
Reinforcement Learning Journal 2025
∣∣ Cover Page

Fast Adaptation with Behavioral Foundation Models
Harshit Sikchi, Andrea Tirinzoni, Ahmed Touati, Yingchen Xu,

Anssi Kanervisto, Scott Niekum, Amy Zhang, Alessandro Lazaric,
Matteo Pirotta

Keywords: Unsupervised Learning, Self Supervised learning, Zero shot RL, Adaptation,
Finetuning

Summary
Unsupervised zero-shot reinforcement learning (RL) has emerged as a powerful paradigm

for pretraining behavioral foundation models (BFMs), enabling agents to solve a wide range
of downstream tasks specified via reward functions without additional test-time learning or
planning. This is achieved by learning self-supervised task embeddings alongside correspond-
ing near-optimal behaviors, and incorporating an inference procedure to directly retrieve the
latent task embedding and associated policy for any given reward function. In this work, we
demonstrate that existing unsupervised zero-shot RL pre-training methods discover a latent
task embedding space containing more performant policies than those identified by their infer-
ence procedure, making them well-suited for fast adaptation. Motivated by this observation,
we propose both actor-critic and actor-only fast adaptation strategies that search in the low-
dimensional task-embedding space of the pre-trained BFM to rapidly improve the performance
of its zero-shot policies on any downstream task. Notably, our approach mitigates the initial
“unlearning” phase commonly observed when fine-tuning pre-trained RL models. We evaluate
our fast adaptation strategies on top of four state-of-the-art zero-shot RL methods in multiple
navigation and locomotion domains. Our results show that they achieve 10-40% improvement
over their zero-shot performance in only a few episodes, outperforming existing baselines.

Contribution(s)
1. We empirically investigate the task-representation space learned by a family of unsupervised

zero-shot RL methods and show that it contains policies achieving significantly higher re-
turns than the one output by the zero-shot inference procedure.
Context: Prior works in zero-shot RL (Touati et al., 2023; Park et al., 2024; Agarwal et al.,
2024) implicitly assume that zero-shot inference is the optimal way to prompt a pre-trained
model for behaviors optimizing tasks specified by reward functions. We challenge such an
assumption and show that this is not the case.

2. We propose two fast-adaptation algorithms: a) Residual Latent Adaptation (ReLA), an ap-
proach that optimizes for a policy in the BFM’s task-representation space by training an
additional smaller critic to estimate the cumulative reward not captured by the pre-trained
BFM. b) Lookahead Latent Adaptation (LoLA), a computationally efficient approach that
leverages policy gradients with lookahead returns without updating the pre-trained critic.
Context: Prior approaches to adaptation either fine-tune the entire pre-trained critic and
perform policy optimization in the action space (Nair et al., 2020; Nakamoto et al., 2023),
or learn policy residuals (Silver et al., 2018; Johannink et al., 2019; Rana et al., 2023).

3. We evaluate our approaches on top of four state-of-the-art zero-shot RL methods in multiple
navigation and locomotion domains, and show that they achieve 10-40% improvement over
their zero-shot performance. Furthermore, we observe that our approach LoLA avoids the
initial “unlearning” phase commonly observed in the literature.
Context: Prior approaches for fine-tuning RL models without retaining training data (Luo
et al., 2023; Zhou et al., 2024) observe a sharp decrease in performance due to distribution
shift.



Fast Adaptation with Behavioral Foundation Models

Fast Adaptation with Behavioral Foundation Models

Harshit Sikchi1,†, Andrea Tirinzoni2, Ahmed Touati2, Yingchen Xu2,
Anssi Kanervisto2, Scott Niekum3, Amy Zhang1, Alessandro Lazaric2,
Matteo Pirotta2

