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Summary
The policy improvement theorem is a fundamental building block of classical reinforce-

ment learning for discrete action spaces. Unfortunately, the lack of an analogous result for
continuous action spaces with function approximation has historically limited the ability of
policy optimization algorithms to make large step updates, undermining their convergence
speed. Here we introduce a novel nonparametric policy that relies purely on data to take actions
and that admits a policy improvement theorem for deterministic Markov Decision Processes
(MDPs). By imposing mild regularity assumptions on the optimal policy, we show that, when
data come from expert demonstrations, one can construct a nonparametric lower bound on the
value of the policy, thus enabling its robust evaluation. The constructed lower bound naturally
leads to a simple improvement mechanism, based on adding more demonstrations. We also
provide conditions to identify regions of the state space where additional demonstrations are
needed to meet specific performance goals. Finally, we propose a policy optimization algo-
rithm that ensures a monotonic improvement of the lower bound and leads to high probability
performance guarantees. These contributions provide a foundational step toward establishing
a rigorous framework for policy improvement in continuous action spaces.

Contribution(s)
i) We present a novel framework for nonparametric policies on continuous state and action

spaces that only requires data coming from expert trajectories.
Context: Modern RL algorithms usually learn a parametrized policy (Schulman et al.,
2017), a model of the environment, or both (Hafner et al., 2019; Janner et al., 2019).

ii) Robust policy evaluation: Under mild assumptions on the MDP, we can readily construct
a lower bound on the optimal Q-function. Our policy is greedy with respect to this bound
and surprisingly improves upon it.
Context: The expression for this lower bound ensures that greedy actions can be carried
out in closed form, making our policy easy to implement and evaluate. In contrast, stan-
dard policy iteration (Sutton & Barto, 2018) relies on computing an (approximate) value
function estimate of a policy.

iii) Policy improvement: Our framework leads to a policy improvement mechanism, in which
more data yields ever tighter lower bounds. As a result, our policy sequentially improves
on the new data.
Context: We provide sufficient conditions for our policy to be strictly improving on the
new data points. Notably, this method allows for large policy updates, in contrast to policy
gradient (Sutton et al., 1999) or trust region methods (Schulman et al., 2015), which take
small enough steps to ensure improvement on average.

iv) Policy optimization with guarantees: We present a novel algorithm, inspired by minoriza-
tion maximization, that monotonically improves our lower value estimate, leading to high
probability performance guarantees.
Context: We derive easy-to-check conditions (based on the value function bounds and
sampled states) that either guarantee a certain suboptimality or suggest a location where
new demonstrations are necessary to meet the performance requirements.
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Abstract

The policy improvement theorem is a fundamental building block of classical reinforce-
ment learning for discrete action spaces. Unfortunately, the lack of an analogous result
for continuous action spaces with function approximation has historically limited the
ability of policy optimization algorithms to take large update steps, undermining their
convergence speed. Here we introduce a novel nonparametric policy that relies purely
on data to take actions and that admits a policy improvement theorem for determin-
istic Markov Decision Processes (MDPs). By imposing mild regularity assumptions
on the optimal policy, we show that, when data come from expert demonstrations, one
can construct a nonparametric lower bound on the value of the policy, thus enabling its
robust evaluation. The constructed lower bound naturally leads to a simple improve-
ment mechanism, based on adding more demonstrations. We also provide conditions
to identify regions of the state space where additional demonstrations are needed to
meet specific performance goals. Finally, we propose a policy optimization algorithm
that ensures a monotonic improvement of the lower bound and leads to high proba-
bility performance guarantees. These contributions provide a foundational step toward
establishing a rigorous framework for policy improvement in continuous action spaces.

1 Introduction

The policy improvement theorem is a fundamental result in classical dynamic programming
(DP) (Puterman, 1994) and reinforcement learning (RL) (Sutton & Barto, 2018) for discrete action
spaces. It guarantees that iterative policy updates lead to performance improvements, underpinning
the convergence and optimality of classical algorithms such as policy and value iteration. However,
when function approximation is introduced—particularly in continuous action spaces—the intricate
relationship between policy parameters and performance outcomes makes it virtually impossible to
ensure uniform improvement across all states (Sutton & Barto, 2018).

To address this challenge, research has increasingly focused on policy gradient methods (Williams,
1992), which are particularly well-suited for continuous action spaces (see, e.g., Todorov et al.
(2012); Tassa et al. (2018)). Unlike classical approaches that guarantee uniform improvement across
all states, policy gradient methods optimize performance in expectation. A rich body of work has
explored enhancements to these methods, including “natural” policy gradient techniques (Peters &
Schaal, 2008), methods that aim for monotonic improvement (in expectation) through constrained
approximate policy iteration (Schulman et al., 2015), and approaches that take multiple small steps
per data batch toward better performance (Schulman et al., 2017). Despite their advantages, these
approaches often suffer from slow convergence, sensitivity to hyperparameter tuning, and instability,
or the fact that optimization landscapes may be non-smooth or even fractal (Wang et al., 2023; 2024).
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Figure 1: Overview of the proposed method. From left to right: i) a dataset containing expert triplets
(si, ai, Qi) is used to ii) build a lower bound on the optimal value function; iii) acting greedily with
respect to it gives our policy; iv) if high-probability suboptimality conditions are not met, we collect
more expert trajectories and repeat the process.

This paper presents a novel nonparametric policy improvement mechanism as a viable alternative
to policy optimization in problems with continuous state and action spaces. Establishing a policy
improvement theorem in this setting would enable large policy updates while maintaining a guar-
antee of strict improvement. Naturally, achieving such a result requires overcoming the challenges
posed by the intricate dependence between policy parameters and MDP performance. We address
this by carefully designing the policy representation and leveraging a minorization-maximization
(MM) approach, similar to MM algorithms (Ortega & Rheinboldt, 2000; Sun et al., 2016), to ensure
strict improvement over a lower bound of the policy value.

Contributions: The contributions of this work are listed next. For a more detailed discussion on the
placement of our work in the literature, we refer the reader to Section 6.

