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Summary
Offline reinforcement learning has gained a lot of popularity for its potential to solve in-

dustry challenges. However, real-world environments are often highly stochastic and partially
observable, leading long-term planners to overfit to offline data in model-based settings. Input-
Driven Markov Decision Processes (IDMDPs) offer a way to work with some of the uncertainty
by letting designers separate what the agent has control over (states) from what it cannot (in-
puts) in the environnement. These stochastic external inputs are often difficult to model. Under
the assumption that the input model will be imperfect, we investigate the bias-variance tradeoff
under shallow planning in IDMDPs. Paving the way to input-driven planning horizons, we also
investigate the similarity of optimal planning horizons at different inputs given the structure of
the input space.

Contribution(s)
1. We provide new insights connecting the input structure to the state-value function in Input-

Driven MDPs (Lemma 1).
Context: This result is also applicable to MDPs and therefore generalizes the value function
variation from Jiang et al. (2016) to any policy and any pair of states.

2. We provide a novel bound on the variance due to the error in the input model and the
planning horizon in offline Input-Driven MDPs (Lemma 2), which we use to obtain the first
existing bound on the planning loss for Exo-MDPs (Theorem 1).
Context: Prior results (Jiang et al., 2015; Lefebvre & Durand, 2025) study the variance due
to the error in the state model in a MDP, i.e. considering variables that the agent can control
(whereas the agent cannot control the inputs).

3. We provide the first results on the optimal input-dependent discount factor in Input-Driven
MDPs. We connect the planning loss at different inputs to the input structure (Lemma 3),
allowing to control the variation of optimal input-dependent discount factors over the input
space using the input structure (Theorem 2).
Context: This connects to the (limited) work on state-dependent discount factors, focusing
on the impact of the non-controllable variables (inputs) on the optimal planning horizon.
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Abstract

Offline reinforcement learning has gained a lot of popularity for its potential to solve
industry challenges. However, real-world environments are often highly stochastic and
partially observable, leading long-term planners to overfit to offline data in model-based
settings. Input-Driven Markov Decision Processes (IDMDPs) offer a way to work with
some of the uncertainty by letting designers separate what the agent has control over
(states) from what it cannot (inputs) in the environnement. These stochastic external
inputs are often difficult to model. Under the assumption that the input model will be
imperfect, we investigate the bias-variance tradeoff under shallow planning in IDMDPs.
Paving the way to input-driven planning horizons, we also investigate the similarity of
optimal planning horizons at different inputs given the structure of the input space.

1 Introduction

Reinforcement learning (RL) has attracted significant attention for its ability to solve high-
dimensional control problems, as demonstrated in simulators and video games (Mnih et al., 2015;
Niu et al., 2022; Silver et al., 2016). Despite these successes, online RL remains difficult to deploy
in industrial applications due to challenges like partial observability, security risks, and business
constraints (Dulac-Arnold et al., 2021). Offline RL offers an alternative by learning policies from
pre-collected data that reflects existing business operations and is easier to operationalize due to
its similarity to conventional machine learning (Agarwal et al., 2020; Levine et al., 2020). To re-
duce risks, methods such as conservative Q-learning and expert-supervised RL constrain the learned
policies to remain close to the training data (Kumar et al., 2020; Sonabend et al., 2020). For op-
erational constraints (maximum budgets, time frames, etc.), another enticing setting for practical
applications is model-based offline RL, where independent models can be developed to capture the
different dynamics of the environment (Yu et al., 2020). These dynamics can then be adapted to
match operational settings, leading to much more controllable and interpretable policies (Argenson
& Dulac-Arnold, 2021). However, when applied to domains such as healthcare, finance, insurance,
e-commerce, or social media, model-based offline RL still faces the significant challenge of partial
observability: Critical state information is often missing, leading to stochastic observations with
high aleatoric uncertainty resulting in poor policy generalization (Ghosh et al., 2021).

It has been shown that the bias-variance tradeoff can be improved by enabling the agent to perform
shallow planning under partial observability or low data regimes (Jiang et al., 2015; Amit et al.,
2020; Liu & Li, 2021; Cannelli et al., 2023; Lefebvre & Durand, 2025) In industry settings, some
dimensions of the state-space are often highly stochastic and hard to model, but they get blended
with other dimensions that are easier to model which makes it hard to know if shallow planning
would help generalization. Therefore, in this work, we study the impact of shallow planning under
the Input-Driven Markov Decision Process (IDMDP) setting (Mao et al., 2018) where state variables
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controlled by the agent (states) are modelled independently of those that the agent does not control
(inputs). The inputs are often rich observations which depend on external stochastic processes that
are very hard to model accurately. One can then look at the error in inputs modelling to guide better
choices of discount factor to improve generalization.

Contributions We introduce novel theoretical results on the bias-variance tradeoff induced by a
shallow planning horizon in IDMDPs given an imperfect input dynamics model. By leveraging the
structure of the input space, we then derive the first theoretical results on input-dependent optimal
discount factors, motivating planning horizons adapted to local uncertainty in the input model. We
support and illustrate our results using controlled numerical experiments and validate their general-
ization on a deep RL experiment. All our implementations are available for reproducibility1.

