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Summary
Model-based reinforcement learning (RL) leverages learned world models to plan ahead or

train in imagination. Recently, this approach has significantly improved sample efficiency and
performance across various challenging domains ranging from playing games to controlling
robots. However, there are fundamental limits to how accurate the long-term predictions of a
world model can be, for example due to unstable environment dynamics or partial observability.
These issues are further exacerbated by the compounding error problem. Model-based RL is
therefore generally limited to short rollouts with the world model, and consequently struggles
with long-term credit assignment. We argue that this limitation can be addressed by modeling
the outcome of temporally extended skills instead of the effect of primitive actions. To this
end, we propose a mutual-information-based skill learning objective that ensures predictable,
diverse, and task-related behavior. The resulting skills compensate for perturbations and drifts,
enabling stable long-horizon planning. We thus introduce Stable Planning with Temporally
Extended Skills (SPlaTES), a sample-efficient hierarchical agent consisting of model predictive
control with an abstract skill world model on the higher level, and skill execution on the lower
level.

Contribution(s)
1. We introduce SPlaTES, a sample-efficient hierarchical RL algorithm that learns temporally

extended skills on the lower level, and an abstract world model predicting skill outcomes
on the higher level. Both levels are model-based and perform model predictive control over
different timescales.
Context: Existing model-based hierarchical agents either do not use an abstract world
model for planning (Hafner et al., 2022), are restricted to a pre-defined symbolic abstraction
of the environment (Achterhold et al., 2023), or require a pre-collected dataset with high-
quality skill behavior (Shi et al., 2023) for offline learning.

2. We show that our mutual-information-based skill learning objective results in diverse and
predictable skill outcomes. The temporal extent of the skills enables error-correcting be-
havior contributing to the stability of the high-level dynamics.
Context: Like Gregor et al. (2016) and Achterhold et al. (2023), we consider the mutual
information of the skill outcome and skill vector. However, we show empirically that trans-
forming such a sparse reward into a dense one is crucial for obtaining good performance.
We furthermore condition on the intra-skill time step and start state to enable robust error
compensation.

3. Planning over entire episodes enables SPlaTES to solve challenging long-horizon tasks
without resorting to temporal difference learning for long-term credit assignment. Our
empirical evaluation shows that SPlaTES outperforms competitive skill-based and model-
based baselines.
Context: Distilling the behavior of the hierarchical agent into a flat TD-MPC2 model
(Hansen et al., 2024) results in decreased performance and myopic behavior. We con-
clude that SPlaTES performs long-term credit assignment on time scales that are difficult to
achieve with non-hierarchical temporal difference learning.
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Abstract

Model-based reinforcement learning (RL) leverages learned world models to plan ahead
or train in imagination. Recently, this approach has significantly improved sample ef-
ficiency and performance across various challenging domains ranging from playing
games to controlling robots. However, there are fundamental limits to how accurate
the long-term predictions of a world model can be, for example due to unstable envi-
ronment dynamics or partial observability. These issues are further exacerbated by the
compounding error problem. Model-based RL is therefore generally limited to short
rollouts with the world model, and consequently struggles with long-term credit as-
signment. We argue that this limitation can be addressed by modeling the outcome of
temporally extended skills instead of the effect of primitive actions. To this end, we
propose a mutual-information-based skill learning objective that ensures predictable,
diverse, and task-related behavior. The resulting skills compensate for perturbations
and drifts, enabling stable long-horizon planning. We design a sample-efficient hierar-
chical agent consisting of model predictive control with an abstract skill world model
on the higher level, and skill execution on the lower level. We demonstrate that our
algorithm, Stable Planning with Temporally Extended Skills (SPlaTES), solves a range
of challenging long-horizon continuous control problems, outperforming competitive
model-based and skill-based methods.1

1 Introduction

Learning a world model is a promising route to obtaining competent and versatile agents. In many
environments, learning approximate dynamics is fast and enables a shift from trial and error to more
targeted problem solving via planning or learning from synthetic experience. Consequently, model-
based reinforcement learning (RL) recently reached unprecedented sample efficiency and asymptotic
performance in many challenging domains (Schrittwieser et al., 2020; Hafner et al., 2021; Hansen
et al., 2024). However, due to compounding model errors, these methods are generally limited
to rolling out the model for a small number of time steps. This severely reduces their ability to
solve complex tasks that require longer rollout horizons to discover good solutions. Unfortunately,
improving the accuracy of the world model is costly and quickly leads to diminishing returns, in
particular in environments with stochastic or unstable dynamics.

Alternatively, short model rollouts can be complemented with a learned value function to capture
the impact of actions on future rewards. Although such hybrid methods have achieved remark-
able results on hard long-horizon tasks (Hafner et al., 2023), their ability to perform long-term
credit assignment is still limited: Learning from short model rollouts requires temporal difference
(TD) learning, which can become unstable for the high discount factors required for discovering
non-myopic behavior. Undesirable artifacts in learned value functions can also impede progress

1Code and videos can be found on the project page.

https://nicoguertler.github.io/splates-pages/
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(Bagatella & Martius, 2023). Moreover, the problematic combination of function approximation,
bootstrapping and off-policy training, known as the ‘deadly triad’ (Sutton et al., 1998), is at the
center of many modern model-based frameworks (Hansen et al., 2024). Hence, solving long-term
credit assignment efficiently remains an open challenge for model-based RL methods.

Interestingly, humans excel at long-horizon planning despite our inaccurate short-term predictions.
The key to this remarkable ability is abstraction: rather than planning fine-grained movements, we
usually leverage high-level skills to solve complex problems. For example, when boiling a pack of
pasta, we can rely on our hands to open the tap to fill water into the pot, to put the pot on the stove,
to turn on the stove, and so on, all without having to worry about detailed movements. Crucially,
even unforeseen events, such as the pot beginning to slip from our hand, have little to no impact on
the overall outcome as we automatically readjust our grip. Hence, thinking in terms of predictable
skills instead of primitive actions replaces unstable or stochastic environment dynamics with a more
stable abstract world model, suitable for long-horizon planning.

We propose to replicate this strategy by learning temporally extended skills alongside an abstract
world model that predicts skill outcomes. These outcomes should be diverse for different skills,
but predictable for each individual skill. We therefore maximize the mutual information between
the transition induced by the skill and the skill vector (Eysenbach et al., 2019). Concretely, we
train the skills with RL using an approximation to the mutual information derived from the abstract
world model (Sharma et al., 2020b). Since each skill lasts for multiple time steps, it can detect
and counteract errors in its trajectory. Intuitively, by training the skills to realize what the world
model predicts and the world model to predict what the skills achieve, stable high-level dynamics
are obtained. Our proposed method Stable Planning with Temporally Extended Skills (SPlaTES)
consists of (i) learning the temporally extended skills in tandem with the abstract world model,
while (ii) using them for model predictive control (MPC).

In high-dimensional environments, in particular, it is crucial that the learned skills focus on what
matters for the task. Most hierarchical RL methods (Sutton et al., 1999) that tackle long-horizon
tasks use domain knowledge to define a subgoal or skill space that captures task-relevant parts of
the state (Eysenbach et al., 2019; Nachum et al., 2018; Levy et al., 2019; Sharma et al., 2020b).
We show that learning a low-dimensional abstract latent space by fitting the reward and propagating
gradients back to the encoder is possible for sufficiently dense rewards. By learning skills that
control the transitions in this space, we obtain task-related behavior. Hence, we do not need access
to a handcrafted latent space or reward function.

Our contributions are: (i) We propose SPlaTES, a sample-efficient hierarchical RL method that
learns temporally extended skills on the lower level, and an abstract world model over skill outcomes
on the higher level. Both levels are model-based and perform MPC on different timescales. (ii) We
show that our skill learning objective yields diverse, predictable, task-related, and error-correcting
behavior. (iii) Planning over entire episodes enables SPlaTES to outperform competitive model-
based and skill-based methods on a range of challenging long-horizon continuous control tasks.

