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Summary
Safe generalization in reinforcement learning requires not only that a learned policy acts ca-

pably in new situations, but also that it uses its capabilities towards the pursuit of the designer’s
intended goal. The latter requirement may fail when a proxy goal incentivizes similar behavior
to the intended goal within the training environment, but not in novel deployment environ-
ments. In this setting, policies may behave as if in pursuit of the proxy goal in deployment—a
phenomenon known as goal misgeneralization. In this paper, we theoretically investigate the
possibility of goal misgeneralization under maximum expected value (MEV) and minimax ex-
pected regret (MMER) objectives, and empirically validate our results. Our findings underscore
minimax expected regret as a promising principle for mitigating goal misgeneralization.

Contribution(s)
1. We introduce a problem setting called a proxy-distinguishing distribution shift, capturing a

class of situations in which goal misgeneralization can be elicited and studied.
Context: In a proxy-distinguishing distribution shift, optimizing a given proxy goal also
optimizes the true goal in most training situations, but optimizing the proxy goal can be
suboptimal under the true goal in most deployment situations (in particular, so-called dis-
tinguishing levels). We do not assume training methods have knowledge of the proxy goal.

2. We prove that, under a proxy-distinguishing distribution shift, approximately maximizing
expected value on the training distribution permits a misgeneralizing solution if the propor-
tion of distinguishing levels in the training distribution is low enough (Theorem 1).
Context: Exactly maximizing expected value on the training distribution permits misgen-
eralization if no distinguishing levels are seen in training. We model possible goal misgen-
eralization; actual goal misgeneralization also depends on the agent’s inductive biases.

3. We prove that, under a proxy-distinguishing distribution shift, no approximate solution of
the minimax expected regret objective exhibits goal misgeneralization (Theorem 2).
Context: Theorem 2 holds for fully observable environments; we include a generalization
to partially observable environments in the supplementary materials (Theorem 3).

4. Experiments suggest (no statistical significance analysis) that, under conditions approximat-
ing a proxy-distinguishing distribution shift in procedurally generated grid-world environ-
ments, policies learned using domain randomization (DR; an MEV-based training method)
exhibit goal misgeneralization when the proportion of distinguishing levels in the training
distribution is low enough (§7.1).
Context: Langosco et al. (2022) demonstrated goal misgeneralization with zero distin-
guishing levels, we extend this finding to the case with a small positive proportion.

5. Experiments suggest (no statistical significance analysis) that, under the same conditions,
existing regret-based unsupervised environment design (UED) methods, PLR⊥ (Jiang et al.,
2021a) and ACCEL (Parker-Holder et al., 2022), (1) can detect rare distinguishing levels
and increase their proportion in the training distribution, and (2) are more robust to goal
misgeneralization than DR is (§7.2).
Context: In some cases, less advanced UED methods fail to find MMER policies, and still
exhibit goal misgeneralization (§7.3, §7.4), indicating that more mature UED methods are
needed to achieve the potential of MMER for preventing goal misgeneralization in practice.
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Abstract

Safe generalization in reinforcement learning requires not only that a learned policy
acts capably in new situations, but also that it uses its capabilities towards the pursuit
of the designer’s intended goal. The latter requirement may fail when a proxy goal
incentivizes similar behavior to the intended goal within the training environment, but
not in novel deployment environments. This creates the risk that policies will behave
as if in pursuit of the proxy goal, rather than the intended goal, in deployment—a phe-
nomenon known as goal misgeneralization. In this paper, we formalize this problem
setting in order to theoretically study the possibility of goal misgeneralization under
different training objectives. We show that goal misgeneralization is possible under ap-
proximate optimization of the maximum expected value (MEV) objective, but not the
minimax expected regret (MMER) objective. We then empirically show that the stan-
dard MEV-based training method of domain randomization exhibits goal misgeneraliza-
tion in procedurally-generated grid-world environments, whereas current regret-based
unsupervised environment design (UED) methods are more robust to goal misgeneral-
ization (though they don’t find MMER policies in all cases). Our findings suggest that
minimax expected regret is a promising approach to mitigating goal misgeneralization.

1 Introduction

As reinforcement learning (RL) is increasingly applied in complex, open-ended, real-world envi-
ronments, it is becoming infeasible for training to comprehensively cover all situations an agent
will face in deployment. We therefore need training methods to produce policies that generalize,
behaving as intended when faced with a novel scenario (Kirk et al., 2023).

A particular challenge arises when incomplete coverage of the environment space during training
creates a proxy goal. A proxy goal is a reward function that, compared to the true goal, induces sim-
ilar optimal behavior in most situations encountered during training, but induces radically different
behavior in some novel situations. Proxy goals create the risk of goal misgeneralization—learning
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Figure 1: Maximum expected value and minimax expected regret vs. goal misgeneralization.
A mouse searches a maze for cheese that is usually located in the top-left corner. There is a proxy
goal (“go to the corner”) that mostly incentivizes the same optimal behavior as the true goal (“go
to the cheese”). (Left): Standard RL methods that approximately maximize expected value/return
could find a policy that behaves as if pursuing the proxy goal rather than the true goal, since layouts
where this policy fails are rare in training. This would lead to incorrect generalization. (Right): If a
policy ignores the cheese, a regret-maximizing adversary can move the cheese away from the corner
until the agent internalizes the correct goal, leading to correct generalization.

a policy that retains its capabilities in novel situations, but behaves as if to pursue the proxy goal
instead of the true goal when the two diverge (Langosco et al., 2022; Shah et al., 2022).

Goal misgeneralization can arise when such “proxy-distinguishing” situations—where the proxy
goal diverges from the true goal—are rare within training, making policies that pursue the
wrong goal approximately optimal in terms of the standard RL objective of maximum expected
value (MEV). This motivates the need for training methods that can somehow identify proxy-
distinguishing situations within a complex environment, and ensure they are adequately covered
in the training distribution.

We observe that favoring the proxy goal in proxy-distinguishing situations leads to high expected
regret, defined as the shortfall of expected return compared to that obtained by an optimal pol-
icy. An environment selected to maximize a policy’s expected regret will naturally include proxy-
distinguishing situations as long as the policy ignores the true goal. Therefore, we propose mitigat-
ing goal misgeneralization via the minimax expected regret (MMER) objective (Savage, 1951).

In this paper, we conduct a theoretical and empirical investigation of the possibility of goal misgen-
eralization under the MEV and MMER objectives. An outline of our contributions is as follows.

1. In Section 4, we introduce a problem setting called a proxy-distinguishing distribution shift,
formalizing a class of situations in which goal misgeneralization can arise.

2. In Section 5, we show formally that (1) approximately optimizing MEV is susceptible to goal
misgeneralization if proxy-distinguishing situations are sufficiently rare (Theorem 1), and (2) ap-
proximately optimizing MMER is provably robust to goal misgeneralization (Theorem 2).

3. In Sections 6 and 7, we empirically study the robustness to goal misgeneralization of a standard
MEV-based training method (domain randomization; Tobin et al., 2017), and recent MMER-
based training methods (regret-based unsupervised environment design; Dennis et al., 2020; Jiang
et al., 2021a; Parker-Holder et al., 2022) under a proxy-distinguishing distribution shift.

Our theoretical results show that, in the limit of idealized training methods, MMER-based train-
ing is guaranteed to be robust against goal misgeneralization, whereas MEV-based training is not.
Our empirical results show that current MMER-based training methods are indeed more robust to
goal misgeneralization than MEV-based training is, and, while they sometimes still exhibit goal
misgeneralization, this happens less for more advanced methods. Together, these results establish
MMER-based training as a promising approach to preventing goal misgeneralization.
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2 Related work

Goal misgeneralization. Ensuring learned systems generalize as intended in novel situations is a
perennial challenge for deep learning and deep RL (Kirk et al., 2023). Christiano (2018) distin-
guishes benign generalization failures, where an agent fails to behave capably in a novel situation,
from malign generalization failures, where the agent demonstrates capable behavior towards the pur-
suit of an unintended objective. Langosco et al. (2022) and Shah et al. (2022) demonstrate behavioral
examples of malign generalization failures in deep RL, introducing the term goal misgeneralization.
Goal misgeneralization is similar to shortcut learning in supervised learning (Geirhos et al., 2020),
but emphasizes shortcut reward functions, rather than shortcut policies (cf., Suau et al., 2024).

Recent work proposes complementary approaches to mitigating the risk of goal misgeneralization.
Starace (2023) investigates influencing the agent’s inductive bias in favor of correct goal generaliza-
tion using goal-conditioned RL with natural language task descriptions. Trinh et al. (2024) studies
methods for detecting when the agent is in an unfamiliar situation and choosing to ask an expert (at
a cost) to clarify the optimal action.

Training in complex environments. The standard technique for RL in complex environments is
to train on situations sampled from a fixed distribution, a technique known as domain randomiza-
tion (e.g., Tobin et al., 2017; Peng et al., 2018). Maximizing expected return over such situations
corresponds to pursuing the MEV objective with respect to the fixed training distribution.

Dennis et al. (2020) proposed regret-based unsupervised environment design (UED), an RL training
technique featuring an adversarial environment designer that continually adapts the training distribu-
tion aiming to maximize the agent’s expected regret. Maximizing expected return on this adversarial
distribution corresponds to the MMER objective (Dennis et al., 2020). UED has been promoted as
a technique for (1) improving sample efficiency by creating an emergent curriculum; and (2) im-
proving capability generalization via adversarial robustness (Dennis et al., 2020; Jiang et al., 2021a;
Parker-Holder et al., 2022). We show that UED also helps to mitigate goal misgeneralization.

Alternative adversarial approaches, such as maximin expected value (Dennis et al., 2020; Wang
et al., 2023), maximizing diversity (OpenAI et al., 2019), or maximizing learnability (Rutherford
et al., 2024), have not been studied in the context of goal misgeneralization. These approaches may
also mitigate goal misgeneralization to the extent that they promote training in proxy-distinguishing
situations, incentivizing the agent to internalize the true goal. We show that directly optimizing the
training environment for regret is sufficient. Appendix K shows that minimax expected value can
exhibit goal misgeneralization when some situations have low maximum expected return.

3 Preliminaries

A (reward-free) underspecified Markov decision process (UMDP) is a tuple M = ⟨Θ,A,S, I, T ⟩
where Θ is a space of free parameters (also called levels), A is the agent’s action space, S is a state
space, I : Θ → ∆(S) is an initial state distribution, and T : Θ × S × A → ∆(S) is a conditional
transition distribution. For simplicity, we assume Θ, S, A are finite. Given a level θ ∈ Θ we have
a fully-specified (reward-free) MDP ⟨A,S, I(θ), T (θ,−,−)⟩. We aggregate these MDPs into a
single complex environment using a level distribution Λ ∈ ∆(Θ). A reward function (or goal) is
a function R : S×A×S → R. Taken together, M and R define a proper (non-reward-free) UMDP.
We define reward functions and reward-free UMDPs separately to facilitate considering multiple
goals for an otherwise fixed environment. We usually denote by R and R̃ the true goal and the
proxy goal, respectively.

An agent’s policy is a conditional action distribution π : Θ × S → ∆(A). Note that we assume
the policy observes the level (we consider the partially observable case in Appendix E). The set of
all policies is denoted by Π. We define the expected return (or expected value) of policy π in
level θ under goal R as the discounted cumulative reward V R(π; θ) = E[

∑∞
t=0 γ

tR(st, at, st+1) ]
where γ ∈ (0, 1) is a discount factor and the expectation is over s0 ∼ I(θ), at ∼ π(θ, st), and
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st+1 ∼ T (θ, st, at). We lift this definition to level distributions as V R(π; Λ) = Eθ∼Λ

[
V R(π; θ)

]
.

A normalized goal is one such that the return has support in [0, 1].

We define the expected regret of a policy π in the level θ under a goal R as the shortfall of expected
value achieved by the policy compared to an optimal policy for that level,

GR(π; θ) = max
π′∈Π

V R(π′; θ)− V R(π; θ). (1)

Once again, we lift this definition to level distributions as GR(π; Λ) = Eθ∼Λ

[
GR(π; θ)

]
. Since the

policy is conditioned on θ, we also have the following identity (see Appendix B):

GR(π; Λ) = max
π′∈Π

V R(π′; Λ)− V R(π; Λ). (2)

4 Problem setting

Langosco et al. (2022) and Shah et al. (2022) provide case studies of several situations in which
goal misgeneralization arises. In order to theoretically study goal misgeneralization, we formalize
an abstract class of situations in which goal misgeneralization can arise as a problem setting called
a proxy-distinguishing distribution shift.

4.1 Level classification

The problem setting is defined in terms of the following classification of levels, based on whether a
given proxy goal incentivizes optimal or suboptimal behavior under a true goal.

Definition 1 (Proxy non-distinguishing level). Consider an UMDP ⟨Θ,A,S, I, T ⟩, a true goal R,
and a proxy goal R̃. A level θ ∈ Θ is proxy non-distinguishing with respect to R and R̃ if all optimal
policies with respect to R̃ are also optimal with respect to R, that is,

arg maxπ∈Π V R̃(π; θ) ⊆ arg maxπ∈Π V R(π; θ).

Definition 2 (Possibly proxy C-distinguishing level). Consider an UMDP ⟨Θ,A,S, I, T ⟩, a true
goal R, a proxy goal R̃, and a constant C ≥ 0. A level θ ∈ Θ is possibly proxy C-distinguishing
with respect to R and R̃ if some policy that is optimal with respect to R̃ achieves sufficiently subop-
timal expected return with respect to R, that is,

arg maxπ∈Π V R̃(π; θ) ̸⊆ arg-C-maxπ∈Π V R(π; θ)

where arg-C-maxπ∈Π V R(π; θ) = {π ∈ Π | V R(π; θ) ≥ maxπ′∈Π V R(π′; θ)− C}.

For brevity, we usually drop the prefixes “proxy” and “possibly proxy” and refer simply to “non-
distinguishing” and “distinguishing” levels. The prefix “proxy” signifies that the two goals play
asymmetric roles in the definitions, because our interest is in whether training in a level disincen-
tivizes policies that pursue the proxy goal at the expense of the true goal, and not the other way
around. Proxy non-distinguishing levels never offer a training signal against optimally pursuing the
proxy goal, because all such policies are necessarily also optimal under the true goal. In contrast,
in proxy distinguishing levels, there exist policies that pursue the proxy goal at the expense of the
true goal. These policies are disincentivized when training in these levels. Note that while this is
the case for some policies that are optimal under the proxy goal, it may not be the case for a given
policy, hence “possibly.”