2 Problem setting: Offline Input-Driven Markov Decision Processes

Markov Decision Process (MDP) We define a MDP by a tuple pS,A, P,R, γq where S is a finite
state space, A is a finite action space, P : S ˆ A ˆ S ÞÑ r0, 1s is the transition function between
states, and R : S ˆ A ÞÑ r0, Rmaxs is the expected reward function. At each time step t P N0

the current state St P S is observed and the agent performs action At P A according to it’s policy
π : S ÞÑ A. Given this action, the environment transitions to the next state St`1 using the transition
function P and the agent receives the reward Rt`1 using the reward function (given St`1). Given
an MDP M , the value of state s P S under policy π is the expected sum of discounted rewards by
following actions under π from state s:

V π
M,γpsq “ Eπ

«

8
ÿ

k“0

γkRt`k`1|St “ s

ff

,

where the discount factor γ P r0, 1s controls the planning horizon as 1{p1 ´ γq by assigning credit
to future rewards in current state value. The goal of an RL agent is to find the optimal policy, i.e. the
policy π‹

M,γ :“ argmaxπ V
π
M,γpsq maximizing the value for all states s P S.

Input-Driven Markov Decision Process (IDMDP) IDMDPs were introduced to model environ-
ments where exogenous stochastic processes influence the underlying dynamics of an MDP (Mao
et al., 2018). These external processes often transition in ways that differ significantly from the
underlying states. For example, consider a hospital that manages bed allocation during a pandemic.
The arrival of patients follows an external stochastic process driven by disease spread patterns, which
the hospital cannot control but must account for in its decision-making. Similarly, a streaming ser-
vice aiming to maximize long-term user engagement makes recommendations based on user char-
acteristics and preferences, which evolve over time due to external influences such as social trends
and personal life events, factors beyond the service’s control. This distinction between information
that the agent can and cannot control is fundamental to IDMDPs.

An IDMDP therefore extends the definition of an MDP by considering the arrival of inputs that are
not controllable by the agent, but that can influence state transitions and the rewards. Formally, an
IDMDP is defined by a tuple pS,Z,A, Ps, Pz, R, γq where S and A respectively denote the finite
state and action spaces as in a standard MDP, Z is a finite input space, Ps : Z ˆS ˆAˆS ÞÑ r0, 1s

is the transition function between states, Pz : Z ˆ Z ÞÑ r0, 1s is the transition function between
inputs, and R : Z ˆ S ˆ A ÞÑ r0, Rmaxs is the expected reward function. One observes that state
transitions and expected rewards depend on both the current input, state, and action, while input
transitions depend only on the current input. At each time step t P N0, the agent observes the
current input Zt along with the current state St. The agent performs an action At given its policy
π : Z ˆ S ÞÑ A. The system then transitions to the next state St`1 using the transition function
PspSt`1|Zt, St, Atq and the agent receives the reward Rt`1 (given Zt and St`1). Finally, the next
input Zt`1 is generated using the transition function PzpZt`1|Ztq. Under this formulation, the next

1https://github.com/GRAAL-Research/Optimal_discounting_IDMDP
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input only depends on the current input, but Pz can be extended such that it depends on all inputs
previously observed in the trajectory (Mao et al., 2018).

Remark 1 (Augmented MDP). Given an IDMDP pS,Z,A, Ps, Pz, R, γq, one can define an aug-
mented state space sS “ Z ˆ S to parametrize a standard MDP pS,A, sP , sRq with sP pss 1|ss, aq “

Psps1|s, aqPzpz1|zq and sRpss, aq “ Rps, z, aq for inputs z, z1 P Z , states s, s1 P S, augmented states
ss, ss 1 P sS, and action a P A. We refer to the resulting MDP as the augmented MDP.

Model-Based Offline RL In model-based offline RL, the learning agent has access to a dataset

D “

!

`

Si, Ai, Ri, Si`1, di
˘

)N

i“1
of N transition samples, where di is a boolean flag indicating

whether the episode terminated after the transition. The dataset is typically collected using a mixture
of behaviour policies such that the dataset is being sampled over what is called the behavioural
distribution (Yu et al., 2020). The agent learns an approximate model of the environment xM by
learning the dynamics pP pSt`1|St, Atq and pRpSt, Atq from the dataset. By performing synthetic
rollouts, the agent aims to find π‹

xM,γ
, i.e. an optimal policy on xM for a discount factor γ.

The IDMDP formulation offers several advantages for offline model-based RL in applied (industrial)
settings. Since inputs often evolve in ways that differ significantly from states, specialized modelling
teams are justified in estimating xPz , leveraging domain expertise (e.g., pandemic or population
evolution models). The IDMDP formulation also helps to reduce the variance when estimating
values of actions, since it isolates the impact of the agent on the state space (Mao et al., 2018).
Finally, inputs are often dependent on highly stochastic processes, which are challenging to model.
This motivates the need to better understand the impacts of an imperfect input-model, and its ties to
the optimal planning horizon in offline model-based IDMDPs.

3 Shallow planning in IDMDPs

In this section, we aim to caracterize the impacts of shallow planning in the offline IDMDP setting
given an imperfect input-model.

Blackwell discount factor It is commonly assumed that a high discount factor (longer planning
horizon) should lead to a better policy since it gives more information to the agent about the future
impact of their actions. However, even with an infinite amount of data where one could have a perfect
model of the MDP M , i.e. xM “ M , this is not always the case. It has been shown that there always
exists a discount factor γBw such that increasing the discount factor further does not result in a better

policy (Grand-Clément & Petrik, 2024). Formally, for any γ ě γBw, we have V
π‹
M,γ

M,γ “ V
π‹
M,γBw

M,γ

when |S| ă 8 and |A| ă 8. We refer to γBw as the Blackwell discount factor. In other words,
some MDPs might not require temporal tradeoffs (low γBw), such that a low discount factor γ can
lead to optimal behaviour even under a long-term objective. Therefore, any discount factor chosen
above γBw when data is limited and xM is imperfect only cumulates variance in the estimations of
state values, resulting into poor generalization, commonly referred to as the planning loss (Lefebvre
& Durand, 2025). The concept of Blackwell discount factor naturally extends to IDMDPs through
their connections to MDPs (Remark 1). Hence, the Blackwell discount factor of an IDMDP is the
Blackwell discount factor of its corresponding augmented MDP.

