URL http://arxiv.org/abs/1312.5602.

Alistair Muldal, Yotam Doron, John Aslanides, Tim Harley, Tom Ward, and Siqi Liu. dm_env: A
python interface for reinforcement learning environments, 2019. URL http://github.com/
deepmind/dm_env.

Aleksei Petrenko, Zhehui Huang, Tushar Kumar, Gaurav S. Sukhatme, and Vladlen Koltun. Sam-
ple factory: Egocentric 3d control from pixels at 100000 FPS with asynchronous reinforcement
learning. In Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Re-
search, pp. 7652–7662. PMLR, 2020. URL http://proceedings.mlr.press/v119/
petrenko20a.html.

http://arxiv.org/abs/1207.4708
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1802.01561
https://arxiv.org/abs/2111.08819
https://arxiv.org/abs/2006.13760
http://arxiv.org/abs/1312.5602
http://github.com/deepmind/dm_env
http://github.com/deepmind/dm_env
http://proceedings.mlr.press/v119/petrenko20a.html
http://proceedings.mlr.press/v119/petrenko20a.html


Reinforcement Learning Journal 2025

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

Joseph Suarez, Yilun Du, Clare Zhu, Igor Mordatch, and Phillip Isola. The neural mmo platform for
massively multiagent research. In J. Vanschoren and S. Yeung (eds.), Proceedings of the Neural
Information Processing Systems Track on Datasets and Benchmarks, volume 1, 2021. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
file/44f683a84163b3523afe57c2e008bc8c-Paper-round1.pdf.

Justin K. Terry, Benjamin Black, Ananth Hari, Luis S. Santos, Clemens Dieffendahl, Niall L.
Williams, Yashas Lokesh, Caroline Horsch, and Praveen Ravi. Pettingzoo: Gym for multi-agent
reinforcement learning. CoRR, abs/2009.14471, 2020. URL https://arxiv.org/abs/
2009.14471.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, An-
drea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymna-
sium, March 2023. URL https://zenodo.org/record/8127025.

Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su, Hang
Su, and Jun Zhu. Tianshou: A highly modularized deep reinforcement learning library. Journal of
Machine Learning Research, 23(267):1–6, 2022a. URL http://jmlr.org/papers/v23/
21-1127.html.

Jiayi Weng, Min Lin, Shengyi Huang, Bo Liu, Denys Makoviichuk, Viktor Makoviychuk, Zichen
Liu, Yufan Song, Ting Luo, Yukun Jiang, Zhongwen Xu, and Shuicheng Yan. Envpool: A highly
parallel reinforcement learning environment execution engine, 2022b.

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/44f683a84163b3523afe57c2e008bc8c-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/44f683a84163b3523afe57c2e008bc8c-Paper-round1.pdf
https://arxiv.org/abs/2009.14471
https://arxiv.org/abs/2009.14471
https://zenodo.org/record/8127025
http://jmlr.org/papers/v23/21-1127.html
http://jmlr.org/papers/v23/21-1127.html