• Nonparametric Policy Evaluation: We introduce a novel policy representation for continuous
state-action spaces that relies purely on data, i.e., it is nonparametric. We show that under minor
regularity assumptions on the optimal policy π⋆, the proposed policy π admits nonparametric
lower estimates Vlb(s) and Qlb(s, a) of the policy value V π(s) and action value Qπ(s, a).

• Policy Improvement Theorem: Combining the proposed policy representation and lower bound
estimation naturally leads to a policy improvement mechanism that requires only a properly cho-
sen expert trajectory. We provide further conditions on the dataset and the new trajectory that
guarantee strict improvement over a region of the state space.

• Suboptimality Gap and Active Sampling: While in principle, any expert demonstration would lead
to better performance, our analysis derives suboptimality conditions (based on the initial states
and bounds on the optimal value function) that either guarantee a certain level of performance
or suggest a new location where new expert trajectories are necessary to meet the performance
requirements.

• Nonparametric Policy Optimization: The aforementioned results lead to a novel algorithm, in-
spired by minorization-maximization, that monotonically improves our performance lower esti-
mate Vlb(s), leading to high probability performance guarantees, while limiting the amount of
data that needs to be stored.

2 Problem setup

We consider a Markov Decision Process ⟨S,A,R, T, ρ, γ⟩ with state space S, action space A, re-
ward set R, initial state distribution ρ, discount factor γ ∈ (0, 1) and transition density T (s, a, s′)
(Van Hasselt & Wiering, 2007). As usual, policies π : S → P(A) map states to probability distri-
butions over the action space.1 Given a policy π, its value function and action-value function can be

1For deterministic policies, we abuse notation and let π : S → A, that is to say: π(st) = at.
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defined at any state as:

V π(s) ≜ Eπ

[ ∞∑
t=0

γtr(st, at) | s0 = s

]

Qπ(s, a) ≜ Eπ

[ ∞∑
t=0

γtr(st, at) | s0 = s, a0 = a

]
,

where r(s, a) = E [rt+1 | st = s, at = a] and Eπ[ · ] denotes expectation with respect to trajectories
induced by the MDP and policy π (Sutton & Barto, 2018). The optimal value- and action-value
functions are defined for all s ∈ S, a ∈ A:

V ⋆(s) = max
π

V π(s); Q⋆(s, a) = max
π

Qπ(s, a).

We let π⋆ stand for the optimal policy, i.e., the maximizer of the two expressions above. A usual
goal in RL is to find said policy. In the presence of function approximation, the typical goal is:

max
π

Es∼ρ [V
π(s)] ,

that is to say, a policy that is optimal with respect to the initial state distribution ρ. For further
discussions on optimality with respect to an initial state distribution, see, e.g., Puterman (1994).

Additional assumptions We make the following assumptions on the MDP and the optimal value
function.

Assumption 2.1 (Deterministic MDP). The transition map is deterministic: i.e. there exists f :
S ×A → S such that st+1 = f(st, at).

Assumption 2.2 (Q⋆ is Lipschitz). The optimal action-value function Q⋆ is L-Lipschitz, that is:

|Q⋆(s, a)−Q⋆(s′, a′)| ≤ L (∥s− s′∥+ ∥a− a′∥)

∀s, s′ ∈ S and ∀a, a′ ∈ A.

As we will see shortly, having a Lipschitz optimal value function will allow us to readily compute
lower bounds (provided L is known). As it turns out, if Q⋆ is Lipschitz so is V ⋆.

Proposition 2.3. If Q⋆ is L-Lipschitz then V ⋆ is L-Lipschitz:

|V ⋆(s)− V ⋆(s′)| ≤ L∥s− s′∥ ∀s, s′ ∈ S.

Proof. The proof is in Supplementary Material A.1.

Assumption 2.2 is not overly restrictive and has been made before (Buşoniu et al., 2018; Shen &
Yang, 2021). We present conditions on the MDP that are sufficient to guarantee it.

Proposition 2.4 (Sufficient conditions for Lipschitz value functions (Buşoniu et al., 2018)). If the
transition map f and rewards r are Lipschitz, i.e.:

∥f(s, a)− f(s′, a′)∥ ≤ Lf (∥s− s′∥+ ∥a− a′∥)
|r(s, a)− r(s′, a′)| ≤ Lr (∥s− s′∥+ ∥a− a′∥)

for positive scalars Lf , Lr, and the discount factor satisfies γLf < 1, then Q⋆ and V ⋆ are L-
lipschitz with L ≤ Lr

1−γLf
.

Proof. The proof is presented in Supplementary Material A.2 for completeness.

Our last assumption is related to the data available to the agent, which must come from expert
demonstrations.
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Assumption 2.5 (Expert data). Our agent has access to a collection of triplets2 D =

{(si, ai, Qi)}|D|
i=1 where the state-action pairs are induced by π⋆ and Qi ≡ Q⋆(si, ai).

This last assumption on expert data will allow us to state suboptimality results with respect to the
optimal policy. It, however, can be relaxed to data collected by any other policy, as long as its value
function is Lipschitz. We postpone further comments on this relaxation until the end of Section 3.

Bounds on the optimal value functions We use the fact that Q⋆ is Lipschitz (Assumption 2.2) to
construct lower bounds on both V ⋆ and Q⋆. These bounds are defined with respect to the information
provided in the dataset D.

Vlb(s) ≜ max
1≤i≤|D|

{Qi − L∥s− si∥} , (1)

Qlb(s, a) ≜ max
1≤i≤|D|

{
Qi − L

(
∥s− si∥+ ∥a− ai∥

)}
. (2)

We can, in a similar way, define upper bounds:

Vub(s) ≜ min
1≤j≤|D|

{Qj + L∥s− sj∥} , (3)

Qub(s, a) ≜ min
1≤j≤|D|

{
Qj + L

(
∥s− sj∥+ ∥a− aj∥

)}
. (4)

We omit the dependence of these bounds on D to avoid clutter. Since both value functions are
Lipschitz, the quantities defined above indeed serve as lower and upper bounds (hence the subscripts
lb and ub) to the optimal state- and action-value function, respectively:

Vlb(s) ≤ V ⋆(s) ≤ Vub(s) Qlb(s, a) ≤ Q⋆(s, a) ≤ Qub(s, a).