Planning loss A model-based RL agent aims to find an optimal policy on the approximate MDP
xM « M . When using a discount factor γ ă γBw in such setting, the optimal policy is subject to a
planning loss on the true environment M (Jiang et al., 2015):

∥V
π‹
M,γBw

M,γBw
´ V

π‹
xM,γ

M,γBw
∥8. ď }V

π‹
M,γBw

M,γBw
´ V

π‹
M,γBw

M,γ }8
looooooooooooomooooooooooooon

bias

` }V
π‹
M,γ

M,γ ´ V
π‹

xM,γ

M,γ }8
looooooooooomooooooooooon

variance

. (1)
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The bias captures the loss in value function when using a policy that is optimal under the Blackwell
discount factor, evaluated on a shallow horizon. The variance captures the impact of optimizing a
policy under an approximate model xM .

Several upper bounds on the planning loss exist in the literature for the MDP setting Jiang et al.
(2015; 2016); Lefebvre & Durand (2025). In this work, we provide the first bounds the planning
loss in IDMDPs by focusing on the distinctive feature of IDMDPs, i.e. the agent-independent inputs.
Assumption 1 (Exo-MDP). We therefore consider IDMDPs where Ps and R are known, i.e. pPs “

Ps and pR “ R, and focus on the impact of the approximate pPz « Pz . This is also known as the
Exo-MDP setting (Sinclair et al., 2023).

Inspired by the analysis of block contextual MDPs (Sodhani et al., 2022), we introduce a distance
to measure how the value of a state changes depending on the input.
Definition 1 (Input metric). Let zi, zj P Z denote two inputs from an IDMDP. Let sS, sR, and sP
respectively denote the state space, reward function, and transition function in the corresponding
augmented MDP (Remark 1). Let s P S denote a state from the IDMDP and let ssi “ pzi, sq,
ssj “ pzj , sq denote the associated augmented states. We define the following distances for a given
discount factor γ and policy π : Z ˆ S ÞÑ A:

dπstates,γpssi, ssjq :“
”

ˇ

ˇ sRπpssiq ´ sRπpssjq
ˇ

ˇ ` γW1pdπstates,γq

´

sPπpssiq, sPπpssjq

¯ı

(2)

dπinput,γpzi, zjq :“ max
sPS

dπstates,γppzi, sq, pzj , sqq, (3)

where W1 is the Wasserstein distance, sRπpssq :“
ř

a πpa|ssq sRpss, aq and sPπpssq :“
ř

a πpa|ssq
ř

ss 1PC
sP pss 1|ss, aq @C P sSEπ , with sSEπ denoting the set of π-bisimilar groups of

augmented-states (Castro, 2020).

Intuitively, if two inputs zi and zj lead to the same next inputs and next states while having leading
to similar rewards, these inputs will be similar under this metric, i.e. their distance will be small.
This distance captures the underlying dynamics in a succinct way and considers the worst case over
all states. When we refer to the structure in the input space, we refer to the structure imposed by the
input metric. Using Definition 1, we can bound the impact of inputs on state-values.
Lemma 1 (State-value difference under two inputs). Let zi, zj P Z denote two inputs from an
IDMDP M . For any state s P S, policy π : Z ˆ S ÞÑ A, and discount factor γ:

|V π
M,γps, ziq ´ V π

M,γps, zjq| ď dπinput,γpzi, zjq. (4)

This results from a direct application of Theorem 3 from Castro (2020) (see Supp. Sec. 8). Lemma 1
indicates that if two inputs are similar under the input metric (Definition 1), the values of any state
augmented with these inputs should be close. Lemma 1 (which also holds for augmented states)
generalizes the value function variation from Jiang et al. (2016) to any policy and any pair of states.
Lemma 2 (Variance). Consider optimal policies (for a given discount factor γ) computed on an
IDMDP M (with input transition function Pz) and on an approximate model xM (with approximate
input transition function pPz). The difference in their value-functions evaluated on M is bounded by:

}V
π‹
M,γ

M,γ ´ V
π‹

xM,γ

M,γ }8 ď
γ

p1 ´ γq
max

z
} pPzp¨|zq ´ Pzp¨|zq}1 max

zi,zjPZ
max

π:ZˆS ÞÑA
dπinput,γpzi, zjq. (5)

Roughly speaking, if pPz is a bad approximation of Pz for inputs that have a strong impact on the
underlying dynamics (rewards and state transitions), the optimal policy on xM will not generalize
well on the real environment M . Lemma 2 provides further insight into the behaviour of the vari-
ance, complementing prior results (Jiang et al., 2015; Lefebvre & Durand, 2025) by emphasizing the
impact of non-controllable variables (inputs) and their modelling error. One should also observe that
the bound goes to 0 if the agent is myopic (γ “ 0). This indicates that a way to reduce the impact of
an imperfect model on the inputs is to reduce the planning horizon. Using Lemma 1 from Jiang et al.
(2015) and Lemma 2 above, we can upper-bound the planning loss (Equation 1, see Supp. Sec. 10).
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Theorem 1 (Planning loss). Given an Exo-MDP M using Pz and its approximation xM using pPz ,
learning a policy on xM using discount factor γ ď γBw, the planning loss is bounded by:

∥V
π‹
M,γBw

M,γBw
´ V

π‹
xM,γ

M,γBw
∥8 ď

γBw ´ γ

p1 ´ γBwqp1 ´ γq
Rmax

`
γ

p1 ´ γq
max

z
} pPzp¨|zq ´ Pzp¨|zq}1 max

zi,zjPZ
max

π:ZˆS ÞÑA
dπinput,γpzi, zjq.