2 Preliminaries

In reinforcement learning (RL), an agent is trained to maximize the cumulative reward through in-
teractions with the environment. The environment can be formalized as a Markov Decision Process
(MDP),M = (S,A, p, r, ρ0, γ), where S denotes the state space,A the action space, p (s′ | s, a) the
probability (density) of transitioning from state s into s′ when choosing action a, r : S × A → R
the reward function, ρ0 the distribution of the initial state, and γ ∈ [0, 1) the discount factor. In
the infinite horizon setting, the RL objective is the maximization of the expected discounted return
Gπ = Eat∼π(·|st),s0∼ρ0

[
∑∞

t=0 γ
tr(st, at)] when following a policy π : S → ∆(A).

In model-based RL, the agent learns a dynamics model p̂ (s′ | s, a) and a reward model r̂ (s, a)
from transitions (s, a, r, s′). The combination of p̂ and r̂ yields a world model, which can be used
to perform rollouts in imagination by repeatedly sampling from the transition probability. At time
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step t, define ŝt = st. For a horizon H and a fixed action sequence at, . . . , at+H , the recursive
relation ŝt+k+1 ∼ p̂ (· | ŝt+k, at+k) defines a model rollout, which may be used with any model-
free algorithm to train a policy. Alternatively, the world model may be used directly for planning by
optimizing the return-to-go

∑H
k=0 r̂(ŝt+k, at+k) with respect to the action sequence. We use iCEM

(Pinneri et al., 2021) for this purpose, a zero-order optimization method adapted for continuous
control. By replanning after each time step in a model predictive control (MPC) fashion, errors from
imperfect model learning or optimization can be mitigated to some extent.

3 Challenges in long-horizon predictions

Taking the same sequence of actions in the environment and in a world model usually leads to tra-
jectories that deviate after a small number of time steps. There are several reasons for this mismatch:

closed-loop open-loop prediction

Figure 1: Taking a fixed sequence
of actions in the real environment
(open-loop in orange) and in the
world model (prediction, dashed in
black) results in trajectories that
quickly diverge. A stable low-
level policy (or skill) can compen-
sate perturbations and ensure that
prediction and reality stay close to
each other (closed-loop in blue).

(i) Approximation errors in the dynamics model may result
in a small error ϵ after every time step, even in deterministic
environments, ŝ = p̂ (s, a) = p (s, a) + ϵ. (ii) Partial observ-
ability denies the world model access to the full, accurate state
of the environment. This may be due to missing or noisy mea-
surements. (iii) Stochasticity inherent to the environment ren-
ders the transitions non-deterministic. (iv) Unstable dynam-
ics (Slotine et al., 1991) prevent already present errors from
shrinking or can even increase them over time. In chaotic en-
vironments (Ott, 2002), even small errors in the initial state
can lead to large discrepancies after a short period of time.

Small errors from these sources can add up when repeatedly
applying the learned dynamics model, leading to the com-
pounding error problem (Lambert et al., 2022). Hence, long-
term predictions in many complex environments are infeasible
in practice. Even the predictions of an accurate world model
will quickly diverge from the true dynamics in such a system
(see Figure 1). Trying to circumvent the compounding error
problem by directly predicting several steps ahead can improve
the accuracy in certain environments (Neitz et al., 2018; Lam-
bert et al., 2021) but cannot solve the fundamental problem of
predicting outcomes in unstable systems.

4 Method

Taking inspiration from how humans solve long-horizon problems, we propose to plan over tempo-
rally extended skills instead of primitive actions. While the environment as such may have undesir-
able properties like unstable or stochastic dynamics, suitable skills can mitigate these. We therefore
aim to construct a planning-friendly abstraction of the environment by learning low-level skill poli-
cies that are trained to “achieve what an abstract world model predicts”. By training such skills
in tandem with an abstract world model, long-horizon planning becomes feasible. The rest of this
section introduces our method Stable Planning with Temporally Extended Skills (SPlaTES).

4.1 Abstract POMDP

We first define an abstraction of the environment that is more suitable for long-horizon planning
than the original MDP. To discard expendable details in the MDP, we adopt the form of a partially
observable MDP (POMDP) (Kaelbling et al., 1998), which operates on a coarser timescale. This
POMDP M̄ =

(
S, Ā, p̄π, r̄π, ρ0, S̄, f, γ̄

)
inherits the state space S and the initial state distribution

ρ0 from the original MDPM.
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To implement temporal abstraction, we transfer control to a skill for K ∈ N+ time steps. During
this time interval, the skill policy chooses primitive actions. We furthermore identify a skill by a
skill vector ā ∈ Ā = [−1, 1]dĀ with dĀ ∈ N+. Choosing a continuous skill representation allows
for smooth interpolation between behaviors which has advantages over discrete skills in domains
such as manipulation or locomotion (Sharma et al., 2020b). The dynamics p̄π (st+K | st, ā) of
the POMDP are thus induced by the skill policy π(at | st, . . . , ā) and the environment dynamics
p (st+1 | st, at). The reward along a skill execution is accumulated, r̄π =

∑t+K
n=t r(sn, an). Our

skills can be considered as a continuous version of options (Sutton et al., 1999) with a fixed temporal
extent.

To facilitate planning, we map environment states to a more compact representation acting as an
information bottleneck. As this potentially discards information, we may lose the Markov prop-
erty and technically obtain only observations of the environment. Nevertheless, we refer to these
representations as abstract states, as they are used for planning. In Section B.4, we discuss how
our skill-learning objective can mitigate partial observability and approximately restore the Markov
property. To ensure that the encoder f : S → S̄ focuses on task-relevant parts of the state, we train
a reward function on the abstract state space S̄ and propagate gradients back to the encoder. Clearly,
this requires the reward r̄π to be sufficiently dense. We furthermore choose a low-capacity encoder
to ensure that it is selecting aspects of the state rather than pre-computing the reward. Crucially,
this provides us with a space that is sufficiently low-dimensional for a diversity-maximizing skill
learning objective, as detailed in Section 4.3.

4.2 Abstract world model

The abstract world model ˆ̄M is trained to predict the next abstract state s̄′ = f (st+K), as well as
the reward r̄π accumulated during the K steps of executing a skill.

The skill policy and partial observability introduce stochasticity to the transitions of the POMDP
M̄, even if the original MDP M is deterministic. As K steps elapse in the environment during
one abstract step, and due to partial observability, the distribution of s̄′ can furthermore become
multimodal. To take stochasticity and multimodality into account, we realize the abstract dynamics
model ˆ̄p (s̄′|s̄, ā) as a mixture of Gaussians, similar to Sharma et al. (2020b). Learning a distribution
over the next abstract state additionally allows for taking chaotic or highly unstable dynamics into
account that are too complex to be modeled precisely.

Note that the POMDP M̄ is non-stationary, since the skill policy π is changing during training. The
abstract world model therefore has to track these changes. Moreover, abstract transitions (s̄, ā, r̄, s̄′)
become outdated quickly. Together with the temporal abstraction, this implies that the data for
learning the abstract world model is very limited. In principle, importance sampling (IS) could be
applied to outdated transitions if the skill policy is known. However, since the importance weights
would correspond to a product of all K action probabilities in one skill execution, they in practice
become very small. We therefore found that IS does not help, similar to Shi et al. (2023), and choose
a sufficiently small buffer size to avoid outdated transitions.

4.3 Skill learning

The abstract actions ā identify temporally extended skills. To make long-term planning in M̄
successful, these skills should (i) lead to predictable outcomes, (ii) be useful for the considered
family of RL problems, and (iii) be diverse, i.e. allow for flexible control of the underlying MDP.