If C = 0, the classification is exhaustive. Figure 2 gives several examples. If C > 0, the classifica-
tion is not necessarily exhaustive: there may exist levels for which it is possible to optimally pursue
the proxy goal while remaining approximately optimal under the true goal. However, it is often true
that optimizing a misspecified goal leads to arbitrarily low return (cf., Zhuang & Hadfield-Menell,
2020). Therefore, possibly proxy C-distinguishing levels represent an important class of levels.
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Proxy non-distinguishing levels Possibly proxy distinguishing levels (C = 0)
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Figure 2: Illustration and examples of non-distinguishing and distinguishing levels. A level
θ ∈ Θ can be classified as non-distinguishing or 0-distinguishing (Definitions 1 and 2). (1st row):
Possible relationships between sets Π⋆ = arg maxπ∈Π V R(π; θ) and Π̃⋆ = arg maxπ∈Π V R̃(π; θ).
(2nd row): Example levels for a navigation environment. Yellow and orange arrows show optimal
behaviors for the true goal (“go to the cheese”) and a proxy goal (“go to the corner”), respectively.

4.2 Proxy-distinguishing distribution shift

We model a shift from training to deployment as a change in the distribution of available levels (from
a training distribution to a deployment distribution). The distribution shift is proxy-distinguishing
when the training distribution concentrates mostly on non-distinguishing levels, but the deployment
distribution concentrates mostly on distinguishing levels.

Definition 3 (Proxy-distinguishing distribution shift). Consider an UMDP ⟨Θ,A,S, I, T ⟩, a true
goal R, and a proxy goal R̃. A proxy-distinguishing distribution shift is a tuple ⟨α, β, C,ΛTrain,
ΛDeploy⟩ where α, β are ratios such that 0 ≤ α < β ≤ 1, C ≥ 0 is a constant, and ΛTrain,ΛDeploy ∈
∆(Θ) are distributions over levels with the following classifications (with respect to R and R̃):

1. ΛTrain has probability α on C-distinguishing levels and the rest on non-distinguishing levels.

2. ΛDeploy has probability β on C-distinguishing levels and the rest on non-distinguishing levels.

We are mainly interested in the case where α is very close to zero (where goal misgeneralization is
a particular risk) and β is very close to one (where goal misgeneralization is a particular concern).

4.3 Assumptions

We don’t assume prior knowledge of the proxy goal or distinguishing levels. However, we do assume
the ability to train in distinguishing levels, once identified. In practice, one can train in a very wide
space of situations, whether via a simulator (Tobin et al., 2017; Peng et al., 2018; Kumar et al., 2021;
Makoviychuk et al., 2021; Muratore et al., 2022; Ma et al., 2024), a generative environment model
(Bruce et al., 2024), or a world model (Ha & Schmidhuber, 2018; Hafner et al., 2020; Schrittwieser
et al., 2020; Hafner et al., 2025; Valevski et al., 2025). If all levels accessible before deployment are
non-distinguishing, we may require alternative assumptions (see, e.g., Trinh et al., 2024).

Moreover, we assume access to a reliable reward signal in favor of the true goal in distinguishing
levels. This mirrors assumptions made in work on spurious correlations in supervised learning (e.g.,
Liu et al., 2021; Zhang et al., 2022). However, in practice, reward functions may be subject to
misspecification in such corner cases (cf., Hadfield-Menell et al., 2017). Future work could develop
methods that treat the true goal as underspecified in rare, distinguishing levels and find ways to
incentivize safe generalization behavior despite this uncertainty.
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5 Theoretical results

In this section, we prove that under a proxy-distinguishing distribution shift, the maximum expected
value (MEV) objective permits an approximately optimal policy that exhibits goal misgeneralization.
On the other hand, we show that any policy that is approximately optimal with respect to minimax
expected regret (MMER) must avoid goal misgeneralization. All proofs are in Appendix A.

We consider approximately optimal policies because, in practice, training uses finite optimization
power and will not always find policies that are exactly optimal. We model approximate optimization
as instead finding an arbitrary policy within a small threshold of optimal for the given objective. We
use the notation arg-ε-maxx∈X f(x) = {x ∈ X | f(x) ≥ maxξ∈X f(ξ) − ε} (likewise, arg-ε-min)
for approximate optimization of a function f : X → R with approximation threshold ε ≥ 0.

5.1 Approximate maximum expected value is susceptible to goal misgeneralization

The standard objective used in RL is the maximum expected value (MEV) objective with respect to
the fixed training distribution. We formalize approximate solutions under this objective as follows.
Definition 4 (Approximate MEV). Consider an UMDP ⟨Θ,A,S, I, T ⟩, a goal R, an approxima-
tion threshold ε ≥ 0, and a fixed level distribution Λ ∈ ∆(Θ). The approximate MEV policy set
with respect to Λ is then

ΠMEV
ε (R,Λ) = arg-ε-max

π∈Π
V R(π; Λ).

The MEV objective permits goal misgeneralization under a proxy-distinguishing distribution shift if
the proportion of distinguishing levels in training is too small. Intuitively, a policy pursuing the proxy
goal in all levels achieves enough return on non-distinguishing levels to be approximately optimal.
Note: rather than modeling inductive bias, we characterize the possibility of goal misgeneralization.
Theorem 1 (MEV is susceptible to goal misgeneralization). Consider an UMDP ⟨Θ,A,S, I, T ⟩,
a pair of normalized goals R, R̃, a proxy-distinguishing distribution shift ⟨α, β, C,ΛTrain,ΛDeploy⟩,
and an approximation threshold ε ≥ 0. If α ≤ ε, then there exists πMEV ∈ ΠMEV

ε (R,ΛTrain) such
that

πMEV ∈ arg max
π∈Π

V R̃(π; ΛDeploy) \ arg-βC-max
π∈Π

V R(π; ΛDeploy). [proof]

5.2 Approximate minimax expected regret is robust to goal misgeneralization

The MMER objective is to minimize the expected regret assuming an adversarially-chosen (max-
imum expected regret) level distribution for each policy. We consider approximate minimization
against an exactly optimal adversary, but a similar robustness property holds when using an approx-
imate adversary (the bound worsens linearly in the suboptimality of the adversary, see Appendix C).
Definition 5 (Approximate MMER). Consider an UMDP ⟨Θ,A,S, I, T ⟩, a goal R, and an ap-
proximation threshold ε ≥ 0. The approximate MMER policy set is then

ΠMMER
ε (R) = arg-ε-min

π∈Π
max

Λ∈∆(Θ)
GR(π; Λ).

The MMER objective does not permit goal misgeneralization under any distribution shift within
the specified level space. Intuitively, the adversarial level distribution for a misgeneralizing policy
would concentrate on distinguishing levels, generating high expected regret.
Theorem 2 (MMER is robust to goal misgeneralization). Consider an UMDP ⟨Θ,A,S, I, T ⟩, a
pair of goals R, R̃, a proxy-distinguishing distribution shift ⟨α, β, C,ΛTrain,ΛDeploy⟩, and an approx-
imation threshold ε ≥ 0. Then

∀πMMER ∈ ΠMMER
ε (R), we have πMMER ∈ arg-ε-max

π∈Π
V R(π; ΛDeploy). [proof]

Remarks. As a corollary, any policy that is robust against all possible distribution shifts must
be an MMER policy (see Appendix D). A slightly modified bound holds for partially observable
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environments after accounting for the minimum expected regret realizable by a fixed policy (see
Appendix E).

6 Experimental methods

In this section, we outline our methods for investigating the robustness to goal misgeneralization of
MEV-based and MMER-based training methods. We construct three custom procedurally-generated
grid-world environments approximating proxy-distinguishing distribution shifts (Section 6.1). We
compare a standard MEV-based training method and two recently proposed MMER-based methods
with adversaries of varying flexibility (Section 6.2), paired with regret estimators that leverage vary-
ing amounts of domain knowledge (either using the ground truth maximum return, or estimating it
from samples; Section 6.3). Section 7 presents the results of our experiments.

6.1 Procedurally-generated grid-world environments

Langosco et al. (2022) exhibited goal misgeneralization in several environments from OpenAI Proc-
gen (Cobbe et al., 2020), suitably modified to implement a proxy-distinguishing distribution shift
with α = 0. We implement three similar procedurally-generated grid-world environments in JAX
(Bradbury et al., 2018), allowing us to more easily implement custom level generation and analysis.

For each environment, we construct two procedural level generators Λ¬Distg.,ΛDistg. ∈ ∆(Θ), ap-
proximately concentrated on non-distinguishing and distinguishing levels, respectively. From these,
we define training distributions ΛTrain

α = (1−α)Λ¬Distg. +αΛDistg. where α is the proportion of dis-
tinguishing levels. In our experiments, we vary α from 10−5 to 10−1, with α ∈ {0, 1} as baselines.
We evaluate on ΛDeploy = ΛDistg., approximating a proxy-distinguishing distribution shift.

The three environments are as follows. Figure 3 illustrates example levels (note we use Boolean
observations). Appendix F comprehensively documents each environment, including the details of
classifying levels as non-distinguishing or distinguishing and procedural level generation.

1. CHEESE IN THE CORNER. A mouse navigates a maze. The true goal assigns +1 reward for
reaching a piece of cheese, while a proxy goal assigns +1 reward for reaching the top left corner
for the first time. Levels with the cheese in the top left corner are non-distinguishing and levels
with the cheese away from the corner are (in most cases) distinguishing.

2. CHEESE ON A DISH. This time the mouse navigates a maze containing cheese and also a dish.
The true goal assigns +1 reward for reaching the cheese, while a proxy goal assigns +1 reward
for reaching the dish. Levels with the cheese and dish co-located are non-distinguishing, and
levels with the cheese and dish separated are (in most cases) distinguishing.

3. KEYS AND CHESTS. A more complex, multi-stage task, in which the mouse navigates a maze,
collects keys, and spends keys to open chests. Levels with 3 keys and 10 chests are approximately
non-distinguishing. Levels with 10 keys and 3 chests are mostly distinguishing—a misgeneraliz-
ing policy would overprioritize key collection beyond what is necessary for opening chests.

CHEESE IN THE CORNER CHEESE ON A DISH KEYS AND CHESTS
Non-distinguishing Distinguishing Non-distinguishing Distinguishing Non-distinguishing Distinguishing

Figure 3: Example procedurally-generated non-distinguishing/distinguishing levels. The agent’s
observation is a 15×15×c Boolean grid (where c is an environment-dependent number of channels).
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6.2 Training methods

For both MEV-based and MMER-based training, we follow Langosco et al. (2022) and use an agent
network architecture based on that of IMPALA (Espeholt et al., 2018) with a dense feed-forward
layer replacing the LSTM block. We perform policy updates with PPO (Schulman et al., 2017) and
GAE (Schulman et al., 2015). We document hyperparameters and compute usage in Appendix G.

For MEV, we use a standard method for training in UMDPs given a fixed level distribution.

1. Domain randomization (DR; Tobin et al., 2017). For each iteration of PPO, we sample (pro-
cedurally generate) a new batch of levels from the fixed training level distribution ΛTrain

α , collect
experience in this batch of levels, and then train on the collected experience.

For MMER, we use two methods of regret-based unsupervised environment design (UED; Dennis
et al., 2020). UED methods implement the two-level optimization from Definition 5 by training the
policy on levels selected from a distribution chosen by a regret-maximizing adversary. The first
UED method is a regret-based form of prioritized level replay (PLR; Jiang et al., 2021b).

2. Robust prioritized level replay (PLR⊥; Jiang et al., 2021a). The adversary parametrizes its
level distribution using a fixed-size level buffer. Throughout training, the adversary refines the
buffer by either (1) sampling a new batch of levels from the underlying training distribution ΛTrain

α

and estimating the expected regret of the current policy on these levels; or (2) sampling from the
current buffer, conducting a PPO training step with the chosen levels, and updating their expected
regret estimates; keeping the highest-regret levels in the buffer.

PLR⊥ has the advantage of being domain-agnostic, but has the disadvantage of only being able to
replay levels once they have been sampled from the underlying distribution. We also consider a
more advanced adversary with an independent means of exploring the space of level distributions.

3. Adversarially compounding complexity by editing levels (ACCEL; Parker-Holder et al.,
2022). The adversary continually refines a level buffer with steps (1) and (2) from PLR⊥, and ad-
ditionally by (3) applying stochastic edits to the levels used for PPO training to generate similar
levels, and estimating the expected regret of the current policy on these new levels.

ACCEL additionally requires an edit distribution. We edit levels by sampling a sequence of random
elementary level modifications, none of which change whether the level is non-distinguishing or
distinguishing. Appendix J details this edit distribution and compares it to edit distributions with
more or less ability to introduce distinguishing levels.

6.3 Expected regret estimation methods

Both UED methods require an (expected) regret estimator for deciding which levels to keep in the
buffer. To represent the current capabilities of UED methods, we use the following domain-agnostic
estimator, similar to the MaxMC estimator proposed by Jiang et al. (2021a).

1. Max-latest estimator. We estimate the expected regret of policy π in level θ under goal R as

ĜR
max-latest(π; θ) = V̂ R

max(θ)− V̂ R
latest(π; θ) (3)

where V̂ R
max(θ) is the highest empirical return ever achieved for this level throughout training; and

V̂ R
latest(π; θ) is the empirical average return achieved by the current policy.

To simulate a more advanced regret estimator than is currently available in practice, we also consider
a domain-specific estimator that solves each procedurally-generated level using a graph algorithm
to compute the exact maximum expected return (details in Appendix F).

2. Oracle-latest estimator. We estimate the expected regret of policy π in level θ under goal R as

ĜR
oracle-latest(π; θ) = max

π′
V R(π′; θ)− V̂ R

latest(π; θ) (4)

where maxπ′ V R(π′; θ) is the maximum expected return for the level; and V̂ R
latest(π; θ) is as above.
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Figure 4: Distribution shift performance for various training distributions. Average return over
512 steps for an evaluation batch of 256 distinguishing levels sampled from ΛDeploy = ΛDistg.. High
performance indicates policies generalizing as intended; low performance indicates goal misgener-
alization. Each policy is trained on T environment steps using the indicated training method with
underlying training distribution ΛTrain

α = (1− α)Λ¬Distg. + αΛDistg.. Mean over N seeds, shaded to
one standard error. Note the split in the horizontal axis used to show zero on the log scale.

7 Experimental results

In this section, we report the results of our main experiments. Consistent with Theorem 1, MEV-
based training is susceptible to goal misgeneralization unless the proportion of distinguishing levels
in the training distribution is sufficiently high (Section 7.1). Consistent with Theorem 2, MMER-
based training methods are typically capable of identifying and increasing the proportion of rare,
high-regret, distinguishing levels, thereby preventing goal misgeneralization in many situations
where MEV-based training misgeneralizes (Section 7.2). In some cases, UED methods fail to find
MMER policies, and exhibit goal misgeneralization. We see generally that the more advanced UED
methods are more robust to goal misgeneralization (Section 7.3). In KEYS AND CHESTS, DR out-
performs ACCEL with max-latest regret estimation, underscoring reliable regret estimation as a
particular challenge for future work on MMER-based training (Section 7.4).

