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Summary
Effective collaboration between humans and AI agents is increasingly essential as au-

tonomous systems take on critical roles in domains like disaster response, healthcare, and
robotics. However, achieving robust human-AI collaboration remains challenging due to the
uncertainty, complexity, and unpredictability of human behavior, which is often difficult to con-
vey explicitly to AI agents. This paper presents a belief-space reinforcement learning frame-
work that enables AI agents to implicitly and probabilistically infer latent human intentions
from behavioral data and integrate this understanding into robust decision-making. Our ap-
proach models human behavior at both the action (low) and subtask (high) levels, combining
these with human and agent state information to construct a comprehensive belief state for
the AI agent. We demonstrate that this belief state follows the Markov property, enabling the
derivation of an optimal Bayesian policy under human and task uncertainty. Deep reinforce-
ment learning is used to train an offline Bayesian policy across a wide range of human and
task uncertainties, allowing real-time deployment to support effective human-AI collaboration.
Numerical experiments demonstrate the effectiveness of the proposed policy in terms of coop-
eration, adaptability, and robustness.

Contribution(s)
1. We develop a decision-making framework that represents the human behavioral model at

two levels—low-level actions and high-level subtasks—allowing the AI agent to anticipate
long-term human goals and adapt to changing task priorities in real-time.
Context: Unlike prior models that focus on human rationality at a single (action) level,
our approach incorporates hierarchical intent modeling, enhancing goal-aware human-AI
collaboration and improving adaptability to dynamic environments.

2. We propose a structured belief state that captures state information alongside the posterior
distribution of human intent, serving as a sufficient statistic for optimal Bayesian decision-
making in human-AI collaboration.
Context: Unlike existing Partially Observable Markov Decision Process (POMDP)-based
frameworks that maintain beliefs over partially observable states, our belief state explic-
itly models uncertainty in high-level human intent, leading to more informed and adaptive
decision-making under uncertainty.

3. We develop a deep reinforcement learning (DRL) approach that optimizes the AI agent’s
decision-making over the belief space, enabling dynamic adaptation to inferred human in-
tent for effective long-term human-AI collaboration.
Context: Unlike existing methods that optimize AI agents for pre-specified human tasks
or rely on explicit feedback, our approach leverages a belief-space policy trained on human
behaviors. This policy captures the AI’s belief about human intent—including uncertainty
in their goals and actions (theory of mind)—to optimize decision-making accordingly. This
enables efficient real-time adaptation without requiring explicit human feedback.
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Abstract
Effective collaboration between humans and AI agents is increasingly essential as au-
tonomous systems take on critical roles in domains like disaster response, healthcare,
and robotics. However, achieving robust human-AI collaboration remains challenging
due to the uncertainty, complexity, and unpredictability of human behavior, which is
often difficult to convey explicitly to AI agents. This paper presents a belief-space rein-
forcement learning framework that enables AI agents to implicitly and probabilistically
infer latent human intentions from behavioral data and integrate this understanding into
robust decision-making. Our approach models human behavior at both the action (low)
and subtask (high) levels, combining these with human and agent state information to
construct a comprehensive belief state for the AI agent. We demonstrate that this belief
state follows the Markov property, enabling the derivation of an optimal Bayesian pol-
icy under human and task uncertainty. Deep reinforcement learning is used to train an
offline Bayesian policy across a wide range of human and task uncertainties, allowing
real-time deployment to support effective human-AI collaboration. Numerical exper-
iments demonstrate the effectiveness of the proposed policy in terms of cooperation,
adaptability, and robustness.

1 Introduction

Motivation: The rapid advancement of autonomous systems has enabled AI agents to take on
increasingly complex roles in healthcare, manufacturing, disaster response, and robotics (Zhang
et al., 2021; Hauptman et al., 2023; Berretta et al., 2023). However, achieving effective human-
AI collaboration remains an open challenge due to the ambiguity and unpredictability of human
intent (Bhatt et al., 2021; Charalampous et al., 2017). Unlike multi-agent settings, human-AI col-
laboration presents unique challenges due to the dynamic and context-dependent nature of human
decision-making, which is influenced by cognitive biases, task priorities, workload constraints, and
environmental factors. This inherent complexity necessitates real-time adaptation for AI agents, par-
ticularly in scenarios lacking explicit supervision. While explicit feedback mechanisms have been
explored to mitigate uncertainty (Arulkumaran et al., 2017; Ravari et al., 2024; Abeyruwan et al.,
2023), these approaches are often impractical in high-stakes environments where human input is
limited, delayed, or unavailable (Kaluarachchi et al., 2021).