Similar to Dynamics-Aware Unsupervised Discovery of Skills (DADS) (Sharma et al., 2020b), we
choose to implement predictability and diversity with a mutual-information-based objective. More
concretely, we define the skill learning objective as the maximization of the mutual information of
the skill vector ā and the abstract state s̄′ = f (st+K) at termination of the skill. Since we are
interested in controlling the transitions in the abstract POMDP, we condition the skill on the abstract
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state s̄ = f (st). This yields the following optimization objective for the skill policy π:

π∗ = argmax
π

I(s̄′; ā | s̄) = argmax
π

H(s̄′ | s̄)−H(s̄′ | s̄, ā) . (1)

Intuitively, I(s̄′; ā | s̄) corresponds to the amount of information that is revealed about the next ab-
stract state when being presented with the skill vector. It is instructive to split the mutual information
into a difference of two terms (see RHS of Equation 1): Maximizing the entropy of the next state s̄′

conditioned on the current state s̄ makes sure the skills can realize a diverse set of transitions in the
abstract state space. Minimizing the entropy of s̄′ conditioned on s̄ and the skill vector ā ensures
that a specific skill reaches a predictable next state.

Evaluating I(s̄′; ā | s̄) poses two challenges: Firstly, it requires access to the abstract dynamics
p̄ (s̄′|s̄, ā), and secondly, it involves integration over realizations of the random variable ā. Following
Sharma et al. (2020b), we tackle the first issue by approximating the dynamics with our world
model ˆ̄p (s̄′|s̄, ā), and the second by Monte Carlo sampling. A detailed derivation of the resulting
approximation

I(s̄′; ā | s̄) ≈ Es̄,ā,s̄′ [ϕ(s̄
′; s̄, ā)] (2)

with the potential

ϕ(s̄′; s̄, ā) := log
ˆ̄p (s̄′ | s̄, ā)

1
N

∑N
i=1

ˆ̄p (s̄′ | s̄, āi)
, āi ∼ U(Ā) , (3)

can be found in subsection B.1.

To learn the skills, we maximize Es̄,ā,s̄′ [ϕ(s̄
′; s̄, ā)] with RL. To this end, the potential differ-

ence between consecutive time steps serves as a dense reward for every intra-skill time step
k ∈ [0, . . . ,K − 1],

r(st+k, a, st+k+1; s̄, ā) := ϕ(f(st+k+1); s̄, ā)− ϕ(f(st+k); s̄, ā) . (4)

We use TD-MPC2 (Hansen et al., 2024), a model-based RL method for continuous control that
incorporates short-horizon planning, to learn the skill policy. In preliminary tests, it achieved higher
sample efficiency than model-free algorithms. When sampling a batch from the replay buffer, we
recompute the skill learning reward as it changes when the abstract world model gets updated.
Furthermore, we slightly modify TD-MPC2 to keep track of k, s̄, and ā when rolling out its model.

Crucially, the reward in Equation 4 encourages skills to be predictable relative to where they started
and consequently depends on s̄. This requires the skill policy to be conditioned on s̄ as well. Since
the skill execution has a finite horizon K, we additionally condition on the intra-skill step k (Pardo
et al., 2018). Hence, the skill policy has the form π (at+k | st+k, k, s̄, ā). This conditioning al-
lows the skills to compensate perturbations and drifts as they can detect any mismatch between
where they are after k steps relative to s̄ and where they intend to be (see Figure 1). This ability
distinguishes our temporally extended skills from the memoryless skills DADS learns, and greatly
contributes to the stability of our abstract world model. To ensure that the skills can be successfully
chained, we furthermore bootstrap when the skill vector changes. As we want all possible transitions
between skills to work, we replace the Q-function in the TD-target with a version trained to fit the
expected Q-value over all possible next skills in this case (see Section B.6).

Applying common diversity-maximizing skill learning objectives directly in complex environments
usually leads to behaviors that are not task-related. A common fix is the manual definition of a
subspace that captures what is essential for the task, e.g. the x-y coordinate of an agent in a maze
(Eysenbach et al., 2019; Sharma et al., 2020b). By instead learning the encoder based on reward and
value prediction, we are more flexible and less reliant on domain knowledge, while still ensuring
that the learned skills are useful for the (family of) tasks we are interested in.
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Algorithm 1: SPlaTES

t← 0; s← s0
while training do

s̄← f(s); r̄ = 0 1

ā← iCEM(s̄; ˆ̄M)[0] 2

for k = 0 to K do 3

a ∼ π (· | s, k, s̄, ā)
s′, renv ← env.step(a)
r ←ϕ(f(s′); s̄, ā)

− ϕ(f(s); s̄, ā)

TDMPC2← (s, a, r, s′)
TDMPC2.update()
r̄ ← r̄ + renv; s← s′

end
ˆ̄M← (s̄, ā, r̄, f(s))
ˆ̄M.update()

end

Figure 2: Left: Our proposed hierarchical algorithm SPlaTES in three steps; 1 Encode the environ-
ment state to obtain an abstract state. 2 Plan (with iCEM) a skill sequence starting from the abstract
state, which maximizes the episode return. 3 Execute the first skill in the sequence for K steps.
Do high-level MPC by starting from 1 again. Right: Pseudocode for SPlaTES. The skill policy π
denotes the action distribution induced by TD-MPC2 with MPC enabled.

4.4 The hierarchical agent: Abstract planning over task-related skills

Equipped with suitable skills and an abstract world model, we can now construct a hierarchical
agent that solves the RL problem. To this end, we perform model predictive control (MPC) using
the iCEM method with the abstract world model on the higher level and execute the skill policy on
the lower level. Intuitively, the higher level breaks the task down into a sequence of skills, while the
lower level executes them. We train all elements of the hierarchy online and in tandem, meaning
that the abstract world model shapes the skill reward via Equation 4 and the behavior of the skill
policy in turn determines the abstract world model. Hence, the skills are trained to fit the abstract
world model and vice versa. Figure 2 presents an overview of the algorithm.

Training the world model of the POMDP outlined above automatically inherits its abstractions. This
provides several benefits for planning: Firstly, the required MPC horizon is reduced by a factor of K
(the length of one skill execution), and the state and action spaces are low dimensional. Combined
with the stability of the skills, planning over whole episodes instead of a small number of time
steps becomes feasible. Secondly, as replanning the sequence of skills only happens every K steps,
the computational cost of MPC is reduced by a factor of K2 compared to planning over the same
effective horizon with a low-level model. Furthermore, the skills are trained to efficiently move
through the abstract state space which encodes everything that is crucial for the task. Together with
temporal abstraction, this greatly enhances exploration and automatically focuses it on the task (as
conveyed by the reward function).

Moreover, the hierarchical agent is able to correct its mistakes on two time scales: Firstly, small
perturbations can be compensated by reflex-like behavior of the skills on the lower-level (think
stumbling or something slipping from the agent’s grasp). Secondly, MPC will automatically adjust
the plan for the rest of the episode in a more deliberate way should the agent deviate further from
the intended path. We provide further implementation details in Section B.6.
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Figure 3: Left: Skills applied to a velocity-controlled point mass under a perturbation. DADS:
Predictions are marked by dashed lines. SPlaTES: Predictions of the abstract world model are
marked by crosses, actual states at the end of skill executions by circles. SPlaTES compensates the
perturbation and stays close to the prediction while DADS cannot recover from it. Right: Execution
of a fixed skill sequence with a quadruped. A force is applied in one time step (red arrow).
SPlaTES corrects the resulting deviation while DADS cannot.

5 Experiments

We aim to answer the following questions with our empirical evaluation of SPlaTES:

1. Are the learned skills predictable, diverse, and useful for the task?
2. How does SPlaTES compare to existing methods in terms of sample-efficiency and asymptotic

performance, in particular on challenging long-horizon tasks?
3. Can we distill the hierarchical SPlaTES model into a flat TD-MPC2 agent?

We compare to three baselines that cover model-based RL, hindsight relabeling, and skill discovery:

TD-MPC2 (with and without HER) (Hansen et al., 2024), a flat model-based RL method tailored
to continuous control that achieves state-of-the-art sample efficiency by combining MPC with a
learned policy and Q-function. We additionally combine TD-MPC2 with Hindsight Experience
Replay (HER) to test if hindsight enables the agent to escape local optima.