7.1 Domain randomization exhibits goal misgeneralization with rare distinguishing levels

Theorem 1 says that if the proportion of distinguishing levels in the fixed training distribution is
small enough, then approximately optimizing MEV possibly leads to goal misgeneralization. Our
experiments show that DR, an MEV-based training method, indeed exhibits goal misgeneralization
when the proportion of distinguishing levels in the training distribution is small enough. Figure 4
shows end-of-training performance on distinguishing levels. There is a threshold below which DR’s
performance on distinguishing levels falls. DR achieves high return on non-distinguishing levels and
high proxy return on distinguishing levels (Appendix H), indicating a case of goal misgeneralization.

In CHEESE IN THE CORNER and KEYS AND CHESTS, DR exhibits goal misgeneralization until there
is around α = 1e-1 (10%) mass on distinguishing levels. For CHEESE ON A DISH, DR is robust to
goal misgeneralization from as low as α = 1e-2 (1%) (see also Appendix N). Appendix L shows
that training for substantially longer slightly increases DR’s robustness in CHEESE ON A DISH.

We note that Langosco et al. (2022) previously demonstrated goal misgeneralization while training
with DR without distinguishing levels in similar environments. Moreover, Langosco et al. (2022)
demonstrated that for a modified version of OpenAI ProcGen’s COINRUN environment (Cobbe
et al., 2019; 2020), training with α = 2e-2 (2%) prevents goal misgeneralization. They did not
experiment with smaller proportions of distinguishing levels. We show that with small but nonzero
proportions of distinguishing levels, DR can still exhibit goal misgeneralization.
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Figure 5: Rate at which adversary plays distinguishing levels. We plot the proportion of adver-
sarially sampled levels classified as distinguishing across training for T environment steps. The di-
agonal represents the proportion from the underlying training distribution ΛTrain

α = (1−α)Λ¬Distg. +
αΛDistg. (as used in DR). Points above the diagonal indicate the adversary increasing the proportion
of distinguishing levels relative to the underlying training distribution. Mean over N seeds, shaded
to one standard error. Note the splits in both axes used to show zero on the log scales.

7.2 Regret-based prioritization amplifies distinguishing levels, mitigating misgeneralization

Theorem 2 says that, if a policy pursues the proxy goal at the expense of the true goal in distinguish-
ing levels, then the adversary should select a distribution of distinguishing levels that generates high
regret. Figure 5 shows the average proportion of distinguishing levels selected from the adversary
throughout training, showing that, with the exception of max-latest estimation in the KEYS AND
CHESTS environment, the adversary selects distinguishing levels disproportionately often compared
to sampling from the underlying distribution, thereby incentivizing policies that pursue the true goal.

Figure 4 shows that this increase in the proportion of training levels is, in most cases, enough to
lead to correct generalization. In each environment, MMER-based training methods are robust to
goal misgeneralization at α values for which DR exhibits goal misgeneralization. For example, in
CHEESE IN THE CORNER, all UED methods are robust to goal misgeneralization at α = 1e-2 (1%),
and some remain robust for even lower α. Note that some evaluation levels are unsolvable—the
highest return to be expected is given by the agents trained with α = 1.

7.3 Increasingly advanced UED methods are more robust to goal misgeneralization

Theorem 2 says that MMER-based training should be robust to goal misgeneralization regardless of
the distribution shift. In contrast, in our experiments, the proportion of distinguishing levels played
by the adversary decreases as we decrease α (Figure 5), and each UED method exhibits a threshold
below which it fails to converge to an MMER policy, and exhibits goal misgeneralization (Figure 4).

This performance trend reflects how the adversaries construct level distributions. When distinguish-
ing levels are very rare (or never arise), the adversary is hindered (prevented) from increasing the
number of distinguishing levels in the buffer. Compared to PLR⊥, ACCEL can replicate similar lev-
els throughout its buffer through edits, but we used edits that don’t create new distinguishing levels.
Appendix J investigates ACCEL variants with different edit distributions, showing that ACCEL can
prevent goal misgeneralization even when α = 0 if edits can introduce distinguishing levels.

Overall, robustness correlates with how advanced the adversaries are. Our most flexible adversary
(ACCEL) paired with our most powerful regret estimator (oracle-latest) is remarkably robust to goal
misgeneralization in all environments for all positive α tested. The less flexible PLR⊥ using the
less powerful max-latest expected regret estimator is the least robust. This motivates work pursuing
regret-based UED methods with better convergence properties (cf. Monette et al., 2025).
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Figure 6: Performance on CHEESE IN THE CORNER levels with varying cheese position. For
each training configuration, we evaluate the trained policy (first of 8 seeds) on a batch of 122 levels
with shared wall layout and mouse spawn position but different cheese positions. We indicate av-
erage return on levels with different cheese positions by the color of the corresponding grid square.
We see a progression whereby for more advanced algorithms or higher α, the agent is robust to a
greater proportion of cheese positions. See Appendix I for more details and full range of α values.

7.4 Biased regret estimation can undermine UED in more complex environments

The poor performance of ACCEL with max-latest the estimator in the KEYS AND CHESTS environ-
ment underscores the challenge of expected regret estimation. Estimating maximum return from
samples is particularly challenging in this environment, where high return is unlikely to be achieved
in distinguishing levels by chance, since chests are substantially rarer than in non-distinguishing lev-
els. It appears that the increased flexibility of ACCEL in this case works as a disadvantage, leading
to the adversary being led astray by biased regret estimates even more so than PLR⊥.

The challenges of regret estimation are known, and are an active area of research (cf. Rutherford
et al., 2024). Our results highlight the importance of future work on reliable regret estimation meth-
ods, towards achieving the improved performance shown by our domain-specific oracle-latest esti-
mator. Such work could investigate using a separate policy network to estimate the maximum return
(cf. Dennis et al., 2020), or incorporating the predictions of a value network (cf. Jiang et al., 2021a).

8 Conclusion

In this paper, we introduce the setting of a proxy-distinguishing distribution shift, and offer a the-
oretical and empirical investigation of the robustness of MEV-based and MMER-based training to
goal misgeneralization. We show theoretically and empirically that MEV-based training on a fixed
training distribution can lead to goal misgeneralization. In contrast, we show that MMER-based
training is provably robust against goal misgeneralization in the limit of idealized training methods,
and regret-based unsupervised environment design (UED) methods are empirically more robust than
MEV-based training. Current UED methods do not find MMER policies and prevent goal misgener-
alization in all the cases we studied, indicating there is still room for improvement between current
methods and the theoretical ideal. These findings highlight MMER-based training as a promising
approach to preventing goal misgeneralization.
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A Proofs for theoretical results from Section 5

Proof of Theorem 1. Assume α ≤ ε. Construct a policy πMEV such that, for all levels θ ∈ Θ,

πMEV ∈ arg max
π∈Π

V R̃(π; θ) \ arg-C-max
π∈Π

V R(π; θ) if θ is C-distinguishing, or

πMEV ∈ arg max
π∈Π

V R̃(π; θ) otherwise.

The former is non-empty by Definition 2. By construction, πMEV ∈ arg maxπ∈Π V R̃(π; ΛDeploy). It
remains to prove (i) πMEV ∈ ΠMEV

ε (R,ΛTrain) and (ii) πMEV /∈ arg-βC-maxπ∈Π V R(π; ΛDeploy).

For notational convenience, construct a policy π⋆ ∈ Π that is optimal under R in all levels. More-
over, let ΛTrain

Distg.,Λ
Train
¬Distg.,Λ

Deploy
Distg. ,Λ

Deploy
¬Distg. ∈ ∆(Θ) be ΛTrain and ΛDeploy conditioned on the level being

C-distinguishing or non-distinguishing, respectively.

Then for condition (i), we have

V R(πMEV; ΛTrain) = αV R(πMEV; ΛTrain
Distg.) + (1− α)V R(πMEV; ΛTrain

¬Distg.) (by Definition 3)

= αV R(πMEV; ΛTrain
Distg.) + (1− α)V R(π⋆; ΛTrain

¬Distg.) (by Definition 1)

≥ α · 0 + (1− α)V R(π⋆; ΛTrain
¬Distg.) (since V R ≥ 0)

= V R(π⋆; ΛTrain)− αV R(π⋆; ΛTrain
Distg.) (by Definition 3)

≥ V R(π⋆; ΛTrain)− ε · 1. (since α ≤ ε; V R ≤ 1)

For condition (ii), we have

V R(πMEV; ΛDeploy) = βV R(πMEV; ΛDeploy
Distg. ) + (1− β)V R(πMEV; ΛDeploy

¬Distg.) (by Definition 3)

= βV R(πMEV; ΛDeploy
Distg. ) + (1− β)V R(π⋆; ΛDeploy

¬Distg.) (by Definition 1)

< β
(
V R(π⋆; ΛDeploy

Distg. )− C
)
+ (1− β)V R(π⋆; ΛDeploy

¬Distg.)

(πMEV /∈ arg-C-max
π∈Π

V R(π; θ))

= V R(π⋆; ΛDeploy)− βC. (by Definition 3)

Proof of Theorem 2. Suppose πMMER ∈ ΠMMER
ε (R). Then we have the following bound on ex-

pected regret:

GR(πMMER; ΛDeploy) ≤ max
Λ∈∆(Θ)

GR(πMMER; Λ) (ΛDeploy ∈ ∆(Θ))

≤ min
π∈Π

max
Λ∈∆(Θ)

GR(π; Λ) + ε. (by Definition 5)

We can convert this upper bound on expected regret to a lower bound on expected return:

V R(πMMER; ΛDeploy) = max
π∈Π

V R(π; ΛDeploy)−GR(πMMER; ΛDeploy) (by equation 2)

≥ max
π∈Π

V R(π; ΛDeploy)− min
π∈Π

max
Λ∈∆(Θ)

GR(π; Λ)− ε. (by above bound)

The theorem follows, since, for all Λ ∈ ∆(Θ), minπ∈Π GR(π; Λ) vanishes by equation (2):

min
π∈Π

GR(π; Λ) = min
π∈Π

(
max
π′∈Π

V R(π′; Λ)− V R(π; Λ)

)
(by equation 2)

= max
π′∈Π

V R(π′; Λ)− max
π∈Π

V R(π; Λ) (max term is constant wrt. π)

= 0.
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Broader impact statement

Ngo et al. (2024) cast goal misgeneralization as a key risk mechanism for advanced deep learning
systems, noting that techniques that improve capability robustness without preventing goal misgen-
eralization could worsen outcomes, since the system’s greater capabilities would then be devoted to
the pursuit of an incorrect goal. Preventing this dangerous mode of generalization failure is a key
challenge in assuring the safety of advanced RL agents.

In this section, we briefly note that minimax expected regret appears to be well-suited in principle to
mitigating goal misgeneralization as deep learning systems become increasingly capable. This is be-
cause more generally capable deep learning systems should also be more capable regret-maximizing
adversaries in particular. A more capable adversary will, in turn, be better at detecting or synthesiz-
ing rare, high-regret training situations, and then amplifying the training signal from these situations
so as to induce correct generalization in an advanced deep RL agent (cf., Appendix J).

Our work highlights training with the minimax expected regret (MMER) objective as a promising
avenue for preventing goal misgeneralization. This objective has desirable theoretical properties, and
we have found promising initial empirical results, though current MMER-based training techniques
are not mature enough to prevent goal misgeneralization in all cases. As MMER-based training
methods improve and as goal misgeneralization leads to more severe consequences, the ability of
MMER-based training to mitigate goal misgeneralization should also improve.

Ultimately, we are hopeful that our work will instigate further research on the problem of goal
misgeneralization, which remains a critical, open problem in the alignment and safe generalization
of future advanced reinforcement learning agents.
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B Expected regret identity for UMDPs

In this section, we prove equation (2) for UMDPs. Recall the following definitions from Section 3.

V R(π; θ) = Es0∼I(θ),at∼π(θ,st),st+1∼T (θ,st,at)

[ ∞∑
t=0

γtR(st, at, st+1)

]
(5)

V R(π; Λ) = Eθ∼Λ

[
V R(π; θ)

]
(6)

GR(π; θ) = max
π′∈Π

V R(π′; θ)− V R(π; θ) (7)

GR(π; Λ) = Eθ∼Λ

[
GR(π; θ)

]
(8)

In Section 3, we observe that, for UMDPs, we have the additional basic identity

GR(π; Λ) = max
π′∈Π

V R(π′; Λ)− V R(π; Λ). (this is equation 2)

This is a nontrivial identity that does not hold for partially observable underspecified environments
in which the level is not observable to the policy (see Appendix E.1). However, for policies that are
conditioned on the level, the identity holds, as we now prove.
Proposition 1 (Expected regret identity for UMDPs). Consider an UMDP ⟨Θ,A,S, I, T ⟩, a goal
R, and a level distribution Λ ∈ ∆(Θ). Let Π be the set of all policies of the form π : Θ×S → ∆(A).
Then we have

GR(π; Λ) = max
π′∈Π

V R(π′; Λ)− V R(π; Λ).

Proof. GR(π; Λ) = Eθ∼Λ

[
GR(π; θ)

]
(equation 8)

= Eθ∼Λ

[
max
π′∈Π

V R(π′; θ)− V R(π; θ)

]
(by equation 7)

= max
π′∈Π

Eθ∼Λ

[
V R(π′; θ)

]
− Eθ∼Λ

[
V R(π; θ)

]
(by Proposition 2, below)

= max
π′∈Π

V R(π′; Λ)− V R(π; Λ). (by equation 6)

The above proof relies on Proposition 2, which says that we can exchange expectation and maxi-
mization for the expected return since the policy is conditioned on the level.
Proposition 2 (Expectation and maximization of expected return commute for UMDPs). Consider
an UMDP ⟨Θ,A,S, I, T ⟩, a goal R, and a level distribution Λ ∈ ∆(Θ). Let Π be the set of all
policies of the form π : Θ× S → ∆(A). Then we have

Eθ∼Λ

[
max
π∈Π

V R(π; θ)

]
= max

π∈Π
Eθ∼Λ

[
V R(π; θ)

]
.

Proof. (≥): Note that this direction holds regardless of whether we condition policies on the level.
Let π⋆ ∈ arg maxπ∈Π Eθ∼Λ

[
V R(π; θ)

]
. Then we have

max
π∈Π

Eθ∼Λ

[
V R(π; θ)

]
= Eθ∼Λ

[
V R(π⋆; θ)

]
≤ Eθ∼Λ

[
max
π∈Π

V R(π; θ)

]
.

