
Reinforcement Learning Journal 2025
∣∣ Cover Page

Eau De Q-Network: Adaptive Distillation of Neural
Networks in Deep Reinforcement Learning

Théo Vincent Tim Faust Yogesh Tripathi
Jan Peters Carlo D’Eramo

Keywords: Deep Reinforcement Learning, Sparse Training, Distillation.

Summary
Recent works have successfully demonstrated that sparse deep reinforcement learning

agents can be competitive against their dense counterparts. This opens up opportunities for
reinforcement learning applications in fields where inference time and memory requirements
are cost-sensitive or limited by hardware. To achieve a high sparsity level, the most effective
methods use a dense-to-sparse mechanism where the agent’s sparsity is gradually increased
during training. Until now, those methods rely on hand-designed sparsity schedules that are
not synchronized with the agent’s learning pace. Crucially, the final sparsity level is chosen as
a hyperparameter, which requires careful tuning as setting it too high might lead to poor perfor-
mances. In this work, we address these shortcomings by crafting a dense-to-sparse algorithm
that we name Eau DeQ-Network (EauDeQN), where the online network is a pruned version of
the target network, making the classical temporal-difference loss a distillation loss. To increase
sparsity at the agent’s learning pace, we consider multiple online networks with different spar-
sity levels, where each online network is trained from a shared target network. At each target
update, the online network with the smallest loss is chosen as the next target network, while the
other networks are replaced by a pruned version of the chosen network. Importantly, one online
network is kept with the same sparsity level as the target network to slow down the distillation
process if the other sparser online networks yield higher losses, thereby removing the need to
set the final sparsity level. We evaluate the proposed approach on the Atari 2600 benchmark
and the MuJoCo physics simulator. Without explicit guidance, EauDeQN reaches high sparsity
levels while keeping performances high. We also demonstrate that EauDeQN adapts the spar-
sity schedule to the neural network architecture and the training length. Our code is publicly
available at https://github.com/theovincent/EauDeDQN and the trained models
are uploaded at https://huggingface.co/TheoVincent/Atari_EauDeQN.

Contribution(s)
1. We introduce Eau De Q-Network (EauDeQN), a dense-to-sparse reinforcement learning

framework capable of adapting the sparsity schedule at the agent’s learning pace while
maintaining high performance. As a result, EauDeQN discovers a final sparsity level. This
means that EauDeQN avoids sparsity levels that are too high to yield high return and there-
fore removes the need to tune the final sparsity level.
Context: Prior works in reinforcement learning consider hand-designed sparsity schedules
and hard-coded final sparsity levels (Graesser et al., 2022). EauDeQN is composed of Distill
Q-Network (also introduced in this work, resembling Ceron et al. (2024)), which is respon-
sible for gradually pruning the network during training, and Adaptive Q-Network (Vincent
et al., 2025b), which brings an adaptive behavior w.r.t. the agent’s learning pace.

https://github.com/theovincent/EauDeDQN
https://huggingface.co/TheoVincent/Atari_EauDeQN

Eau De Q-Network

Eau De Q-Network: Adaptive Distillation of Neural
Networks in Deep Reinforcement Learning

Théo Vincent1,2,† Tim Faust1, 2 Yogesh Tripathi1, 2

Jan Peters1,2,3 Carlo D’Eramo2,3,4

1DFKI GmbH, SAIROL 2Department of Computer Science, TU Darmstadt
3Hessian.ai, TU Darmstadt 4Center for AI and Data Science, University of Wurzburg
† correspondence to theo.vincent@dfki.de

Abstract
Recent works have successfully demonstrated that sparse deep reinforcement learning
agents can be competitive against their dense counterparts. This opens up opportunities
for reinforcement learning applications in fields where inference time and memory re-
quirements are cost-sensitive or limited by hardware. Until now, dense-to-sparse meth-
ods have relied on hand-designed sparsity schedules that are not synchronized with the
agent’s learning pace. Crucially, the final sparsity level is chosen as a hyperparameter,
which requires careful tuning as setting it too high might lead to poor performances. In
this work, we address these shortcomings by crafting a dense-to-sparse algorithm that
we name Eau De Q-Network (EauDeQN). To increase sparsity at the agent’s learning
pace, we consider multiple online networks with different sparsity levels, where each
online network is trained from a shared target network. At each target update, the on-
line network with the smallest loss is chosen as the next target network, while the other
networks are replaced by a pruned version of the chosen network. We evaluate the
proposed approach on the Atari 2600 benchmark and the MuJoCo physics simulator,
showing that EauDeQN reaches high sparsity levels while keeping performances high.

1 Introduction

Training large neural networks in reinforcement learning (RL) has been demonstrated to be harder
than in the fields of computer vision and natural language processing (Henderson et al., 2018; Ota
et al., 2024). It is only in the last years that the RL community developed algorithms capable of
training larger networks leading to performance increase (Espeholt et al., 2018; Schwarzer et al.,
2023; Bhatt et al., 2024; Nauman et al., 2024). In reaction to those breakthroughs and inspired
by the success of sparse neural networks in other fields (Han et al., 2015; Zhu & Gupta, 2018;
Mocanu et al., 2018; Liu et al., 2020; Evci et al., 2020; Franke et al., 2021), recent works have
attempted to apply pruning algorithms in RL to achieve well-performing agents composed of fewer
parameters (Yu et al., 2019; Sokar et al., 2021; Tan et al., 2023; Ceron et al., 2024). Reducing the
number of parameters promises to lower the cost of deploying RL agents. It is also essential for
embedded systems where the agent’s latency and memory footprint are a hard constraint.

Imposing sparsity in RL is not straightforward (Liu et al., 2019; Graesser et al., 2022). The main
objective is to reach high sparsity levels using as few environment interactions as possible. There-
fore, we focus on methods that are gradually increasing the sparsity level, so-called dense-to-sparse
training, as they generally perform better than sparse-to-sparse training methods, where the net-
work is pruned before the training starts (Arnob et al., 2021; Sokar et al., 2021; Tan et al., 2023).
Most of those approaches borrow pruning techniques from the field of supervised learning, which
were not designed for handling the specificities of RL (Sokar et al., 2021; Tan et al., 2023; Ceron
et al., 2024). Strikingly, those techniques impose pruning schedules that are not synchronized with
the agent’s learning pace. Additionally, the final sparsity level is a hyperparameter of the pruning
algorithm, which is not convenient as its value is hard to predict and depends on the reinforcement
learning setting, the task, the network architecture, and the training length (Evci et al., 2019).

theo.vincent@dfki.de

Reinforcement Learning Journal 2025

Distill Q-Network

Distillation

Q

_
Q

Γ
Target update

_
Q Q

Pruning

Q

_
Q

Adaptive Q-Network

Training
_
Q

Γ
QQQ

Target update
_
Q QQQQ
_
Q QQQQ

Mutation
_
Q QQ Q

Figure 1: Left: In Distill Q-Network, the online network Q is a pruned version of the target net-
work Q̄, transforming the classical temporal-difference loss, using the Bellman operator Γ, into a
distillation loss. Right: Adaptive Q-Network (Vincent et al., 2025b) uses several online networks,
each one defined with different hyperparameters and trained from a shared target network Q̄. At
each target update, the online network Q with the lowest cumulated loss (represented with a crown)
is chosen as the next target network. The target network is then copied to replace the other networks
and the hyperparameters of the crowned network are mutated.

Eau De Q-Network

_
Q

Q
Q

Q

Distillation Target update
_
Q

_
Q

Γ

Q Q Q
Q Q Q

Pruning

Figure 2: Eau De Q-Network is based on
Distill Q-Network (Figure 1, left) and uses
the adaptive ability of Adaptive Q-Network
(Figure 1, right) to prune the weights of the
neural network at the agent’s learning pace.