Prior Work: Existing methods for human-AI teaming fall into two broad categories: human-
guided learning and human-inferred intent modeling (Ambhore, 2020; Obaigbena et al., 2024;
Teng et al., 2023). Human-guided approaches, including human-in-the-loop reinforcement learn-
ing (HITL) (Retzlaff et al., 2024; Lin et al., 2024; Lu, 2019), reward shaping (Hu et al., 2020),
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imitation learning (Zare et al., 2024) and inverse reinforcement learning (IRL) (Ziebart et al., 2008;
Arora & Doshi, 2021), rely on human feedback to shape AI behavior. While effective, these meth-
ods require continuous human demonstrations, corrections, or explicit reward signals. In contrast,
human-inferred approaches, such as behavior modeling, Bayesian inference, and intent recogni-
tion (Hoffman et al., 2024; Alali & Imani, 2024; Ni et al., 2023; Nasernejad et al., 2021), attempt to
infer intent from past interactions. These methods typically estimate current human intent but fail
to model the rationality behind long-term intent evolution, making them impractical for cooperation
planning that requires predicting future human intent over extended horizons.

Existing Partially Observable Markov Decision Process (POMDP)-based models (Hadfield-Menell
et al., 2016; Mai et al., 2025) model uncertainty using belief distributions over latent states.
This approach is employed in frameworks such as Cooperative Inverse Reinforcement Learning
(CIRL) (Hadfield-Menell et al., 2016) and human-robot task allocation techniques (Ali et al., 2022;
Lee et al., 2022). However, these methods fail to explicitly model hierarchical intent structures.
Hierarchical IRL (Nair et al., 2018; Sun et al., 2018; Chen et al., 2023) are also developed for
learning structured human behavior by decomposing decision-making into multiple levels, typically
to achieve a more interpretable representation of human policies. These methods are designed to
extract hierarchical task structures or policies from demonstrations, assuming a stationary decision-
making process without considering the influence of AI agents’ decisions. While effective for mod-
eling human behavior in a structured manner, they are not designed for real-time adaptation or for
capturing non-stationary, evolving human intent that may emerge in interactive settings.

Proposed Framework: This paper presents a belief-space reinforcement learning framework that
enables AI agents to infer and respond to high-level human intent in real time, without requiring
explicit feedback or retraining. Cooperation is structured around a set of pre-specified subtasks that
human and AI agents must collaboratively complete to achieve a shared objective. Unlike existing
belief-planning models, which primarily focus on uncertainty in state transitions, our approach in-
troduces a structured belief-state representation that jointly models low-level actions and high-level
task objectives, allowing the AI agent to dynamically adjust its strategy as human intent evolves. By
explicitly modeling uncertainty in human decision-making, our method supports long-term planning
and adaptive cooperation.

At the core of our framework is a hierarchical belief state, which serves as a sufficient statistic for
optimal decision-making by encapsulating the agent state, human state, and posterior human intent
distribution. We prove that this belief state satisfies the Markov property, allowing for the deriva-
tion of an optimal Bayesian policy that accounts for long-term uncertainties in both state transitions
and evolving human intent. To efficiently approximate this policy, we introduce a deep reinforce-
ment learning (DRL) framework that pre-trains the AI agent on diverse human behaviors and task
uncertainties. This offline-trained policy enables real-time deployment, allowing the AI agent to
implicitly infer human intent and adapt dynamically without retraining. Extensive numerical exper-
iments demonstrate the effectiveness of our framework, particularly in environments where human
intent evolves dynamically and task uncertainty is high.

2 Background - A Markov Decision Process

A Markov decision process (MDP) representing human-agent collaboration is defined by the 4-
tuple ⟨S,A,P, R⟩. Here, S = SA × SH denotes the state space, comprising all possible agent
and human states, while A = AA × AH represents the joint action space of the agent and human.
The state transition function P : S × A × S → [0, 1] defines the probability of reaching a new
state s′ given the current state s and joint action a = (aA,aH). Without loss of generality, the
state transition function can be factorized into independent components for the human and agent:
P(s,a, s′) = PH(sH ,aH , s′H)·PA(sA,aA, s′A), where PH(sH ,aH , s′H) represents the transition
dynamics of the human, and PA(sA,aA, s′A) describes the agent’s state transition. This factoriza-
tion simplifies modeling by treating human and agent dynamics independently while still capturing
their joint interaction within the MDP framework. The reward function R : S × A → R assigns a
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real-valued reward for each state-action pair. Specifically, R(s,a) captures the cooperative reward
earned when the joint action a = (aA,aH) is taken in state s.