(≤): Observe that, per equation (5), V R(π; θ) depends only on π through π(θ,−) : S → ∆(A),
that is, through the policy conditioned on the fixed level θ. Therefore, we can construct a sin-
gle policy that achieves the maximum expected return under all levels. For θ ∈ Θ, let π⋆

θ ∈
arg maxπ∈Π V R(π; θ). Then define π⋆ : Θ × S → ∆(A) such that for θ ∈ Θ, s ∈ S , and a ∈ A,
π⋆(a | θ, s) = π⋆

θ(a | θ, s). By construction, we have π⋆
θ ∈ arg maxπ∈Π V R(π; θ) for all θ ∈ Θ. It

follows that

Eθ∼Λ

[
max
π∈Π

V R(π; θ)

]
= Eθ∼Λ

[
V R(π⋆; θ)

]
≤ max

π∈Π
Eθ∼Λ

[
V R(π; θ)

]
.
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C Approximate relaxations of the minimax expected regret decision rule

The minimax expected regret decision rule says to choose a policy that minimizes the expected regret
with respect to the maximum expected regret level distribution for the given policy. In Section 5.2,
we consider one possible approximate relaxation of this decision rule, where we replace only the
minimization step with approximate minimization (but retain the exact maximization step).

In this appendix, we formulate two alternative approximate relaxations of the minimax expected
regret decision rule that also relax the maximization step (Appendix C.1). We also show that these
three formulations are asymptotically equivalent (Appendix C.2), and we derive robustness guaran-
tees akin to Theorem 2 corresponding to the two new definitions (Appendix C.3).

C.1 Alternative definitions of approximate minimax expected regret

First, we restate the approximate MMER definition from Section 5.2. The only difference is that
we add a qualifier “(1)” in preparation for distinguishing this definition from the two alternatives to
follow, and suppress the dependence on R in the notation for brevity.
Definition 6 (Approximate MMER(1), restating Definition 5). Consider an UMDP ⟨Θ,A,S, I, T ⟩,
a goal R, and an approximation threshold ε ≥ 0. The approximate MMER(1) policy set is then

ΠMMER(1)
ε = arg-ε-min

π∈Π
max

Λ∈∆(Θ)
GR(π; Λ).

This decision rule is approximate in that we don’t assume we can find a policy that achieves the true
minimum of the maximum expected regret. However, we still assume we can find the true maximum
expected regret for each policy. We consider next two approaches for relaxing this assumption.

The first approach casts the MMER objective as finding a Nash equilibrium of a two-player,
simultaneous-play zero-sum game in which the first player is the agent selecting a policy and the
second player is an adversary selecting a level distribution. We can therefore relax both the mini-
mization and the maximization simultaneously by using the concept of an approximate Nash equi-
librium, in which each player plays an approximate best response.
Definition 7 (Approximate MMER(2)). Consider an UMDP ⟨Θ,A,S, I, T ⟩, a goal R, and approx-
imation thresholds ε, δ ≥ 0. Consider the two-player zero-sum game

〈
⟨Π,∆(Θ)⟩, ⟨−GR, GR⟩

〉
,

where an agent plays a policy π ∈ Π and an adversary plays a level distribution Λ ∈ ∆(Θ), aiming
to minimize or maximize GR(π; Λ) respectively. A pair (π,Λ) is an (ε, δ)-equilibrium if

π ∈ arg-ε-min
π′∈Π

GR(π′; Λ) and Λ ∈ arg-δ-max
Λ′∈∆(Θ)

GR(π; Λ′).

The approximate MMER(2) policy set is then

ΠMMER(2)
ε,δ =

{
π ∈ Π

∣∣ ∃Λ ∈ ∆(Θ) such that (π,Λ) is an (ε, δ)-equilibrium
}
.

Our second approach conditions on a concrete mapping capturing an approximately optimal re-
sponse from the adversary to each possible policy, with respect to which we require the chosen
MMER policy to be approximately optimal. This definition could alternatively be formulated in
terms of a sequential zero-sum game where the agent chooses the policy and reveals it to the ad-
versary prior to the adversary choosing a level distribution aiming to maximize expected regret.

Definition 8 (Approximate MMER(3)). Consider an UMDP ⟨Θ,A,S, I, T ⟩, a goal R, and ap-
proximation thresholds ε, η ≥ 0. Let λ : Π → ∆(Θ) be a function such that for all π ∈ Π,

λ(π) ∈ arg-η-max
Λ∈∆(Θ)

GR(π; Λ).

Call a function with this property an η-approximate adversarial map. The approximate MMER(3)
policy set with respect to λ is then

ΠMMER(3)
ε,λ = arg-ε-min

π∈Π
GR(π;λ(π)).
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C.2 Asymptotic equivalence of the definitions

Definitions 6, 7, and 8 do not necessarily define equal sets of policies. However, the three sets of
policies are closely related. Proposition 3, below, shows that each set is contained in the others for
appropriately-chosen values of the approximation thresholds ε, δ, η ≥ 0.

Proposition 3 (Asymptotic equivalence of approximate MMER definitions). Consider an UMDP
⟨Θ,A,S, I, T ⟩, a goal R, approximation thresholds ε, δ, η ≥ 0, and an η-approximate adversarial
map λ. We have the following relations:

ΠMMER(1)
ε ⊆ ΠMMER(2)

ε,ε ΠMMER(2)
ε,δ ⊆ ΠMMER(1)

ε+δ

ΠMMER(1)
ε ⊆ ΠMMER(3)

ε+η,λ ΠMMER(3)
ε,λ ⊆ ΠMMER(1)

ε+η

ΠMMER(2)
ε,δ ⊆ ΠMMER(3)

ε+δ+η,λ ΠMMER(3)
ε,λ ⊆ ΠMMER(2)

ε+η,ε+η.

Proof. We prove the top four subset relationships. The remaining two relationships follow. Before
proceeding, we note that since we assume ∆(Θ), S, and A are finite and our environments are fully
observable, we have

min
π∈Π

max
Λ∈∆(Θ)

GR(π; Λ) = max
Λ∈∆(Θ)

min
π∈Π

GR(π; Λ). (9)

In the general case, modified bounds can be derived by accounting for the value of the difference
min
π∈Π

max
Λ∈∆(Θ)

GR(π; Λ)− max
Λ∈∆(Θ)

min
π∈Π

GR(π; Λ) (see the remark after this proof).

(1 ⊆ 2): Suppose π(1) ∈ ΠMMER(1)
ε = arg-ε-min

π∈Π
max

Λ∈∆(Θ)
GR(π; Λ). Put Λ(∗) ∈ arg max

Λ∈∆(Θ)

min
π∈Π

GR(π; Λ).

Then, we have the following cycle of relations.

GR(π(1); Λ(∗)) ≤ max
Λ∈∆(Θ)

GR(π(1); Λ) (by definition of max)

≤ min
π∈Π

max
Λ∈∆(Θ)

GR(π; Λ) + ε (π(1) ∈ arg-ε-min
π∈Π

max
Λ∈∆(Θ)

GR(π; Λ))

= max
Λ∈∆(Θ)

min
π∈Π

GR(π; Λ) + ε (by equation 9)

= min
π∈Π

GR(π; Λ(∗)) + ε (Λ(∗) ∈ arg max
Λ∈∆(Θ)

min
π∈Π

GR(π; Λ))

≤ GR(π(1); Λ(∗)) + ε. (by definition of min)

Comparing the first and second-last terms, we have that π(1) ∈ arg-ε-minπ∈Π GR(π; Λ(∗)). Com-
paring the second and the last terms, we have Λ(∗) ∈ arg-ε-maxΛ∈∆(Θ) G

R(π(1); Λ). It follows that
(π(1),Λ(∗)) is an (ε, ε)-equilibrium, which means π(1) ∈ ΠMMER(2)

ε,ε .

(2 ⊆ 1): Suppose π(2) ∈ ΠMMER(2)
ε,δ . Then by definition there exists Λ(2) ∈ ∆(Θ) such that both

π(2) ∈ arg-ε-min
π∈Π

GR(π; Λ(2)) and Λ(2) ∈ arg-δ-max
Λ∈∆(Θ)

GR(π(2); Λ). Then we have

max
Λ∈∆(Θ)

GR(π(2); Λ) ≤ GR(π(2); Λ(2)) + δ (Λ(2) ∈ arg-δ-max
Λ∈∆(Θ)

GR(π(2); Λ))

≤ min
π∈Π

GR(π; Λ(2)) + ε+ δ (π(2) ∈ arg-ε-min
π∈Π

GR(π; Λ(2)))

≤ max
Λ∈∆(Θ)

min
π∈Π

GR(π; Λ) + ε+ δ (by definition of max)

= min
π∈Π

max
Λ∈∆(Θ)

GR(π; Λ) + ε+ δ. (by equation 9)

Therefore, π(2) ∈ arg-(ε+δ)-minπ∈Π maxΛ∈∆(Θ) G
R(π; Λ) = ΠMMER(1)

ε+δ .
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(1 ⊆ 3): Suppose π(1) ∈ ΠMMER(1)
ε = arg-ε-min

π∈Π
max

Λ∈∆(Θ)
GR(π; Λ). Note also that, by definition, for

all π ∈ Π, λ(π) ∈ arg-η-max
Λ∈∆(Θ)

GR(π; Λ). Then we have

GR(π(1);λ(π(1))) ≤ max
Λ∈∆(Θ)

GR(π(1); Λ) (by definition of max)

≤ min
π∈Π

max
Λ∈∆(Θ)

GR(π; Λ) + ε (π(1) ∈ arg-ε-min
π∈Π

max
Λ∈∆(Θ)

GR(π; Λ))

≤ min
π∈Π

(
GR(π;λ(π)) + η

)
+ ε (by definition of λ; monotonicity of min)

≤ min
π∈Π

GR(π;λ(π)) + η + ε. (η constant wrt. π)

Therefore, π(1) ∈ arg-(ε+η)-minπ∈Π GR(π;λ(π)) = ΠMMER(3)
ε+η,λ .

(3 ⊆ 1): Suppose π(3) ∈ ΠMMER(3)
ε,λ = arg-ε-min

π∈Π
GR(π;λ(π)). Then we have

max
Λ∈∆(Θ)

GR(π(3); Λ) ≤ GR(π(3);λ(π(3))) + η (by definition of λ)

≤ min
π∈Π

GR(π;λ(π)) + ε+ η (π(3) ∈ arg-ε-min
π∈Π

GR(π;λ(π)))

≤ min
π∈Π

max
Λ∈∆(Θ)

GR(π; Λ) + ε+ η.

(by definition of max; monotonicity of min)

Therefore, π(3) ∈ arg-(ε+η)-minπ∈Π maxΛ∈∆(Θ) G
R(π; Λ) = ΠMMER(1)

ε+η .

(2 ⊆ 3): follows from (2 ⊆ 1) and (1 ⊆ 3).

(3 ⊆ 2): follows from (3 ⊆ 1) and (1 ⊆ 2).

Remarks (Generalization to non-finite environments). Unlike our other results, Proposition 3 relies
on the assumption that the UMDP is finite. This assumption guarantees that there exists a Nash
equilibrium for the game in Definition 7. The definitions and results can be generalized to infinite
environments, so long as the necessary minima and maxima are defined. However, if there do not
exist (approximate) Nash equilibria at some approximation thresholds, then it becomes necessary
to account for the possibility that the set of MMER(2) policies is empty. We can generalize the
relations in terms of the minimax gap,

∆ = min
π∈Π

max
Λ∈∆(Θ)

GR(π; Λ)− max
Λ∈∆(Θ)

min
π∈Π

GR(π; Λ) ≥ 0.

The minimax gap is always non-negative when it is well-defined, due to the max–min inequality. If
the game permits Nash equilibria, the max–min inequality is an equality and ∆ = 0. In general, if
the game permits an (ε, δ)-equilibrium for some ε, δ ≥ 0, then ∆ ≤ ε+ δ, and there exists ε, δ ≥ 0
and an (ε, δ)-equilibrium such that ∆ = ε+ δ.

We can now extend the proof of Proposition 3 to derive the following relations:

ΠMMER(1)
ε ⊆ ΠMMER(2)

ε+∆,ε+∆ ΠMMER(2)
ε,δ ⊆ ΠMMER(1)

ε+δ−∆

ΠMMER(2)
ε,δ ⊆ ΠMMER(3)

ε+δ−∆+η,λ ΠMMER(3)
ε,λ ⊆ ΠMMER(2)

ε+η+∆,ε+η+∆.

The relations between MMER(1) and MMER(3), not involving MMER(2) or the existence of equi-
libria, are unchanged.
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C.3 Generalizing the robustness result

In this section, we combine Theorem 2 and Proposition 3 to show robustness results for the two
alternative definitions of approximate MMER policies (Definitions 7 and 8).

Corollary 1 (MMER(2) is robust to goal misgeneralization). Consider an UMDP ⟨Θ,A,S, I, T ⟩,
a pair of goals R, R̃, a proxy-distinguishing distribution shift ⟨α, β, C,ΛTrain,ΛDeploy⟩, and approx-
imation thresholds ε, δ ≥ 0. Then

∀πMMER ∈ ΠMMER(2)
ε,δ , we have πMMER ∈ arg-(ε+δ)-max π∈ΠV

R(π; ΛDeploy).

Proof. Let πMMER ∈ ΠMMER(2)
ε,δ . We have πMMER ∈ ΠMMER(1)

ε+δ by Proposition 3. The corollary
follows by Theorem 2.

Corollary 2 (MMER(3) is robust to goal misgeneralization). Consider an UMDP ⟨Θ,A,S, I, T ⟩, a
pair of goals R, R̃, a proxy-distinguishing distribution shift ⟨α, β, C,ΛTrain,ΛDeploy⟩, approximation
thresholds ε, η ≥ 0, and an η-approximate adversarial map λ. Then

∀πMMER ∈ ΠMMER(3)
ε,λ , we have πMMER ∈ arg-(ε+η)-max π∈ΠV

R(π; ΛDeploy).

Proof. Let πMMER ∈ ΠMMER(3)
ε,λ . We have πMMER ∈ ΠMMER(1)

ε+η by Proposition 3. The corollary
follows by Theorem 2.

D Optimizing minimax expected regret is necessary if you want to prevent
misgeneralization under all possible distribution shifts

In Section 5.2, we show that approximately optimizing the MMER objective is sufficient for prevent-
ing misgeneralization under a distribution shift. In this appendix, we show that if we want policies
that are robust to all possible distribution shifts, then finding an approximate MMER policy is both
sufficient and also necessary.

Corollary 3. Consider an UMDP ⟨Θ,A,S, I, T ⟩, a goal R, and an approximation threshold ε ≥ 0.
We have that(

∀Λ ∈ ∆(Θ), π ∈ arg-ε-max
π′∈Π

V R(π′; Λ)

)
if and only if π ∈ ΠMMER

ε (R).

Proof. (⇒): Suppose ∀Λ ∈ ∆(Θ), π ∈ arg-ε-maxπ′∈Π V R(π′; Λ). Then

max
Λ∈∆(Θ)

GR(π; Λ) = max
Λ∈∆(Θ)

(
max
π′∈Π

V R(π′; Λ)− V R(π; Λ)

)
≤ ε.