In this work, we propose a novel approach to sparse
training that gradually prunes the weights of the neu-
ral networks at the agent’s learning pace to finish
at a sparsity level that is discovered by the algo-
rithm. This behavior is made possible thanks to the
combination of two independent methods, namely
Distill Q-Network and Adaptive Q-Network (Vin-
cent et al., 2025b), gathered in a single algorithm
coined Eau DeQ-Network (EauDeQN). In DistillQ-
Network (DistillQN), the online network is a pruned
version of the target network, thereby using the com-
mon temporal-difference loss as a distillation loss
(Figure 1, left). While DistillQN is also a novel ap-
proach to sparse training introduced in this work, it
still relies on a hand-designed pruning schedule. This is why we will mainly focus on EauDeQN.
Adaptive Q-Network (AdaQN) was originally introduced to tune the RL agent’s hyperparame-
ters (Vincent et al. (2025b), Figure 1, right). When combined with DistillQN, the resulting algo-
rithm considers several online networks with equal or higher sparsity levels than the target network.
At each target update, the online network with the lowest cumulated loss, represented with a crown
in Figure 2, is chosen as the next target network. Therefore, the ability to select between different
sparsity levels according to the value of the cumulated loss synchronizes the pruning schedule to the
agent’s learning pace. The target network is then copied and pruned to replace the other networks.
Crucially, by keeping the online network with the lowest cumulated loss for the next iteration, the
algorithm can keep the sparsity level steady if the cumulated loss increases for higher sparsity levels.
This results in an algorithm capable of discovering the final sparsity level as opposed to the current
methods, which require multiple training iterations to tune the final sparsity level.

2 Background

DeepQ-Network (Mnih et al., 2015) In a sequential decision-making problem, the optimal action-
value function Q∗(s, a) is the optimal expected sum of discounted future reward, given a state s, an
action a. From this quantity, the optimal policy π∗ yielding the highest sum of discounted reward
can be obtained by directly maximizing Q∗(s, ·) for a given state s. Importantly, the optimal action-
value function is the fixed point of the Bellman operator, which is a contraction mapping. The fixed
point theorem guarantees that iterating endlessly over any Q-function with the Bellman operator
converges to the fixed point Q∗. This is why, to compute Q∗, Ernst et al. (2005) proposes to learn
the successive Bellman iterations using an online network Q and a target network Q̄ representing
the previous Bellman iteration. The training loss relies on the temporal-difference error, which is

Eau De Q-Network

defined from a sample (s, a, r, s′) as

LQN(Q) = (r + γmax
a′

Q̄(s′, a′)−Q(s, a))2, (1)

where QN stands for Q-Network. After a predefined number of gradient steps, the target network
is updated to represent the next Bellman iteration. This procedure repeats until the training ends.
Mnih et al. (2015) adapts this framework to the online setting where the agent interacts with the
environment using an ϵ-greedy policy (Sutton & Barto, 1998) computed from the online network Q.

Adaptive Q-Network (Vincent et al., 2025b) The hyperparameters of DQN are numerous and
hard to tune. This is why Vincent et al. (2025b) introduced AdaQN, which is designed to adaptively
select DQN’s hyperparameters during training. This is done by considering several online networks
trained with different hyperparameters and sharing a single target network. At each target update,
the online network with the lowest cumulated loss is selected as the next target network. After each
target update, the selected online network is copied to replace the other online networks, and genetic
mutations are applied to the hyperparameters of each copy to explore the space of hyperparameters.

3 Related Work

As discussed in Section 1, we focus on dense-to-sparse training methods in this work, as they gener-
ally perform better than sparse-to-sparse methods (Graesser et al., 2022). Sparse-to-sparse methods
prune a dense network before the training starts (Arnob et al., 2021), relying on the lottery ticket
hypothesis (Frankle & Carbin, 2018). The lottery ticket hypothesis makes the assumption that, when
initializing a dense network, there exist sub-networks that can lead to similar performances as the
dense network if given similar resources. For such methods, the network morphology can still be
adapted during training using gradient information (Tan et al., 2023), or evolutionary methods (Sokar
et al., 2021; Grooten et al., 2023). On the other hand, dense-to-sparse methods start with a dense
network and prune its connections during training. In the machine learning literature, we find ap-
proaches using variational dropout to sparsify the network (Molchanov et al., 2017). Alternatively,
Liu et al. (2019) design learnable masks by approximating the gradient of the loss function w.r.t. the
sparsity level with a piecewise polynomial estimate. Nonetheless, those approaches have not been
adapted to an RL setting yet. In the RL literature, Yu et al. (2019) evaluates the lottery ticket hy-
pothesis in an RL setting using a hand-designed geometric sparsity schedule. They conclude that the
lottery ticket hypothesis is only valid for a subset of Atari games (Bellemare et al., 2013). Notably,
Figure 5 in Yu et al. (2019) shows that the performances greatly depend on the imposed final sparsity
level. Livne & Cohen (2020) makes use of a pre-trained teacher to boost performances. Distillation
techniques using pre-trained networks have also been used to kickstart the training in single-task RL
settings (Zhang et al., 2019) and multi-task RL settings (Schmitt et al., 2018).

Ceron et al. (2024) is the closest work to our approach. The authors gradually prune the neural
network weights during training. They use a polynomial pruning schedule introduced in Zhu &
Gupta (2018) and demonstrate that it is effective on the Atari (Bellemare et al., 2013) and Mu-
JoCo (Todorov et al., 2012) benchmarks, yielding even higher performances than the dense counter-
part for wide neural networks. As the authors do not give a name to their method, we will refer to
it as Polynomial Pruning Q-Networks (PolyPruneQN). At any time t during training, a binary mask
filtering out the weights with lowest magnitude imposes the sparsity st to the neural network. st is
defined as

st = sF

(
1−

(
1− Clip

(
t− tstart

tend − tstart
, 0, 1

))n)
, (2)

where sF corresponds to the final sparsity level, tstart is the first timestep where the pruning starts,
tend is the timestep after which the sparsity level is kept constant at sF , and n controls the steepness
of the pruning schedule. One shortcoming of this approach is that those hyperparameters need to be
tuned by hand for each RL setting, task, network architecture, and training length.

Reinforcement Learning Journal 2025

Algorithm 1 Eau De Deep Q-Network (EauDeDQN). Modifications to DQN are marked in purple.

1: Initialize K online parameters (θk)Kk=1, and an empty replay buffer D. Set ψ = 0 and θ̄ ← θψ

the target parameters. Set the cumulated losses Lk = 0, for k = 1, . . . ,K.
2: repeat
3: Set ψb ∼ Choice({1, ..,K}, p = { 1

L1
, .., 1

LK
}). Illustrated in Figure 3 (right).

4: Take action a ∼ ϵ-greedy(Q
θψb

(s, ·)); Observe reward r, next state s′.
5: Update D ← D

⋃
{(s, a, r, s′)}.

6: every G steps
7: Sample a mini-batch B = {(s, a, r, s′)} from D.
8: Compute the shared target y ← r + γmaxa′ Qθ̄(s

′, a′).
9: for k = 1, ...,K do [in parallel]

10: Compute the loss w.r.t θk, LkQN =
∑

(s,a,r,s′)∈B (y −Qθk(s, a))
2.

11: Update θk from∇θkLkQN and Lk ← Lk + LkQN.
12: every T steps
13: Update the target network θ̄ ← θψ , where ψ ← argmink Lk.
14: Exploitation: Select K networks with repetition from the current population using

the cumulated losses Lk. The process is illustrated in Figure 3 (left).
15: Exploration: Prune the duplicated networks at a sparsity level defined in Equation 3.

The process is illustrated in Figure 3 (middle).
16: Reset Lk ← 0, for k ∈ {1, . . . ,K}.

Exploitation

Population (K)

Sampled
networks (M)

Highcumulatedloss

Selected
network

Low

cumulated

 loss

Exploration

Training steps

Goal

Next sampled
sparsity

S
pa

rs
it

y

t t

t

final

max

t'0
0

s

1

t's
δ⋅U

δ

Action sampling

Population

S
am

pl
in

g
pr

ob
ab

il
it

y

ℙ(select i) ∝
1

iCumulated loss

Figure 3: Left: The exploitation phase consists of selecting K networks with repetition from the
current population. Each network is selected as the one with the lowest cumulated loss out of M
uniformly sampled networks. Middle: In the exploration phase, new sparsity levels are sampled
along the line joining the current point (t, st) and the goal (tfinal, 1). To enhance exploration, the
obtained sparsity is scaled by U ∼ U(0, Umax). Right: At each environment interaction, a network
is selected from a probability distribution that is inversely proportional to the cumulated loss.