DADS + MPC (Sharma et al., 2020b), a skill discovery method based on mutual information esti-
mation with a reward similar to Equation 3. Unlike SPlaTES, DADS does not implement temporal
abstraction, i.e., it tries to learn skills that control atomic transitions. DADS furthermore requires
privileged information in the form of a projection to a compact latent space that encodes what matters
for the task, e.g., the x-y coordinates for locomotion. To decouple the impact of the skill learning
objective from the underlying RL algorithm, we implement a TD-MPC2-based version of DADS
and use the same MPC code as for SPlaTES for choosing skills (see Appendix C for details).

Our empirical evaluations are conducted in different variations of the following environments:

Fetch Pick & Place (Plappert et al., 2018): A robot arm with a two-fingered parallel gripper manip-
ulating a block on a desk. The action specifies a desired displacement of the end effector and gripper
fingers. To make the task harder, we added a variant in which the robot has to lift the block over a
barrier to reach the goal (Fetch P&P Barrier).

Ant Maze (Fu et al., 2020): A torque-controlled quadruped navigating a maze. Long-term credit
assignment is critical in this environment as going around a wall sometimes temporarily increases
the distance to the goal. We terminate the episode when the quadruped flips over as no algorithm
learned to reverse this (Ant Maze Medium/Large). We added a harder variant which requires the
agent to push a block aside to reach one of the goals (Ant Maze Push).

5.1 Skill analysis

This section analyzes the skills learned by SPlaTES in isolation, to verify that they are predictable,
diverse, and useful. For the sake of clarity, we first consider a toy environment with a velocity-
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Fetch Pick & Place Barrier Ant Maze Medium

Figure 4: SPlaTES predictions for random
brown-noise skill sequences. Most of the work
space of the robot and the quadruped maze are
covered.

Fetch Pick & Place Barrier Ant Maze Medium

Figure 5: SPlaTES plans on the Fetch P&P Bar-
rier and Ant Maze Medium tasks. Note that the
skill sequence extends over the whole episode.

controlled point mass. To probe the ability of the learned skills to compensate perturbations, we add
temporally sparse noise of fixed magnitude and random direction to the velocity during training.

The left side of Figure 3 compares DADS to SPlaTES skills under a perturbation perpendicular to
the predicted change in the state. While both methods learn a set of diverse skills, they differ in
their robustness to noise: As SPlaTES is trained to produce predictable transitions over K time
steps, its skills compensate the perturbation rapidly and stay close to the predicted trajectory. This
reflex-like behavior is realized by the skill policy and does not require MPC. DADS, on the other
hand, is oblivious of deviating from the predicted trajectory and maintains an offset. The right side
of Figure 3 shows DADS and SPlaTES controlling a quadruped. At one time step, a large force is
applied (marked by a red arrow). In this high-dimensional environment, the same behavior occurs:
SPlaTES corrects the error resulting from the force while DADS cannot. We analyze this example
in more detail in Section A.2.

In principle, MPC can help correct errors but in real-world applications it is often infeasible to run it
at every time step due to computational constraints. It is therefore desirable to distill error-correcting
behavior into a fast skill policy.

Figure 4 shows trajectories predicted by the abstract SPlaTES world model based on brown-noise
sequences of skill vectors. Although the latent state space is learned only from the reward signal,
the skills focus on manipulating the block or moving the quadruped. They are thus useful for the
task. The temporal extent of the skills moreover facilitates exploration. The sampled skill sequences
consequently cover most of the work space and maze.

5.2 Comparative analysis

Does planning over predictable skills enable model-based RL to solve long-horizon continuous con-
trol tasks? To answer this question, we compare SPlaTES to a set of competitive baselines on
increasingly challenging variants of two RL domains (de Lazcano et al., 2023). All learning is done
online and from scratch. We use a dense reward proportional to the negative Euclidean distance
to the goal, as our focus is on task-related behavior rather than intrinsic motivation. All tasks are
continuing: the environment does not terminate when the goal is reached but truncates after a time
limit. On the higher level, SPlaTES plans over the whole episode, corresponding to an effective
horizon of up to 1400 environment steps.

Figure 6 shows how the success rates of the baselines and SPlaTES evolve during training. Note
that HER and DADS require access to the reward function and goal projection while SPlaTES does
not. All methods solve the basic Fetch Pick and Place task with SPlaTES being competitive in terms
of sample efficiency. On the more challenging Fetch Pick and Place Barrier task SPlaTES quickly
discovers how to lift the block over the barrier. In contrast to this, TD-MPC2 remains in the local
optimum of pressing the block against the base of the barrier. Despite having a two-times larger
MPC horizon and replanning every time step, DADS only inconsistently finds the path across the
barrier later in the training. HER only succeeds in less than half of the seeds in finding a trajectory
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Ant Maze Medium Ant Maze PushFetch Pick & Place Fetch P & P Barrier

 require reward function and goal projection

Figure 6: Success rates over the course of training. The shaded areas indicate the region between
the 20% and 80% percentiles across five seeds. The lines correspond to the median. Methods using
privileged information such as the reward function and the goal projection are shown as dotted lines.

around the barrier. Note that we ran HER with a dense and a sparse reward and report results for
whichever worked best on each environment.

On the two Ant Maze tasks TD-MPC2 and DADS can solve combinations of initial position and
goal that can be connected by greedily following the gradient of the reward function while sliding
along walls. Only SPlaTES succeeds in more challenging episodes that require going around an
obstacle for an extended period of time before turning back towards the goal again. In principle,
increasing the MPC horizon in TD-MPC2 and DADS should enhance performance but in practice
this is infeasible because (i) rolling the model out for hundreds of time steps becomes prohibitively
expensive, and (ii) the quality of the predictions drastically deteriorates. We found HER not to work
in this setting. We hypothesize that the lack of success could be caused by a complete lack of overlap
between environment and hindsight goals, and a lack of exploration due to the danger of flipping
over and terminating. Hence, only SPlaTES performs well on these challenging long-horizon tasks.
We additionally compare to a competitive model-free hierarchical baseline (Levy et al., 2019) in
Section A.3, and find that it learns considerably slower than SPlaTES.

The superior asymptotic performance of SPlaTES on the more challenging tasks can be attributed
to two factors: improved exploration and better long-term credit assignment. Figure 4 illustrates
how temporally extended skills in combination with brown noise in the iCEM sampling process
aid exploration. To test whether SPlaTES improves credit assignment, we distill the hierarchical
agent into a flat TD-MPC2 model. To this end, we begin by training SPlaTES until the performance
plateaus. We then start to train a TD-MPC2 agent in parallel which has access to the replay buffer
of the SPlaTES skills. We additionally switch randomly (within episodes) between the two agents
to make sure new experience is collected in the whole maze. Figure 7 shows that this process leads
to a new agent with close-to-optimal performance on Fetch Pick & Place Barrier. However, on the
long-horizon tasks Ant Maze Medium and Ant Maze Large, the performance of the distilled agent
is significantly lower than that of SPlaTES despite having access to successful trajectories. For the
medium-sized maze the decrease in the success rate can be attributed to failing to reach the goal
exactly. On Ant Maze Large, on the other hand, myopic behavior reappears in the distilled agent
(we show an example case in Section A.1). We thus conclude that the long-term credit assignment
achieved by SPlaTES via abstract planning is difficult to reproduce with flat TD learning.