Since regret is non-negative it follows that π ∈ arg-ε-min
π′∈Π

max
Λ∈∆(Θ)

GR(π′; Λ) = ΠMMER
ε (R).

(⇐): Apply Theorem 2 for each Λ ∈ ∆(Θ).

While we prove a general result that holds for all possible level distributions, we are mainly in-
terested in its implications for goal misgeneralization. In particular, imagine having any sort of
distribution shift from training to deployment. This theorem implies that any policy that generalizes
in this case is an MMER policy. In principle, it would be possible to find some of the generalizing
policies in this set by other training methods. However, it is clear that MMER (or any refinement)
should be the training objective utilized if we want to be certain to be able to identify the entire set
of solutions that never suffer from goal misgeneralization.
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E Partially observable environments

In this section, we generalize equation (2) and Theorem 2 to partially observable environments, with
a slight modification of the bound to account for the fact that it may no longer be possible for any
policy to achieve zero expected regret on a given distribution of levels.

Rather than defining underspecified partially observable MDPs in detail, we consider an arbitrary
subset of the space of policies Φ ⊆ Π. We can model partial observability by restricting to policies
with tied outputs within any given partition of Θ× S into information sets.

We define the expected restricted regret of a policy π ∈ Φ in a level θ ∈ Θ under a goal R based
on the return of the best available policy within such a subset of policies:

GR
Φ(π; θ) = max

π′∈Φ
V R(π′; θ)− V R(π; θ). (10)

As before, we lift this definition to a level distribution Λ by taking the expectation

GR
Φ(π; Λ) = Eθ∼Λ

[
GR

Φ(π; θ)
]
. (11)

E.1 Generalizing the expected regret identity to partially observable environments

Proposition 4 (Expected regret identity for partially observable environments). Consider an UMDP
⟨Θ,A,S, I, T ⟩, a goal R, a level distribution Λ ∈ ∆(Θ), and a subset of policies Φ ⊆ Π. Then

GR
Φ(π; Λ) = max

π′∈Φ
V R(π′; Λ)− V R(π; Λ) + min

π′∈Φ
GR

Φ(π
′; Λ).

Proof. Equivalently,

GR
Φ(π; Λ)− min

π′∈Φ
GR

Φ(π
′; Λ)

= Eθ∼Λ

[
GR

Φ(π; θ)
]
− min

π′∈Φ
Eθ∼Λ

[
GR

Φ(π
′; θ)

]
(by equation 11)

= Eθ∼Λ

[
max
π′∈Φ

V R(π′; θ)

]
− V R(π; Λ)− min

π′∈Φ

(
Eθ∼Λ

[
max
π′′∈Φ

V R(π′′; θ)

]
− V R(π′; Λ)

)
(by equations 10 and 6)

= Eθ∼Λ

[
max
π′∈Φ

V R(π′; θ)

]
− V R(π; Λ)− Eθ∼Λ

[
max
π′′∈Φ

V R(π′′; θ)

]
+ max

π′∈Φ
V R(π′; Λ)

= max
π′∈Φ

V R(π′; Λ)− V R(π; Λ).

Compared to equation (2) (Proposition 1), Proposition 4 includes the term minπ∈Φ GR
Φ(π; Λ). This

extra term represents the irreducible (expected restricted) regret for the level distribution Λ.
Proposition 4 essentially says that the restricted expected regret for a level distribution can be de-
composed into two components: (1) the shortfall in expected return compared to the optimal policy
for the level distribution (as in equation 2, cf. the definition of regret for individual levels); plus
(2) this irreducible regret.

Irreducible regret can arise when the level is partially observable to the policy. For example, consider
a mixture of two levels with two disjoint sets of optimal policies. Suppose the level is not observed
by the policy, so the policy has to choose actions without knowing whether it is in the first level
or the second level. In each individual level, we define expected regret based on the performance
of optimal policies for that level (these policies will naturally be the ones that assume they are in
the appropriate level). However, since no single policy can perform optimally in both levels, the
expected regret with respect to the mixture is always nonzero. This nonzero minimum expected
regret is exactly the irreducible regret.
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E.2 Generalizing Definition 5 and Theorem 2 to partially observable environments

We are now in position to generalize the results of Section 5.2 to partially observable environments.
First, we adapt Definition 5 to expected restricted regret.

Definition 9 (Approximate MMER for partially observable environments). Consider an UMDP ⟨Θ,
A,S, I, T ⟩, a goal R, an approximation threshold ε, δ ≥ 0, and a subset of policies Φ ⊆ Π. The
restricted approximate MMER policy set is then

ΠMMER
Φ,ε (R) = arg-ε-min

π′∈Φ
max

Λ∈∆(Θ)
GR

Φ(π
′; Λ).

Next, we generalize Theorem 2. In doing so, we need to account for the irreducible regret gap

g(ΛDeploy) = min
π∈Φ

max
Λ∈∆(Θ)

GR
Φ(π; Λ)− min

π∈Φ
GR

Φ(π; Λ
Deploy), (12)

the difference in irreducible regret between an MMER level distribution and ΛDeploy. When the
deployment distribution has lower irreducible regret than an MMER level distribution, the agent has
no incentive to improve expected restricted regret on the deployment distribution once it is below
the irreducible regret of the MMER distribution.

If the irreducible regret gap is large, then this undermines the robustness guarantee. This is a limi-
tation of standard MMER. However, we note that it can be addressed by a lexicographic refinement
of the decision rule along the lines of Beukman et al. (2024).

Theorem 3 (MMER is robust to goal misgeneralization in partially observable environments). Con-
sider an UMDP ⟨Θ,A,S, I, T ⟩, a pair of goals R, R̃, a proxy-distinguishing distribution shift ⟨α,
β,C,ΛTrain,ΛDeploy⟩, an approximation threshold ε ≥ 0, and a subset of policies Φ ⊆ Π. Let
g(ΛDeploy) = min

π∈Φ
max

Λ∈∆(Θ)
GR

Φ(π; Λ)− min
π∈Φ

GR
Φ(π; Λ

Deploy) be the irreducible regret gap. Then

∀πMMER ∈ ΠMMER
Φ,ε (R), we have πMMER ∈ arg-(ε+g(ΛDeploy))-max π∈ΦV

R(π; ΛDeploy).

Proof. Suppose πMMER ∈ ΠMMER
Φ,ε (R). Then, along similar lines to the proof of Theorem 2, we

have the following bound on expected restricted regret:

GR
Φ(π

MMER; ΛDeploy) ≤ max
Λ∈∆(Θ)

GR
Φ(π

MMER; Λ) (ΛDeploy ∈ ∆(Θ))

≤ min
π∈Φ

max
Λ∈∆(Θ)

GR
Φ(π; Λ) + ε. (by Definition 9)

Once again, we can convert this upper bound on expected restricted regret to a lower bound on
expected return:

V R(πMMER; ΛDeploy)

= max
π∈Φ

V R(π; ΛDeploy)−GR
Φ(π

MMER; ΛDeploy) + min
π∈Φ

GR
Φ(π; Λ

Deploy) (by Proposition 4)

≥ max
π∈Φ

V R(π; ΛDeploy)−
(

min
π∈Φ

max
Λ∈∆(Θ)

GR
Φ(π; Λ) + ε

)
+ min

π∈Φ
GR

Φ(π; Λ
Deploy) (by above bound)

= max
π∈Φ

V R(π; ΛDeploy)− ε− g(ΛDeploy). (by equation 12)

Thus, πMMER ∈ arg-(ε+g(ΛDeploy))-max π∈ΦV
R(π; ΛDeploy).
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F Additional environment details

In this appendix, we provide additional details about each environment, including details about
procedurally generating non-distinguishing and distinguishing levels, edit distributions, computation
of maximum level value for the oracle-latest estimator, and the origin of each environment.

F.1 The CHEESE IN THE CORNER environment

Environment. In this environment, levels are parameterized by a 13 × 13 wall layout, a mouse
spawn position within this grid, and a cheese position within the grid. We require that the cheese
position and the mouse spawn position are not equal, and moreover that they are not obstructed by
walls. We do not require that there is an unobstructed path between them.

In the initial state, the mouse begins in the spawn position. The actions available to the agent are
to attempt to move the mouse up, left, down, or right, which succeeds if the respective position is
not obstructed by a wall or the edge of the grid. If the mouse position equals the cheese position,
the mouse collects the cheese. The episode terminates when the cheese has been collected or after a
maximum of 128 steps.

Observations. We represent states to the agent as a 15 × 15 × 3 Boolean grid. The first of the
three channels encodes the maze layout, including a border of width 1. The second channel one-hot
encodes the position of the mouse. The third channel one-hot encodes the position of the cheese (if
it has not been collected). All of the relevant information about the level and the state is encoded
into this observation, therefore this environment is fully observable.

True goal and proxy goal. The training goal is for the mouse to collect the cheese. The reward
function assigns +1 reward to transitions in which the mouse collects the cheese.

We also consider a proxy goal of navigating to the top left corner of the maze. This could be
formulated as a reward function that assigns +1 reward the first time the mouse steps into the top
left corner (this reward can be made Markovian by augmenting the state with a flag for whether the
corner has previously been reached). Note that we never train with this proxy goal as the reward
function.

Level classification. Given this environment and this pair of goals, we can classify levels accord-
ing to the definitions in Section 4. Note that in the following, we assume that the discount factor
is strictly between 0 and 1 (so that shorter paths obtain higher return), and that the property of
reachability accounts for episode termination conditions (including collecting the cheese).

1. Levels for which the cheese is in the top-left corner of the maze are non-distinguishing. If
the top-left corner is reachable from the mouse spawn position, optimally pursuing the proxy
goal implies following a shortest path to the corner, which is also a shortest path to collecting
the cheese. If the top-left corner is unreachable from the mouse spawn position, then all policies
achieve zero return according to either goal, and are therefore equally optimal.

2. Most levels for which the cheese is not in the top-left corner of the maze are distinguishing.
If the cheese is not in the top-left corner, but is reachable from the mouse spawn position, then
either (1) the top-left corner is reachable from the mouse spawn position (other than via the
cheese), or (2) it is not. If (1), then a proxy-optimal policy could visit the top-left corner and then
remain there until the episode terminates. If (2), then all policies are optimal under the proxy
goal, and in particular there exists a proxy-optimal policy that avoids the cheese.

3. Some levels for which the cheese is in the top-left corner are non-distinguishing. If the cheese
is not in the top-left corner, and is not reachable from the mouse spawn position, then all policies
are optimal under the true goal, and in particular all proxy-optimal policies are.

When defining the proportion of distinguishing levels in the buffer, we use the approximately correct
approach of checking whether the cheese is not in the corner. We note that all UED algorithms
rapidly remove levels in which the cheese is unreachable from their buffers.
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Procedural level generation. We construct two procedural level generators, Λ¬Distg.,ΛDistg. ∈
∆(Θ), (approximately) concentrated on non-distinguishing and distinguishing levels, respectively.

• Non-distinguishing level distribution (Λ¬Distg.). We procedurally generate non-distinguishing
levels as follows. We position the cheese in the top-left corner. For each remaining position, we
place a wall independently with probability 25%. We position the mouse spawn in some remaining
position, assuming there is at least one such position.

All of the generated levels are technically non-distinguishing, though this may include levels for
which the cheese position is unreachable from the mouse spawn position. Note that these levels
still do not provide any training signal in favor of the true goal over the proxy goal.

• Distinguishing level distribution (ΛDistg.). We procedurally generate mostly distinguishing levels
as follows. For each position, we place a wall independently with probability 25%. We position
the cheese somewhere where there is not a wall. We position the mouse spawn somewhere where
there is not a wall, different from the cheese position.

The generated levels are in most cases C-distinguishing levels for some C. It may arise that the
cheese is unreachable from the mouse spawn location or is in the top-left corner, making the level
non-distinguishing. Note that the effect of these levels is only to reduce the training signal in favor
of the true goal available to the agent, as if to reduce α.

Elementary edit distributions. ACCEL additionally requires specifying an edit distribution used
to sample “similar” levels for potential entry into the level buffer. In Appendix J, we discuss how
we build our edit distributions from elementary edit distributions of the following three types.

1. Classification preserving edits. Each classification preserving edit either removes an existing
wall, positions a new wall, or moves the mouse spawn position to a random unobstructed position
(other than the cheese position). These edits don’t change the cheese position, though they may
change whether the cheese position is reachable from the mouse spawn position. As a result, they
may change the exact classification of the level (though not its approximate classification).

2. Biased classification transforming edits. Given a probability α, a biased classification trans-
forming edit randomizes the cheese position with probability α or places the cheese in the top-left
corner with probability 1−α. Note that when randomizing the cheese position, it’s possible that
the cheese will be positioned in the top-left corner.

3. Unrestricted classification transforming edits. An unrestricted classification transforming edit
randomizes the cheese position with probability 1. It’s possible that the cheese will be positioned
in the top-left corner.

Oracle maximum return. In this environment, an optimal policy follows any shortest path from
the mouse spawn position to the cheese position in the graph representing the maze layout. We
compute the length of a shortest path using the Floyd–Warshall algorithm. Given a level θ ∈ Θ.
Let R be the true reward function (+1 for collecting the cheese). If the shortest path has length
d ∈ N ∪ {∞}, then with discount factor γ ∈ (0, 1), we have

max
π

V R(π; θ) = γd−1. (13)

This covers the case in which the cheese position is unreachable from the mouse spawn position
(d = ∞). Shortest paths of (finite) length greater than the maximum episode length of 128 are
impossible given this grid size.

Origin. Hubinger (2019) originated the idea of creating a navigation task with a location proxy
as a potential means of inducing goal misgeneralization. Langosco et al. (2022) implemented the
MAZE I based on this idea by modifying the MAZE environment of OpenAI ProcGen (Cobbe et al.,
2020) such that the cheese position could be restricted to a region surrounding the top-right corner
(cf., Appendix M). CHEESE IN THE CORNER is an interpretation of MAZE I using an original JAX
implementation. We depart from MAZE I by using a fixed size maze and replacing the maze layout
algorithm with a simpler algorithm based on random block placement.
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F.2 The CHEESE ON A DISH environment

Environment. In this environment, levels are parameterized by a 13×13 wall layout, and positions
within this grid for the mouse spawn, the dish, and the cheese. We require that the cheese position
and the mouse spawn position are not equal, and that the dish position and the mouse spawn position
are not equal, though the dish can be co-located with the cheese. Moreover, we require that none
of the three positions are obstructed by walls. We do not require that there is an unobstructed path
between the positions.

In the initial state, the mouse begins in the spawn position. The actions available to the agent are to
attempt to move the mouse up, left, down, or right, which succeeds if the respective position is not
obstructed by a wall or the edge of the grid. If the mouse position equals the cheese position, the
mouse collects the cheese, and likewise for the dish. The episode terminates when the cheese or the
dish has been collected or after a maximum of 128 steps.