Combining upper and lower bounds (in particular for V ⋆) will come in handy to derive suboptimality
guarantees of our policy. We pay special attention to the lower bounds, which will be used to define
our nonparametric policy and which we adress in the following section.

3 Nonparametric policies

In this section, we build on the lower bounds introduced in the prequel and propose our nonpara-
metric policy. There are three main ingredients to this construction (highlighted in Figure 1). First,
given a dataset D, we construct the lower bounds (1) and (2). We then define a policy that acts
greedily with respect to this lower bound. Remarkably, we show that the value function of this
policy improves upon the lower bound. Let us first start by defining the policy.

Definition 3.1 (Nonparametric policy). For every state s ∈ S we define:

π(s) ≜ argmax
a∈A

Qlb(s, a)

As we highlighted before, π acts greedily with respect to the lower bound. Notably, this maximiza-
tion is simple to carry out and always gives actions in the dataset.
Remark 3.2. π(·) always chooses an action from the dataset, i.e.:

∀s ∈ S : π(s) = ai for some i ∈ {1, . . . , |D|} .

If multiple maximizers exist for a given s, we choose the ai with the smallest index i, rendering our
policy deterministic. If we let i⋆ be the maximizer for a given (s, a) pair, notice that we have:

Qlb(s, a) ≤ Qlb(s, ai⋆) = Vlb(s) = Qi⋆ − L∥s− si⋆∥.
2We use D to denote dataset: this will be the data that our policy leverages.
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Figure 2: Illustrations of Theorems 3.4 and 3.5. Left: Robust policy evaluation. V π lies between
Vlb and V ⋆; all three functions interpolate the data points (si, Qi). Right: Policy improvement.
adding the transition (s′, a′, Q′) yields a better lower bound Vlb ≤ V ′

lb. Furthermore, strict policy
improvement holds in the neighborhood N(s′).

Policy interpretation Our policy acts in two steps. First, it selects the index i⋆ that maximizes
Vlb(s) in (1), which amounts to performing a biased projection onto states in the dataset, with bias
terms given by Qi/L. Then, it selects the action ai⋆ , corresponding to the projected state. Because
of the first step, our method bears resemblance to nearest neighbor approaches in RL (Santamaria
et al., 1997; Shah & Xie, 2018).

Greedy policies are ubiquitous in the RL literature (Sutton & Barto, 2018; Williams & Baird,
1993). Since they enable policy improvement, they serve as one of the fundamental building blocks
for policy iteration methods (Sutton & Barto, 2018; Pirotta et al., 2013). We will soon show that
our policy satisfies a policy evaluation inequality, and that—sequentially—adding more data to the
dataset D yields a form of policy improvement.

Our result will hinge on the fact that the expert data comes from trajectories. To that end, we make
the last definition before our main results.
Definition 3.3 (Consistent dataset). D is a consistent dataset if for all (si, ai, Qi) ∈ D the following
two conditions hold:

i) ai = π⋆(si); Qi = V ⋆(si).

ii) ∃(sj , aj , Qj) ∈ D such that sj = f(si, ai).

A dataset made up of expert trajectories3 of the form τk = (sk0 , a
k
0 , Q

k
0 , s

k
1 , a

k
1 , Q

k
1 , . . .) satisfies the

consistency definition above.

Policy evaluation and improvement One of our key finding is that the greedy policy defined
above has a value function that improves upon the lower bound of the optimal one. We state this
result next.
Theorem 3.4 (Policy evaluation). Let D be a consistent dataset (Definition 3.3) and π as in Defini-
tion 3.1. Then, for all s ∈ S the following two inequalities hold:

Vlb(s) ≤ r(s, π(s)) + γVlb(f(s, π(s))

Vlb(s) ≤ V π(s) ≤ V ⋆(s) .

Proof. The proof is in Supplementary Material A.3.

We want to stress the relevance of the second inequality above, which is depicted in Figure 2 (to
the left). In standard policy iteration algorithms (Sutton & Barto, 2018), one first evaluates a given
policy, resulting in a value function, and then acts greedily upon it. Notably, we act greedily with
respect to Qlb, which may not correspond to the value of any policy, and still improve upon it. Next,
if our greedy policy surpasses this lower bound, the natural thing to do is to increase the size of D
to get a better lower bound. This leads to the policy improvement mechanism highlighted next.

3Although the RL objective pertains infinite-length trajectories, in practice we will truncate them after a horizon H ≥
(1− γ)−1.
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Theorem 3.5 (Policy improvement). Let D, D′ be consistent datasets with D ⊂ D′. Let Vlb and V ′
lb

be the lower bounds constructed with D and D′ respectively. Then the following non-deterioration
conditions hold:

Vlb(s) ≤ V ′
lb(s) ∀s ∈ S, and

V π(s) ≤ V π′
(s) ∀s ∈ ΠS [D′\D],

where ΠS [D] ≜ {si : ∃ai, Qi such that (si, ai, Qi) ∈ D} and “\” denotes set difference.
Furthermore, if there exists s′ ∈ ΠS [D′\D] and an open ball B(s′) such that sups∈B(s′) V

π(s) <
V ⋆(s′), then strict improvement exists in a subset N(s′) ⊂ B(s′):

Vlb(s) < V ′
lb(s) ∀s ∈ N(s′), and

V π(s) < V π′
(s) ∀s ∈ N(s′)

Proof. The proof is in Supplementary Material A.4

By refining the lower bounds on V ⋆, we can improve the value of our policy, specifically on new
transitions. However, in general we cannot claim (like in classical policy iteration) V π(s) ≤ V π′

(s)
uniformly over s ∈ S, nor even uniformly over the initial state distribution, that is to say:
Es∼ρ [V

π(s)] ≤ Es∼ρ[V
π′
(s)]. This is typical of majorization-minimization methods (like ours)

that perform sequential optimization with respect to an improved lower bound (Ortega & Rhein-
boldt, 2000; Sun et al., 2016).