4 Eau De Q-Network

Our approach uses AdaQN’s adaptivity to learn a pruning schedule synchronized with the agent’s
learning pace, therefore avoiding the need to impose a hard-coded sparsity schedule and final spar-
sity level. For that, we first introduce a novel algorithm called DistillQ-Network (DistillQN), which
resembles DQN except for the fact that after each target update, the online network is pruned as
shown in Figure 1 (left). This algorithm belongs to the dense-to-sparse training family and relies on
a hand-designed pruning schedule. We remark that PolyPruneQN is an instance of DistillQN when
PolyPruneQN’s pruning period is synchronized with the target update period.

The combination of DistillQN and AdaQN, which we call Eau De Q-Network (EauDeQN), adap-
tively selects the sparsity level based on the agent’s learning pace. Indeed, EauDeQN considers K
online networks with different sparsity levels, each trained against a shared target network. Follow-
ing the AdaQN algorithm, at each target update, the online network with the lowest cumulated loss
is selected as the next target network (see Figure 2). Therefore, at each target update, the online
network with the sparsity level that has been the most adapted to the optimization landscape related

Eau De Q-Network

to the given loss function is selected as the next target network. Before the training continues, the
cumulated loss of each online network is used to select the new population of K online networks
that will be used to continue the training. Inspired by Miller et al. (1995), and Franke et al. (2021),
each member of this new population is selected by randomly sampling M online networks from the
K online networks and choosing the one with the lowest cumulated loss as illustrated in Figure 3
(left). One spot in the new population is reserved for the online network chosen as the next target
network, i.e., the one with minimal cumulated loss. This is referred to as the exploitation phase in
Algorithm 1, Line 14 as it filters out the online networks with a sparsity level that was not well suited
for minimizing the current loss function. Then, an exploration phase is responsible for sampling a
new sparsity level for each duplicated network. The new sparsity levels chosen at timestep t, are
kept until timestep t′ = t+T , which corresponds to the timestep of the following target update. We
sample each new sparsity level on the line between the current point (t, st) and the goal (tfinal, 1)
of reaching a sparsity level of 1 at the end of the training as illustrated in Figure 3 (middle). This
gives the point (t′, st + δ), where δ = 1−st

tfinal−t (t
′ − t). To increase exploration, we scale the obtained

sparsity level by U ∼ U(0, Umax). Additionally, we ensure that the sampled sparsity level does not
remove more than Smax × 100% of the remaining parameters such that the jumps in sparsity levels
are not too high at the end of the training. This leads to

st′ = st +min{ 1− st
tfinal − t

(t′ − t)︸ ︷︷ ︸
linear schedule to sparsity of 1

stochasticity
injection︷︸︸︷
U , (1− st)Smax︸ ︷︷ ︸

geometric speed cap

},where U ∼ U(0, Umax). (3)

In practice, setting a sparsity level of st is done by updating a binary mask over the weights, where
the entries corresponding to the st × 100% of the lowest magnitude weights are switched to zero.

Sampling actions are usually performed using an ϵ-greedy policy computed from the online net-
work (Mnih et al., 2015). One could consider using the online network with minimal cumulated
loss. However, Vincent et al. (2025b) argue that it is insufficient because the other networks would
learn passively, which is detrimental in the long run (Ostrovski et al., 2021). Following the recom-
mendations of Vincent et al. (2025b), we sample an online network from a distribution inversely
proportional to the cumulated loss as shown in Figure 3 (right). Then, an ϵ-greedy policy is built on
top of this selected network to foster exploration, as described in Line 4 in Algorithm 1.

Overall, this framework is designed to minimize the sum of approximation errors over the training.
This motivation is supported by a well-established theoretical result (Theorem 3.4 from Farahmand
(2011)) stating that the sum of approximation errors influences a bound on the performance loss,
i.e., the distance between the optimal Q-function and the Q-function related to the greedy policy
obtained at the end of the training. As this property is inherited from AdaQN, we refer to Vincent
et al. (2025b) for further details. In the following, we adapted the presented framework to different
algorithms. Each time, we append the name of the algorithm with the prefix "EauDe". As an
example, EauDeSAC is an instance of EauDeQN applied to Soft Actor-Critic (SAC, Haarnoja et al.
(2018)), its pseudo-code is presented in Algorithm 2.

5 Experiments

We evaluate our approach on 10 Atari games (Bellemare et al., 2013) and 6 MuJoCo environ-
ments (Todorov et al., 2012). We apply EauDeQN on 3 different algorithms corresponding to 3 RL
settings. We use DQN (Mnih et al., 2015) in an online scenario, Conservative Q-Learning (CQL,
Kumar et al. (2020)) in an offline scenario, and SAC (Haarnoja et al., 2018) in an actor-critic setting.
In each RL setting, we compare our approach to its dense counterpart and to PolyPruneQN since
it is state-of-the-art among pruning methods (Graesser et al., 2022; Ceron et al., 2024). We focus
on obtaining returns comparable to those of the dense approach while reaching high final sparsity
levels. For that, we report the Inter-Quantile Mean (IQM, Agarwal et al. (2021)) of the normalized
return and the sparsity levels along with 95% bootstrapped confidence intervals over 5 seeds for the

Reinforcement Learning Journal 2025

1 10 20 30 400

1

Small network

1 10 20 30 40

Medium network

1 10 20 30 40

Large network

1 5 10 15 200

1

Small network

1 5 10 15 20
Number of Frames (in millions)

Medium network

1 20 40 60 80

Small network

IQ
M

 H
um

an
 N

or
m

 S
co

re

EauDeDQN PolyPruneDQN DQN

Figure 4: Thanks to its adaptive capability, EauDeDQN performs similarly to its dense counterpart
on 10 Atari games across different network sizes (top row) and training lengths (bottom row).
PolyPruneDQN struggles to reach similar returns due to its hard-coded sparsity schedule.

1 10 20 30 40
Number of Frames (in millions)

0.00
0.25
0.50
0.75
1.00

Sp
ar

si
ty

 S
ch

ed
ul

e

0.7 0.8 0.9 1.0
Final Sparsity Level

BeamRider
MsPacman

Qbert
Pong

Enduro
SpaceInvaders

Assault
CrazyClimber

Boxing
VideoPinball

PolyPruneDQN DQN
EauDeDQN: Small network Medium network Large network

Figure 5: EauDeDQN’s sparsity schedule (left) differs across the 3 tested network sizes. Higher
final sparsity levels are reached for larger network sizes at the end of the training (right), showcasing
EauDeDQN’s adaptivity. The shaded region indicates the variability across seeds.

Atari games and 10 seeds for the MuJoCo environments. We believe that the number of samples
used during training is the main limiting factor for pruning algorithms. This is why we report the
number of environment interactions as the x-axis, except for the offline experiments where we re-
port the number of batch updates. We use the hyperparameters shared by Ceron et al. (2024) for
PolyPruneQN as they demonstrate that their method is also effective on the considered RL setting,
i.e., sF = 0.95, n = 3, tstart = 0.2 · tfinal, and tend = 0.8 · tfinal, where tfinal corresponds to the training
length. For EauDeQN, we fix Umax = 3, Smax = 0.01,K = 5 and M = 3 and discuss these values
in Section 5.4. The shared hyperparameters are kept fixed across the methods and are reported in
Table 3 and 4. We reduced the set of 15 games selected by Ceron et al. (2024) and Graesser et al.
(2022) for their diversity to 10 games to minimize computational costs. The subset of 10 games
was selected to maintain a wide variety in the magnitude of the normalized return as shown in Fig-
ure 10. Details on experiment settings are shared in Section A. The individual learning curves for
each environment are presented in the supplementary material.