Observations. We represent states to the agent as a 15 × 15 × (3 + D) Boolean grid where
D ∈ N. The first of the channels encodes the maze layout, including a border of width 1. The
second channel one-hot encodes the position of the mouse. The third channel one-hot encodes the
position of the cheese (if it has not been collected). The remaining D channels each one-hot encode
the dish position (if the dish has not been collected).

Redundantly coding the dish encourages the agent to learn a policy that is based on the dish position,
eliciting a clearer case of goal misgeneralization. In our main experiments, D = 6. In Appendix N,
we consider alternative values of D. All of the relevant information about the level and the state is
encoded into this observation, therefore this environment is fully observable.

True goal and proxy goal. The training goal is for the mouse to collect the cheese. The reward
function assigns +1 reward to transitions in which the mouse collects the cheese. We also consider
a proxy goal of collecting the dish. This reward function assigns +1 reward to transitions in which
the mouse collects the dish. Note that we never train with this proxy goal as the reward function.

Level classification. Given this environment and this pair of goals, we can classify levels accord-
ing to the definitions in Section 4. Note that in the following, we assume that the discount factor
is strictly between 0 and 1 (so that shorter paths obtain higher return), and that the property of
reachability accounts for episode termination conditions.

1. Levels for which the cheese and the dish are co-located are non-distinguishing. If the
cheese/dish position is reachable from the mouse spawn position, optimally pursuing the proxy
goal implies following a shortest path to the dish, which is also a shortest path to the cheese. If
the cheese/dish position is unreachable from the mouse spawn position, then all policies achieve
zero return under either goal, and are therefore equally optimal.

2. Most levels for which the cheese is not in the same position as the dish are distinguishing.
If the cheese is not in the same position as the dish, but is reachable from the mouse spawn
position, then either (1) the dish is reachable from the mouse spawn position (other than via the
cheese), or (2) it is not. If (1), then a proxy-optimal policy could visit the dish, terminating the
episode. If (2), then all policies are optimal under the proxy goal, and in particular there exists a
proxy-optimal policy that avoids the cheese.

3. Some levels for which the cheese is not in the same position as the dish are non-
distinguishing. If the cheese is not in the same position as the dish, and moreover is not reachable
from the mouse spawn position, then all policies are optimal under the true goal, and in particular
all proxy-optimal policies are.

When defining the proportion of distinguishing levels in the buffer, we use the approximately correct
approach of checking whether the cheese and the dish have distinct positions. We note that all UED
algorithms rapidly remove levels in which the cheese is unreachable from their buffers.
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Procedural level generation. We construct two procedural level generators, Λ¬Distg.,ΛDistg. ∈
∆(Θ), (approximately) concentrated on non-distinguishing and distinguishing levels, respectively.

• Non-distinguishing level distribution (Λ¬Distg.). We procedurally generate non-distinguishing
levels as follows. For each position, we place a wall independently with probability 25%. We
position the mouse spawn somewhere where there is not a wall. We position the cheese and the
dish somewhere where there is not a wall, other than the mouse spawn position (we assume there
are at least two positions without walls).

All of the generated levels are technically non-distinguishing, though this may include levels for
which the cheese position is unreachable from the mouse spawn position. Note that these levels
still do not provide any training signal in favor of the true goal over the proxy goal.

• Distinguishing level distribution (ΛDistg.). We procedurally generate mostly distinguishing levels
as follows. For each position, we place a wall independently with probability 25%. We position
the mouse spawn somewhere where there is not a wall. We position the cheese and the dish,
independently, somewhere where there is not a wall, different from the mouse spawn position.

The generated levels are in most cases C-distinguishing levels for some C. It may arise that the
cheese is unreachable from the mouse spawn location or is in the top-left corner, making the level
non-distinguishing. Note that the effect of these levels is only to reduce the training signal in favor
of the true goal available to the agent, as if to reduce α.

Elementary edit distributions. ACCEL additionally requires specifying an edit distribution used
to sample “similar” levels for potential entry into the level buffer. In Appendix J, we discuss how
we build our edit distributions from elementary edit distributions of the following three types.

1. Classification preserving edits. Each classification preserving edit either removes an existing
wall, positions a new wall, or moves the mouse spawn position to a random unobstructed position
(other than the cheese position or the dish position). These edits don’t change the cheese position
or the dish position, though they may change whether the cheese position is reachable from the
mouse spawn position. As a result, they may change the exact classification of the level (though
not its approximate classification).

2. Biased classification transforming edits. Given a probability α, a biased classification trans-
forming edit randomizes the dish position, and then either independently randomizes the cheese
position (with probability α) or positions the cheese at the new dish position (with probability
1 − α). Note that when independently randomizing the cheese position, it’s possible that the
cheese will be co-located with the dish.

3. Unrestricted classification transforming edits. An unrestricted classification transforming edit
independently randomizes the cheese position and the dish position with probability 1. It’s pos-
sible that the cheese and the dish will be co-located.

Oracle maximum return. In this environment, an optimal policy follows any shortest path from
the mouse spawn position to the cheese position in the graph representing the maze layout (in which
the dish counts as an obstruction if it is not co-located with the cheese, since collecting the dish
terminates the episode). Given this graph we compute the maximum expected return as in (13).

Origin. Langosco et al. (2022) originally implemented the MAZE II environment by modifying
the MAZE environment from OpenAI ProcGen (Cobbe et al., 2020) such that the cheese is replaced
by a yellow diamond during training, and subsequently by a pair of objects (a red diamond and a
yellow diagonal line) during evaluation. In their setup, the yellow diamond is rewarding because of
its shape (diamond), rather than its color (yellow), so the intended extrapolation of the goal is for
the policy to pursue the red diamond. However, Langosco et al. (2022) found that learned policies
tend to pursue the yellow line instead. CHEESE ON A DISH is an interpretation of MAZE II using an
original JAX implementation. In addition to the differences discussed for CHEESE IN THE CORNER,
we break the symmetry between the dish and the cheese by redundantly coding the dish (since we
use Boolean grid observations rather than colored images).
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F.3 The KEYS AND CHESTS environment

Environment. In this environment, levels are parameterized by a 13×13 wall layout, and positions
within this grid for the mouse spawn, k ≤ 10 keys, and c ≤ 10 chests. We require that the mouse
spawn position and the key and chest positions are distinct and are not obstructed by walls. We do
not require that there are unobstructed paths between the positions.

In the initial state, the mouse begins in the spawn position. The actions available to the agent are
to attempt to move the mouse up, left, down, or right, which succeeds if the respective position is
not obstructed by a wall or the edge of the grid. If the mouse position equals a key position, it
collects the key, removing it from the maze and adding it to the mouse’s inventory. If the mouse
position equals a chest position, assuming it has at least one key in its inventory, it collects the chest,
removing it from the maze and removing the key from its inventory. The mouse can occupy the
same position as a chest if it has an empty inventory. In a level with k keys and c chests, the episode
terminates when min(k, c) chests have been collected, or after a maximum of 128 steps.

Observations. We represent states to the agent as a 15 × 15 × 5 Boolean grid. The first channel
encodes the maze layout, including a border of width 1. The second one-hot encodes the position of
the mouse. The third encodes the positions of all the as-yet-uncollected chests. The fourth encodes
the positions of all as-yet-uncollected keys. The fifth encodes the mouse’s inventory, with one cell
along the top row of the channel for each key. All of the relevant information about the level and the
state is encoded into this observation, therefore this environment is fully observable.

True goal and proxy goal. The training goal is to collect chests. The reward function assigns +1
reward to transitions in which the mouse collects a chest. This reward function is not normalized like
those we consider in the theory sections, but it is bounded and could easily be normalized. Under
this goal, collecting keys has no intrinsic value, but since collecting a chest requires collecting a key,
keys have instrumental value. We also consider a proxy goal that assigns reward for collecting keys
as well as chests. This goal could be modeled as a reward function that assigns, for example, 1− η
reward for collecting each key and η reward for collecting each chest, where η ∈ (0, 1). Note that
we never train with such a proxy goal as the reward function.

Level classification. Compared to the other environments, describing this environment in terms of
the definitions in Section 4 is not as straight forward. Optimal behavior involves collecting keys and
chests in an order that depends on subtle tradeoffs driven by the exponential discounting. For the
true goal, the optimal behavior is to collect as many chests as fast as possible. However, it may make
sense to make a brief detour to collect multiple keys if it slightly delays the collection of the next
chest, as long as this sufficiently accelerates the collection of subsequent chests. The proxy goal
rewards key collection for its own sake, so as to increase the incentive for the policy to take larger
and larger detours to collect keys and even collect more keys than there are reachable chests. In our
experiments, we mainly consider the following kinds of levels.

1. Most levels with 3 keys and 10 chests are approximately non-distinguishing. Consider a
level in which there are k ≈ 3 reachable keys, and c ≈ 10 reachable chests. These levels are
approximately non-distinguishing, in the sense that while the proxy goal incentivizes collecting
keys earlier than optimal, it still incentivizes eventually collecting chests. For many key/chest
layouts, pursuing the proxy goal entails similar behavior to pursing the true goal.

2. Most levels with 10 keys and 3 chests are approximately distinguishing. Consider a level in
which there are k ≈ 10 reachable keys, and c ≈ 3 reachable chests. These levels are mostly
distinguishing because optimizing the proxy goal will usually involve long detours to collect all
reachable keys, delaying the collection of chests compared to optimizing the true goal.

The exact classifications depend on the key/chest layout. Keys and chests that are unreachable from
the mouse spawn position have no influence on optimal behavior. For the purpose of measuring
the proportion of distinguishing levels, we approximately classify the level by the total number of
keys and chests in the level without accounting for reachability or the exact key/chest layout (non-
distinguishing levels have 3 keys and 10 chests, distinguishing levels have 10 keys and 3 chests).
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Procedural level generation. We construct two procedural level generators, Λ¬Distg.,ΛDistg. ∈
∆(Θ), (approximately) concentrated on non-distinguishing and distinguishing levels, respectively.

• Non-distinguishing level distribution (Λ¬Distg.). We procedurally generate mostly non-
distinguishing levels as follows. For each position, we place a wall independently with probability
25%. We then position the mouse spawn, 3 keys, and 10 chests in distinct, unobstructed posi-
tions (assuming there are enough positions). The generated levels are usually approximately non-
distinguishing in the sense of the classification system described above. It is possible that fewer
than 3 keys and 10 chests will be reachable from the mouse spawn position, and it is even possible
that the exact layout will lead to a significant disadvantage for a policy that over-prioritizes key
collection.

• Distinguishing level distribution (ΛDistg.). We procedurally generate mostly distinguishing levels
in the same fashion, but with 10 keys and 3 chests instead. The generated levels are usually
distinguishing, along the lines of the classification system described above. It is possible that
fewer than 10 keys and 3 chests will be reachable from the mouse spawn position, and it is possible
that the exact layout will not substantially disincentivize key collection (for example, all keys may
be positioned on a shortest path through the set of chests).

Elementary edit distributions. ACCEL additionally requires specifying an edit distribution used
to sample “similar” levels for potential entry into the level buffer. In Appendix J, we discuss how
we build our edit distributions from elementary edit distributions of the following three types.

1. Classification preserving edits. Each classification preserving edit either removes an existing
wall, positions a new wall, or moves the mouse spawn position or the position of one key or
chest to a random unobstructed, unoccupied position. These edits don’t change the number of
keys or chests, though they may change whether these positions are reachable from the mouse
spawn position. As a result, they may change the exact classification of the level (though not its
approximate classification).

2. Biased classification transforming edits. Given a probability α, a biased classification trans-
forming edit sets the number of keys and chests to that of the distinguishing level generator
(10 and 3) with probability α, or that of the non-distinguishing level generator (3 and 10) with
probability 1− α.

3. Unrestricted classification transforming edits. An unrestricted classification transforming edit
is a biased classification transforming edit with α set to 50%.

Oracle maximum return. As described above, an optimal policy in this environment collects
keys and chests in the some order so as so collect as many chests as fast as possible. In particular,
noting that at most m = min(k, c) chests can be collected in a given level (due to the requirement
that a key must be expended to collect a chest), and supposing that they are collected after steps
s1, s2, . . . , sm ∈ N ∪ {∞}, the return is given by

R(s1, s2, . . . , sm) =

m∑
i=1

γsi−1 (14)

where γ ∈ (0, 1) is the discount factor.

Our approach to computing the optimal value is a to enumerate a subset of paths through the network
of key/chest/mouse spawn positions that must contain an optimal path, to brute-force evaluate a
lower bound on the return of these paths, and to identify the greatest return lower bound as the
optimal return for the level. We explain the procedure in detail as follows.

1. We begin by enumerating a set of so-called viable collection sequences. Each collection se-
quences comprising an m-permutation of the k keys, an m-permutation of the c chests, and a
Dyck path of order m (a permutation of m keys and m chests such that each chest is preceded by
a corresponding key, cf. balanced parentheses). These three combinatorial objects jointly identify
a sequence in which particular keys and chests could be collected.
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For example, suppose k = 3 and c = 10 and number the keys k1, . . . , k3 and the chests
c1, . . . , c10. Suppose the key 3-permutation is (3 1 2), the chest 3-permutation is (1 6 4), and the
Dyck path is (k c k k c c). Then the corresponding collection sequence is k3, c1, k1, k2, c6, c4.

The total number of viable collection sequences is(
k

m

)
·m!︸ ︷︷ ︸

key m-permutations

×
(
c

m

)
·m!︸ ︷︷ ︸

chest m-permutations

× 1

m+ 1

(
2m

m

)
︸ ︷︷ ︸
order m Dyck paths

. (15)

Since, in our setup, either k = 3 and c = 10 or vice versa, m = 3 and (15) evaluates to 21,600.

2. We evaluate a lower bound on the return of each viable collection sequence as follows. First we
compute all-pairs shortest path distances for the mouse spawn position, each key position, and
each chest position, using the Floyd–Warshall algorithm. We represent unreachable pairs with
a distance of ∞. We then simulate each sequence, computing the step counts required for each
collection as the cumulative sum of pairwise shortest path distances for each transition along the
sequences, starting at the mouse spawn position. We round any distances above 128 up to ∞.
We then use the step counts of each of the m chest collections in the expression (14).

For example, consider the collection sequence described earlier, k3, c1, k1, k2, c6, c4. Let D(p, q)
represent the shortest path distance between the positions of objects p and q. Then we set sc1 =
D(spawn, c1), sk3 = sc1 + D(c1, k3), and so on until sc4 = sc6 + D(c6, c4). (If any of these
step counts pass the timeout of 128, we round them up to ∞ to account for termination.) Finally,
we compute the lower bound on the return of this sequence as γsc1−1 + γsc6−1 + γsc4−1.

We note that if a viable collection sequence ever involves collecting a key or chest that is unreach-
able from the mouse spawn position, then the step count for this collection and all subsequent
collections will be infinite and thus this neither this collection nor subsequent collections will
contribute to the return lower bound.