3 Implicit Probabilistic Human Intent Inference

In many collaborative domains, humans and AI agents must work together without direct commu-
nication or explicit feedback, making it critical to accurately capture human intent for seamless
coordination. We consider an AI agent capable of probabilistically inferring human intent using
limited behavioral data. This inference is conducted with respect to a set of N predefined subtasks,
denoted as T 1, T 2, . . . , TN , which may vary in priority and can be performed by either the human
or the AI agent. When the AI agent infers that the human is moving toward a given subtask, it can
prioritize complementary subtasks, thereby playing a supportive role in human-AI teaming.

Our framework leverages probabilistic intent learning to capture the evolution of human intent
over time. Let p0 = [p(T0 = T 1), . . . , p(T0 = TN )] represent the prior probability distribution
over the subtasks, where

∑N
j=1 p0(j) = 1. As the agent observes the sequence of human states

sH0:k = (sH0 , . . . , sHk ), it updates its understanding of the human’s current intent using the posterior
distribution:

pk =
[
p(Tk = T 1 | sH0:k), . . . , p(Tk = TN | sH0:k)

]T
. (1)

AI agents often lack access to the specific human actions that produce the observed sequence of
human states sH0:k, limiting the applicability of intent inference techniques that rely on observing
human state-action pairs. In the following paragraphs, we introduce the human model and recursive
approach to probabilistically capture human intent posterior using only state sequences.

Human Modeling: Let ηk ∈ {0, 1}N be a subtask tracker at time step k, which keeps track of
subtask completion. Specifically, ηk(j) = 0 indicates that the j-th subtask has not yet been com-
pleted by either the human or the AI agent, while ηk(j) = 1 indicates that the subtask has been
completed. A subtask tracker with ηk = [0, . . . , 0] implies that no subtasks have been completed,
whereas ηk = [1, . . . , 1] indicates that all subtasks have been completed. Let {G1, . . . ,GN} denote
the terminal states for the subtasks, where ηk(j) switches from 0 to 1 when either the human or the
agent first reaches state Gj . The subtask tracker ηk is updated based on the observed states of the
human and agent up to time step k, or recursively as:

ηk+1(j) =

k+1∑
r=0

1sAr =Gj or sHr =Gj , ηk+1(j) =

{
1 if sAk+1 = Gj or sHk+1 = Gj

ηk(j) otherwise
, j = 1, . . . , N,

(2)
where Gj denotes the terminal state of the j-th subtask.

Assuming the human is the primary agent, acting based on its state and the remaining subtasks, the
optimal human policy at any given state sH and subtask tracker η can be computed as:

π∗,H(sH, η) = argmax
πH

E
[ h∑

t=0

γtrt | sH0 = sH , η0 = η,aH
0:h ∼ πH

]
, for all sH ∈ SH and η ∈ {0, 1}N ,

(3)
where the expectation is taken with respect to stochastic transitions and rewards, γ ∈ (0, 1] is a

discount factor, and h is the horizon. This formulation considers the human as the sole actor in
the environment, modeling a human-AI setting where the AI agent plays a supportive role. We
model the human as a sub-optimal reinforcement learning agent, with behavior approximated by a
stochastic form of the optimal policy in (3) as:

πH(aH |sH , η) := P (aH |sH , η) =

{
q + 1−q

|AH | If aH =π∗,H(sH , η)
1−q
|AH | If aH ̸=π∗,H(sH , η)

, for aH∈AH , sH∈SH , η∈{0, 1}N ,

(4)
where πH(aH | sH , η) indicates the probability that the human takes action aH at state sH and

subtask tracker η, and q ∈ [0, 1] represents the human’s rationality at the action level, referred to as
the low-level rationality rate. Higher values of q (close to 1) correspond to more rational behavior,
while lower values (close to 0) reflect more random behavior.
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Recursive Inference of Human Intent: Using the human model in Equation (4), we can infer
the posterior distribution of human intent, as described in Equation (1). Let pk(j) = P (Tk = T j |
sH0:k, ηk) denote the j-th element of the posterior of human intent at time step k, where ηk represents
the subtask completion status based on the prior experiences of both the human and the AI agent.
When a new human state sHk+1 is observed and both the agent and the human are not at a terminal
goal state, the posterior of human intent can be updated recursively as follows:

pk+1(j) = P (Tk+1 = T j | sH0:k+1, ηk+1) ∝
∑

aH∈AH

P (sHk+1,a
H
k = aH , Tk+1 = T j | sH0:k, ηk+1)