5.1 Online Q-Learning

We evaluate EauDeDQN’s ability to adapt the sparsity schedule and final sparsity level to different
network architectures and training lengths. We make the number of neurons in the first linear layer
vary from 32 (small network) to 512 (medium network) to 2048 (large network) while keeping
the convolutional layers identical. In Figure 4, EauDeDQN exhibits a stable behavior across the
different network sizes (top row) and training lengths (bottom row). EauDeDQN reaches similar
performances compared to its dense counterpart as opposed to PolyPruneDQN, which struggles to
obtain high returns with a small network architecture.

As the representation capacity of the different network architectures is the same (same convolu-
tional layers), one would desire an adaptive pruning algorithm to prune larger networks more, as

Eau De Q-Network

0 10 20 30 40 50
0.0

0.2
IQ

M
 H

um
an

N

or
m

 S
co

re

Small network

0 10 20 30 40 50
Number of Batch Updates (× 62.5K)

Large network

0.8 0.9 1.0
1
2
3
4
5
6
7
8
9

10
Small network

0.8 0.9 1.0
Final Sparsity Level

Large network
1: BeamRider 2: MsPacman 3: Qbert 4: Pong 5: Enduro

6: SpaceInvaders 7: Assault 8: CrazyClimber 9: Boxing 10: VideoPinball

EauDeCQL PolyPruneCQL CQL

Figure 6: EauDeCQL outperforms PolyPruneCQL when evaluated on 10 Atari games with a
small network and reaches a return similar to the one of CQL with a large network. Importantly,
EauDeCQL discovers higher final sparsity levels with a larger network, as desired.

compared to smaller networks. Figure 5 (left) shows the sparsity schedule obtained by EauDeDQN
along with the hard-coded one of PolyPruneDQN. Interestingly, after following a linear curve, the
3 EauDeDQN’s sparsity schedules split into 3 different curves to end at a final sparsity level that is
environment-dependent (Figure 5, right). We stress that, similarly to PolyPruneDQN, a baseline fol-
lowing a hard-coded linear schedule would also rely on an accurate tuning of its final sparsity level.
Notably, except for the game Pong, larger final sparsity levels are reached for larger networks, as
desired. Figure 11 (top) exhibits similar behaviors where higher final sparsity levels are discovered
when more environment interactions are available.

Could the knowledge about the fact that PolyPruneDQN’s medium network performs well with 5%
of its weights (Figure 4, middle), be used to tune PolyPruneDQN’s final sparsity level sF for training
the small network using the proportion of the network sizes? As the medium network contains 12.4
times more weights than the small network (see Table 1), the small network should perform well
with 62% (= 12.4× 5%) of its weights. This means that one could set sF to 0.38 (= 1− 0.62) for
training the small network. However, even if PolyPruneDQN would achieve good performances at
this final sparsity level, it would be significantly lower than the lowest final sparsity level discovered
by EauDeDQN (0.79 on Pong).

5.2 Offline Q-Learning

EauDeQN is also designed to work offline as it relies on the cumulated loss to select sparsity levels.
Therefore, we evaluate the proposed approach on the same set of 10 Atari games, using an offline
dataset that is composed of 5% of the samples collected by a DQN agent during 200M environ-
ment interactions (Agarwal et al., 2020). In Figure 6 (left), EauDeCQL outperforms PolyPruneCQL
for the small network while reaching high sparsity levels, as shown on the right side of the fig-
ure. Nonetheless, we note that the confidence intervals overlap and that there is a gap between
EauDeCQL and CQL performances. For the larger network, all algorithms reach similar return,
with slowly decreasing return over time, as also observed in Ceron et al. (2024). We attribute this
behavior to overfitting as the cumulated losses increase over time (see Figure 12, left). Notably, the
sparsity levels reached by EauDeCQL are higher for the larger network, as desired (see Figure 6).

5.3 Actor-Critic Method

We verify that the proposed framework can be used in an actor-critic setting. Similarly to the online
Atari experiments in Section 5.1, we observe in Figure 7 a stable behavior of EauDeSAC, which
yields comparable performances to SAC when the network architecture and the training length vary.
On the other hand, PolyPruneSAC suffers when evaluated on small network sizes. The small net-
work corresponds to the commonly used architecture (256 neurons for each of the 2 linear layers
(Haarnoja et al., 2018)), the number of neurons per layer is scaled by 5 for the medium network
and by 8 for the large network. As a sanity check, we verified that the final sparsity levels discov-
ered by EauDeSAC can also be used by PolyPruneSAC to achieve high returns. In Figure 7 (bot-
tom), PolyPruneSAC (oracle) validates this hypothesis by reaching similar performances as SAC
and EauDeSAC.

Reinforcement Learning Journal 2025

0.0 0.3 0.7 1.00.0
0.5
1.0

Small network

0.0 0.3 0.7 1.0

Medium network

0.0 0.3 0.7 1.0

Large network

0.0 0.1 0.2 0.30.0
0.5
1.0

Small network

0.0 0.1 0.2 0.3
Environment Steps (in millions)

Medium network

0.0 1.0 2.0 3.0

Small network

IQ
M

 S
A

C
 N

or
m

 S
co

re

EauDeSAC PolyPruneSAC PolyPruneSAC (oracle) SAC

Figure 7: Thanks to its adaptive capability, EauDeSAC performs similarly to its dense counterpart
on 6 MuJoCo games across different network sizes (top row) and training lengths (bottom row).
PolyPruneSAC struggles to reach similar returns due to its hard-coded sparsity schedule. PolyPrune-
SAC (oracle) performs well when the final sparsity is set to the value discovered by EauDeSAC.

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (in millions)

0.00
0.25
0.50
0.75
1.00

Sp
ar

si
ty

 S
ch

ed
ul

e

0.4 0.6 0.8 1.0
Final Sparsity Level

Hopper
Ant

HalfCheetah
Walker2d

Humanoid
HumanoidStandup

PolyPruneSAC SAC
EauDeSAC: Small network Medium network Large network

Figure 8: EauDeSAC’s sparsity schedule (left) differs across the 3 tested network sizes. Higher final
sparsity levels are reached for larger network sizes at the end of the training (right), showcasing
EauDeSAC’s adaptivity.

Figure 8 shows the sparsity schedules (left) that lead to the final sparsity levels (right). This time,
the difference between the 3 sparsity schedules of EauDeSAC is even more pronounced than for the
online Atari experiments. This can be explained by the fact that the differences in scale between
the networks are larger than for the Atari experiments (see Table 1). Indeed, the small network is
18.8 times smaller than the medium network and 46.6 times smaller than the large network. By
adaptively selecting the network with the lowest cumulated loss, EauDeSAC filters out the networks
with sparsity levels that are too high to fit the regression target. This is why the curve of EauDe-
SAC’s sparsity schedule for the small network is lower than for the larger networks (except for the
Humanoid environment). Similar conclusions can be drawn for the sparsity schedules obtained with
varying training lengths (see Figure 11, bottom).

Knowing that PolyPruneSAC’s medium network performs well with 5% of its weights can also not
be used to tune PolyPruneSAC’s final sparsity level for the small network. Indeed, the medium net-
work is 18.8 times smaller than the small network. This means that the small network could perform
well with 94% (= 18.8 × 5%) of its weights. This leads to a final sparsity level for PolyPruneSAC
of 0.06 (= 1 − 0.94), which is significantly lower than the lowest sparsity level discovered by
EauDeSAC (0.5 for Humanoid).