As expected, reducing the planning horizon (lowering the discount factor) increases the bias (1st
term) while decreasing the variance (2nd term). The variance also decreases as the quality of the
input model approximate improves or as input impact similarity increases (input metric decreases).
One can use this result to help select the discount factor in practice. For instance, when modelling a
complex input space with few data points, one can expect high variance justifying a lower planning
horizon to mitigate it. By analyzing the planning loss under Exo-MDPs, Theorem 1 highlights how
highly stochastic input transitions and an approximate input-model impacts the planning loss.

4 Input-dependent planning

It is natural to believe that the knowledge of the agent may not be uniform over the input space Z .
Indeed, it very possible that the approximate input dynamics pPz may be closer to the true dynamics
Pz in some regions of the input space than others. Based on Theorem 1, a better knowledge of
the input dynamics would warrant a longer planning horizon. We refer to the discount factor that
minimizes the planning loss for a given input z as its optimal input-dependent discount factor:

γ‹pzq :“ argmin
γPr0,γBws

∥V
π‹
M,γBw

M,γBw
p¨, zq ´ V

π‹
xM,γ

M,γBw
p¨, zq∥8 (6)

To understand the behavior of the optimal input-dependent discount factor over the input space, we
introduce the following result on the planning loss difference between two inputs.

Lemma 3 (Input-wise planning loss difference). Given an IDMDP M and its approximation xM ,
and let zi, zj P Z denote two inputs. For any discount factor γ P r0, γBws we have:

|fzipγq ´ fzj pγq| ď 2 max
π:ZˆS ÞÑA

dπinput,γBw
pzi, zjq,

where fzpγq “ ∥V
π‹
M,γBw

M,γBw
p¨, zq ´ V

π‹
xM,γ

M,γBw
p¨, zq∥8 denotes the planning loss at input z.

The proof essentially relies on the application of the triangle inequality combined with the fact that
a maximum is infinity-norm Lipschitz (see Supp. Sec. 11). From prior results Jiang et al. (2015);
Hu et al. (2022) we see that the planning loss tend to be U-shaped. Following this, we will use
the following assumption, which enables Lemma 3 to bound the difference between optimal input-
dependent discount factors.

Assumption 2 (Convexity of the planning loss). For any discount factors γ, γ0 P r0, γBws:

fzpγq ě fzpγ0q ` x∇fzpγ0q, γ ´ γ0y `
µ

2
|γ ´ γ0|2, (7)

where fzpγq “ ∥V
π‹
M,γBw

M,γBw
p¨, zq ´ V

π‹
xM,γ

M,γBw
p¨, zq∥8 denotes the planning loss at input z.

Theorem 2 (Optimal input-dependent discount factor). Given an IDMDP M and its approximation
xM , and let zi, zj P Z denote two inputs. Assuming that the planning loss is µ-strongly convex, we
have:

|γ‹pziq ´ γ‹pzjq| ď

d

8maxπ:ZˆS ÞÑA dπinput,γBw
pzi, zjq

µ
. (8)
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The proof essentially relies on the triangle inequality (see Supp. Sec. 12). Theorem 2 reinforces the
intuition that similar inputs should have similar optimal planning horizons. It is important to note
that the distance metric is under the Blackwell discount factor which means that the distance between
two inputs is measured on their long term differences in dynamics. If two inputs are just temporally
near, they might still remain distant under the distance metric, s.t. that their optimal planning horizon
could differ. Another important part of the bound is the convexity µ. Strong convexity assumes that
the curvature (second derivative) is always higher than some threshold µ. A high µ indicates that the
planning loss is very sensitive to the discount factor, where two similar discount factors could lead
to very different planning losses and vice versa. Therefore, depending on µ and the local structure
around an input, the optimal planning horizon will tend to be similar for groups of long-term similar
inputs. This result motivates further investigation of input-dependent planning horizons.

5 Experiments

We now conduct experiments to support our bound on the planning loss (Theorem 1) and our result
on the smoothness of the optimal input-dependent discount factor (Theorem 2).

5.1 Ring IDMDP

Validating Theorem 1 requires an environment for which we can control the different quantities
appearing in the bound and find the true optimal state-value (for γBw). We therefore consider the
Ring MDP (Jiang et al., 2016) setting. RingpN, pq is an MDP with 2 actions, A “ t1, 2u, and
N states arranged in a ring. Action 1 moves the agent clockwise, while action 2 moves the agent
counter-clockwise. For each pair of non-adjacent states psi, sjq, we add an edge to sj from si given
action a with probability p for each action a P A. The transition probabilities over all edges are then
uniformely sampled from r0, 1s and normalized. Similarly, the mean rewards are assigned to every
state-action pairs by uniformly sampling from r0, 1s s.t. Rmax “ 1.

From a Ring MDP, we generate a Ring IDMDP with input space Z “ t0, 1u. For input z “ 0, state
transition probabilities and expected rewards are given by Psps1|0, s, aq and Rp0, s, aq. For input
z “ 1, the impact of actions are blended (with scaling parameter α P r0, 1s):

P ps1|1, s, a;αq “ p1 ´ αqP ps1|0, s, aq ` αP ps1|0, s, āq

Rp1, s, a;αq “ p1 ´ αqRp0, s, aq ` α
”

´
ˇ

ˇRp0, s, a, q
ˇ

ˇ

ı

,

where ā denotes the anti-action, i.e. ā “ 1 if a “ 0, else ā “ 0. For α “ 0, inputs have no impact.
For α “ 1, input z “ 1 inverts the dynamics. Inputs evolve according to Pzpz1|zq “ 0.5 for all z, z1.