hsikchi@utexas.edu, {lazaric,pirotta}@meta.com

1The University of Texas at Austin
2FAIR at Meta
3UMass Amherst

† Work done during an internship at FAIR, Meta

Abstract
Unsupervised zero-shot reinforcement learning (RL) has emerged as a powerful
paradigm for pretraining behavioral foundation models (BFMs), enabling agents to
solve a wide range of downstream tasks specified via reward functions in a zero-shot
fashion, i.e., without additional test-time learning or planning. This is achieved by
learning self-supervised task embeddings alongside corresponding near-optimal behav-
iors and incorporating an inference procedure to directly retrieve the latent task embed-
ding and associated policy for any given reward function. Despite promising results,
zero-shot policies are often suboptimal due to errors induced by the unsupervised train-
ing process, the embedding, and the inference procedure. In this paper, we focus on
devising fast adaptation strategies to improve the zero-shot performance of BFMs in
few steps of online interaction with the environment, while avoiding any performance
drop during the adaptation process. Notably, we demonstrate that existing BFMs learn a
set of skills containing more performant policies than those identified by their inference
procedure, making them well-suited for fast adaptation. Motivated by this observa-
tion, we propose both actor-critic and actor-only fast adaptation strategies that search
in the low-dimensional task-embedding space of the pre-trained BFM to rapidly im-
prove the performance of its zero-shot policies on any downstream task. Notably, our
approach mitigates the initial “unlearning” phase commonly observed when fine-tuning
pre-trained RL models. We evaluate our fast adaptation strategies on top of four state-
of-the-art zero-shot RL methods in multiple navigation and locomotion domains. Our
results show that they achieve 10-40% improvement over their zero-shot performance
in a few tens of episodes, outperforming existing baselines.

1 Introduction

Unsupervised (or self-supervised) pre-training has emerged as one of the key ingredients behind
the recent breakthroughs in computer vision and language modeling (e.g., Radford et al., 2019;
Devlin et al., 2019; Touvron et al., 2023; Caron et al., 2021). This technique allows utilizing large
datasets of unlabeled data samples to learn generalizable representations that can be later fine-tuned
for various downstream applications (Zhai et al., 2023; Brown et al., 2020; Driess et al., 2023).
For instance, language models are pre-trained on internet-scale data with a next-token prediction
objective and later fine-tuned for desired applications using high-quality examples. How to transpose
this approach to reinforcement learning (RL) to train agents that can efficiently solve sequential
decision-making problems is an open research question of paramount importance. Going beyond the



Reinforcement Learning Journal 2025

Unsupervised 
RL Pretraining

Reward-Free Transitions

𝜑 𝑠 , 𝜓 𝑠, 𝑎, 𝑧 ,
 𝜋𝑧(𝑠)

Zero-shot 
Inference

Behavioral Foundation 
Model (BFM)

Online Fast 
Adaptation

Test-Time 
Reward Function r(s)

𝑧𝑟=

 argmin 𝔼[ 𝜑 𝑠 𝑇𝑧 − 𝑟 𝑠
2

]

Approximately-Optimal
Policy 𝝅𝒛𝒓

Latent-Space
Adaptation

{s,a,s’} 

Adaptation Path
Zero-shot Policy

Adapted Policy

𝑧𝑟

𝑧𝑎𝑑𝑎𝑝𝑡

Online Finetuning/Adaptation

Return

Action-Space
Finetuning

WSRL

ReLA (Ours)
LoLA (Ours)

Environment
 Interactions

Fast Adaptation

Zero-shot Performance

Figure 1: Overview of our method: Unsupervised zero-shot RL methods provide us with an initial
policy πzr ; we propose a way to leverage the latent space of learned policies as well as the pre-
trained critic to rapidly adapt and improve πzr on few task-specific environment interactions. Right:
Illustrative summary of our results.

tabula-rasa paradigm of classic RL requires an unsupervised pre-training objective and the ability to
efficiently fine-tune or adapt pre-trained representations for downstream tasks. Recent developments
in unsupervised RL propose various objectives to learn a repertoire of skills on top of reward-free
data from the environment (Gregor et al., 2016; Wu et al., 2018; Hansen et al., 2019; Liu & Abbeel,
2021; Eysenbach et al., 2018; Zahavy et al., 2022; Park et al., 2023). Some of these methods are
named “zero-shot”, in the sense that they additionally provide a procedure to infer a performant
policy for any given task specified by reward functions (Touati et al., 2023; Park et al., 2024; Agarwal
et al., 2024; Cetin et al., 2024), demonstrations (Pirotta et al., 2024; Tirinzoni et al., 2025), or
videos/language (Sikchi et al., 2024). The resulting pre-trained agents are commonly referred to as
Behavioral Foundation Models (BFMs, Pirotta et al., 2024; Tirinzoni et al., 2025).