Notwithstanding, the hope is that refinements of the lower bounds—attained by adding new trajec-
tories to the dataset D—will improve the performance of our resulting policy π. Notably, we derive
easy-to-check, sufficient conditions to achieve an ε-suboptimality that we address next. After defin-
ing these suboptimality notions and the conditions that will attain them, we will be ready to present
our algorithm.

On suboptimality and guarantees We measure the suboptimality of our policy with the gap
between V π and V ⋆.

Definition 3.6 (Suboptimality). Let ε ≥ 0. We say π is ε-suboptimal whenever, for all s ∈ S:

V ⋆(s)− V π(s) ≤ ε.

If the dataset covers the state space S in a sense to be made explicit, then our resulting policy will
have the desired suboptimality.

Proposition 3.7 (Suboptimality guarantee). Let Vlb(s) and Vub(s) be the D-dependent lower and
upper bounds of V ⋆ defined in (1), (3). If for every s ∈ S we have:

SurrogateGap(s) ≜ Vub(s)− Vlb(s) ≤ ε, (5)

Then π is ε-suboptimal.

Proof. The proof is in Supplementary Material A.5

Notice that computing (5) for a fixed s is simple, since both the upper and lower bounds can be
computed by maximizing over states in D. This gap—which overestimates the gap of the policy—
decreases as more data is added to D. In the next section, we present an algorithm that checks this
condition at the start of each episode. This will inform our agent when it needs to collect more
expert data from the environment. Since it is infeasible to check the condition of Theorem 3.7 for
the whole state space, we will come up with high probability guarantees (with respect to the initial
state distribution ρ) to achieve a desired threshold.
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Algorithm 1: NPP: NonParametric Policy

Input: L > 0. ; /* Lipschitz constant */
1 ε > 0 ; /* Suboptimality gap */
2 Function TrajectoryOptimizer(·) ; /* Call to gather expert data */
3 Suboptimality condition: i) or ii) in Theorem 4.1.

Output: A policy π satisfying Thm 4.1 .
4 Initialize: D = ∅
5 for each episode e=1,. . . do
6 s ∼ ρ ; // Reset environment
7 ∆e = SurrogateGap(s) ; // Over-estimator of gap (5)
8 if ∆e ≤ ε then

// Policy is good enough
9 continue

10 else
// Need more data

11 τ = (s0, a0, Q
⋆
0, . . . , SH−1) = TrajectoryOptimizer(s)

12 for i = 0, . . . ,H − 1 do
13 D.append

(
(si, ai, Qi)

)
; // Add transitions to dataset

14 end
15 if Condition in Thm. 4.1 holds for [∆e, ∆e−1, . . .∆e−n+1] then

// Policy is approximately optimal w.h.p.
16 break
17 end

What if the data is suboptimal? Our main results in the preceeding sections relied on data coming
from an expert or optimal policy. In practical applications of behavioral cloning (Torabi et al., 2018;
Florence et al., 2022) or imitation learning (Hussein et al., 2017a; Osa et al., 2018b) this is seldom
the case. We can relax this assumption. As long as the data comes from a policy with a Lipschitz
value function, we can construct the lower bounds and still improve upon them. Further discussion
on these evaluation/improvement results are in Supplementary Material B, along with experiments
to support it.

4 Algorithm

Theorems 3.4 and 3.5 presented in Section 3 pave the way to Algorithm 1. Given a dataset D,
our policy constructs Vlb and then acts greedily with respect to that lower bound. If more data is
required, we call a TrajectoryOptimizer, generate a new trajectory and use it to build a new
dataset D′ ⊃ D. The algorithm terminates whenever it can guarantee (with high probability) that
a suboptimality condition is met. In Theorem 3.7 we state sufficient conditions—required on the
whole state space—to achieve said suboptimality. We now present a finite-sample analysis based
on episodic data that will enable us to state that the suboptimality has been achieved with high-
probability.

Guarantees We want to analyze the performance of policy π coming out of Algorithm 1 af-
ter running it for E rounds. Since it is infeasible to check the condition of Theorem 3.7 on the
whole initial state distributions, we will derive sample complexity bounds that guarantee either
Es∼ρ [V

⋆(s)− V π(s)] ≤ ε or Ps∼ρ [V
⋆(s)− V π(s) ≤ ε] with high probability.

Theorem 4.1 (Probabilistic Guarantees). Assume Algorithm 1 ran for E episodes; let ∆e be defined
as in line 7 of the algorithm. Let S0 denote the support of the initial state distribution ρ.
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Figure 3: The lqr environments from DeepMind Control suite.

i) If for the last n episodes no new data has been collected, then with probability at least 1 − δ,
we have:

Ps∼ρ [V
⋆(s)− V π(s) ≤ ε] ≥ p,

provided:

n ≥ 1

1− p
log

1

δ
.

ii) Let ∆̄n ≜ 1
n

∑n−1
i=0 ∆E−i. Then with probability at least 1− δ we have:

Es∼ρ [V
⋆(s)− V π(s)] ≤ ε,

provided:

∆̄n < ε and n ≥ 2L2 diam2(S0)

(ε− ∆̄n)2
log

1

δ
.

Proof. The proof is in Supplementary Material A.6

The algorithm takes as input one of these suboptimality notions—either having low probability of
exceeding the gap, or satisfying the gap in expected value—and terminates whenever the conditions
of the preceeding theorem are satisfied.

5 Experiments

In this section, we show the performance of Algorithm 1 on two LQR environments. In these
settings, the optimal policy and the optimal value function exist in closed form, yielding a convenient
way of computing expert trajectories.

Environments We test our algorithm on environments from the DeepMind Control suite (Tassa
et al., 2018; Tunyasuvunakool et al., 2020), which are based on the MuJoCo engine (Todorov et al.,
2012). The lqr_n_m environments are shown in Figure 3. They constitute a well-studied problem
in control theory with a closed form solution for the optimal policy and value function (Bertsekas,
2012). This available optimal policy serves as the trajectory optimizer of Algorithm 1.