5.4 Ablation Study

We now study the sensitivity of EauDeQN to the exploration hyperparameter Umax introduced in
Equation 3. For that, in Figure 9, we evaluate EauDeDQN (top row) and EauDeSAC (bottom row)
with small and large networks, setting Umax to 3, 10, and 30. This results in a normal, ambitious, and
aggressive regime respectively. On both benchmarks, we observe that this hyperparameter offers a

Eau De Q-Network

1 10 20 30 400

1
IQ

M
 H

um
an

N

or
m

 S
co

re

Small network

1 10 20 30 40
Number of Frames (in millions)

Large network

0.8 1.0
1
2
3
4
5
6
7
8
9

10
Small network

0.8 1.0
Final Sparsity Level

Large network
1: BeamRider 2: MsPacman 3: Qbert 4: Pong 5: Enduro

6: SpaceInvaders 7: Assault 8: CrazyClimber 9: Boxing 10: VideoPinball

EauDeDQN's regime: normal ambitious aggressive PolyPruneDQN DQN

0.0 0.3 0.7 1.00.0

0.5

1.0

IQ
M

 S
A

C

N
or

m
 S

co
re

Small network

0.0 0.3 0.7 1.0
Environment Steps (in millions)

Large network

0.5 0.8 1.0
1
2
3
4
5
6

Small network

0.5 0.8 1.0
Final Sparsity Level

Large network
1: Hopper 2: Ant 3: HalfCheetah 4: Walker2d 5: Humanoid 6: HumanoidStandup

EauDeSAC's regime: normal ambitious aggressive PolyPruneSAC SAC

Figure 9: Evaluation of EauDeDQN on 10 Atari games (top) and EauDeSAC on 6 MuJoCo en-
vironments (bottom) demonstrating that the tradeoff between high return and high sparsity can be
tuned using Umax. For higher values of Umax (more aggressive regimes), EauDeQN reaches higher
final sparsity levels at the cost of a lower return.

tradeoff between high return and high sparsity. As expected, more aggressive regimes constantly
yield higher final sparsity levels as higher values of Umax lead to higher values of sampled sparsity.
Across all regimes, we recover the property identified earlier that the final sparsity level for the small
networks is lower than for the large network. Figure 14 confirms this behavior by showing the spar-
sity schedules obtained by EauDeDQN (top row) and EauDeSAC (bottom row). Remarkably, with
the large network, the aggressive regime reaches final sparsity levels higher than 0.95 while keeping
high performances. We also observe that the aggressive regime is less well suited for the small net-
work on the Atari experiments. Therefore, we recommend increasing the aggressivity of the regime
with the network size. In Figure 13 (left), we compare the Pareto front between sparsity and return of
EauDeSAC and PolyPruneSAC. We conclude that EauDeSAC’s regime parameter (Umax) is easier to
tune as setting it too high does not lead to poor performances as opposed to setting PolyPruneSAC’s
final sparsity level at a high value. Finally, Figure 13 (right) presents another ablation study on 2
other hyperparameters (Smax and the population size K) showing that EauDeSAC’s performance
remains stable for a wide range of hyperparameter values.

6 Conclusion and Limitations

We introduced EauDeQN, an algorithm capable of pruning the neural networks’ weights at the
agent’s learning pace. As opposed to current approaches, the final level of sparsity is discovered by
the algorithm. These capabilities are achieved by combining DistillQN (also introduced in this work)
with AdaQN (Vincent et al., 2025b). We demonstrated that EauDeQN yields high final sparsity
levels while keeping performances close to its dense counterpart in a wide variety of problems.

Limitations EauDeQN requires additional time and memory during training. This is a usual draw-
back of dense-to-sparse approaches (Graesser et al., 2022). Importantly, Table 2 testifies that training
PolyPruneQN with only 2 different final sparsity levels requires significantly more resources than a
single EauDeQN training. Another limitation of our work concerns the actor-critic framework, as it
only focuses on pruning the critic. Nonetheless, it is usually the network of the critic that requires a
larger amount of parameters (Zhou et al., 2020; Kostrikov et al., 2021; Graesser et al., 2022; Bhatt
et al., 2024). Future work could investigate pruning the actor with a simple hand-designed pruning
schedule, as done in Xu et al. (2024), while using EauDeQN to prune the critic.

Reinforcement Learning Journal 2025

A Appendix

Our codebase is written in Jax (Bradbury et al., 2018) and relies on JaxPruner (Lee et al., 2024). The
code is available in the supplementary material and will be made open source upon acceptance.
After each exploration step of EauDeQN, we reset the optimizer of the duplicated networks, as
advocated by Asadi et al. (2023), while leaving the optimizer of the other networks intact, similarly
to PolyPruneQN.

0 3 7 10
IQM Human Norm Score

BeamRider
MsPacman

Qbert
Pong

Enduro
SpaceInvaders

Assault
CrazyClimber

Boxing
VideoPinball

DQN at 200M frames

Figure 10: The selected Atari games cover a wide
range of normalized returns obtained by DQN af-
ter 200M frames, showcasing their diversity.

Atari experiment. We build our codebase on
Vincent et al. (2025a) implementation which
follows Castro et al. (2018) standards. Those
standards are detailed in Machado et al. (2018).
Namely, we use the game over signal to termi-
nate an episode instead of the life signal. The
input given to the neural network is a concate-
nation of 4 frames in grayscale of dimension
84 by 84. To get a new frame, we sample
4 frames from the Gym environment (Brock-
man et al., 2016) configured with no frame-
skip, and we apply a max pooling operation on
the 2 last grayscale frames. We use sticky ac-
tions to make the environment stochastic (with
p = 0.25). The reported performance is the one
obtained during training.

MuJoCo experiment. We build PolyPruneSAC and EauDeSAC on top of SBX (Raffin et al., 2021).
The agent is evaluated every 10k environment interaction. While Ceron et al. (2024) apply the hand-
designed sparsity schedule on the actor and the critic, in this work, we only prune the critic for
PolyPruneSAC and EauDeSAC to remain aligned with the theoretical motivation behind EauDeQN
and AdaQN (Vincent et al., 2025b).

Table 1: Number of parameters of the different network sizes and scaling factor compared to the
small network (in parenthesis). Computations were made on the game SpaceInvaders and on Ant.

Small network Medium network Large network
Atari 326 022 4 046 502 (×12.4) 15 952 038 (×48.9)

MuJoCo 94 984 1 785 608 (×18.8) 4 429 832 (×46.6)

Table 2: While EauDeQN requires additional resources compared to PolyPruneQN, it avoids the
need to tune the final sparsity level, which in turn saves resources. Computations are reported for
the medium network for every algorithm.

EauDeDQN EauDeCQL EauDeSAC
vs PolyPruneDQN vs PolyPruneCQL vs PolyPruneSAC

Training time ×1, 39 ×1, 17 ×1, 08
GPU vRAM usage +0, 73 Gb +0, 65 Gb +0, 01 Gb

FLOPs for a gradient update ×1.55 ×1.55 ×4.03
FLOPs for sampling an action ×1.01 (offline) ×1.00

Eau De Q-Network

1 20 40 60 80
Number of Frames (in millions)

0.00
0.25
0.50
0.75
1.00

Sp
ar

si
ty

 S
ch

ed
ul

e

0.7 0.8 0.9 1.0
Final Sparsity Level

BeamRider
MsPacman

Qbert
Pong

Enduro
SpaceInvaders

Assault
CrazyClimber

Boxing
VideoPinball

PolyPruneDQN DQN
Short Training: Small network Medium network Long Training: Small network

0.0 0.6 1.2 1.8 2.4 3.0
Environment Steps (in millions)

0.00
0.25
0.50
0.75
1.00

Sp
ar

si
ty

 S
ch

ed
ul

e

0.4 0.6 0.8 1.0
Final Sparsity Level

Hopper
Ant

HalfCheetah
Walker2d

Humanoid
HumanoidStandup

PolyPruneSAC SAC
Short Training: Small network Medium network Long Training: Small network

Figure 11: EauDeDQN (top) and EauDeSAC (bottom) adapt the sparsity schedule to the training
length. For small networks, increasing the training length leads to higher final sparsity levels (blue
and green curves), except for the games Pong, SpaceInvaders, and CrazyClimber. Similarly to
Figure 5 and 8, larger networks are pruned at a higher final sparsity level (blue and orange curves),
with an exception for Pong and Humanoid.

0 10 20 30 40 50

0.5
1
2

C
um

ul
at

ed
 lo

ss

0 10 20 30 40 50
0.00
0.25
0.50
0.75
1.00

Sp
ar

si
ty

 S
ch

ed
ul

e

Number of Batch Updates (× 62.5K)

EauDeCQL PolyPruneCQL CQL | Small network Large network

Figure 12: Left: In the offline setting, the larger networks suffer from overfitting as the cumulated
losses (reported at every target update and averaged over T updates) increase over time. Right:
EauDeCQL adapts the sparsity schedule to the network size. Indeed, sparsity levels are lower for
the small network towards the end of the training.