3. The greatest return lower bound across all viable collection sequences equals the maximum return
achievable, as follows. Following a shortest path between a given pair of positions may involve
crossing over other keys and chests. This can have any of several effects that invalidate the
collection sequence, including (1) collecting keys or chests that appear later in the sequence
earlier than planned, (2) expending keys before they are intended to be spent to collect a chest
later in the sequence, or (3) terminating the episode early due to collecting the maximum available
number of chests before finishing the sequence. However, such disruptions only ever increase
the return. Moreover, for each disrupted sequence, there is a viable collection sequence that
represents the actual order of keys and chests, except for accounting for the case where more
than 3 keys are collected (which has no affect on the return as long as they are on the shortest
paths to the necessary chests). It follows that for the viable collection sequence with the highest
return, there are no such disruptions, and the return lower bound is tight.

We note that the set of viable collection sequences could be further filtered by eliminating (or never
enumerating) sequences involving unreachable keys or chests. However, we use the above approach
for simplicity and uniformity. In particular, since the above approach yields a fixed computational
graph given values of k, c, we can enumerate the 21,600 viable sequences once at compile time and
accelerate the brute-force evaluation step for a particular level (or batch of levels) using JAX. To
handle a mixture of levels with (k, c) = (3, 10) and levels with (k, c) = (10, 3), we simply evaluate
both ways and then dynamically keep the appropriate result for each level.

Origin. Barnett (2019) originated the idea of creating a distribution shift from a navigation en-
vironment in which keys are scarce to one in which keys are not scarce. Langosco et al. (2022)
originally implemented a KEYS AND CHESTS environment by modifying the HEIST environment
from OpenAI ProcGen (Cobbe et al., 2020). Our KEYS AND CHESTS environment is an interpre-
tation of the environment from Langosco et al. (2022), implemented in JAX, with several changes
similar to those for the other environments.
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G Additional training details

G.1 Hyperparameters

Table G.1: Hyperparameters used for all methods and environments.

Parameter Value Notes/exceptions

Rollouts
# parallel environments 256
Rollout length 128
# environment steps per cycle 32,768 (# parallel environments × rollout length)
Discount factor, γ 0.999

GAE
λGAE 0.95

PPO loss function
Clip range 0.1
Value clipping yes
Critic coefficient 0.5
Entropy coefficient 1e-3 Or, 1e-2 for KEYS AND CHESTS

PPO updates
Epochs per cycle 5
Minibatches per epoch 4
Max gradient norm 0.5
Adam learning rate 5e-5
Learning rate schedule constant

UED configuration N/A for DR
Replay rate

PLR⊥ 0.33 On average, 1 replay cycle per 2 generate cycles
ACCEL 0.5 On average, 1 replay cycle per 1 generate cycle

(1 edit cycle immediately follows each replay cycle)
Buffer size 4096
Prioritization method rank
Temperature 0.1
Staleness coefficient 0.1
# elementary edits per level, n 12 N/A for PLR⊥

G.2 Compute

We perform each training run on a single NVIDIA A100 80GB GPU. For CHEESE IN THE COR-
NER and CHEESE ON A DISH, each training run takes around 40 minutes (DR) or 80 minutes (UED
methods). For KEYS AND CHESTS, each training run takes around 60 minutes (DR) or 110 minutes
(UED methods). UED methods take longer than DR because UED methods require sampling addi-
tional rollouts for refining the buffer (the number of environment steps used for PPO updates is held
constant across all methods). KEYS AND CHESTS runs are longer than others because we trained
each method for 400 million steps instead of 200 million steps in this environment.

The experiments discussed in Section 7 took a total of 1.2k GPU hours. The additional experiments
discussed in Appendices J, K, L, M, and N took, respectively, totals of 1.2k GPU hours; 500 GPU
hours; 400 GPU hours (not counting the first 200 million environment steps used for training, which
we counted with Section 7); 210 GPU hours; and 350 GPU hours.
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H Additional evaluation results (non-distinguishing levels and proxy goal)

In Section 7, we investigate which training distributions and methods led to good performance on
distinguishing levels. We claim that when the performance is low, this is an instance of goal misgen-
eralization, and therefore when the performance is high, goal misgeneralization has been prevented.

In order to justify this claim, we also check that the poor performance is explained primarily by
the policy pursuing a proxy goal on distinguishing levels, rather than the policy behaving incapably
in non-distinguishing or distinguishing levels. Figure H.1 shows (1) return on non-distinguishing
levels and (2) proxy return on distinguishing levels for each training configuration.

Figure H.1(top row) shows that the learned policies perform capably in non-distinguishing levels.
For CHEESE IN THE CORNER and CHEESE ON A DISH, all training methods achieve high return on
non-distinguishing levels for all training distributions. For KEYS AND CHESTS, this is the case for
all training distributions except the α = 1 baseline (in this edge case, non-distinguishing levels, with
few keys and many chests, are never seen during training).

Figure H.1(bottom row) shows the proxy return achieved by learned policies on distinguishing lev-
els. Note that we never use the proxy goal for training. Here we simply evaluate the policies
according to each environment’s respective proxy reward function. In particular, for CHEESE IN
THE CORNER, we use a reward function that assigns +1 reward the first time the mouse reaches
the corner. For CHEESE ON A DISH, we use a reward function that assigns +1 reward if the mouse
collects the dish. For KEYS AND CHESTS, it’s difficult to define a proxy goal (see Appendix F.3),
here we report the average number of keys in the mouse’s inventory throughout the rollouts (note
that distinguishing levels have at most 3 reachable chests, and so carrying more than three keys sug-
gests the agent is over-prioritizing key collection). The trends in proxy return mirror the trends in
true return displayed in Figure 4, suggesting that our learned policies retain enough capabilities in
distinguishing levels to pursue the proxy goal—a case of goal misgeneralization.

CHEESE IN THE CORNER CHEESE ON A DISH KEYS AND CHESTS
Seeds N=8, steps T=200M Seeds N=3, steps T=200M Seeds N=5, steps T=400M
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Figure H.1: Performance on non-distinguishing levels and with respect to the proxy goal. Each
policy is trained on T environment steps using the indicated training method with underlying training
distribution ΛTrain

α . (1st row): Average return over 512 steps for an evaluation batch of 256 non-
distinguishing levels. (2nd row): Average proxy return over 512 steps for an evaluation batch of 256
distinguishing levels. Note that the proxy goal is never used for training. (Both): Mean over N
seeds, shaded region is one standard error. Note the split axes used to show zero on the log scale.
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I Visualizing performance on levels with different cheese positions

For each training configuration (training distribution, training method) studied in the main text for
CHEESE IN THE CORNER, we save the policy from the end of training for the first of 8 training seeds.
In order to visualize the robustness of these policies to varying changes in the cheese position, we
create a batch of 122 levels with a shared wall layout and a fixed mouse position, but where each level
in the batch has a different cheese position. For each level, we sample 512 environment steps from
each policy and compute the average per-episode return as a measure of the policy’s performance in
that level. This gives us a vector of 122 average return values for each policy (one for each level),
which we visualize in a policy-specific heatmap such that the average return of the policy in a level
with the cheese in position (i, j) is indicated by the color of the cell (i, j) in the heatmap. For context
we overlay the wall layout and the mouse spawn position (note that we do not consider levels with
cheese positions that would coincide with a wall or with the mouse spawn position).

Heatmaps for each method and training distribution follow in Figures I.1 and I.2. We see a rough
progression whereby for more advanced algorithms or higher α, the agent is robust to a greater
proportion of cheese positions. There are also instances of “blind spots” indicating cheese positions
for which certain methods are not robust, indicating that these training methods do not produce
perfectly robust policies.

DR PLR⊥ ACCEL
α max-latest oracle-latest max-latest oracle-latest

0

1e-5

3e-5

1e-4

0 10.2 0.4 0.6 0.8
Average return

Figure I.1: Heatmap visualizations (part 1 of 2). See Figure 6 and Appendix I for details.
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DR PLR⊥ ACCEL
α max-latest oracle-latest max-latest oracle-latest

3e-4

1e-3

3e-3

1e-2

3e-2

1e-1

1

0 10.2 0.4 0.6 0.8
Average return

Figure I.2: Heatmap visualizations (part 2 of 2). See Figure 6 and Appendix I for details.



Mitigating Goal Misgeneralization via Minimax Regret

J Experiments with different edit distributions

As discussed in Section 6.2, ACCEL requires additionally specifying an edit distribution for mu-
tating levels in the buffer. In this appendix, we explore the effect of different edit ditributions on the
ability for ACCEL to mitigate goal misgeneralization.

J.1 Elementary edits

We assemble our edit distributions by sampling a sequence of elementary edits of the following
three kinds.

• Classification preserving edits. These edits change the level without changing whether the level
is non-distinguishing or distinguishing. For example, in CHEESE IN THE CORNER, such an edit
may randomly toggle a wall or move the mouse’s starting position, but would not change the
location of the cheese.

• Biased classification transforming edits. These edits transform the level into a distinguishing
level with probability α or an non-distinguishing level with probability 1 − α, where α is the
proportion of distinguishing levels in the underlying training distribution. For example, in CHEESE
IN THE CORNER, a biased classification transforming edit may randomize the cheese position with
probability α or move it to the corner with probability 1− α.

• Unrestricted classification transforming edits. These edits transformers the position of the
cheese or the number of keys and chests uniformly at random given the level parameterization.
For CHEESE IN THE CORNER and CHEESE ON A DISH, the cheese moves to a random position in
the maze, which usually results in a distinguishing level. For KEYS AND CHESTS, we flip a coin
to make either keys or chests sparse, and the other type of object dense.

We document the elementary edit distributions for each environment in full detail in Appendix F.

J.2 ACCEL variants

In these terms, we list the ACCEL variant considered in the main text along with three additional
variants of ACCEL with different edit distributions. We fix a hyperparameter n, the number of
elementary edits to apply to each level (we use n = 12).

1. Identity ACCEL (ACCELidentity, simply “ACCEL” in main text). We make a sequence of n
random edits, all of which are classification preserving, resulting in the sequence of edits itself
being classification preserving.

2. Constant ACCEL (ACCELconstant). We make n− 1 random classification preserving edits, fol-
lowed by one biased classification transforming edit. Applying this operation to any distribution
of levels results in a distribution with the same proportion of non-distinguishing and distinguish-
ing levels as the underlying training distribution.

3. Binomial ACCEL (ACCELbinomial). We make a sequence of n random edits, each indepen-
dently chosen to be either classification preserving (with probability 1 − 1/n) or else biased
classification transforming. If the sequence has only classification preserving edits (probabil-
ity (1 − 1/n)n) then it is classification preserving (like ACCELidentity), otherwise the output is
non-distinguishing with the same probability as a level sampled from the underlying training
distribution (like ACCELconstant).

4. Unrestricted ACCEL (ACCELunrestricted). We make a sequence of n − 1 random classification
preserving edits, followed by one unrestricted classification transforming edit. Applying this
operation to any distribution of levels results in a distribution with a proportion of distinguishing
levels that is independent of the parameter α that restricts access to distinguishing levels in the
underlying training distribution.
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ACCELconstant simulates restricted access to distinguishing levels. This variant is able to introduce
new distinguishing levels through edit operations, however, its ability to replicate existing distin-
guishing levels is limited, since every time it edits a level, the mutated level reverts to an non-
distinguishing level with probability 1− α.

ACCELidentity (the variant studied in the main text) simulates a different kind of restriction, whereby
we don’t allow edits to turn non-distinguishing levels into distinguishing levels. However, we do
allow edits to create new distinguishing levels by making similar copies of existing distinguishing
levels in the buffer. Through this mechanism, ACCELidentity can rapidly populate the buffer with
distinguishing levels, providing this variant with additional capacity to amplify the small training
signal from distinguishing levels (beyond simply curating levels, like in PLR⊥ or ACCELconstant).

ACCELbinomial samples elementary edits in a different way. The number of biased classification
transforming edits included in the sequence follows a binomial distribution. This means that with
around 35% probability, no biased classification transforming edits will be applied, and the edit
will resemble an edit from ACCELidentity. Otherwise, with around 65% probability, at least one
biased classification transforming edit will be applied, and the overall edit will resemble one from
ACCELconstant. We thus expect the performance of this variant to be somewhere between that of
ACCELconstant and ACCELidentity.

ACCELunrestricted is a baseline that simulates a situation where the edit distribution can be designed
to explore the space of levels completely independently of the training distribution. We expect this
variant to be able to obtain much stronger performance comparable to using α = 1 in the training
distribution, even when training with α = 0.

J.3 Experimental results

We train with the three new variants and compare performance to DR and ACCELidentity (from
the main text). We report the results in Figure J.1 (oracle-latest regret estimator) and Figure J.2
(max-latest regret estimator). Note that we did not run ACCELconstant with the oracle-latest regret
estimator for CHEESE ON A DISH, or ACCELconstant with the max-latest regret estimator for KEYS
AND CHESTS.

Our results are in line with our central claim, that more advanced UED methods are more capable
of mitigating goal misgeneralization.

• As predicted, ACCELconstant achieves lower performance than ACCELidentity. This could be ex-
plained by the greater flexibility with which ACCELidentity can amplify distinguishing levels
through edits.

• Moreover, ACCELbinomial achieves performance somewhere between that of ACCELconstant and
ACCELidentity.

• As predicted, ACCELunrestricted is able to populate the buffer with distinguishing levels regardless
of the training distribution, even when α = 0, both with the oracle-latest regret estimator and with
the max-latest regret estimator.

ACCELbinomial with max-latest estimation achieves the same low performance as ACCELidentity in
KEYS AND CHESTS (as observed for ACCELidentity in Section 7).
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CHEESE IN THE CORNER CHEESE ON A DISH KEYS AND CHESTS
Seeds N=8, steps T=200M Seeds N=3, steps T=200M Seeds N=5, steps T=400M
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Figure J.1: ACCEL variants with oracle-latest estimator. Each policy is trained on T environment
steps, using the indicated algorithm, with underlying training distribution ΛTrain

α . (1st row): Average
return over 512 steps for an evaluation batch of 256 distinguishing levels (cf. Figure 4). (2nd row):
The proportion of distinguishing levels sampled from the adversary’s buffer across training (cf. Fig-
ure 5). (Both): Mean over N seeds, shaded region is one standard error. Note the split axes used to
show zero on the log scale.
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Figure J.2: ACCEL variants with max-latest estimator. Each policy is trained on T environment
steps, using the indicated algorithm, with underlying training distribution ΛTrain

α . (1st row): Average
return over 512 steps for an evaluation batch of 256 distinguishing levels (cf. Figure 4). (2nd row):
The proportion of distinguishing levels sampled from the adversary’s buffer across training (cf. Fig-
ure 5). (Both): Mean over N seeds, shaded region is one standard error. Note the split axes used to
show zero on the log scale.
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K The maximin expected value objective is susceptible to goal
misgeneralization

In this section, we discuss an alternative strategy to minimax expected regret for selecting robust
policies. Namely, we consider the maximin expected value (MMEV) training objective, whereby
one seeks a policy that achieves the highest possible expected value (return) on a worst-case level
distribution ΛMMEV ∈ arg minΛ′∈∆(Θ) V

R(π; Λ′).