The environments are made up of a body of n balls in series attached by strings, the first m of which
are actuated, i.e. dim(A) = m. The balls move along one axis, positions and velocities yield a state
vector of dim(S) = 2n. The goal in lqr is to bring the system close to the origin, with stage reward
r(s, a) = 1−0.5(∥s∥2+0.1·∥a∥2). Originally, an episode terminates whenever ∥s∥ ≤ 10−6. Initial
states have zero velocity and the n positions are sampled uniformly from a sphere of radius

√
2.

We perform systematic evaluation of these two environments under the optimal policy to come up
with upper bounds on the Lipschitz constant of the optimal value functions, and to fix the horizon
for each environment. We ended using L = 50 for lqr_2_1 and L = 500 for lqr_4_2. The
horizon for lqr_2_1 is set to H = 1000 and H = 400 for lqr_4_2 See Figures 7 and 8 in
Supplementary Material C for further details. If the Lipschitz constant is not known beforehand,
it can be estimated based on the dataset, either globally (using the whole data) or locally, by using
k-nearest neighbors of a query point s.
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Results on lqr_2_1 We set a target a suboptimality gap ε = 50 (which corresponds to being
6% away from the optimal policy) and choose the probabilistic guarantee given by condition (i)
of Theorem 4.1 with p = 0.9, δ = 0.1. Training curves in Figure 4 show the size of the dataset
and the gap between our policy and the optimal one as training progresses, with results averaged
over 4 seeds. Vertical dashed lines specify when each of these experiments has reached the high-
probability certificate of suboptimality. These results are supported by the right-most panel of Figure
4, where we show (minus) the empirical suboptimality distribution V π − V ⋆ from random initial
states s0 ∼ ρ, with N = 100 rollouts per episode. We observe that, when the algorithm terminates,
the gap is bounded by ε as desired. The densities were constructed using KDE (Rosenblatt, 1956;
Chen, 2017). Additional plots showing the distribution of states in the dataset can be found in
Supplementary Material D.
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Figure 4: Training statistics for lqr_2_1 with target suboptimality ε = 50, results averaged over
4 seeds. Left: & Middle: size of the dataset and suboptimality (at the initial state) as a function of
episodes. Medians are shown in solid line, with shaded area indicating a 95% confidence interval.
Purple vertical dashed line corresponds to the high-probability certificate (Theorem 4.1) that the
desired suboptimality has been reached. Right: Distribution of the suboptimality gap at different
stages of training. The gap shrinks as training progresses, and at the last episode our algorithm
certifies with high probability the desired gap of ε = 50.

Results on lqr_4_2 For this environment we set a stricter gap of ε = 10 (which corresponds
to being 2.5% away from the optimal policy) and, like before, the probabilistic requirements of
condition (i) in Thm. 4.1, with δ = 0.1 and p = 0.9. Training curves and suboptimality distribution
estimates are in Figure 5. As can be seen in the leftmost and rightmost plot, the desired suboptimality
is achieved around 10k episodes. In the middle plot we also show the suboptimality attained by a
policy trained via Soft Actor-Critic (Haarnoja et al., 2018)
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Figure 5: Training curves and suboptimality distribution for lqr_4_2 with target suboptimality
ε = 10. See the caption in Figure 4 for details on how to read the plots.

6 Related Work

Policy Improvement and Related Classical Algorithms. The Policy Improvement Theorem is at-
tributed to Richard Bellman in the 1950s and first appeared in Bellman (1957). Policy Iteration (PI),
which leverages the Policy Improvement Theorem to iteratively obtain uniformly better policies,
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is due to Howard (1960). PI requires that at each iteration, a policy is (approximately) evaluated,
which sometimes is construed as computationally costly, even in discrete spaces. Value Iteration
(VI) was introduced by MacQueen (1966) and later extended by Van Nunen (1976) as an alternative
method that does not require policy evaluation. Notably, the majority of these algorithms have clas-
sical extensions for function approximation; see, e.g., Bertsekas (1996) for a thorough discussion
of all these methods. However, such methods are either limited to discrete action spaces or lack
convergence guarantees and often fail to converge (Bertsekas, 2011). Our framework, which is nat-
urally applicable to settings with continuous action spaces, shares commonalities with both VI and
PI. As in the case of VI, Algorithm 1, VI iteration constructs a sequence of monotonically increasing
functions (Vlb) that lead to increasingly better lower estimates for V ⋆. However, our algorithm also
guarantees that Vlb is a lower bound for V π (Theorem 3.4). Similarly, akin to PI, our results provide
guarantees for non-deterioration (of the lower bound Vlb) and strict improvement of V π on some
region of the state space.

Nonparametric Methods in Reinforcement Learning. Nonparametric methods have been ex-
tensively studied in reinforcement learning (RL), with applications ranging from value function
approximation to policy optimization. Traditional approaches often rely on nearest neighbor regres-
sion (Santamaria et al., 1997; Shah & Xie, 2018; McCallum, 1994), and kernel-based techniques
(Ormoneit & Sen, 2002; Domingues et al., 2021), for nonparametric policy evaluation, where func-
tion approximation is used to estimate value some policy. These methods typically fit a value func-
tion (Q or V) and derive a policy through greedy optimization over the estimated function. However,
a key limitation of these approaches is their reliance on value function estimation, which can be sen-
sitive to approximation errors and data sparsity. In contrast, our method does not attempt to estimate
the value function but instead constructs a global lower bound on the policy value. Nonparamet-
ric policies, akin to the ones proposed in this paper, has been proposed in the past. In particular,
several works have consider the use of nearest neighbor policies, (Mansimov & Cho, 2018; Alton
& van de Panne, 2005; Sharon & van de Panne, 2005). However, such methods do not consider a
lower estimate on the value of the function when selecting the action. As a result, such methods lack
theoretical guarantees on the achievable performance, a key feature of the proposed work. A recent
work by Shen & Yang (2021) is most similar to ours, although authors there use nearest neighbors to
construct an optimistic overapproximation of the Q function. In contrast to our work, their method
in contrast, does not have an easy closed form solution for greedy actions with respect to that bound,
instead they use this approximation in an actor-critic framework.