Zero-shot methods commonly pre-train two components: (1) a state representation φ : S → Rd
that embeds state observations s ∈ S into a d-dimensional vector φ(s), and (2) a space {πz} of
policies parameterized by a latent vector z ∈ Rd. The representation φ defines the set of all linear
reward functions in φ, i.e., r̃z(s) = φ(s)T z for all z ∈ Rd, which in turn is used as a self-supervised
objective function for the policy space: for each z ∈ Rd, the policy πz is trained to be approximately
optimal for the reward r̃z . Given a reward function r(s) at test time, a zero-shot policy πzr can be
obtained by projecting r onto the pre-trained state features φ through linear regression on top of the
training data, hence approximating r(s) ≃ φ(s)T zr.

Although this inference method has proven effective in producing reasonable policies, it suffers
from two main limitations yielding sub-optimal performance. First, the embedding φ is learned
using unsupervised losses encoding inductive biases1 that may not be suitable for the downstream
tasks of interest. As a result, the projection of the reward function onto φmay remove crucial aspects
of the task specification thus preventing from finding the optimal policy for the original reward. In an
extreme scenario, if a reward function lies in the orthogonal subspace of the features’ linear span, its
projection onto these features becomes zero, making it uninformative. Second, BFMs are typically
trained on task-agnostic datasets that may have poor coverage of the rewarding states relevant to the
specific task. This limitation can result in zero-shot inference failing to accurately represent these
states and ultimately hinder the learning of a good policy.

While the suboptimality of unsupervised pre-training of large models is somewhat unavoidable, it
is natural to wonder whether these limitations can be overcome once a downstream reward function
is given and the agent has online access to the environment. In this paper we focus on devising fast
adaptation strategies that improve zero-shot performance of BFMs 1) rapidly, i.e., in a handful of
online episodes, and 2) monotonically, i.e., avoiding any performance drop during the adaptation
process. This motivates the main question of this work:

1For instance, some methods rely on low-rank assumptions in the policy dynamics (Touati & Ollivier, 2021; Agarwal
et al., 2024), while others focus only on goal-reaching behaviors (Park et al., 2024)



Fast Adaptation with Behavioral Foundation Models

cheetah pointmass quadruped walker
400
500
600
700
800

cheetah pointmass quadruped walker300
400
500
600
700
800

cheetah pointmass quadruped walker

400

600

800

craw
l-0.4-0-d

craw
l-0.4-0-u

craw
l-0.4-2-d

craw
l-0.4-2-u

craw
l-0.5-0-d

craw
l-0.5-0-u

craw
l-0.5-2-d

craw
l-0.5-2-u

crouch-0

headstand

jum
p-2

lieonground-dow
n

lieonground-up

m
ove-ego--90-2

m
ove-ego--90-4

m
ove-ego-0-0

m
ove-ego-0-2

m
ove-ego-0-4

m
ove-ego-180-2

m
ove-ego-180-4

m
ove-ego-90-2

m
ove-ego-90-4

m
ove-ego-low

--90-2

m
ove-ego-low

-0-0

m
ove-ego-low

-0-2

m
ove-ego-low

-180-2

m
ove-ego-low

-90-2

raisearm
s-h-h

raisearm
s-h-l

raisearm
s-h-m

raisearm
s-l-h

raisearm
s-l-l

raisearm
s-l-m

raisearm
s-m

-h

raisearm
s-m

-l

raisearm
s-m

-m

rotate-x--5-0.8

rotate-x-5-0.8

rotate-y--5-0.8

rotate-y-5-0.8

rotate-z--5-0.8

rotate-z-5-0.8

sitonground

split-0.5

split-1

0
50
100
150
200
250
300

Adapation Improvements on Zero-Shot Policies

A
ve

ra
ge

 R
et

ur
n

A
ve

ra
ge

 R
et

ur
n

FB HILP PSM

FB-CPR

Figure 2: Performance comparison of zero-shot policy vs adapted policy in the BFM’s latent space
after 200 episodes. The shaded region shows the improvement of the adapted policies averaged
across tasks.

Does the policy space of a pre-trained BFM contain better behaviors than those returned by
zero-shot inference? If so, can we retrieve them with few task-specific environment interactions?