=
∑

aH∈AH

P (sHk+1 | sHk ,aH
k = aH)P (aH

k = aH | sHk , Tk+1 = T j)P (Tk+1 = T j | sH0:k, ηk+1)

=
∑

aH∈AH

PH(sHk ,aH , sHk+1)π
H(aH | sHk , η = ej) pk(j),

(5)
where ej is a binary vector of size N with all elements set to 1, except for the j-th element, which

is 0. This expression provides a fully recursive update for the posterior distribution of human intent.
Note that in this scenario, no subtask is completed at time step k + 1, implying that ηk+1 = ηk.

If the human reaches the terminal state of the ith subtask at time step k + 1, i.e., sHk+1 = Gi, the
posterior of human intent no longer depends on past human state sequence. Under these conditions,
predicting human intent is equivalent to quantifying the probability of human performing the next
subtask given its current state and the subtask tracker, that is, P (Tk+1 = T j | sHk+1 = Gi, ηk+1).
We estimate the next human intent by propagating human states using the low-level action policy
πH from Equation (4) until the next subtask is completed (i.e., ηt ̸= ηt−1). This process can be
achieved through the Monte Carlo method, allowing the approximation of the predictive distribution
pk+1 ≈ psH

k+1
,ηk+1

, where psH
k+1

,ηk+1
(l) represents the ratio of trajectories that ended up at state Gl

as the next subtask. To account for variability in human rationality during the subtask selection, we
introduce:

pk+1 = α · psH
k+1

,ηk+1
+

1− α

∥1N − ηk+1∥1
· (1N − ηk+1), (6)

where α ∈ [0, 1] represents the human’s rationality level at the subtask level, referred to as the high-
level rationality rate. Higher values of α indicate a more rational subtask selection, while lower
values suggest a more random decision.

4 Adaptive Planning with Implicit Learning of Human Intention

In human-AI teaming, the optimal cooperative policy for an AI agent can be derived using the
standard Markov Decision Process formulation from Section 2, given that the AI agent has complete
knowledge of human intent (i.e., the agent is fully aware of the human intention). However, in the
absence of explicit interactions, human intent is uncertain and the AI agent must make decisions
given the uncertainty in the inferred human intention. This section introduces a framework that
enables the AI agent to make optimal decisions under partial and probabilistic knowledge of human
intent.

Belief State: We introduce the concept of a belief state, which encompasses all relevant information
the AI agent needs to make informed decisions at each time step. Let sk = [sAk , s

H
k ]T denote the joint

state of the agent and human, ηk represent the status of subtasks completed by both entities, and pk
indicate the posterior probability of human intent inferred by the AI agent at time step k. The belief
state at time step k is then defined as:

bk = [sk, ηk, pk]
T , (7)

where bk is a vector of size |sk| + 2N . This belief state bk resides in an uncountable belief space
B = S × 2N ×∆N , where sk ∈ S is the joint state space of the agent and human, ηk ∈ {0, 1}N is
the subtask tracker, and pk is a posterior sample from the simplex ∆N of size N .

Belief Transitions: In this part, we derive the belief transitions and demonstrate that they satisfy
the Markov property. Let (b0,a

A
0 , . . . ,a

A
k−1,bk) represent the sequence of agent actions and belief
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states up to time k. If the agent takes action aAk , the next belief state transition is given by:

P (b′=[s′, η′, p′] | b0,a
A
0 , . . . ,a

A
k−1,bk,a

A
k )

= P (sk+1=s′, ηk+1=η′ | s0, η0, p0,aA
0 , . . . , sk, ηk, pk,a

A
k )

× P (pk+1=p′ | sk+1=s′, ηk+1=η′, s0, η0, p0,a
A
0 , . . . , sk, ηk, pk,a

A
k )

= P (sk+1=s′ | sk, ηk, pk,aA
k )P (ηk+1=η′ | ηk, sk+1=s′)P (pk+1=p′ | sHk+1=s′H , ηk+1=η′, sHk , ηk, pk),

(8)
where the last line indicates that the belief transition depends only on the most recent belief state

and agent action, satisfying the Markov property: P (b′ | b0,a
A
0 , . . . ,a

A
k−1,bk,a

A
k ) = P (b′ | bk,a

A
k ).