Imitation Learning. Our method is related to, but distinct from, existing approaches to imita-
tion learning (IL; (Argall et al., 2009; Hussein et al., 2017b; Osa et al., 2018a)). IL, or learning
from demonstration, seeks to mimic the behavior of an expert in a sequential decision-making prob-
lem. Early neural-network-based approaches (Pomerleau, 1988; Schaal, 1996; Atkeson & Schaal,
1997) focused on behavioral cloning for robotics. To address distribution shift between training
and deployment, methods were introduced (Ross et al., 2011; Ross & Bagnell, 2014) that query
the expert on states encountered by the agent throughout training. Adversarial frameworks (Ho &
Ermon, 2016) were found to improve policy robustness in some circumstances. Recently more ex-
pressive policy classes, including diffusion models (Chi et al., 2024), have been applied to capture
multimodal decision-making in the data. Like these methods, our approach seeks to replicate the
performance of an expert given a static dataset. However, it differs fundamentally from these works
in being nonparametric.

7 Conclusion

In this work we laid the groundwork for policy improvement in continuous action spaces via a non-
parametric policy representation that admits a policy improvement theorem. By leveraging expert
demonstrations, we provided a principled approach to evaluating and improving policies through
a lower-bound estimation of their value. Our results highlight conditions under which additional
demonstrations are necessary to ensure performance guarantees, leading to a novel policy optimiza-
tion algorithm with monotonic improvement properties.
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Future work includes extending our theoretical framework to stochastic MDPs, exploring practical
implementations in high-dimensional control tasks, and investigating sample efficiency trade-offs
in real-world applications. Additionally, refining the proposed algorithm in a setting where the
Lipschitz constant is unknown could further enhance its applicability in various domains.
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A Proofs

A.1 Proof of Proposition 2.3

Statement: If Q⋆ is L-Lipschitz then V ⋆ is L-Lipschitz:

|V ⋆(s)− V ⋆(s′)| ≤ L∥s− s′∥ ∀s, s′ ∈ S.

Proof.

|V (s)− V (s′)| = |max
a

Q(s, a)−max
a′

Q(s′, a′)|

≤ max
a

|Q(s, a)−Q(s′, a)|

≤ Lq∥s− s′∥

where the first inequality follows from the well-known inequality:

|max
x

f(x)−max
x

g(x)| ≤ max
x

|f(x)− g(x)|,

for functions f, g : X → R

A.2 Proof of Proposition 2.4

Statement: If the transition map f and rewards r are Lipschitz, i.e.:

∥f(s, a)− f(s′, a′)∥ ≤ Lf (∥s− s′∥+ ∥a− a′∥)
|r(s, a)− r(s′, a′)| ≤ Lr (∥s− s′∥+ ∥a− a′∥)

for positive scalars Lf , Lr, and the discount factor satisfies γLf < 1, then Q⋆ and V ⋆ are L-lipschitz
with L ≤ Lr

1−γLf
.

Proof. Since the transitions are deterministic, we can define the open-loop q-function:

q(s,a) ≜
∞∑
t=0

γtr(st, at)

where a = [a0, a1, . . .] and st are the states under that action sequence, from s0 = s. We will show
the following two inequalities:

|q(s0,a)− q(s′0,a)| ≤ L∥s0 − s′0∥ (6)
|max

a
q(s0,a)−max

a′
q(s′0,a

′)| ≤ L∥s0 − s′0∥ (7)

Again, since transitions are deterministic, for a fixed s0 the optimal action sequence a0 =
π⋆(s0), a1 = π⋆(f(s0, π

⋆(s0))), . . . is unique and well-defined. In that way, notice showing (7)
is equivalent to showing V ⋆ is L-Lipschitz.

Let sk := ϕ(k, s0,a|k) be the solution at time k from s0 under control law a|k = [a0, . . . , ak−1],
and s′k := ϕ(k, s′0,a

′
|k) be defined similarly. Our bread-and-butter for all the proofs will come from

the following inequality, which we show by induction:

∥sk − s′k∥ ≤ Lk
f∥s0 − s′0∥+

k−1∑
ℓ=0

Lk−1−ℓ
f ∥aℓ − a′ℓ∥ ∀k ≥ 0 . (8)
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The base case k = 0 holds trivially. Assume it holds for time k − 1 (IH). We then have:

∥sk − s′k∥ =
∥∥f(sk−1, ak−1)− f(s′k−1, a

′
k−1)

∥∥ (9)

≤ Lf

(
∥sk−1 − s′k−1∥+ ∥ak−1 − a′k−1∥

)
(10)

(IH)

≤ Lf

(
Lk−1
f ∥s0 − s′0∥+

k−2∑
ℓ=0

Lk−2−ℓ
f ∥aℓ − a′ℓ∥+ ∥ak−1 − a′k−1∥

)
(11)

= Lk
f∥s0 − s′0∥+

k−1∑
ℓ=0

Lk−1−ℓ
f ∥aℓ − a′ℓ∥ . (12)

To show (6), note that under the same control laws we have, by (8):

∥sk − s′k∥ ≤ Lk
f∥s0 − s′0∥ =⇒ |r(sk, ak)− r(s′k, ak)| ≤ LrL

k
f∥s0 − s′0∥ =⇒ (13)

|q(s0,a)− q(s′0,a)| ≤
∞∑
k=0

γkLrL
k
f∥s0 − s′0∥ = L∥s0 − s′0∥. (14)

What remains is to show (7):

|max
a

q(s0,a)−max
a′

q(s′0,a
′)| ≤ max

a
|q(s0,a)− q(s′0,a)| (15)

≤ max
a

L∥s0 − s′0∥ = L∥s0 − s′0∥ (16)

where the first inequality follows from the following lemma:

|max
x

f(x)−max
x

g(x)| ≤ max
x

|f(x)− g(x)|

A.3 Proof of Theorem 3.4

Statement: Let D be a consistent dataset and π as defined in Definition 3.1. Then:

Vlb(s) ≤ V π(s) ≤ V ⋆(s) ∀s.

Proof. To show Vlb(s) ≤ V π(s) we will make use of the following lemma:

Lemma A.1 ((Bertsekas, 2019)). If there exists V : S → R such that V (s) ≤ r(s, π(s)) +
γV (f(s, π(s)) ∀s ∈ S, then V (s) ≤ V π .