Approximate Ring IDMDPs are generated by sampling at random imperfect kernels pPz using re-
jection sampling to enforce constraints on the total model-error E “

ř

z }Pzp¨|zq ´ pPzp¨|zq}1. We
evaluate the impact of the planning horizon on the normalized planning loss (with γBw “ 0.99):

max
sPS

ˆ

V
π‹
M,γBw

M,γBw
psq ´ V

π‹
xM,γ

M,γBw
psq

˙

{V
π‹
M,γBw

M,γBw
psq. (9)

To illustrate the impact of input similarity on Theorem 1, we sample 104 approximate models with
E ą 1.752. We average the normalized planning loss over all approximate Ring IDMDPs for each
α P t0, 0.25, 0.5, 0.75, 1u; recall that higher α means more distance between inputs, i.e. more
impact of inputs on P and R. To illustrate the impact of model-error on Theorem 1, we sample 104

approximate models for each total model-error range E P tr0, 1.5s, r1.5, 1.75s, r1.75, 2su. For each
range, we average the normalized planning loss over all models in this range (using a fixed α “ 1).

Figure 1 shows that the planning loss is heavily impacted by the input-distance and model-error.
Increasing α compounds with model-error, which increases the variance, making shallow planning

2The maximum total model-error on the Pz kernel is 2.
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Figure 1: Average normalized planning loss (Equation 9) for different input influence (left) and total
model-error (right) given the discount factor. The optimal planning horizon is marked by a star.

(lower discount factors) beneficial (left). For a fixed α, the optimal planning horizon increases as
model-error decreases (right). These results support Theorem 1.

5.2 Input-driven CartPole

We investigate our theoretical results under a high-dimensional setting, i.e a variant of the CartPole-
v1 environment (Towers et al., 2024). In CartPole, the agent uses two discrete actions (left or right)
to balance a pole on a moving cart. The state contains the cart’s position and velocity, along with
the pole’s angle and velocity.

Reward zones We define the input space Z “ t0, 1, 2, 3u, which controls the location of a pay
zone. The environment contains two zones: a safe zone in the middle, where the cart starts, and
a pay zone, whose position depends on the input. For inputs 0 and 2, the pay zone is on the left;
for 1 and 3, it is on the right. The reward is `1.25 in the pay zone, `0.5 in the safe zone, and
´0.25 elsewhere. Inputs evolve as follows: Pzp0|0q “ Pzp1|1q “ 1; Pzp2|3q “ Pzp3|2q “ 0.9;
Pzp2|2q “ Pzp3|3q “ 0.1. Inputs 2 and 3 are thus similar under Definition 1. Under input 2
or 3, planning far ahead with an approximate model is often suboptimal; the agent should favour
short-term rewards in the safe zone. The trajectory ends when the pole falls or after 500 steps. This
setting reflects many real-world problems where long-term dynamics are uncertain. For example, a
retailer may offer discounts assuming stable purchasing behaviour, only to see it shift unexpectedly,
reducing profits.

We consider Model-based Offline Policy Optimization (MOPO) agents (Yu et al., 2020) based on
discrete Soft Actor-Critic (Christodoulou, 2019). We train 10 agents with each discount factor γ P

t0.92, 0.94, 0.96, 0.98, 0.99u on an offline medium-expert dataset comprised of 105 transitions from
several policy (Fu et al., 2020). We consider two expert (optimal) policies (using γ “ 0.98) with
baseline parameters (Raffin et al., 2021) and a random policy: oracle expert has acess to Pz while
the approximate expert assumes static inputs, i.e. pPzpz1|zq “ 1 if z1 “ z, else 0. MOPO agents
optimize their policies on the dataset using the learnt dynamics pPs (assuming the rewards are known
using St`1q, using here again an approximate input model pPz which assumes static inputs (worst
case scenario). We evaluate the resulting 50 models on 100 seeds of the environment3.

Figure 2 confirms that the optimal discount factor changes according to the input. When the pay
zone position is well-known (inputs 0 and 1), a longer planning horizon (larger γ) enables the agent
to tradeoff immediate rewards in order to move to the high-paying pay zone. On the other hand,
when the pay zone position cannot be well-predicted, long-term planning tends to overfit to the
dataset (approximate model), which can result in catastrophic performance. These results support
Theorem 1. They also shows the benefits of adapting the planning horizon to the local model-error,
supporting Theorem 2 and motivating further work on input-dependent discount factors.

3See Supp. Sec. 13 for hyperparameters.
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Figure 2: Average reward obtained by the 10 agents trained with each γ over 100 evaluations de-
pending on the starting input Z0.

6 Related Work

Bias-variance tradeoff with shallow planning The bias-variance tradeoff arising from shallow
planning on an imperfect model has been well studied in (PO)MDPs (Jiang et al., 2015; 2016;
Lefebvre & Durand, 2025). In IDMDPs, this translates into a focus on how the error in the approx-
imate state model pPs impacts the planning loss. In this work, we rather focus on the impacts of an
imperfect input model pPz , knowing that inputs (unlike states) are not controlled by the agent.