5.3 Ablative analysis

To gauge the impact of different components of SPlaTES on its performance, we ablate them indi-
vidually on Ant Maze Medium in Figure 8. Replacing the learned encoder with a hand-crafted one
(encoder oracle) brings only a very modest performance benefit. Using the Q-function conditioned
on the next skill vector directly in the skill-learning TD-target instead of a learned approximation
of the expectation over all skill values results in a noisier target, and a decrease in performance of
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Figure 7: Distillation of the hierarchical
SPlaTES agent into a flat TD-MPC2 model. The
success rate increases on the Fetch Pick & Place
Barrier task, whereas it drops significantly in the
more challenging Ant Maze environments. Me-
dian of the final performance across five seeds
with error bars corresponding to the 20% and
80% percentiles.

oracle encoder

no skill-averaged value

sparse skill reward

two phases

Figure 8: Ablations of SPlaTES on Ant Maze
Medium. Oracle encoder: A handcrafted en-
coder; No skill-averaged value: Bootstrap di-
rectly from Q function at end of skill; No k and
s̄: No conditioning on intra-skill step and start
state; Two phases: Learn skills first, then plan;
Sparse skill reward: Give Equation 3 as reward
at end of skill. Median across five seeds with
error bars corresponding to the 20% and 80%
percentiles.

15%. Ablating the conditioning of the skill policy (on the intra-skill time step and the abstract state
the skill started in) removes the ability to correct errors in the skill trajectory. This results in a per-
formance drop of about 45%. Dividing training into a skill learning phase with random skill vectors
and a planning phase with frozen skills results in a low success rate. Hence, guiding the skills with
high-level planning is useful for learning relevant skills. Finally, providing the approximation of
the mutual information ϕ (f(st+K)) (see Equation 3) as a sparse reward at the end of each skill
execution in place of the dense increments ϕ (f(st+k+1))− ϕ (f(st+k)) has the greatest impact on
performance. Skill learning slows dramatically, resulting in a success rate of around 5%.

6 Related work

Model-based RL uses learned world models (Schmidhuber, 1990) to predict state transitions and
rewards. This enables differentiating through the model (Deisenroth & Rasmussen, 2011), planning
(Hafner et al., 2019b), or generating synthetic experience for model-free RL algorithms (Sutton,
1991; Hafner et al., 2019a). Recently, the latter two approaches have been combined in hybrid meth-
ods that plan over a small number of time steps while accounting for long-term effects with a learned
value function (Schrittwieser et al., 2020; Hansen et al., 2022). The problem of compounding model
errors (Lambert et al., 2022) has been addressed in several ways: Increasing one-step model ac-
curacy by improving data collection or architecture choices can increase performance (Plaat et al.,
2023), but does not address all of the challenges discussed in Section 3. Branching off short rollouts
from observed states (Janner et al., 2019) avoids compounding model errors but neglects long-term
credit assignment. Directly predicting states multiple time steps in the future can increase accuracy
in some environments (Neitz et al., 2018; Asadi et al., 2019), but results are generally highly depen-
dent on the data-collection policy (Lambert et al., 2021). Predicting entire trajectories from offline
data is a promising research direction but also entangles policy and environment dynamics (Janner
et al., 2021; Ding et al., 2024). Finally, keeping track of epistemic and aleatoric uncertainty (Chua
et al., 2018) can quantify the problem but does not directly enable longer rollouts.

Hierarchical RL (HRL) (Hutsebaut-Buysse et al., 2022) splits up decision making into multiple
interconnected levels of abstraction: A higher level chooses temporally extended courses of actions
and a lower level executes them (Dayan & Hinton, 1992). Thus, the problem horizon is reduced by
temporal abstraction, facilitating credit assignment and exploration. The options framework (Sutton
et al., 1999; Barto & Mahadevan, 2003; Bacon et al., 2017) formalizes the notion of closed-loop
courses of action (also referred to as skills). Many HRL frameworks break long-horizon tasks down
into a sequence of subgoals (Nachum et al., 2018), enabling sample-efficient hindsight relabeling
techniques (Andrychowicz et al., 2017; Levy et al., 2019). However, the projection to the subgoal



Long-Horizon Planning with Predictable Skills

space is usually designed manually, as learning it is challenging (Nachum et al., 2019; Choi et al.,
2021). Picking a subgoal furthermore requires checking whether it is feasible in the given situation
(Zhang et al., 2023). In contrast to this, the skills we learn are always applicable, which simplifies
planning. Hansen et al. (2022) learn partial option models, predicting the outcome of options when
available, but use a fixed set of handcrafted options. Hafner et al. (2022) learn a latent goal space, but
do not use an abstract model for planning. Park et al. (2023) use an intermediate representation of an
offline-learned value function as goal space, which is, however, not directly applicable in the online
case when no high-quality value function is available yet. Shi et al. (2023) learn skills together with a
model of skill outcomes offline, and solve downstream tasks with MPC. The success of this approach
hinges on the quality of the pre-collected dataset, and does not explicitly encourage predictability of
skill coutcomes. Xie et al. (2021) learn skills with a sum of intrinsic and extrinsic reward but plan
with a learned ’flat’ dynamics model that predicts atomic transitions based on primitive actions, i.e.,
without abstraction in terms of actions and time.

Skill discovery aims to learn useful behaviors that can be combined to solve downstream tasks.
Gregor et al. (2016) propose Variational Intrinsic Control (VIC), which maximizes the mutual infor-
mation (MI) between a skill and the state it terminates in conditioned on the start state. The main
differences to our skill-learning objective are: (i) We use a dense reward (Equation 4), (ii) we use a
forward model instead of a discriminator to approximate MI (Sharma et al., 2020b), (iii) we condi-
tion the skill policy on the intra-skill time step k and the abstract state it started in as discussed in
Section 4.3, and (iv) we consider a learned abstract state. Gregor et al. (2016) furthermore argue that
training VIC becomes unstable when combined with function approximation. However, we found
that our reward combined with appropriate learning rates for the model and skill policy results in
stable training for SPlaTES. Eysenbach et al. (2019) maximize the MI between the skill vector and
the next state, approximating it with a discriminator. This results in diverse skills that seek out dif-
ferent parts of the state space but are not necessarily predictable on shorter time scales. Sharma et al.
(2020b), on the other hand, focus on controlling atomic transitions by additionally conditioning on
the current state. We propose to strike a balance by controlling abstract, temporally extended transi-
tions. Achterhold et al. (2023) learn skills using a given discrete state abstraction to play physically-
embedded board games. The discrete skills are trained with the sparse VIC reward, and correspond
to actions in a symbolic forward model, which is then used for high-level planning. Various unsu-
pervised skill learning methods use inductive biases to discover meaningful skills when neither a
compact latent space nor a task reward are given (Park et al., 2022; 2024; Machado et al., 2018).

7 Conclusion

In this work, we introduced SPlaTES, a sample-efficient hierarchical RL algorithm that learns tem-
porally extended skills on the lower level, and an abstract world model that predicts skill outcomes
on the higher level. We have demonstrated that our skill learning objective results in (i) diverse,
predictable, and task-related behavior, and (ii) the ability to counteract errors, which improves the
reliability of long model rollouts. By performing MPC on different timescales on both levels of the
model-based hierarchy, we outperform competitive model-based, skill-based and hierarchical base-
lines on challenging long-horizon tasks. Distilling the hierarchical agent into a flat TD-MPC2 model
resulted in the reoccurrence of myopic behavior, indicating that our model-based hierarchy performs
credit assignment at time scales that are difficult to achieve with non-hierarchical TD learning.

Limitations: While learning the encoder removes the requirement to design it manually, we still
need to choose an appropriate dimension for the abstract state. Moreover, using gradients from the
high-level reward loss for encoder learning requires sufficiently dense rewards. Although taking a
high-level value function into account could lift this requirement, we found learning such a value
function challenging, particularly in the early phase of training. More generally, temporal abstraction
results in a scarcity of training data on the higher level. Therefore, more sample-efficient supervised
learning methods or appropriate data augmentation techniques are needed to further improve sample
efficiency.
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A Additional results

In this section, we provide additional results and visualizations, comparing SPlaTES to baselines
and analyzing its skill training.