Dennis et al. (2020) argues that the MMEV objective fails to induce robustness in an environment
where the optimal value of each level varies within the level space. This is because the agent has
no incentive to improve performance in any level above the maximum performance in worst-case
levels. This same obstacle prevents MMEV from inducing robustness to goal misgeneralization,
even though a policy that pursues a proxy goal in distinguishing levels will achieve low return in
these levels.

In this appendix, we show theoretically that MMEV-based methods allow for goal misgeneralization
in environments with levels with low maximum value. Moreover, we show empirically that MMEV-
based training methods fail to mitigate goal misgeneralization in our environments. Indeed, they fail
to produce policies that perform capably in any levels.

K.1 Theoretical results

We show our results for a perfect MMEV agent. It is easy to extend the result in the case where the
agent is only ε-optimal—the performance on deployment levels could be suboptimal by a factor ε
when such is allowed by the levels seen in deployment. The same argument holds for the adversary.

Definition 10 (MMEV policy). Consider an UMDP ⟨Θ,A,S, I, T ⟩, a goal R. The MMEV policy
set is then

ΠMMEV(R) = arg max
π∈Π

min
Λ∈∆(Θ)

V R(π; Λ).

Definition 11 (MMEV adversary). Consider an UMDP ⟨Θ,A,S, I, T ⟩, a goal R, an optimal policy
π∗ in every level θ ∈ Θ. The MMEV adversary strategy is then

ΛMMEV ∈ arg min
Λ′∈∆(Θ)

V R(π⋆; Λ′)

Crucially, the MMEV adversary only cares about minimizing the return of the agent. Given this, the
adversary will play levels in which any agent would achieve the minimum return possible. These
are, for example, impossible levels if such exists in the level space.

Let’s now define some additional machinery we will need for the proof:

Definition 12 (α-minimum achievable return). Given a level θ ∈ Θ and a threshold α, define

c(θ, α) = minV R
α (θ)

where V R
α (θ) = {x ∈ R | ∃π ∈ Π, such that V R(π; θ) ≥ α and V R(π; θ) = x}.

As mentioned before, the intuition is that an MMEV adversary will play those levels where the
minimum return is achieved by any policy. Thus, any agent trained on those levels will mostly
be able to reach that performance on any level in deployment. Thus, this results in suboptimal
performance. This is clear to see in the case where impossible levels exist in the level space of
the adversary. An agent trained on those would constitute an MMEV policy, although it basically
consists of a policy not able to pursue the correct goal.

We note that c as just introduced, can be thought as a return floor. People familiar with the deci-
sion theory and UED literature can think of this as an (inverse) analog of the regret floor or regret
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stagnation Beukman et al. (2024). While the latter quantifies the minimum amount of regret any
policy will suffer against a level distribution, we quantify the minimum amount of return a policy
will incur.

Theorem 4 (MMEV is susceptible to goal misgeneralization). Consider an UMDP ⟨Θ,A,S, I, T ⟩,
a pair of goals R, R̃, a proxy-distinguishing distribution shift ⟨α, β, C,ΛTrain,ΛDeploy⟩, and approx-
imation threshold ε ≥ 0. Then,

∃πMMEV ∈ ΠMMEV(R) such that V R(πMMEV; ΛDeploy) = c(ΛDeploy, α)

where α = V R(π∗; ΛMMEV) and c(ΛDeploy, α) = Eθ∼ΛDeploy [ c(θ, α) ]

Proof. Consider π⋆ as the optimal policy across all levels θ ∈ Θ. The adversary will play a strategy

ΛMMEV ∈ arg min
Λ′∈∆(Θ)

V R(π⋆; Λ′)

In words, the adversary will play levels in which the lowest possible score is achieved by the optimal
policy.

We now need to construct our policy πMMEV. Take the policy such that

V R(πMMEV; θ) =

{
V R(π∗; θ), if θ ∈ suppΛMMEV,

c(θ, α), if θ /∈ suppΛMMEV.

We note that we always have c(θ, α) ≥ V R(π∗; θ′), where θ ∈ Θ, θ′ ∈ suppΛMMEV by our
definitions. In words, take the MMEV policy such that it achieves the maximum return possible
on levels played by the adversary, and the smallest available return on all other levels. Note that
the smallest available return on levels not played by the adversary is necessarily greater than the
highest one possibly achievable on levels played by the adversary. A policy that achieves this return
is clearly in an MMEV policy. So, the following holds

V R(πMMEV; Λ′) = c(Λ′, α).

Taking Λ′ = ΛDeploy we get

V R(πMMEV; ΛDeploy) = c(ΛDeploy, α).

as desired.

In our theorem, we proved that an MMEV agent will possibly achieve returns that are at most the
maximum ones achievable in levels played by the adversary. If very low return levels exists, this
policy would then possibly goal misgeneralize at test time if evaluated on levels where a high return
is possible.

K.2 Training methods and experimental results

In this section, we outline our empirical evaluation of MMEV-based training methods for mitigating
goal misgeneralization. We adapt three UED methods: PLR⊥ along with two ACCEL variants
(ACCELidentity and ACCELbinomial, see Appendix J). These UED methods were originally designed
for MMER training, but we can convert their regret-maximizing adversaries into return-minimizing
adversaries simply by replacing the regret estimator used to refine the buffer with a negative expected
return estimator,

M̂R
latest(π; θ) = −V̂ R

latest(π; θ), (16)
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Figure K.1: Maximin training methods. Each policy is trained on T environment steps, using the
indicated algorithm, with underlying training distribution ΛTrain

α . Average return over 512 steps for
an evaluation batch of 256 levels (top row: distinguishing levels, bottom row: non-distinguishing
levels). Mean over N seeds, shaded region is one standard error. Note the split axes used to show
zero on the log scale. Note the drop in performance for DR in non-distinguishing KEYS AND CHESTS
levels at α = 1 can be explained by noting that non-distinguishing levels are now out of distribution
given this training distribution.

where V̂ R
latest(π; θ) is the empirical average return achieved on θ in the latest batch of rollouts with

the current policy π.

Figure K.1 shows the performance of trained policies in CHEESE IN THE CORNER and KEYS AND
CHESTS for non-distinguishing and distinguishing levels. As expected, these training methods fail
to mitigate goal misgeneralization, and even fail to induce robust performance in non-distinguishing
levels.

We observe that these adversaries rapidly fill their buffers with levels with zero estimated value,
indicating that the adversaries are working as expected. We hypothesize that the training failure
is primarily due to the adversary finding levels in which the policy not only receives low expected
value, but never receives any nonzero reward and thus obtains no training signal.

In the extreme case, the adversary could populate the buffer with levels that have zero maximum
value, preventing any policy from obtaining nonzero reward. In CHEESE IN THE CORNER, levels
in which the cheese position is unreachable from the mouse spawn position have zero maximum
value. In Figure K.2, we plot the average proportion of such “unsolvable” levels in the adversary’s
buffer over training for CHEESE IN THE CORNER. We find that this proportion is around 80% for
most training distributions, which is much higher than the baseline value of around 18% of levels
sampled from Λ¬Distg. that are unsolvable. As the proportion of distinguishing levels increases, the
average proportion of unsolvable levels decreases slightly, to around 50% for α = 0. Note that the
baseline value for ΛDistg. is also lower (around 7%) since it’s easier for walls to obstruct the cheese
when it’s in the corner than when it is in an arbitrary position in the interior of the grid. Therefore we
hypothesize that the adversaries have a slightly harder time finding unsolvable levels as α increases.
However, unsolvable levels still occupy a majority of the buffer.
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Figure K.2: Maximin training methods. Each policy is trained on T environment steps, using the
indicated algorithm, with underlying training distribution ΛTrain

α . Average proportion of unsolvable
levels in the adversary’s buffer over training. Mean over N seeds, shaded region is one standard
error. Note the split axes used to show zero on the log scale.
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L Experiments with increased training length

In most of our experiments, we compare the performance of algorithms after a fixed amount of
training time, and find that MMER-based training methods typically outperform MEV-based train-
ing methods for a fixed training budget. We have shown that this is because a regret-maximizing
adversary can amplify the proportion of distinguishing levels compared to sampling from a fixed
underlying training distribution.

Another method of increasing the agent’s experience in distinguishing levels is to train for longer.
In this appendix, we extend training times in the CHEESE ON A DISH training environment (where
DR was most robust to goal misgeneralization).

Figure L.1 shows the results. We find that training for more than 200 million environment steps
with a fixed training method slightly mitigates goal misgeneralization. In particular, for α = 1e-3,
DR gradually stops misgeneralizing after 200 million steps. The result is qualitatively consistent
with Theorem 1, since increasing training time should have the effect of decreasing the optimization
threshold.

However, for lower α values, further training shows diminishing returns, and even 1,500 million
steps of DR training is insufficient to mitigate goal misgeneralization to the extent achieved by most
UED methods within 200 million steps. This suggests that current UED methods are both more effi-
cient and also qualitatively more effective at mitigating goal misgeneralization in this environment.

CHEESE ON A DISH

DR PLR⊥ ACCELidentity

Regret estimator: oracle-latest (1st row), max-latest (2nd row)
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Figure L.1: Training for more environment steps in CHEESE ON A DISH. Each policy is trained for
500M environment steps (1,500M for DR), using the indicated algorithm, with underlying training
distribution ΛTrain

α . Every 100M steps, we evaluate the average return over 512 steps for an evaluation
batch of 256 distinguishing levels (cf. Figure 4). Mean over 3 seeds, shaded region is one standard
error. Note the split axes used to show zero on the log scale.
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M Experiments with a different distinguishing level generator

In this section, we consider an alternative procedural level generator for distinguishing levels in the
CHEESE IN THE CORNER environment. Our main experiments use a distinguishing level generator
that places the cheese anywhere in the maze.

We consider a restricted distinguishing level generator that positions the cheese only within a region
of size c × c surrounding the top-left corner, for varying c (the non-distinguishing generator would
be recovered with c = 1, and the original, unrestricted distinguishing level generator would be
recovered with c = 13).

Figure M.1 shows the return is evaluated on unrestricted distinguishing levels, where the cheese is
positioned anywhere in the maze. We find that the UED methods are able to amplify the proportion
of restricted distinguishing levels and in some cases mitigate goal misgeneralization. DR achieves
low return across all corner sizes c.

CHEESE IN THE CORNER, restricted training distribution
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Figure M.1: Training with varying distinguishing level generators. Each policy is trained on
200 million environment steps, using the indicated algorithm, with underlying training distribution
ΛTrain
α,c = (1 − α)Λ¬Distg. + αΛc

Distg., where Λc
Distg. is a procedural level generator that positions the

cheese in the top-left c × c region of the maze. (1st row): Average return over 512 steps for an
evaluation batch of 256 distinguishing levels (cf. Figure 4). (2nd row): The proportion of distin-
guishing levels sampled from the adversary’s buffer across training (cf. Figure 5). (Both): Mean
over N seeds, shaded region is one standard error. Note the split vertical axes used to show zero on
the log scale.
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N Experiments with different observations

In this section, we vary the way we encode observations for the policy in CHEESE ON A DISH and
explore its effect on goal misgeneralization.

As discussed in Appendix F.2, the proxy goal and the true goal are symmetric in this environment,
other than the fact that the position of the dish is redundantly represented across multiple channels in
the Boolean grid observation. In the main text, we use D = 6 channels to encode the dish position
(compared to 1 channel for the cheese position). The additional channels break a symmetry and
create a slight inductive bias in favor of a policy that pursues the proxy goal.

We conduct an experiment where we vary the number of channels and see what affect it has on
goal misgeneralization. Figure N.1 shows the results. We see that with one channel coding the dish
position, all methods (including DR) are somewhat robust to goal misgeneralization, even at small
α values. Additional channels significantly increase DR’s susceptibility to goal misgeneralization.
On the other hand, UED methods remain able to identify and amplify the training signal from rare
distinguishing levels, while UED methods retain comparably similar performance.

The extent of amplification remains essentially constant with D. We hypothesize that the number of
channels does not stop the adversary from noticing high-regret distinguishing levels, though it may
affect how the policy responds.

CHEESE ON A DISH, varying observations
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Figure N.1: Training with observations with varying emphasis on the dish. Each policy is trained
on 200 million environment steps, using the indicated algorithm, with underlying training distribu-
tion ΛTrain

α . We vary the number of channels (features) encoding the dish position, D. (1st row):
Average return over 512 steps for an evaluation batch of 256 distinguishing levels (cf. Figure 4).
(2nd row): The proportion of distinguishing levels sampled from the adversary’s buffer across train-
ing (cf. Figure 5). (Both): Mean over N seeds, shaded region is one standard error. Note the split
vertical axes used to show zero on the log scale.


	Introduction
	Related work
	Preliminaries
	Problem setting
	Level classification
	Proxy-distinguishing distribution shift
	Assumptions

	Theoretical results
	Approximate maximum expected value is susceptible to goal misgeneralization
	Approximate minimax expected regret is robust to goal misgeneralization

	Experimental methods
	Procedurally-generated grid-world environments
	Training methods
	Expected regret estimation methods

	Experimental results
	Domain randomization exhibits goal misgeneralization with rare distinguishing levels
	Regret-based prioritization amplifies distinguishing levels, mitigating misgeneralization
	Increasingly advanced UED methods are more robust to goal misgeneralization
	Biased regret estimation can undermine UED in more complex environments

	Conclusion
	Proofs for theoretical results from Section 5
	References
	Supplementary materials
	Expected regret identity for UMDPs
	Approximate relaxations of the minimax expected regret decision rule
	Alternative definitions of approximate minimax expected regret
	Asymptotic equivalence of the definitions
	Generalizing the robustness result

	Optimizing minimax expected regret is necessary if you want to prevent misgeneralization under all possible distribution shifts
	Partially observable environments
	Generalizing the expected regret identity to partially observable environments
	Generalizing Definition 5 and Theorem 2 to partially observable environments

	Additional environment details
	The cheese in the corner environment
	The cheese on a dish environment
	The keys and chests environment

	Additional training details
	Hyperparameters
	Compute

	Additional evaluation results (non-distinguishing levels and proxy goal)
	Visualizing performance on levels with different cheese positions
	Experiments with different edit distributions
	Elementary edits
	ACCEL variants
	Experimental results

	The maximin expected value objective is susceptible to goal misgeneralization
	Theoretical results
	Training methods and experimental results

	Experiments with increased training length
	Experiments with a different distinguishing level generator
	Experiments with different observations