State/Input-dependent discounting The question of using a different discount factor on different
part of the state/input space has received low attention in RL. In MDPs, it has been shown that
the optimality criterion when using a state-specific discount factor is well-defined and has a unique
solution (Wei & Guo, 2011). Despite good theoretical foundations, tuning a state-specific discount
factor is highly non-trivial (Yoshida et al., 2013). An alternative recent avenue suggests planning
with a uniform horizon on locally-regularized transitions according to the uncertainty of state-action
pairs (Rathnam et al., 2024), which does not apply to non-controlable variables (e.g. inputs). To our
knowledge, there are currently no results on input-dependent planning in IDMDPs.

7 Conclusion

This work provides the first bias-variance tradeoff analysis in offline learning under Input-Driven
MDPs. Focusing on the error arrising from input modelling, we provide new insights connecting
input structure to the state-value function (Lemma 1). This leads to a novel bound on the variance
(Lemma 2), which we use to obtain the first existing bound on the planning loss for Exo-MDPs
(Theorem 1). These insights indicate that the discount factor impacts generalization, as expected
from existing results in MDPs. We further investigate the optimal discount factor per input. We
connect the planning loss at different inputs to the input structure (Lemma 3), allowing to control the
variation of optimal input-dependent discount factors over the input space using the input structure
(Theorem 2). These results complements the work on state-dependent discount factors.

Limitations and future work This work focuses on the impact of approximating input transitions.
In reality, the model of state transitions is also usually imperfect, s.t. the discount factor generaliza-
tion properties depend on the compounding error of both the input and state models. Our univariate
analysis therefore offers only a partial picture, motivating future work that would combine our anal-
ysis with existing work (Jiang et al., 2015; 2016; Lefebvre & Durand, 2025) on the bias-variance
tradeoff in MDPs. Through the augmented MDP (Remark 1), we also clearly see that our results
extend trivially to the MDP framework, thus providing a novel pathway to tackle state-dependent
planning under the partial observability induced by uncontrollable input variables.
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8 Proof of Lemma 1

We first leverage Remark 1 to turn the IDMDP into its augmented MDP, and then use Theorem 3
from Castro (2020), which requires the following result:

Theorem 3 (Theorem 2 from Castro (2020)). Given the MDP M , two states s, t P S and a pseudo-
metric d on S, define the operator Fπ : M Ñ M by

Fπpdqps, tq “ |Rπpsq ´ Rπptq| ` γ W1

`

d
˘

pPπpsq, Pπptqq.

Then Fπ has a least fixed point d̃π , and d̃π is a π-bisimulation metric. W1 is the wasserstein
distance, sRπpssq :“

ř

a πpa|ssq sRpss, aq and sPπpssq “
ř

a πpa|ssq
ř

ss 1PC
sP pss 1|ss, aq @C P sSEπ

where sSEπ denotes every group of (augmented) states which are π-bisimilar (Castro, 2020).

By using the definition of a fixed point d̃π “ Fπpd̃πq, we recover the distance metric:

dπstatespss, ss1q :“
”

ˇ

ˇRπpssq ´ Rπpss1q
ˇ

ˇ ` γW pdπstatesq

´

Pπpssq, Pπpss1q

¯ı

. (10)

By realizing that ps, ziq, ps, zjq P sS, we can use the following theorem:

Theorem 4 (Theorem 3 from Castro (2020)). For any two states s, t P S in an MDP,

|V πpsq ´ V πptq| ď dπstatesps, tq. (11)

We therefore have:

|V π
M,γpps, ziqq ´ V π

M,γpps, zjqq| ď dπstatespps, ziq, ps, zjqq

ď max
s

dπstatespps, ziq, ps, zjqq

“ dπinputs,γpzi, zjq,

which is the desired result.

9 Proof of Lemma 2

Our proof relies on the following existing results:

Lemma 4 (Lemma 3 from Jiang et al. (2015)). For any mdp xM “ pS,A, R, pP , γq

}V
π˚
M,γ

M,γ ´ V
π˚

xM,γ

M,γ }8 ď 2 max
π:S ÞÑA

}V π
M,γ ´ V π

xM,γ
}8. (12)

Lemma 5 (Lemma 4 from Jiang et al. (2015)). For any mdp xM “ pS,A, R, pP , γq, @π : S ÞÑ A,

}Qπ
M,γ ´ Qπ

xM,γ
}8 ď

1

1 ´ γ
max

sPS,aPA

ˇ

ˇ

ˇ
Rps, aq ` γx pP p¨|s, aq, V π

M,γy ´ Qπ
M,γps, aq

ˇ

ˇ

ˇ
. (13)

From the IDMDP tuple pS,Z,A, R, Ps, Pz, γq, we define the equivalent augmented MDP (Re-
mark 1) with M “ p sS “ S ˆ Z,A, R, P, γq with P p sSt`1| sSt, Atq “ PspSt`1|St, AtqPzpzt`1|ztq.
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The approximate augmented MDP is xM “ p sS,A, R, pP , γq with pP p sSt`1| sSt, Atq “

PspSt`1|St, Atq pPzpzt`1|ztq. We can therefore use Lemma 5 and Lemma 4 to obtain:

}V
π˚
M,γ

M,γ ´ V
π˚

xM,γ

M,γ }8 ď 2 max
π: sS ÞÑA

}V π
M,γ ´ V π

xM,γ
}8 (14)

ď 2 max
π: sS ÞÑA

}Qπ
M,γ ´ Qπ

xM,γ
}8 (15)

ď
2

1 ´ γ
max

ssP sS,aPA,
π: sS ÞÑA

ˇ

ˇ

ˇ
Rpss, aq ` γx pP p¨|ss, aq, V π

M,γy ´ Qπ
M,γpss, aq

ˇ

ˇ

ˇ
(16)