To address this question, we propose searching over the latent space Z using a limited number of
online task-specific interactions with the environment (cf. Figure 1). We introduce two algorithms
that leverage the latent space and pre-trained components from BFMs to enable fast adaptation of
their zero-shot policies: (1) Residual Latent Adaptation (ReLA), an off-policy actor-critic approach
that trains a small residual critic to compensate for the reward projection errors, and Lookahead
Latent Adaptation (LoLA), a hybrid actor-only approach that combines on-policy optimization while
bootstrapping the frozen critic from the pre-trained BFMs.

We perform an extensive empirical evaluation on 5 domains with a total of 64 tasks spanning low-
dimensional and high-dimensional problems with increasing complexity, including a whole-body
humanoid control problem with a wide range of 45 diverse reward-based behaviors. We demon-
strate the effectiveness of our proposed algorithms on four state-of-the-art BFMs: FB (Touati &
Ollivier, 2021), HILP (Park et al., 2024), PSM (Agarwal et al., 2024) and FB-CPR (Tirinzoni et al.,
2025). In particular, we answer the above question affirmatively: our fast adaptation algorithms
achieve 10-40% improvement over the BFMs zero-shot performance in only a few episodes (Fig-
ure 2 and 3), while outperforming existing baselines. Moreover, we show that LoLA avoids any
initial drop of performance, a phenomenon commonly observed by numerous prior works on fine-
tuning RL policies (Nair et al., 2020; Nakamoto et al., 2023; Luo et al., 2023; Zhou et al., 2024).

2 Preliminaries

Markov decision process. We consider a reward-free Markov decision process (MDP) (Puter-
man, 2014; Sutton & Barto, 2018) which is defined as a tupleM = (S,A, P, d0, γ), where S and
A respectively denote the state and action spaces, P denotes the transition kernel with P (s′|s, a)
indicating the probability of transitioning from s to s′ by taking action a, d0 denotes the initial state
distribution and γ ∈ (0, 1) specifies the discount factor. A policy π is a function π : S → ∆(A)
mapping a state s to probabilities of action in A. We denote by Pr(· | s, a, π) and E[· | s, a, π] the
probability and expectation operators under state-action sequences (st, at)t≥0 starting at (s, a) and
following policy π with st ∼ P (· | st−1, at−1) and at ∼ π(· | st). Given any reward function
r : S → R, the Q-function of π for r is Qπr (s, a) :=

∑
t≥0 γ

tE[r(st+1) | s, a, π].



Reinforcement Learning Journal 2025

Return=48.1, zero-shot

Return=247.4, 10 episodes of adaptation

Figure 3: Qualitative difference in behaviors in 10 episodes of adaptation in HumEnv environment
for the task move-ego-low-180-2 with our method LoLA.

Successor measures and features. The successor measure (Dayan, 1993; Blier et al., 2021) of
state-action (s, a) under a policy π is the (discounted) distribution of future states obtained by taking
action a in state s and following policy π thereafter:

Mπ(X | s, a) :=
∑
t≥0

γtPr(st+1 ∈ X | s, a, π) ∀X ⊂ S. (1)

Importantly, successor measures disentangle the dynamics of the MDP and the reward function: for
any reward r and policy π, the Q-function can be expressed linearly as Qπr =Mπr.

Given a feature map φ : S → Rd that embeds states into a d-dimensional space, the successor
features (Barreto et al., 2017) is the expected discounted sum of features:

ψπ(s, a) :=
∑
t≥0

γtE[φ(st+1) | s, a, π]. (2)

Successor features and measures are related: by definition, ψπ(s, a) =
∫
s
Mπ(ds′ | s, a)φ(s′). For

any reward function in the linear span of φ, i.e., r(s) = ω⊤φ(s) where ω is a weight vector in Rd,
the Q-function can be expressed compactly as Qπr (s, a) = ω⊤ψπ(s, a).

Behavioral foundation models. A behavioral foundation model, for a given MDP, is an agent
that can be trained in unsupervised fashion using reward-free transitions and yet can produce ap-
proximately optimal policies for a large class of reward functions r specified at test time, without
performing additional learning or planning. In this work, we focus on zero-shot RL agents that are
based on successor features and forward-backward representations.