We will show Vlb satisfies the inequality in the lemma above. Fix an arbitrary s. Recall:

Vlb(s) = max
1≤i≤|D|

{Qi − L∥s− si∥} ,

Qlb(s, a) = max
1≤i≤|D|

{Qi − L (∥s− si∥+ ∥a− ai∥)} ,

where for each i we have Qi = Q⋆(si, ai), ai = π⋆(si).

We want to show:
Vlb(s) ≤ r(s, π(s)) + γVlb

(
f(s, π(s))

)
∀s ∈ S,

or, equivalently,
T πVlb(s)− Vlb(s) ≥ 0, (17)

where we use the short-hand T πVlb(s) = r(s, π(s)) + γVlb

(
f(s, π(s))

)
for the standard Bellman

operator (Bertsekas, 2012).
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Fix a state s. Our policy π acts greedily with respect to Qlb(s, a). With some abuse of notation, let i
be the corresponding maximizer of Qlb for that given s. This means a tuple (si, ai ≡ π⋆(si)) gives
the largest value for the left hand side.

Starting from (17):

T πVlb(s)− Vlb(s) = r(s, π(s)) + γVlb

(
f(s, π(s))

)
− Vlb(s)

= r(s, ai) + γVlb

(
f(s, ai)

)
− Vlb(s)

= r(s, ai) + γVlb

(
f(s, ai)

)
−Qi + L∥s− si∥

= Q⋆(s, ai)− γV ⋆
(
f(s, ai)

)
+ γVlb(f(s, ai))−Qi + L∥s− si∥

≥ Q⋆(si, ai)︸ ︷︷ ︸
Qi

−L∥s− si∥ − γV ⋆
(
f(s, ai)

)
+ γVlb(f(s, ai))−Qi + L∥s− si∥

= γVlb(f(s, ai))− γV ⋆(f(s, ai)) ≥ 0 ⇐⇒

Vlb

(
f(s, ai)

)
≥ V ⋆

(
f(s, ai)

)
=⇒ Vlb(s

′) = V ⋆(s′).

Ergo the theorem is true as long as Vlb(s
′) = V ⋆(s′) for every successor state s′ = f(si, ai) for

tuples (si, ai) belonging to the dataset. But this is true, because by Assumption 2.5 our data comes
from expert trajectories. Therefore Vlb satisfies the condition of the lemma, and then Vlb(s) ≤
V π(s).

A.4 Proof of Theorem 3.5

Statement: Let D, D′ be consistent datasets with D ⊂ D′. Let Vlb and V ′
lb be the lower bounds

constructed with D and D′ respectively. Then the following non-deterioration condition holds:

• Vlb(s) ≤ V ′
lb(s), ∀s ∈ S, and

• V π(s) ≤ V π′
(s), ∀s ∈ ΠS [D′\D],

where ΠS [D] ≜ {si : ∃ai, Qi such that (si, ai, Qi) ∈ D}. Furthermore, if there exists s′ ∈
ΠS [D′\D] and a neighborhood N(s′) such that sups∈N(s′) V

π(s) < V ⋆(s′), then strict improve-
ment exists in N(s′):

• Vlb(s) < V ′
lb(s), ∀s ∈ N(s′), and

• V π(s) < V π′
(s), ∀s ∈ N(s′).

Proof. We start with the non-deterioration conditions. Note D ⊂ D′ =⇒ |D| ≤ |D′| and
therefore:

∀s ∈ S Vlb(s) = max
1≤i≤|D|

{Qi − L∥s− si∥} ≤ max
1≤i≤|D′|

{Qi − L∥s− si∥} ,

proving the first point. For the second one, note that ∀s ∈ ΠS [D′\D] we have V π′
(s) = V ⋆(s) ≥

V π(s).

We now show the strict-improvement conditions. Assuming: sups∈B(s′) V
π(s) < V ⋆(s′).

We will show V ′
lb(s) > V π(s) on some neighborhood N(s′). Note that adding the triplet (s′, a′, Q′)

yields:

V ′
lb(s) ≥ Q′︸︷︷︸

=V ⋆(s′)

−L∥s− s′∥ > V π(s) ⇐⇒ Q′ − V π(s)

L
> ∥s− s′∥

Note Q′ − V π(s) ≥ Q′ − sups∈B(s′) V
π(s) =: ∆V . Then, if |s − s′∥ < ∆V

L and s ∈ B(s′), we
have V ′

lb(s) > V π(s), as desired. Invoking Theorem 3.4, we know V π′ ≥ V ′
lb =⇒

V π′
(s) > V π(s) ∀s ∈ N(s′) ≜

{
s ∈ B(s′) : ∥s− s′∥ ≤ ∆V

L

}
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η ≜ V ⋆(s′)− sup
s∈N(s′)

V π(s) > 0.

By the Lipschitz property of V ⋆, we know

V ⋆(s) ≥ V ⋆(s′)− L∥s− s′∥ ∀s ∈ S.

Define B(s′) =
{
s ∈ S : ∥s− s′∥ ≤ 0.9η

L

}
. Then:

∀s ∈ B(s′) V ⋆(s) ≥ V ⋆(s′)− L∥s− s′∥ = V ′
lb(s) > V π(s).

Since the new policy π′ acts greedily with respect to the lower bound, we have

V π′
(s) ≥ V ′

lb(s) > V π(s) ∀s ∈ B(s′)

A.5 Proof of Theorem 3.7

Statement: If for all s ∈ S there exists si ∈ ΠS [D] such that:

∥s− si∥ ≤ ε

2L
,

then π is ε−suboptimal.

Proof. By the fact that Vlb(s) ≤ V π(s), we have:

Qi − L∥s− si∥ ≤ V π(s).