“
2γ

1 ´ γ
max

ssP sS,aPA,
π: sS ÞÑA

ˇ

ˇ

ˇ
x pP p¨|ss, aq ´ P p¨|ss, aq, V π

M,γy

ˇ

ˇ

ˇ
, (17)

where the last line is obtain using the Q-value definition. From now on, we will refer to the state
value V π

M,γpssq (with ss P sS) as V πps, zq (with s, z P SˆZ) to alleviate the notation while expliciting
the inputs and states underlying the augmented state. We will now focus our attention on the interior
of the absolute value. First, we define a quantity:

ϕps, πq “
maxz V

πps, zq ` minz V
πps, zq

2
, s P S, π : sS ÞÑ A. (18)

Under this quantity, we have the following equality:

ÿ

z1

ÿ

s1

Psps1|s, a, zq pPzpz1|zqϕps1, πq “
ÿ

z1

ÿ

s1

Psps1|s, a, zqPzpz1|zqϕps1, πq. (19)

Proof.

ÿ

z1

ÿ

s1

Psps1|s, a, zq pPzpz1|zqϕps1, πq ´
ÿ

z1

ÿ

s1

Psps1|s, a, zqPzpz1|zqϕps1, πq

“
ÿ

z1

ÿ

s1

Psps1|s, a, zqϕps1, πqp pPzpz1|zq ´ Pzpz1|zqq

“
ÿ

s1

Psps1|s, a, zqϕps1, πq
ÿ

z1

p pPzpz1|zq ´ Pzpz1|zqq

“
ÿ

s1

Psps1|s, a, zqϕps1, πqp0q

“ 0
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Therefore, for the interior of the absolute value, we have:

x pP p¨|ss, aq ´ P p¨|ss, aq, V π
M,γy

“
ÿ

z1

ÿ

s1

´

Psps1|s, a, zq pPzpz1|zqV πps1, z1q ´ Psps1|s, a, zqPzpz1|zqV πps1, z1q

¯

“
ÿ

z1

ÿ

s1

Psps1|s, a, zq pPzpz1|zq
`

V πps1, z1q ´ ϕps1, πq
˘

´ Psps1|s, a, zqPzpz1|zq
`

V πps1, z1q ´ ϕps1, πq
˘

“
ÿ

z1

p pPzpz1|zq ´ Pzpz1|zqq
ÿ

s1

Psps1|s, a, zq
`

V πps1, z1q ´ ϕps1, πq
˘

ď } pPzp¨|zq ´ Pzp¨|zq}1 max
z1

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

s1

Psps1|s, a, zq
`

V πps1, z1q ´ ϕps1, πq
˘

ˇ

ˇ

ˇ

ˇ

ˇ

ď } pPzp¨|zq ´ Pzp¨|zq}1 max
z1

ˇ

ˇ

ˇ
max
s1

ˇ

ˇV πps1, z1q ´ ϕps1, πq
ˇ

ˇ

ˇ

ˇ

ˇ

“ } pPzp¨|zq ´ Pzp¨|zq}1 max
z1

ˇ

ˇ

ˇ

ˇ

max
s1

ˇ

ˇ

ˇ

ˇ

V πps1, z1q ´
maxz V

πps1, zq ` minz V
πps1, zq

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

2
} pPzp¨|zq ´ Pzp¨|zq}1 max

s1
pmax

z
V πps1, zq ´ min

z
V πps1, zqq

ď
1

2
} pPzp¨|zq ´ Pzp¨|zq}1 max

zi,zj
dπinput,γpzi, zjq.

We use Holder’s inequality on the first two inequalities, then substitute ϕ. We then realize that the
upper bound between the magnitude of the difference in state-value and its middle point for any
value of s is bounded by half the distance between the maximum and minimum values, and use
Lemma 1. Plugging this into the initial bound (Equation 17), we get the desired result.

10 Proof Theorem 1

The goal is to bound the planning loss from equation 1.

∥V
π‹
M,γBw

M,γBw
´ V

π‹
xM,γ

M,γBw
∥8. ď }V

π‹
M,γBw

M,γBw
´ V

π‹
M,γBw

M,γ }8
looooooooooooomooooooooooooon

bias

` }V
π‹
M,γ

M,γ ´ V
π‹

xM,γ

M,γ }8
looooooooooomooooooooooon

variance

. (20)

We know from Jiang et al. (2015) that the bias is bounded:

Lemma 6 (Lemma 1 from Jiang et al. (2015)). For any MDP M with rewards in r0, Rmaxs, @π :
S Ñ A and γ ď γeval, @s P S,

V
π‹
M,γeval

M,γeval
psq ´ V

π‹
M,γeval

M,γ psq ď
γeval ´ γ

p1 ´ γevalqp1 ´ γq
Rmax (21)

By replacing γeval by γBw, we find the bias bound in Theorem 1. For the variance term, we upper
bound it using Lemma 2 without any additional modifications. The final assembly of both result is
given by:

∥V
π‹
M,γBw

M,γBw
´ V

π‹
xM,γ

M,γBw
∥8 ď

γBw ´ γ

p1 ´ γBwqp1 ´ γq
Rmax

`
γ

p1 ´ γq
max

z
} pPzp¨|zq ´ Pzp¨|zq}1 max

zi,zjPZ
max

π:ZˆS ÞÑA
dπinput,γpzi, zjq.

Which is Theorem 1.
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11 Proof of Lemma 3

Let fzpγq “ ∥V
π‹
M,γBw

M,γBw
p¨, zq ´ V

π‹
xM,γ

M,γBw
p¨, zq∥8 denote the planning loss given input z. Let us also

define hortcuts to alleviate the notation:

V
π‹
M,γBw

M,γBw
ps, zq :“ V ‹ps, zq

V
π‹

xM,γ

M,γBw
ps, zq :“ pV ps, zq.