0.6 0.7 0.8 0.9 1.0
Final Sparsity Level

0.00
0.25
0.50
0.75
1.00

IQ
M

 S
A

C

N
or

m
 S

co
re

Safe Unsafe

PolyPruneSAC
EauDeSAC's Umax (regime)

3 10 30 100

3 5 10
0.01
0.05

0.1

S m
ax

IQM SAC
Norm Score

3 5 10

Final Sparsity
Level

0.0

0.5

1.0

Population size (K)

Figure 13: We evaluate EauDeSAC on 6 MuJoCo environments for 1M with the small network.
Left: PolyPruneSAC requires tuning as its performance depends on its hard-coded final sparsity
level. Conversely, EauDeSAC avoids unsafe final sparsity levels by discovering its final sparsity
level, therefore requiring only one training to reach a satisfactory outcome. Right: EauDeSAC
remains stable across different values of Smax and population size K (see Equation 3), showcasing
its robustness w.r.t. hyperparameter changes. The number of subsampled networksM is set to

⌈
K
2

⌉
.

The default hyperparameters of EauDeQN are indicated with a white cross.

Reinforcement Learning Journal 2025

1 10 20 30 400.00
0.25
0.50
0.75
1.00

Sp
ar

si
ty

Sc
he

du
le

Normal Regime

1 10 20 30 40
Number of Frames (in millions)

Ambitious Regime

1 10 20 30 40

Aggressive Regime
EauDeDQN Small network EauDeDQN Large network PolyPruneDQN

0.0 0.5 1.00.00
0.25
0.50
0.75
1.00

Sp
ar

si
ty

Sc
he

du
le

Normal Regime

0.0 0.5 1.0
Environment Steps (in millions)

Ambitious Regime

0.0 0.5 1.0

Aggressive Regime
EauDeSAC Small network EauDeSAC Large network PolyPruneSAC

Figure 14: Sparsity schedules of EauDeDQN on 10 Atari games (top) and EauDeSAC on 6 Mu-
JoCo environments (bottom) for different regimes: normal (Umax = 3), ambitious (Umax = 10),
and aggressive (Umax = 30). The vector fields in the background show the average direction from
which the new sparsities are sampled, similar to Figure 3 (middle). As desired, larger networks
tend to reach higher sparsity levels. Remarkably, the sparsity levels of the ambitious and aggressive
regimes for the large network surpass PolyPruneQN sparsity levels, obtaining higher final sparsity
levels while keeping performances high (see Figure 9).

Algorithm 2 Eau De Soft Actor-Critic (EauDeSAC). Modifications to SAC are marked in purple.

1: Initialize the policy parameters ϕ, 2 ·K online parameters (θki)
K
k=1, for i ∈ {1, 2}, and an empty

replay buffer D. For k = 1, ..,K and i ∈ {1, 2}, set the target parameters θ̄ki ← θki , and the
cumulated losses Lki = 0. Set ψ1 = ψ2 = 0 the indices to be selected for computing the target.

2: repeat
3: Take action a ∼ πϕ(·|s); Observe reward r, next state s′; D ← D

⋃
{(s, a, r, s′)}.

4: for UTD updates do
5: Sample a mini-batch B = {(s, a, r, s′)} from D.
6: Compute the shared target

y ← r + γ

 min
θ̄∈

{
θ̄
ψ1
1 ,θ̄

ψ2
2

}Qθ̄(s′, a′)− α log πϕ(a
′|s′)

 ,where a′ ∼ πϕ(·|s′).

7: for k = 1, ..,K and i = 1, 2 do [in parallel]

8: Compute the loss w.r.t θki , Lk,iQN =
∑

(s,a,r,s′)∈B

(
y −Qθki (s, a)

)2

.

9: Update θki from ∇θki L
k,i
QN, θ̄ki ← τθki + (1− τ)θ̄ki , and Lki ← (1− τ)Lki + τLk,iQN.

10: Set ψi ← argmink L
k
i , for i ∈ {1, 2}.

11: Set ψbi ∼ Choice({1, ..,K}, p = { 1
L1
i
, .., 1

LKi
}), for i ∈ {1, 2}.

12: Update ϕ with gradient ascent using the loss
min

θ∈
{
θ
ψb1
1 ,θ

ψb2
2

}Qθ(s, a)− α log πϕ(a|s), a ∼ πϕ(·|s)

13: every P steps
14: Exploitation: Select K networks with repetition from the current population using

the cumulated losses Lki . The process is illustrated in Figure 3 (left).
15: Exploration: Prune the duplicated networks at a sparsity level defined in Equation 3.

The process is illustrated in Figure 3 (middle).
16: Reset Lki ← 0, for k ∈ {1, . . . ,K} and i ∈ {1, 2}.

Eau De Q-Network

Acknowledgments

This work was funded by the German Federal Ministry of Education and Research (BMBF) (Project:
01IS22078). This work was also funded by Hessian.ai through the project ’The Third Wave of Artifi-
cial Intelligence – 3AI’ by the Ministry for Science and Arts of the state of Hessen, by the grant “Ein-
richtung eines Labors des Deutschen Forschungszentrum für Künstliche Intelligenz (DFKI) an der
Technischen Universität Darmstadt”, and by the Hessian Ministry of Higher Education, Research,
Science and the Arts (HMWK). The authors gratefully acknowledge the scientific support and HPC
resources provided by the Erlangen National High Performance Computing Center (NHR@FAU)
of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) under the NHR project b187cb.
NHR funding is provided by federal and Bavarian state authorities. NHR@FAU hardware is par-
tially funded by the German Research Foundation (DFG) – 440719683.

Carbon Impact

As recommended by Lannelongue & Inouye (2023), we used GreenAlgorithms (Lannelongue et al.,
2021) and ML CO2 Impact (Lacoste et al., 2019) to compute the carbon emission related to the
production of the electricity used for the computations of our experiments. We only consider the
energy used to generate the figures presented in this work and ignore the energy used for preliminary
studies. The estimations vary between 1.57 and 1.82 tonnes of CO2 equivalent. As a reminder,
the Intergovernmental Panel on Climate Change advocates a carbon budget of 2 tonnes of CO2

equivalent per year per person.

References
Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline

reinforcement learning. In International Conference on Machine Learning, 2020.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. In Advances in Neural Infor-
mation Processing Systems, 2021.

Samin Yeasar Arnob, Riyasat Ohib, Sergey Plis, and Doina Precup. Single-shot pruning for offline
reinforcement learning. Neurips Workshop on Offline Reinforcement Learning, 2021.

Kavosh Asadi, Rasool Fakoor, and Shoham Sabach. Resetting the optimizer in deep RL: An empir-
ical study. In Advances in Neural Information Processing Systems, 2023.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
2013.

Aditya Bhatt, Daniel Palenicek, Boris Belousov, Max Argus, Artemij Amiranashvili, Thomas Brox,
and Jan Peters. Crossq: Batch normalization in deep reinforcement learning for greater sample
efficiency and simplicity. International Conference on Learning Representations, 2024.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G Belle-
mare. Dopamine: A research framework for deep reinforcement learning. arXiv preprint
arXiv:1812.06110, 2018.

Reinforcement Learning Journal 2025

Johan Samir Obando Ceron, Aaron Courville, and Pablo Samuel Castro. In value-based deep rein-
forcement learning, a pruned network is a good network. In International Conference on Machine
Learning, 2024.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 2005.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In International Conference on Machine Learning,
2018.

Utku Evci, Fabian Pedregosa, Aidan Gomez, and Erich Elsen. The difficulty of training sparse neural
networks. In ICML Workshop on Identifying and Understanding Deep Learning Phenomena,
2019.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning, 2020.

Amir-massoud Farahmand. Regularization in reinforcement learning. PhD thesis, University of
Alberta, 2011.