Since the state transitions of the human and the AI agent are mutually independent, the first term in
the last expression of Equation (8) can be expanded as:

P (sk+1=[s′A, s′H ] | sk, ηk, pk,aA
k ) = P(sAk ,aA

k , s
′A)

 N∑
j=1

pk(j)
∑

aH∈AH

PH(sHk ,aH , s′H)πH(aH | sHk , ej)

.
(9)

The second term can be further expressed according to Equation (2) as:

P (ηk+1 = η′ | ηk, sk+1[s
′A, s′H ]) =

N∏
j=1

[
1ηk(j)=0 and η′(j)=1 1s′H=Gj or s′A=Gj + 1ηk(j)=η′(j)

]
, (10)

The last term in (8) returns 1 only if p′ matches the next posterior of human intent computed based
on s′H , η′, sHk , ηk, and pk using Equations (5) and (6), otherwise returns 0.

Reward in Belief Space: After the human and the AI agent take actions, the cooperative reward
they obtain through collaboration is determined by their current states, the actions taken, and the
subtask tracker, defined as R(s = [sA, sH ], η,aA,aH). The existence of η ensures that the reward
corresponding to a specific subtask can only be obtained by one entity only once throughout the
whole task. Within the current framework, the human action aH is not observable at the agent’s side,
but the human’s future behavior can be inferred using the recursively updated probability distribution
p, and the completion status of the subtasks can also be tracked in real-time by η. Using the belief
state, the reward function can be rewritten as:

RB(b = [s, η, p],aA) = Es,η,aH |b

[
R(s, η,aA,aH)

]
=

N∑
j=1

p(j)
∑

aH∈AH

πH(aH | sH , ej)R(s, η,aA,aH),

(11)
where the intention posterior p(j) and human policy πH are used to predict the unobservable human
action aH ∈ AH . The reward structure in (11) explicitly incorporates inferred human intent, enabling
the AI agent to optimize cooperation and decision-making given the uncertainty in the inferred
human intent.

Based on the previous definitions and explanations, the decision-making and action-taking pro-
cess of the AI agent can be modeled as a MDP as described in Section 2, defined using a 4-
tuple ⟨B,AA,PB , RB⟩, where B is the belief space, AA is the action space of the AI agent, and
PB : B ×AA × B → [0, 1] is the belief transition function derived in the previous section, defined as
PB(b,aA,b′) = P (b′ | b,aA).

Optimal Belief State Policy: This part introduces the agent policy that accounts for the uncertainty
in human intent to make optimal cooperative decisions. Therefore, an agent must make decisions
based not only on its own state but also on the human’s state, the subtask tracker, and the inferred
intent posterior, all of which are reflected in the belief state.

We define a deterministic policy in the belief space as µA : B → AA, mapping an agent action to
any given belief state b ∈ B. The optimal Bayesian policy for the agent can be expressed as:

µ∗,A(b) = argmax
µA

E
[ h∑

t=0

γtRB(bt,a
A
t ) | b0 = b,aA

0:h ∼ µA

]
, for all b ∈ B, (12)
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where the maximization is over all possible deterministic policies within the belief space. The
expectation in Equation (12) accounts for uncertainties in both agent and human state transitions,
as well as the posterior distribution of human intent. This optimal Bayesian policy µ∗,A provides
the maximum expected rewards for any given belief, enabling optimal cooperation through inferred
human intents. By leveraging probabilistic knowledge of intent in real time, the AI agent selects
actions that maximize cooperative outcomes without requiring explicit human feedback.

5 Deep Reinforcement Learning for Bayesian Planning

The large size of the belief space makes the computation of the exact solution for optimization in
(12) infeasible. This paper introduces a deep reinforcement learning approach that approximates
the optimal Bayesian policy over the entire belief space. By leveraging known belief state tran-
sitions and reward structures, our method allows for pre-training the policy without real agent or
human data, instead using simulated belief samples to represent a wide range of potential behaviors
and task uncertainties that might be faced in practice. This approach enables efficient policy learn-
ing that generalizes across scenarios prior to observing any real data from the human or AI agent.
Depending on the size of the action space, either value-based or policy-based deep reinforcement
learning methods can be utilized. In this paper, we focus on value-based approaches, specifically for
finite action spaces.