The first denotes the value of state s at input z with the optimal policy on model M and discount
factor γBw. The seconds denotes the value of state s at input z of the optimal policy on approximate
model xM and discount factor γ ă γBw (when evaluated on true model M with discount factor γBw).
We can bound the difference in planning losses between two inputs zi and zj for a given factor γ:

|fzipγq ´ fzj pγq| “

ˇ

ˇ

ˇ
max

s
|V ‹ps, ziq ´ pV ps, ziq| ´ max

s
|V ˚ps, zjq ´ pV ps, zjq|

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
max

s

ˇ

ˇ

ˇ
|V ‹ps, ziq ´ pV ps, ziq| ´ |V ‹ps, zjq ´ pV ps, zjq|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď max
s

ˇ

ˇ

ˇ

´

V ‹ps, ziq ´ pV ps, ziq
¯

´

´

V ‹ps, zjq ´ pV ps, zjq

¯
ˇ

ˇ

ˇ

“ max
s

ˇ

ˇ

ˇ
pV ‹ps, zq ´ V ‹ps, zjqq `

´

pV ps, zjq ´ pV ps, ziq
¯

ˇ

ˇ

ˇ

ď max
s

|V ‹ps, ziq ´ V ‹ps, zjq| ` max
s

ˇ

ˇ

ˇ

pV ps, zjq ´ pV ps, ziq
ˇ

ˇ

ˇ

ď 2 max
π: sS ÞÑA

dπinput,γBw
pzi, zjq.

The first equality uses the fact that a maximum is infinity norm Lipschitz. We then use the trian-
gle inequality first to obtain that the difference of absolute values is lower than absolute value of
difference, then on each maximum obtain the final inequality.

12 Proof of Theorem 2

Let fzpγq “ ∥V
π‹
M,γBw

M,γBw
p¨, zq ´ V

π‹
xM,γ

M,γBw
p¨, zq∥8 denote the planning loss given input z. Using

Lemma 3, we can bound the difference in planning loss between two different inputs zi and zj
when planning is conducted with their optimal planning discount factors:

fzipγ
‹pziqq ´ fzj pγ‹pzjqq “ fzipγ

‹pziqq ´ fzipγ
‹pzjqq

` fzipγ
‹pzjqq ´ fzj pγ‹pzjqq

ď fzipγ
‹pzjqq ´ fzj pγ‹pzjqq

ď 2 max
π: sS ÞÑA

dπinput,γBw
pzi, zjq

and (for the other side):

fzj pγ‹pzjqq ´ fzipγ
‹pziqq “ fzj pγ‹pzjqq ´ fzj pγ‹pziqq

` fzj pγ‹pziqq ´ fzipγ
‹pziqq

ď 2 max
π: sS ÞÑA

dπinput,γBw
pzi, zjq,

which leads to the desired result:

|fzipγ
‹pziqq ´ fzj pγ‹pzjqq| ď 2 max

π: sS ÞÑA
dπinput,γBw

pzi, zjq. (22)

For the rest of the proof, we make use of strong convexity. If fzpγq is µ-strongly convex, we have
that for any γ and any γ0 P r0, γBws:

fzpγq ě fzpγ0q ` x∇fzpγ0q, γ ´ γ0y `
µ

2
|γ ´ γ0|2. (23)
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Since γ‹pzq minimizes the planning loss fzpγq, setting γ0 “ γ‹pzq leads to a zero derivative
∇fzpγ‹pzqq “ 0 because the planning loss is minimized. We therefore have:

fzpγq ě fzpγ‹pzqq `
µ

2
|γ ´ γ‹pzq|2. (24)

Now by taking γ “ γ‹pzjq, we can get:

fzipγ
‹pzjqq ě fzipγ

‹pziqq `
µ

2
|γ‹pzjq ´ γ‹pziq|2. (25)

By rewriting and using triangle inequality along with Equation 22, we obtain Theorem 2:

|γ‹pziq ´ γ‹pzjq| ď

c

2

µ
|fzipγ

‹pzjqq ´ fzipγ
‹pziqq|

ď

c

2

µ
|pfzipγ

‹pzjqq ´ fzj pγ‹pzjqqq ` pfzj pγ‹pzjqq ´ fzipγ
‹pziqqq|

ď

c

2

µ
|fzipγ

‹pzjqq ´ fzj pγ‹pzjqq| ` |fzj pγ‹pzjqq ´ fzipγ
‹pziqq|

ď

d

8maxπ: sS ÞÑA dπinput,γBw
pzi, zjq

µ
.

13 MOPO hyperparameters

Hyperparameters play a crucial role in the training of a model-based RL agent. For reproducibility,
we therefore list all our hyperparameters here and in the open source code.

Hyperparameter Value

Uncertainty λ 0.5
Proportion of real data for sampling 0.1
Batch Size 128
Starting logα for SAC vector of 0
Target Entropy -1
Target change frequency τ 0.01
Learning rate 10´4

Hold out ratio for dynamics 0.2
Patience for dynamics 50
Hidden size (dynamics) 256
Hidden size (policy) 256
Ensemble Size 3
Max epochs dynamics 500
Steps per epoch 1000
Rollout frequency (steps per rollout) 1000
Rollout length 200
Model retain epochs (for model-buffer) 5
Model rollout batch size 1000
MOPO epochs 50

Table 1: MOPO hyperparameters used in the reward zone CartPole-V1 experiment.