Jörg KH Franke, Gregor Koehler, André Biedenkapp, and Frank Hutter. Sample-efficient automated
deep reinforcement learning. In International Conference on Learning Representations, 2021.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2018.

Laura Graesser, Utku Evci, Erich Elsen, and Pablo Samuel Castro. The state of sparse training in
deep reinforcement learning. In International Conference on Machine Learning, 2022.

Bram Grooten, Ghada Sokar, Shibhansh Dohare, Elena Mocanu, Matthew E Taylor, Mykola Pech-
enizkiy, and Decebal Constantin Mocanu. Automatic noise filtering with dynamic sparse training
in deep reinforcement learning. In International Conference on Autonomous Agents and Multia-
gent System, 2023.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, 2018.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. International Conference on Learning
Representations, 2015.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Association for the Advancement of Artificial Intel-
ligence, 2018.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning,
2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 2020.

Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the
carbon emissions of machine learning. arXiv preprint arXiv:1910.09700, 2019.

Loïc Lannelongue and Michael Inouye. Carbon footprint estimation for computational research.
Nature Reviews Methods Primers, 2023.

Eau De Q-Network

Loïc Lannelongue, Jason Grealey, and Michael Inouye. Green algorithms: quantifying the carbon
footprint of computation. Advanced Science, 2021.

Joo Hyung Lee, Wonpyo Park, Nicole Elyse Mitchell, Jonathan Pilault, Johan Samir Obando Ceron,
Han-Byul Kim, Namhoon Lee, Elias Frantar, Yun Long, Amir Yazdanbakhsh, et al. Jaxpruner: A
concise library for sparsity research. In Conference on Parsimony and Learning, 2024.

Junjie Liu, Zhe Xu, Runbin Shi, Ray CC Cheung, and Hayden KH So. Dynamic sparse training:
Find efficient sparse network from scratch with trainable masked layers. International Conference
on Learning Representations, 2020.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. In International Conference on Learning Representations, 2019.

Dor Livne and Kobi Cohen. Pops: Policy pruning and shrinking for deep reinforcement learning.
IEEE Journal of Selected Topics in Signal Processing, 2020.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 2018.

Brad L Miller, David E Goldberg, et al. Genetic algorithms, tournament selection, and the effects of
noise. Complex systems, 1995.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 2015.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
tivity inspired by network science. Nature Communications, 2018.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep neural
networks. In International Conference on Machine Learning, 2017.

Michal Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr Miłoś, and Marek Cygan. Big-
ger, regularized, optimistic: scaling for compute and sample-efficient continuous control. Ad-
vances in Neural Information Processing Systems, 2024.

Georg Ostrovski, Pablo Samuel Castro, and Will Dabney. The difficulty of passive learning in deep
reinforcement learning. Advances in Neural Information Processing Systems, 34:23283–23295,
2021.

Kei Ota, Devesh K Jha, and Asako Kanezaki. Training larger networks for deep reinforcement
learning. Machine Learning, 2024.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 2021.

Simon Schmitt, Jonathan J Hudson, Augustin Zidek, Simon Osindero, Carl Doersch, Wojciech M
Czarnecki, Joel Z Leibo, Heinrich Kuttler, Andrew Zisserman, Karen Simonyan, et al. Kickstart-
ing deep reinforcement learning. NeurIPS Workshop on Deep Reinforcement Learning, 2018.

Max Schwarzer, Johan Samir Obando Ceron, Aaron Courville, Marc G Bellemare, Rishabh Agar-
wal, and Pablo Samuel Castro. Bigger, better, faster: Human-level atari with human-level effi-
ciency. In International Conference on Machine Learning, 2023.

Reinforcement Learning Journal 2025

Ghada Sokar, Elena Mocanu, Decebal Constantin Mocanu, Mykola Pechenizkiy, and Peter Stone.
Dynamic sparse training for deep reinforcement learning. International Joint Conference on Ar-
tificial Intelligence, 2021.

Richard Sutton and Andrew Barto. Reinforcement learning: An introduction. MIT Press, 1998.

Yiqin Tan, Pihe Hu, Ling Pan, Jiatai Huang, and Longbo Huang. Rlx2: Training a sparse deep
reinforcement learning model from scratch. In International Conference on Learning Represen-
tations, 2023.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In International Conference on Intelligent Robots and Systems, 2012.

Théo Vincent, Daniel Palenicek, Boris Belousov, Jan Peters, and Carlo D’Eramo. Iterated q-
network: Beyond one-step bellman updates in deep reinforcement learning. Transactions on
Machine Learning Research, 2025a.

Théo Vincent, Fabian Wahren, Jan Peters, Boris Belousov, and Carlo D’Eramo. Adaptive q-network:
On-the-fly target selection for deep reinforcement learning. In International Conference on Learn-
ing Representations, 2025b.

Meng Xu, Xinhong Chen, and Jianping Wang. A novel topology adaptation strategy for dynamic
sparse training in deep reinforcement learning. IEEE Transactions on Neural Networks and
Learning Systems, 2024.

Haonan Yu, Sergey Edunov, Yuandong Tian, and Ari S Morcos. Playing the lottery with rewards
and multiple languages: lottery tickets in rl and nlp. International Conference on Learning Rep-
resentations, 2019.

Hongjie Zhang, Zhuocheng He, and Jing Li. Accelerating the deep reinforcement learning with
neural network compression. In International Joint Conference on Neural Networks, 2019.

Wei Zhou, Yiying Li, Yongxin Yang, Huaimin Wang, and Timothy Hospedales. Online meta-critic
learning for off-policy actor-critic methods. In Advances in Neural Information Processing Sys-
tems, 2020.

Michael H Zhu and Suyog Gupta. To prune, or not to prune: Exploring the efficacy of pruning for
model compression. In ICLR Workshop, 2018.

Eau De Q-Network

Supplementary Materials
The following content was not necessarily subject to peer review.

0

5

V
id

eo
Pi

nb
al

l

IQM Return

0

5

B
ox

in
g

0

2

C
ra

zy
C

lim
be

r

0

2

A
ss

au
lt

0.0

0.5

Sp
ac

eI
nv

ad
er

s

0

1

E
nd

ur
o

0

1

Po
ng

0.0

0.2

Q
be

rt

0.1
0.2
0.3

M
sP

ac
m

an

1 10 20 30 40
0.00

0.25

B
ea

m
R

id
er

0.5
0.8

Global Sparsity EauDeDQN
Layer Sparsity

PolyPruneDQN
Layer Sparsity

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

1 10 20 30 40

0.5
0.8

1 10 20 30 401 10 20 30 40
Number of Frames (in millions)

Small network

EauDeDQN DQN PolyPruneDQN
Conv 0
Dense 0

Conv 1
Dense 1

Conv 2

Figure 15: Online Atari: Per game metrics for the experiment on the small network. The aggregated
performances are available in Figure 4 (top, left).

Reinforcement Learning Journal 2025

0

20

V
id

eo
Pi

nb
al

l

IQM Return

0

5

B
ox

in
g

1
2
3

C
ra

zy
C

lim
be

r

0

2

A
ss

au
lt

0.0

0.5

Sp
ac

eI
nv

ad
er

s

0

2

E
nd

ur
o

0

1

Po
ng

0.0

0.5

Q
be

rt

0.1
0.2
0.3

M
sP

ac
m

an

1 10 20 30 40
0.0

0.2

B
ea

m
R

id
er

0.5
0.8

Global Sparsity EauDeDQN
Layer Sparsity

PolyPruneDQN
Layer Sparsity

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

1 10 20 30 40

0.5
0.8

1 10 20 30 401 10 20 30 40
Number of Frames (in millions)

Medium network

EauDeDQN DQN PolyPruneDQN
Conv 0
Dense 0

Conv 1
Dense 1

Conv 2

Figure 16: Online Atari: Per game metrics for the experiment on the medium network. The aggre-
gated performances are available in Figure 4 (top, middle).