For an arbitrary policy µA defined over the belief space, we define the expected discounted reward
function at a belief state b ∈ B after taking action aA ∈ AA and then following the policy µA as:

QµA(b,a
A) = E

[ h∑
t=0

γtRB(bt,a
A
t ) | b0 = b,aA

0 = aA,a1:h ∼ µA

]
, (13)

where the expectation is taken over belief transitions. The optimal Q-function, Q∗, provides the
maximum expected return under the optimal policy µ∗,A, such that:

µ∗,A(b) = argmax
aA∈AA

Q∗(b,aA), for any b ∈ B. (14)

We employ the Double Deep Q-network (DDQN) technique (Van Hasselt et al., 2016), a well-
known value-based deep reinforcement learning method. The optimal Q-function Q∗ is approxi-
mated using two feed-forward neural networks: the Q-network Qw and the target network Qw− .
Both networks share the same architecture and are initialized with identical, randomly assigned
weights. The input to the Q-network is the belief state b, and its outputs are the Q-values
Qw(b,a1), . . . , Qw(b,a|A

A|), each corresponding to an agent action.

Training involves a fixed size replay memory D to store the transition experiences of beliefs.
The episode starts with an initial belief state sampled from the belief space, denoted as b0 =
[s0, η0, p0]

T ∈ B, and ends when all subtasks have been performed. At each time step t in an
episode, an action aAt is selected using the epsilon-greedy policy based on Qw:

aA
t ∼

{
greedy: argmaxaA∈AA Qw(bt,a

A) with probability 1− ϵ,

random: aA ∈ AA with probability ϵ,
(15)

where ϵ ∈ [0, 1] is the exploration rate. After selecting the agent’s action aAt , the next belief state
bt+1 is sampled according to the belief transition P (· | bt,a

A
t ) from Equation (8). The reward rt+1

is then calculated, and the experience tuple (bt,a
A
t ,bt+1, rt+1) replaces the oldest entry in D if the

memory limit is reached.

The Q-network Qw is iteratively updated after collecting a sufficient number of experiences us-
ing a minibatch sampled from D: Z = {(b̃n, ãn, b̃n+1, r̃n+1)}Nbatch

n=1 ∼ D, where each tuple
(b̃n, ãn, b̃n+1, r̃n+1) is generated randomly and the samples do not necessarily represent consec-
utive tuples in replay memory. For each sample in the minibatch, the target values are computed
as:

yn = r̃n+1 +Qw−(b̃n+1, argmax
aA∈AA

Qw(b̃n+1,a
A)), (16)
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where Qw− (the target network) provides the target values at the action holding the maximum value
of the policy network. The Q-network weights w are then updated by minimizing the mean squared
error:

w← w − β∇w
1

Nbatch

Nbatch∑
n=1

(
yn −Qw(b̃n, ãn)

)2

, (17)

where β is the learning rate. The optimization can be performed using stochastic gradient descent,
such as with the Adam optimizer (Kingma & Ba, 2015). The target network Qw− gets updated by
iteratively becoming closer to the Q-Network through the following soft update:

w− ← τw + (1− τ)w−, (18)

where τ is the soft update rate, controlling the rate of change of w− to ensure the training stability.

Figure 1: Bayesian planning for decision-making in
belief space under uncertain human intent.

The training process is considered complete
when the loss function converges and the
policy performance meets the desired crite-
ria. Afterward, the learned Q-network ap-
proximates the optimal agent policy, such that
µ∗,A(b) ≈ argmaxaA Qw(b,aA). Figure 1
depicts the human-agent collaboration where
the pre-trained Qw generates the agent’s ac-
tions based on the belief state computed in real
time. Policy generation involves two steps: (1)
computing Q-values using Qw for all possible
actions and (2) selecting the action with the
maximum Q-value. The overall inference com-
plexity is O(L × M + |AA|), where L is the
number of layers and M is the number of neu-
rons per layer.

6 Numerical Experiments

Figure 2: 2D grid-world environment for human-AI
collaboration, with 9 subtasks (orange terminal states)
and gray cells as obstacles.