A.1 Distillation of a SPlaTES agent into a flat TD-MPC2 model

As discussed in Section 5.2, distilling a SPlaTES agent into a flat TD-MPC2 agent on Ant Maze
Large resulted in a significant drop in the success rate for two reasons: (i) The agent often does not
match the goal position precisely enough, and (ii) it regresses to myopic behavior that leads it into
local minima instead of going around obstacles. Note that the task is continuing and lasts for a 1000
time steps. We used a discount factor of 0.995 as we did not see any improvements in training from
scratch or distillation when increasing it in grid searches. Figure 9 shows an example of issue (ii),
i.e., myopic behavior reappearing even though the hierarchical agent generates close to optimal data.

(a) SPlaTES (b) Distilled TD-MPC2 agent

Figure 9: Failure to distill long-horizon behavior into flat TD-MPC2 agent: Even though the distilled
TD-MPC2 agent has access to clos-to-optimal data generated by the hierarchical agent, it regresses
to suboptimal, myopic behavior.

A.2 Execution of a fixed skill sequence with a perturbation

In Section 5.1, qualitative results for an Ant quadruped executing a fixed skill sequence while being
pushed by a large force in one time step have been shown to illustrate the compensation of pertur-
bations by SPlaTES. In Figure 10, ten rollouts generated by DADS and SPlaTES in this scenario
are shown and analyzed. We conclude that error-correcting behavior occurs consistently when using
SPlaTES.

A.3 Comparison to a hierarchical baseline

In this section, we compare SPlaTES to a hierarchical baseline. Hierarchical Actor-Critic (HAC)
(Levy et al., 2019) is a model-free hierarchical RL algorithm that breaks a task down into a series
of subgoals. The high-level policy chooses the next subgoal whereas the low-level policy pursues
it. Hindsight relabeling is used to improve sample efficiency. HAC requires privileged information
in the form of a map to the subgoal space and the reward function. We use the gym-compatible
implementation of HAC from Gürtler et al. (2021).

We did not succeed in getting HAC to learn on the environments considered in the main text. We
hypothesize that there are several factors contributing to this failure to learn: (i) The Fetch variants
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Figure 10: Execution of a fixed skill sequence with the Ant quadruped while experiencing a force
to the negative x direction in a single time step. Trajectories are rendered as black, translucent
lines, and x-y coordinates at multiple of the control interval K of SPlaTES are shown as colored,
translucent circles. At multiples of K time steps, a Gaussian is fitted to the x-y coordinates, and
depicted as colored circles. The x-y coordinate predicted by the world model is shown as a cross at
these time steps. Note how SPlaTES compensates the ’kick’, while DADS maintains the offset in
its trajectory which is caused by it.

have sparse interactions with the object which is known to cause issues, in particular with methods
that rely on hindsight relabeling (as a vast majority of the hindsight goals and actions correspond to
the cube being stationary). (ii) The considered environments (except for Fetch Pick & Place) have
almost no overlap between hindsight goals and environment goals in the initial phase of training.
(iii) HAC terminates the low-level episode after each skill and is thus not learning to chain skills. In
the Ant environments this results in flipping over at the end of skills.

To be able to compare to HAC, we modified Ant Maze Medium by making the actuators weaker by
a factor of 10. This was also done in Levy et al. (2019), probably to avoid issue (iii). This prevented
the Ant from flipping over. To also circumvent issue (ii), we give the higher level access to the dense
reward function. These changes resulted in HAC learning, albeit slowly. Figure 11 shows the success
rate and return of SPlaTES and HAC on this modified environment (as the success rate of HAC stays
at zero). SPlaTES outperforms HAC in terms of sample efficiency, probably due to (i) TD-MPC2’s
sample efficiency on the lower level, (ii) the dense skill learning reward, and (iii) better targeted
exploration due to high-level planning with the abstract world model. We additionally observed that
the higher level of HAC only slowly moves the subgoals further away from the initial position of the
Ant. This overly conservative behavior is probably caused by the penalty the higher level receives
when proposing an infeasible subgoal. As a result, exploration is slowed down significantly. In
contrast to this, all skills are feasible and SPlaTES therefore does not need such a penalty.

Figure 11: Comparison of SPlaTES to HAC on a modified version of Ant Maze Medium with a
‘weaker’ (and therefore slower) Ant: SPlaTES outperforms HAC in terms of learning speed. The
shaded areas indicate the region between the 20% and 80% percentiles across five seeds. The lines
correspond to the median. HAC uses privileged information in the form of the goal projection.
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A.4 Decoder

To analyze what aspects of the state the learned encoder extracts, we trained an MLP decoder in-
dependently of training SPlaTES (no gradients were allowed to flow back). Figure 12 shows the
normalized reconstruction error (normalized root mean square error) of different components of the
states and relative offset to the desired goal and norm of this offset. We conclude that the encoder
focuses on the achieved and desired goal as they are crucial for fitting the reward.
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Figure 12: Reconstruction error of observation dimensions from latent state and context(normalized
root mean square error): A decoder is trained (without propagating any gradients to the model) to
reconstruct the observation from the latent state and context.

A.5 Visualizations

We provide additional visualizations of the learned skills in this section.

TrainedPartially trainedUntrained

Figure 13: Predicted distributions of the abstract state delta after a skill execution at different stages
of training (Ant Maze Environment): Twelve skills are sampled uniformly on the unit circle in skill
vector space and color coded. The next state distributions predicted by the abstract world model are
visualized by color, with transparency determined by density. Note how at the intermediate training
stage some probability mass is at the origin for all skills. This corresponds to the skill being unable
to move, for example due to being off the ground or stuck on an edge. In the final model (right), this
probability mass mostly disappeared as the skills have become competent at locomotion.
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B Algorithm

We give additional details on the algorithm in this section, in particular the derivation of the skill
learning reward and implementation details.

B.1 From mutual information to learning temporally extended skills

This section describes in detail how we approximate the mutual information in Equation 2, and how
we use it to define a dense skill learning reward.

B.2 Approximating the mutual information

To obtain our skill learning reward, we first have to approximate the mutual information of the next
abstract state and the skill vector, conditioned on the current skill vector,

I(s̄′; ā | s̄) = H(s̄′ | s̄)−H(s̄′ | s̄, ā) (5)

=

∫ ∫
p (s̄, ā, s̄′) log

p (s̄′ | s̄, ā)
p (s̄′ | s̄)

dā ds̄′ ds̄ (6)

= Es̄,ā,s̄′

[
log

p̄ (s̄′ | s̄, ā)
p (s̄′ | s̄)

]
. (7)

The joint distribution of abstract state, skill vector, and next state reads

p (s̄, ā, s̄′) = p (s̄) p (ā | s̄) p̄ (s̄′ | s̄, ā) . (8)

We would like the skills to fill the whole skill vector space uniformly, i.e., we want to maximize
the diversity of all available skills, and not only those chosen by the planner. We therefore choose a
uniform distribution for the skill vector, ā ∼ U(Ā) and sample independently from the abstract state
s̄. In practice p (ā | s̄) is determined by the high-level planning, interleaved with randomly sampled
skills for exploration. This will be accounted for by importance sampling in the next subsection.
The joint distribution therefore simplifies to

p (s̄, ā, s̄′) = p (s̄) p (ā) p̄ (s̄′ | s̄, ā) . (9)

We now follow Sharma et al. (2020b) for the rest of the derivation. We first obtain a variational
lower bound for the mutual information by replacing the true dynamics p̄ of the abstract POMDP
with the approximation ˆ̄p our world model learned,

I(s̄′; ā | s̄) = Es̄,ā,s̄′

[
log

p̄ (s̄′ | s̄, ā)
p (s̄′ | s̄)

]
(10)

= Es̄,ā,s̄′

[
log

ˆ̄p (s̄′ | s̄, ā)
p (s̄′ | s̄)

]
+ Es̄,ā

[
DKL

(
p̄ (s̄′ | s̄, ā) || ˆ̄p (s̄′ | s̄, ā)

)]
(11)

≥ Es̄,ā,s̄′

[
log

ˆ̄p (s̄′ | s̄, ā)
p (s̄′ | s̄)

]
, (12)

where we used the non-negativity of the Kullback-Leibler divergence.