Eau De Q-Network

0

20

V
id

eo
Pi

nb
al

l

IQM Return

0

5

B
ox

in
g

1
2
3

C
ra

zy
C

lim
be

r

0

2

A
ss

au
lt

0.0

0.5

Sp
ac

eI
nv

ad
er

s

0

2

E
nd

ur
o

0

1

Po
ng

0.0

0.5

Q
be

rt

0.1
0.2
0.3

M
sP

ac
m

an

1 10 20 30 40
0.0

0.2

B
ea

m
R

id
er

0.5
0.8

Global Sparsity EauDeDQN
Layer Sparsity

PolyPruneDQN
Layer Sparsity

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

1 10 20 30 40

0.5
0.8

1 10 20 30 401 10 20 30 40
Number of Frames (in millions)

Large network

EauDeDQN DQN PolyPruneDQN
Conv 0
Dense 0

Conv 1
Dense 1

Conv 2

Figure 17: Online Atari: Per game metrics for the experiment on the large network. The aggregated
performances are available in Figure 4 (top, right).

Reinforcement Learning Journal 2025

0.00

0.25

V
id

eo
Pi

nb
al

l

IQM Return

2.5
0.0
2.5

B
ox

in
g

0

2

C
ra

zy
C

lim
be

r

0.0

0.5

A
ss

au
lt

0.0

0.1

Sp
ac

eI
nv

ad
er

s

0.25
0.50
0.75

E
nd

ur
o

0

1

Po
ng

0.0

0.1

Q
be

rt

0.0

0.2

M
sP

ac
m

an

0 10 20 30 40 50
0.0

0.1

B
ea

m
R

id
er

0.5
0.8

Global Sparsity EauDeCQL
Layer Sparsity

PolyPruneCQL
Layer Sparsity

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

0 10 20 30 40 50

0.5
0.8

0 10 20 30 40 500 10 20 30 40 50
Number of Batch Updates (× 62.5K)

Small network

EauDeCQL CQL PolyPruneCQL
Conv 0
Dense 0

Conv 1
Dense 1

Conv 2

Figure 18: Offline Atari: Per game metrics for the experiment on the small network. The aggregated
performances are available in Figure 6 (1st plot to the left).

Eau De Q-Network

0.00

0.25

V
id

eo
Pi

nb
al

l

IQM Return

0.0

2.5

B
ox

in
g

0

2

C
ra

zy
C

lim
be

r

0.0

0.5

A
ss

au
lt

0.0

0.2

Sp
ac

eI
nv

ad
er

s

0.00

0.25

E
nd

ur
o

0.5

1.0

Po
ng

0.00

0.05

Q
be

rt

0.0

0.2

M
sP

ac
m

an

0 10 20 30 40 50
0.0

0.1

B
ea

m
R

id
er

0.5
0.8

Global Sparsity EauDeCQL
Layer Sparsity

PolyPruneCQL
Layer Sparsity

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

0 10 20 30 40 50

0.5
0.8

0 10 20 30 40 500 10 20 30 40 50
Number of Batch Updates (× 62.5K)

Large network

EauDeCQL CQL PolyPruneCQL
Conv 0
Dense 0

Conv 1
Dense 1

Conv 2

Figure 19: Offline Atari: Per game metrics for the experiment on the large network. The aggregated
performances are available in Figure 6 (2nd plot to the left).

Reinforcement Learning Journal 2025

0.0

0.5

1.0

H
um

an
oi

d
St

an
du

p
IQM Return

0.0

0.5

1.0

H
um

an
oi

d

0.0

0.5

1.0

W
al

ke
r2

d

0.0

0.5

1.0

H
al

fC
he

et
ah

0.0

0.5

1.0

A
nt

0.0 0.3 0.7 1.0
0.0

0.5

1.0

H
op

pe
r

0.5
0.8

Global Sparsity EauDeSAC
Layer Sparsity

PolyPruneSAC
Layer Sparsity

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

0.0 0.3 0.7 1.0

0.5
0.8

0.0 0.3 0.7 1.0 0.0 0.3 0.7 1.0

Environment Steps (in millions)

Small network
EauDeSAC SAC PolyPruneSAC Dense 0 Dense 1 Dense 2

Figure 20: Online MuJoCo: Per game metrics for the experiment on the small network. The
aggregated performances are available in Figure 7 (top, left).

Eau De Q-Network

0.0

0.5

1.0

H
um

an
oi

d
St

an
du

p
IQM Return

0.0

0.5

1.0

H
um

an
oi

d

0.0

0.5

1.0

W
al

ke
r2

d

0.0

0.5

1.0

H
al

fC
he

et
ah

0.0

0.5

1.0

A
nt

0.0 0.3 0.7 1.00.0

0.5

1.0

H
op

pe
r

0.5
0.8

Global Sparsity EauDeSAC
Layer Sparsity

PolyPruneSAC
Layer Sparsity

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

0.0 0.3 0.7 1.0

0.5
0.8

0.0 0.3 0.7 1.0 0.0 0.3 0.7 1.0

Environment Steps (in millions)

Medium network
EauDeSAC SAC PolyPruneSAC Dense 0 Dense 1 Dense 2

Figure 21: Online MuJoCo: Per game metrics for the experiment on the medium network. The
aggregated performances are available in Figure 7 (top, middle).

Reinforcement Learning Journal 2025

0.0

0.5

1.0

H
um

an
oi

d
St

an
du

p
IQM Return

0.0

0.5

1.0

H
um

an
oi

d

0.0

0.5

1.0

W
al

ke
r2

d

0.0

0.5

1.0

H
al

fC
he

et
ah

0.0

0.5

1.0

A
nt

0.0 0.3 0.7 1.00.0

0.5

1.0

H
op

pe
r

0.5
0.8

Global Sparsity EauDeSAC
Layer Sparsity

PolyPruneSAC
Layer Sparsity

0.5
0.8

0.5
0.8

0.5
0.8

0.5
0.8

0.0 0.3 0.7 1.0

0.5
0.8

0.0 0.3 0.7 1.0 0.0 0.3 0.7 1.0

Environment Steps (in millions)

Large network
EauDeSAC SAC PolyPruneSAC Dense 0 Dense 1 Dense 2

Figure 22: Online MuJoCo: Per game metrics for the experiment on the large network. The
aggregated performances are available in Figure 7 (top, right).

Eau De Q-Network

Table 3: Summary of the shared hyperparam-
eters used for the Atari experiments. We note
Convda,bC a 2D convolutional layer with C fil-
ters of size a × b and of stride d, and FC E a
fully connected layer with E neurons.

Environment
Discount factor γ 0.99
Horizon H 27 000
Full action space No
Reward clipping clip(−1, 1)

All experiments
Batch size 32

Torso architecture
Conv4

8,832

−Conv2
4,464

−Conv1
3,364

Head architecture

FC 32 (small)
FC 512 (medium)

FC 2048 (large)
−FC nA

Activations ReLU
PolyPruneQN 4 000 (online)
pruning period 1 000 (offline)

Online experiments
Number of training

250 000steps per epochs
Target update

8 000period T
Type of the FIFOreplay buffer D
Initial number

20 000of samples in D
Maximum number

1 000 000of samples in D
Gradient step

4period G
Starting ϵ 1
Ending ϵ 0.01
ϵ linear decay

250 000duration
Batch size 32
Learning rate 6.25× 10−5

Adam ϵ 1.5× 10−4

Offline experiments
Number of training

62 500steps per epochs
Target update

2 000period T
Dataset size 2 500 000
Learning rate 5× 10−5

Adam ϵ 3.125× 10−4

Table 4: Summary of all hyperparameters used
for the MuJoCo experiments. We note FC E a
fully connected layer with E neurons.

Environment
Discount factor γ 0.99
Horizon H 1 000

All algorithms
Number of

1 000 000training steps
Type of the FIFOreplay buffer D
Initial number

5 000of samples in D
Maximum number

1 000 000of samples in D
Update-To-Data

1UTD
Batch size 256
Learning rate 10−3

Policy delay 1

Actor architecture FC 256
−FC 256

Critic architecture

FC 256
−FC 256 (small)

FC 1280
−FC 1280 (medium)

FC 2048
−FC 2048 (large)

Soft target update
5× 10−3

period τ
Pruning period P 1 000