On the other hand, by the Lipschitz assumption on V ⋆,

V ⋆(s) ≤
≡Qi︷ ︸︸ ︷

V ⋆(si)+L∥s− si∥

We substract these two inequalities and enforce the ε-suboptimality:

V ⋆(s)− V π(s) ≤ Qi + L∥s− si∥ − V π(s) ≤ 2L∥s− si∥ ≤ ε =⇒ ∥s− si∥ ≤ ε

2L

A.6 Proof of Theorem 4.1

Statement: Let ∆e be defineds as in Algorithm 1 for each episode e. Let S0 ≜ supp(ρ).

i) If for the last n episodes no new data has been collected, then with probability at least 1 − δ,
we have Ps∼ρ [V

⋆(s)− V π(s) ≤ ε] ≥ p, provided:

n ≥ 1

1− p
log

1

δ

ii) Suppose ∆̄n ≜ 1
n

∑n
e=1 ∆e ≤ ε

2L . Then with probability at least 1 − δ we have
Es∼ρ [V

⋆(s)− V π(s)] ≤ ε, provided ∆̄n ≤ ε
2L and

n ≥ 2L2 diam(S0)

(ε− 2L∆̄n)2
log

1

δ
.
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Proof. i) This follows from a standard result in PAC learnability (Kearns & Vazirani, 1994). Let
the random variable W be defined over S0 such that W (s) ≜ 1 {V ⋆(s)− V π(s) > ε} ∼
Bernoulli(q). Assume q ≥ 1− p.

Let ∆i be the distance from the initial state in episode i to its “closest” datapoint, in the sense
of (1) (see Algorithm 1). If no new data has been collected for the last n episodes, this means:

∀1 ≤ i ≤ n ∆i ≤
ε

2L
=⇒ V ⋆(si)− V π(si) ≤ ε

Then:

P

[
n⋂

i=1

{
∆i ≤

ε

2L

}]
≤ P

[
n⋂

i=1

{Wi = 0}

]
= (1−q)n ≤ pn ≤ e−(1−p)n ≤ δ =⇒ n ≥ 1

1− p
log

1

δ
.

where in the second inequality we use the approximation (1− x) ≤ e−x for all x ∈ [0, 1].

ii) We consider the last n rounds of the algorithm, and define:

Ve ≜ V ⋆(se)− V π(se) e = 1 . . . n

where se ∼ ρ was the state sampled at episode e. Clearly

E [Ve] = Es∼ρ [V
⋆(s)− V π(s)]

Notice, by Theorem 3.7 that since:

2L∆e ≤ ε =⇒ Ve ≤ ε,

we have the event inclusion
{2L∆eε} ⊃ {Ve ≤ ε} .

Furthermore, ∆e are bounded almost surely:

0 ≤ ∆e ≤ sup
s,s′∈S

∥s− s′∥ = diam(S0),

where S0 = supp(ρ). Applying Hoeffding’s bound (Thm. 2.2.6 in (Vershynin, 2018)):

P
[
V̄n − Es∼ρ [V

⋆(s)− V π(s)] ≤ −t
]
≤ P

[
∆̄n − E∆ ≤ −t

]
≤ exp

(
−2t2n

4L2 diam2(S0)

)
≤ δ =⇒

n ≥ 2L2 diam2(S0)

t2
log

1

δ

Choosing t = ε− 2L∆̄n (and 0 < t by assumption) gives the desired result.
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B Policy evaluation/improvement with suboptimal data

What happens if the demonstrations come from a suboptimal policy? We provide theoretical insight
by extending theorems 3.4–3.5 and with numerical simulations that serve as proof of concept to our
approach.

Theorem B.1 (Policy improvement with suboptimal data). Let D = {(si, ai, Qi)}i be a dataset
containing trajectories collected by a policy π̃, i.e. ai = π̃(si), Qi = Qπ̃(si, ai). Assume Qπ̃ is
L-Lipschitz. Define the lower bounds Q̃lb and Ṽlb analogously to (1) and (2).

Let π(s) = argmaxa∈A Q̃lb(s, a). Then:

i) (Evaluation) Ṽlb ≤ V π ≤ V ⋆(s) ∀s.
ii) (Improvement) Assume V π(s) ≤ V π̃(s) ∀s. Then, if D′ ⊃ D =⇒ V π(s) ≤ V π′

(s) ∀s ∈
ΠS [D′\D] .

Experiments To support the discussion in Section 3, we used the Pendulum Swing-Up en-
vironment from the DeepMind Control Suite to investigate the case where the dataset is
generated by a suboptimal policy.

The environment is a nonlinear control problem where the goal is to swing up and stabilize a freely
hanging pendulum. The state consists of the pendulum’s angular position and velocity, dim(S) = 2,
and the action space is a single torque input, dim(A) = 1.

To generate suboptimal trajectories, we trained an agent using Proximal Policy
Optimization (PPO) (Schulman et al., 2017) with Stable-Baselines3 (Raffin et al.,
2021). The expert was trained for 1 million timesteps with a discount factor of γ = 0.99 and a
batch size of 256.

For evaluation, we set the suboptimality gap to ε = 130 and ran the environment with different
seeds of the evaluation space and evaluated N = 50 rollouts per episode. The NPP algorithm used
a Lipschitz constant of L = 4300 and a horizon of H = 1000. As shown in figure 6, the rightmost
plot, prior to the 320th episode, the surrogate gap is below ε for consecutive episodes.

Figure 6: Training curves for Pendulum Swing-Up with target suboptimality ε = 130, with
results averaged over 4 seeds. Left: Episodic return of policy π (in blue) and expert (in orange) at
different stages of training. N = 50 rollouts are performed at each point; solid line corresponds to
the median and shaded area to a 95% confidence interval. Middle-left: size of the dataset. Middle-
right: calls to the TrajectoryOptimizer oracle (notice calls are made on approximately one
third of the episodes). Right: surrogate gap Vub − Vlb for the initial states. Purple dashed lines
correspond to the hitting times (one per seed) for reaching the target suboptimality gap.

C Environment testing

We ran 1000 episodes of the optimal controller for both lqr environments, in order to come up with
an estimate of the Lipschitz constant for the value function under the optimal policy. The results are
on Figures 7 and 8.
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Figure 7: Statistics for lqr_2_1. The right-most histogram justifies the choice of L ≈ 50.
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D Additional experimental results
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Figure 9: Dataset collected by the policy at different stages of training on environment lqr_2_1.
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Figure 10: Dataset collected by the policy at different stages of training on environment lqr_6_2.