Maximizing the variational lower bound involves minimizing the Kullback-Leibler divergence. We
realize this by maximizing the log likelihood of the abstract transitions when training the abstract
world model.

We approximate the marginal distribution p (s̄′ | s̄) with Monte Carlo sampling. To this end, we
sample N skill vectors āi ∼ U(Ā), replace the integration with an average, and approximate the
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dynamics of the POMDP with the world model again:

p (s̄′ | s̄) =
∫

p(ā)p̄ (s̄′ | s̄, ā) dā (13)

≈ 1

N

N∑
i=1

p̄ (s̄′ | s̄, āi) (14)

≈ 1

N

N∑
i=1

ˆ̄p (s̄′ | s̄, āi) (15)

(16)

This yields the following approximation for the mutual information:

I(s̄′; ā | s̄) = Es̄,ā,s̄′

[
log

ˆ̄p (s̄′ | s̄, ā)
1
N

∑N
i=1

ˆ̄p (s̄′ | s̄, āi)

]
(17)

B.3 From mutual information maximization to an RL reward

We now consider skill learning via RL. One skill learning RL episode corresponds to the execution
of one skill for K time steps, starting in the abstract state s̄ = f(st) and ending in s̄′ = f(st+K).
The skill policy is conditioned on ā. The distribution p (ā, s̄) therefore plays a similar role as a
distribution of goals or tasks in multitask RL.

We can now tentatively identify the expected return of an RL episode with the approximated mutual
information

Es̄,ā [G] = Es̄,ā

[
ρ (s̄, ā) log

ˆ̄p (s̄′ | s̄, ā)
1
N

∑N
i=1

ˆ̄p (s̄′ | s̄, āi)

]
. (18)

Define the potential

ϕ(s̄′; s̄, ā) := log
ˆ̄p (s̄′ | s̄, ā)

1
N

∑N
i=1

ˆ̄p (s̄′ | s̄, āi)
, (19)

and the dense reward

r(st+k, a, st+k+1; s̄) := ϕ(f(st+k+1)); s̄, ā)− ϕ(f(st+k); s̄, ā) . (20)

Then the return becomes a telescoping sum and the expected return is equal to the mutual informa-
tion up to a constant term (as s̄ and ā are fixed during a skill learning RL episode) which does not
influence the optimal skill policy,

Es̄,ā [G] = Es̄,ā [ϕ(s̄
′; s̄, ā)− ϕ(s̄; s̄, ā)] . (21)

Hence, applying any suitable RL algorithm to the reward defined in Equation 20, maximizes an
approximation to the mutual information I(s̄′; ā | s̄).

B.4 Planning without the Markov property

As discussed in Section 4.1, SPlaTES performs MPC using abstract states s̄ ∈ S̄ which, in general,
lack the Markov property. In principle, the information missing from s̄ could introduce a large
amount of uncertainty into the abstract world model ˆ̄M. So why are the plans that SPlaTES finds
useful?

The answer to this question lies in the joint training of the abstract world model and the skill pol-
icy. When the higher level picks a skill vector, it does not know the details of the environment state.
However, the skill policy does see the full environment state, and is trained to reliably bring about the
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abstract state predicted by ˆ̄M. More concretely, the skill-learning objective involves minimizing the
entropy H (s̄t+K | s̄t, āt) (see Equation 1), as approximated by the term log ˆ̄p (s̄t+K | s̄t, āt) in the
reward (see Equation 3). This means that the skill policy will actively try to keep the abstract tran-
sition dynamics p (s̄t+K | s̄t, āt) as predictable as possible, regardless of the history of the episode.
As a side effect, the the dynamics will be approximately Markovian, i.e, loosely speaking,

p (s̄t+K | s̄t, āt) ≈ p (s̄t+K | s̄t, āt, . . . , s̄1, ā1) , ∀s̄t−1, āt−1, . . . , s̄1, ā1 . (22)

How well the Markov property can be achieved depends on several factors:

• The longer the duration of the skill execution in relation to the intrinsic time scale of the envi-
ronment, the more time is available for the skill policy to bring about the predicted abstract state.
Consider a quadruped navigation task as an example. The abstract state may focus on the position
but lack information about the velocity. In this case, the skill execution should be long enough to
overcome the inertia of the quadruped, and achieve a suitable velocity to arrive at the predicted
abstract state.

• The skill policy should try to stay flexible at the end of a skill execution by arriving in a state
that not only corresponds to the predicted abstract state, but also serves as a good start state for
the next skill (which is unknown before the higher level replans). For this reason, the skills are
trained with chainability in mind as discussed in Section 4.3. To extend the quadruped example,
high velocities or a loss of contact with the ground at the end of a skill would make it harder to
execute the next skill and should therefore be avoided.

Approximately restoring the Markov property in this way comes at the price of conservatism. As the
next skill vectors are not known in advance, the skill policy will try to be prepared for whichever one
comes next which may slow it down (similar to jogging over the finish line versus ’diving’ across it
at the end of a race). The abstract world model picks this conservatism up, which further reinforces
it. As a result, hierarchical SPlaTES policies are somewhat slower than an optimal flat policy would
be. However, hierarchical RL is intended for situations where flat RL algorithms cannot find such
an optimal flat policy in the first place. Furthermore, conditioning the skill policy not only on the
current skill vector but also on the next (couple of) skill vectors could remedy this conservatism.
As MPC provides such a sequence of skill vectors, this would be an interesting direction for future
work.

B.5 Are the high-level dynamics stable?

The name of our method, Stable Planning with Temporally Extended Skills, contains the word
stable, so in what sense is planning with our method stable?

Unfortunately, the maximization of the mutual information of the next abstract state and the skill
vector (see Equation 1) in isolation implies only that the temporally abstract dynamics induced by the
skills will be predictable. Since small changes in the initial abstract state and the skill vector could,
in theory, have a large impact on the next abstract state, the resulting dynamics could potentially be
unstable.

However, in practice the abstract dynamics are regularized by the neural network which is trained
to fit them. In particular, multilayer perceptrons have a bias towards smooth functions, and we
additionally initialize the dynamics as a linear function. Since the skills are in turn trained to achieve
what this learned model predicts (see Equation 3), this bias directly influences the skills. The length
scale over which the skills repel each other is furthermore kept fixed (see Section B.6) which ’locks’
them in place, preventing the relation between skill vector and resulting abstract state from becoming
unnecessarily nonlinear.

As a result, we empirically find that the high-level dynamics are indeed quite stable. This is verified
by our analysis of the learned skills (see 5.1). In particular, the error-correcting behavior ensures that
the abstract dynamics are much more well-behaved than the environment dynamics when compared
over the same amount of environment time steps.
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It is an interesting direction for future work to make this implicit bias towards smooth dynamics
more explicit and controllable.

B.6 Implementation details

In this section, we provide details on the implementation of SPlaTES. For further details, we refer
to the code and the configuration files (see project page).

Skill learning is implemented with a modified version of TD-MPC2 as it provides sample-efficient
learning. Our modifications are (i) to keep track of the intra-skill time step k, and the abstract start
state s̄ of the skill, and the skill vector during rollouts (ii) to bootstrap from an additional learned
Q-function (see below) at the end of a skill execution, (iii) to implement support for vectorized en-
vironments as we train with 12 environment instances for computational efficiency. We furthermore
transform the state linearly before calculating the skill learning reward. This linear transformation is
learned as the inverse of the covariance matrix of the abstract state deltas in the replay buffer. This
ensures that length scales when calculating the skill learning reward are not arbitrary but correspond
to typical changes brought about by the execution of a skill. We furthermore fix the standard devia-
tion of the abstract world model when calculating the skill reward (similar to Sharma et al. (2020b)).
This prevents premature convergence of the skills as it makes sure that the skills still repel each other
in the abstract state space, even if they are already relatively precise. We use a skill duration K of
10 for the Fetch environments and 50 for the Ant Maze environments.