In this paper, we analyze the performance of
our proposed method in a 2D grid-world en-
vironment, as illustrated in Figure 2. It is
a maze consisting of 64 states and 9 sub-
tasks, where the orange cells represent termi-
nal states of the subtasks, and gray cells indi-
cate impenetrable obstacles. An AI agent and
a human collaborate to complete all subtasks.
Both share a common action space: AA =
AH = {Up, Down, Left, Right}. Movement
is stochastic: with a probability of 0.95, they
move to the intended direction, and with a
probability of 0.025, they move to one of the
two perpendicular directions. If a move leads
to an obstacle, the agent or human remains in
the current state. Each step incurs a penalty
of -2, while completing a subtask (entering an orange cell) yields a reward of +100, encouraging
efficient collaboration and task completion in the stochastic environment.

In our experiment, the proposed Bayesian policy’s double DQN model uses both policy and target
networks, Qw and Qw− , each with three hidden layers containing 1024 neurons per layer. The
belief vector, which serves as the input to these networks, has a size of 22. It includes 4 bits for
the agent and human coordinates, along with 18 digits representing the subtask tracker and intention
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probabilities. Key parameters for training include a learning rate of β = 10−5, a replay memory size
of |D| = 50000, a minibatch size of Nbatch = 256, a discount factor γ = 0.99, and an exploration
rate that decays from ϵ = 0.99 to ϵ = 0.1. The target network Qw− is updated every 4 steps,
with a soft update parameter of τ = 10−3 for synchronizing the policy network Qw. Human
parameters are set with low-level rationality q = 0.9 and high-level rationality α = 0.5. After the
training is finalized, all experiments for evaluation are conducted using the pre-trained Q-network.
The grid-world environment provides a controlled testbed for evaluating the proposed approach,
capturing essential aspects of human-AI collaboration, including stochastic transitions, cooperative
task execution, and uncertain human behavior. While simplified, this environment establishes a
foundation for extending our method to more complex, real-world settings.

Existing approaches to human-AI collaboration focus on identifying human intent (either probabilis-
tically or deterministically) and acting to complement it for coordination (Hoffman et al., 2024; Ni
et al., 2023; Jain & Argall, 2019). We compare our proposed method with three baseline approaches:
(1) the maximum a posteriori (MAP) intention policy, which treats the best estimate of human intent
as ground truth and enables the agent to perform optimally based on this assumed intent (Jain &
Argall, 2019; Hoffman et al., 2024); (2) the posterior-weighted policy, which estimates the posterior
distribution of human intent and assigns weights to each possible subtask, allowing the agent to
act in a way complementary to the human’s likely actions, akin to the QMDP approach in partially
observable environments (Littman et al., 1995; Karkus et al., 2017); and (3) the MAP action policy,
commonly used in robust planning, where the AI agent selects the most probable action based on
the posterior of human intent (Kiran et al., 2021; Zhang et al., 2025).

In the first experiment, the starting points of the human and the agent are randomly selected, and
results are averaged over 200 independent trials. Figure 3(a) shows the average accumulated reward
across different methods as a function of the human trajectory length, where the shaded area rep-
resents the standard error of the mean. The proposed policy significantly outperforms all baseline
approaches, achieving higher rewards due to its ability to effectively integrate human intent uncer-
tainty into decision-making. Among the baselines, the MAP action policy achieves the second-best
performance, but it still lags behind the proposed policy. This is attributed to the proposed policy’s
dynamic use of belief distributions for long-term planning, while traditional methods rely on fixed,
less flexible logic. Figure 3(b) illustrates the evolution of the average probability of true human
intent, starting from a uniform prior and converging to 1 as the trajectory length increases. Initially,
the inferred human intent is uncertain, but as more subtasks are completed, the probability improves
due to the probabilistic inference framework. This steady convergence reflects the accuracy of the
intention estimation approach and highlights its role in achieving the high rewards observed in Fig-
ure 3(a).

Figure 3: Average accumulated reward across different methods and true inferred human intent probability.

Figures 4 illustrate the impact of human rationality on the average accumulated rewards across dif-
ferent policies. As human behavior becomes less rational at both low and high levels, the complexity
of human-AI collaboration increases, resulting in lower overall rewards. Despite these challenges,
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Figure 4: Impact of the high-level and low-level human rationality on the performance of different methods.

the proposed policy consistently outperforms all baseline policies in all scenarios. Among the base-
lines, the MAP action policy exhibits better performance, while the MAP intention policy and the
posterior-weighted policy show similar and relatively poor performance.

More specifically, Figure 4(a) shows the effect of high-level human rationality (α) on accumulated
rewards. Lower α values model humans with less rational decision-making at the subtask level,
resulting in more challenging collaboration dynamics. Notably, the gap between the proposed pol-
icy and the baselines widens under these conditions, highlighting the ability of our approach to
effectively account for uncertainty. Additionally, the influence of α on the proposed policy’s perfor-
mance diminishes as rationality decreases further, underscoring its robustness in handling complex
and unpredictable human behavior.

Figure 4(b) examines the impact of human rationality (q) at action level, representing the consistency
of human actions toward performing a subtask. A fully rational human (q = 1) follows an optimal
policy, while a less rational human (q = 0.6) exhibits highly stochastic behavior. Lower values of
q (q < 0.6) are not considered, as these situations effectively reduce collaboration to the AI agent
completing all subtasks independently. Since q directly influences every human action, its impact
on collaboration is more pronounced than that of α. As q decreases, all policies experience reduced
performance due to increased randomness in human actions, which complicates intent inference
and lengthens task completion trajectories. Despite this, the proposed policy remains more effective
than the baselines, demonstrating its ability to maintain superior collaboration even under significant
uncertainty in human behavior.

Table 1: Impact of state transition stochasticity on the performance of different methods.

Transition stochasticity ζ 0.95 0.85 0.75 0.65 0.55

Proposed 775.21 754.34 728.36 694.51 639.03
MAP action 768.54 747.65 715.99 680.25 629.11

MAP intention 763.13 742.52 709.78 668.64 613.21
Posterior-weighted 764.52 742.72 711.67 676.68 609.83

This section analyzes the impact of stochasticity in state transitions on the performance of the pro-
posed method, which is characterized by the parameter ζ ∈ [0, 1]. Larger values of ζ represent more
deterministic movements, and smaller values indicate increased uncertainty in transitions. Table 1
presents the average rewards achieved by various policies under five different levels of stochastic-
ity. As stochasticity increases, the performance of all policies declines, highlighting the challenges
posed by uncertainty in accurately capturing human intent and enabling effective human-agent col-
laboration. Despite the significant performance reduction of the proposed method under higher
stochasticity, it consistently achieves the best results compared to all competing methods in every
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scenario. This superior performance stems from effectively accounting for uncertainty in the long-
term decision-making process.

Table 2: Impact of the explicit feedback, implicit inference and lack of information on the performance of
different methods.

Direct Feedback
(True Intent)

Implicit Inference
(Estimated Intent)

No Information
(Uniform Distribution)

Proposed 776.07 775.21 773.42
MAP action 768.98 768.54 763.38

MAP intention 768.74 763.13 754.47
Posterior-weighted 769.21 764.52 754.79

Finally, beyond performance analyses through implicit learning, we investigate two extreme scenar-
ios: (1) constant direct feedback is provided by the human, causing the intent probability to peak
sharply over the true human intent; and (2) there is an absence of implicit data or feedback, where the
agent has no knowledge of its human teammate’s intentions, represented by a uniform distribution
throughout the process. Table 2 shows the average rewards achieved by various methods under these
conditions. As expected, the best results are obtained when continuous human feedback is available,
performing similarly to the implicit inference scenario. This demonstrates that implicit inference
of human intentions can be highly effective in scenarios where explicit feedback is unavailable or
nonexistent. Conversely, the absence of both implicit inference and explicit feedback results in the
worst performance. The proposed policy achieves the best results across all scenarios. This success
is attributed to training over the belief space, where the policy is optimized across a wide spectrum
of information about human intent, from full knowledge in explicit feedback scenarios to incomplete
knowledge in implicit inference and even to no knowledge in cases of absent data or interactions.

7 Conclusion

This paper presented a Bayesian reinforcement learning framework to enhance human-AI collabo-
ration by probabilistically modeling human intent and incorporating this information into adaptive
decision-making. By defining a belief state that integrates both low- and high-level representations
of human behavior and demonstrating its Markov property, we derived an optimal Bayesian policy.
Using a pre-trained deep reinforcement learning model, the framework enables efficient real-time
decision-making without explicit human interaction. Experimental results validated its robustness
and adaptability, highlighting its potential for scalable and reliable human-AI collaboration. Future
work will explore its application to larger, unstructured domains and multi-agent settings, as well as
the integration of implicit and explicit interactions to maximize collaboration efficiency.
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