We learn a expected Q-function on the lower level to obtain a better target for bootstrapping at the
end of a skill execution. The Q function is defined as

Q (a | s, k, s̄, ) := Eā∼U([−1,1]dĀ ) [Q (a | s, k, s̄, z)] , (23)

where dĀ denotes the dimension of the skill vector space. Intuitively, this Q-function learns the
expected return-to-go averaged over all possible skills. By bootstrapping from it at the end of the
skills, we ensure that all skill combinations are chainable.

An acceleration of skill learning in the initial phases of training can be achieved with a symmetry
breaking phase. Initially, the randomly initialized skill policies do not manage to change the abstract
state significantly. This makes the world model collapse to predicting very small, unstable skill
deltas. As a result, the skill learning reward does not consistently encourage the skill to move into a
specific direction in the abstract skill space. This issue can lead to a prolonged phase of ‘collapsed’
skills. To help the skills to differentiate, we initially calculate the skill learning reward with a random
linear transition model. This breaks the symmetry and accelerates learning. We then switch to the
learned model to learn the actual skill dynamics.

Improving exploration in skill learning is crucial for sample efficiency. We therefore clip the skill
learning reward from below at zero for the initial phases of training on the Fetch tasks. This ensures
that there is no penalty for exploring by moving the cube. We apply the same trick to the DADS
baseline to ensure a fair comparison. On the Ant environments, we found this not to be necessary
due to the absence of sparse contacts.

Encoder learning is implemented with a simple linear encoder as we found this to be sufficient
for learning from states. It furthermore ensures that the encoder does not partly perform non-linear
transformations needed for reward fitting. We split the output of the encoder up into a state s̄ and
a context c̄, f : S → S̄ × C̄. The role of the context is to encode information about the task that
are fixed in each episode. We therefore penalize changes to the context within an episode with a
simple squared error. The context is only fed to the reward function but not to the learned abstract
transition function. We found this distinction between state and context to not be strictly necessary
but to improve generalization and the ability to visualize the abstract world model. We choose a
dimension of 2 for the abstract state space for the Ant Maze environments, and 3 for the Fetch
variants. This corresponds to the intrinsic spatial dimension.

https://nicoguertler.github.io/splates-pages/


Long-Horizon Planning with Predictable Skills

The abstract world model consists of two learned components: The abstract dynamics ˆ̄p (s̄′ | s̄, ā)
are implemented as a neural network that predicts the weights, means, and standard deviations of a
mixture of Gaussians. In addition, we estimate the probability of episode termination via another
head. Both are trained via maximum likelihood. The second model, ˆ̄rπ (s̄, ā), predicts the reward
that accumulates during the execution of a skill and is trained with a mean squared error loss. The
termination probability is used during planning to correctly weight rewards that are less likely to
occur because the episode might terminate beforehand.

C Baselines

We implemented DADS with a custom version of TD-MPC2 to enable a fair comparison to SPlaTES.
As with our method, we added (i) the skill vector which is unchanged during rollouts, and (ii) sup-
port for vectorized environments. As the MPPI planner of TD-MPC2 does not provide probabilities
for actions, we could not implement the offline version of DADS (Sharma et al., 2020a). How-
ever, we think that the gains in sample efficiency from using model-based TD-MPC2 outweigh the
disadvantage of not being able to use importance sampling.

We combined HER with TD-MPC2 in a similar way, by keeping track of the goal instead of the skill
vector. Hindsight relabeling was implemented to take place during sampling from the replay buffer.

D Experimental details

D.1 Environments

Figure 14 shows the environments used for the experiments in Section 5. Ant Maze Push and Fetch
P & P Barrier are new variations and can be found on the project page.

Ant Maze Medium Ant Maze Push

Fetch Pick & Place Fetch P & P Barrier

Ant Maze Large

Figure 14: Renderings of the MuJoCo environments used in Section 5

https://nicoguertler.github.io/splates-pages/
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D.2 Number of seeds and reported quantities

The results in figures 6, 7, 8, and 11 were obtained by repeating training with five different seeds
for SPlaTES and all baselines. Lines (or bars) indicate the median, whereas the shaded area (or
error bars) indicate the range between the 20% and 80% percentiles. Five seeds were chosen as the
number is high enough to clearly separate our method from the baselines and ablations (except on
Fetch Pick & Place which is solved by all algorithms), while still fitting into our compute budget.

D.3 Hyperparameter studies

This section contains information about how hyperparameters of SPlaTES and the baselines influ-
ence performance.

(a) TD-MPC2 (from scratch) (b) TD-MPC2 (distilled from SPlaTES)

Figure 15: (a) Grid search over discount factor γ for TD-MPC2 when training from scratch. (b) Grid
search over discount factor when distilling a SPlaTES agent into TD-MPC2 model as described in
Section 5.3.

Figure 15 (a) shows the success rates of TD-MPC2 for a range of discount factors on Ant Maze
Medium. In principle, larger discount factors can enable less myopic behavior as they put more
emphasis on rewards far in the future. However, we observed empirically that discount factors
γ > 0.995 have a negative impact on performance. This is probably caused by the instability of TD-
learning with discount factors close to 1, in particular in combination with function approximation,
and off-policy training (Sutton et al., 1998). We chose γ = 0.995 for our experiments as it is the
highest discount factor for which we still observed good asymptotic performance.

Figure 15 (b) shows the performance of TD-MPC2 agents being distilled from a SPlaTES agent (see
Section 5.2) for various discount factors. Again we observe that discount factors γ > 0.995 perform
worse. However, the performance of high discount factors is still better than when training TD-
MPC2 from scratch. This can probably be attributed to two factors: (i) having access to the replay
buffer of the SPlaTES agent, and (ii) being transported to different locations in the environment by
this agent. This provides a better data distribution and stabilizes training. We again chose γ = 0.995
for the experiments in the main text as this discount factor performed best.

Figure 16 shows a grid search over the skill length K of SPlaTES and the fixed standard deviation
σskills of the abstract dynamics model used for computing the skill reward. Choosing σskills too small
removes the incentive for the skills to fill as much of the abstract state space as possible, and leads
to slow learning. The length K of a skill execution, on the other hand, does not have a big influence
on the final performance (as long as it is big enough to enable significant temporal abstraction). We
therefore chose K = 5 and σskills = 0.5.

D.4 Hyperparameters

Table 1 contains important hyperparameters for SPlaTES. These are:
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Figure 16: Grid search over skill length K of SPlaTES and fixed standard deviation σskills of the
abstract dynamics model used for computing the skill reward.

• the skill duration K, which determines for how many time steps a skill is executed,

• the dimension dĀ of the skill vector/abstract action ā,

• the dimension dS̄ of the abstract state s̄,

• the fixed standard deviation σskills of the abstract dynamics model which controls the scale over
which the skills repel each other in the abstract state space,

• the symmetry breaking duration, during which a random linear dynamics model is used in the
intrinsic reward instead of the trained one (after half of the duration, a linear interpolation of the
two models is used that linearly reduces the weight of the symmetry breaking model until the end
of the symmetry breaking phase), and

• the reward clipping duration, during which the intrinsic reward is clipped at zero from below.

Hyperparameter Environment
Fetch variations Ant variations

K 10 50
skill dim. dĀ 3 2
abstract state dim. dS̄ 3 2
σskills 1.0→ 0.3 0.5
symmetry breaking duration 300k 200k
reward clipping duration 160k -

Table 1: Important SPlaTES hyperparameters. a → b indicates a schedule over the training. This
table focuses on hyperparameters that have a big impact on the skill learning or the hierarchy as
a whole. We refer to the config files in the code repository for a complete list of hyperparameters
(concerning TD-MPC2, MLP sizes etc.)