Universal successor features (USFs) (Borsa et al., 2018) provide a generic framework for zero-shot
RL. Given a feature map φ, USFs learn the successor features of a particular family of policies πz
parameterized by latent variables z ∈ Z ⊂ Rd:

ψ(s, a, z) = E[
∑
t≥0

γtφ(st+1) | s, a, πz], πz(s) = argmax
a

ψ(s, a, z)⊤z. (3)

At test time, once a reward function r is specified, a reward-maximizing policy is inferred
by performing a linear regression of r onto the features φ. In particular, we estimate zr =
argminz Es∼ρ[(r(s) − φ(s)⊤z)2] = Es∼ρ[φ(s)φ(s)⊤]−1Es∼ρ[φ(s)r(s)] where ρ is some dataset
distribution over states. Then we return the pre-trained policy πzr . This policy is guaranteed to be
optimal if the reward is in the linear span of the features φ (Borsa et al., 2018). Although USF is
a generic framework, it requires specifying a training criterion to learn the basic features φ. Touati
et al. (2023) compare several choices of unsupervised representation learning objectives across vari-
ous empirical problems. In this work, we focus on two recent state-of-the-art feature learning meth-
ods for zero-shot RL: Hilbert representations (HILP) (Park et al., 2024) and proto successor mea-
sures (PSM) (Agarwal et al., 2024). HILP constructs features φ such that the distance ∥φ(s)−φ(s′)∥



Fast Adaptation with Behavioral Foundation Models

between a state pair (s, s′) encodes the optimal value function of reaching the state s′ starting at s.
PSM proposes to build the features φ by learning an affine decomposition of the successor measure
for a discrete codebook of policies, i.e., Mπu(ds′ | s, a)/ρ(ds′) ≈ ϕ(s, a)⊤φ(s′)w(u)+ b(s, a, s′),
where ϕ,w and b are vector-valued functions and where πu is a deterministic policy that outputs an
action in state s as a realization of the uniform distribution, determined by the random seed u.

Forward-backward representations (FB) (Touati & Ollivier, 2021) provide an alternative framework
for zero-shot RL. Unlike USFs which use two separate criteria to learn features and their successor
features, FB avoid the state featurization step and employ a single objective to learn a finite-rank de-
composition of the successor measure for various policies. Namely, FB pre-train two representations
F : S ×A×Z → Rd and B : S → Rd such that:

F (s, a, z)⊤B(s′)ρ(ds′) ≈Mπz (ds′ | s, a), πz(s) = argmax
a

F (s, a, z)⊤z. (4)

FB representations are related to USFs, as F (s, a, z) represents the successor features of
Es∼ρ[B(s)B(s)⊤]−1B(s) (Touati et al., 2023). In the sequel, to standardize the notations with
the USFs, we will denote ψ(s, a, z) = F (s, a, z) and φ(s) = Es∼ρ[B(s)B(s)⊤]−1B(s).

Forward-Backward representations with Conditional Policy Regularization (FB-CPR) (Tirinzoni
et al., 2025) is an online variant of FB that grounds the unsupervised policy learning toward im-
itating observation-only unlabeled behaviors.

3 Fast Adaptation for Behavioral Foundation Models

In this section, we introduce our two approaches for fast adaptation of pre-trained BFMs: an off-
policy actor-critic algorithm (Section 3.1), and a hybrid on-policy actor-only algorithm (Section 3.2).

3.1 ReLA: Residual Latent Adaptation

Given a reward function r, ReLA begins with the latent variable z = zr inferred by the zero-
shot procedure and uses an off-policy actor-critic approach to gradually update z towards better
performance. The overall algorithm uses a standard online training procedure, interleaving between
critic and actor updates (as described below), while gathering reward-labeled transitions in a replay
buffer Donline through online interactions with the environment.

Residual critic learning. Instead of training a critic from scratch to model the Q-function of the
policy πz currently being learned for the reward r, ReLA uses a residual critic to correct for the
reward projection error. This is made possible by the following decomposition:

Qπz
r (s, a) = Qπz

φ⊤zr
(s, a) +Qπz

r−φ⊤zr
(s, a)

= ψ(s, a, z)⊤zr +Qπz

r−φ⊤zr
(s, a) (5)

where the last equality holds because ψ is pre-trained to estimate the successor features of φ
and the projected reward φ⊤zr lies in the span of φ. Consequently, ReLA considers a net-
work Qresidual(s, a; θ) parametrized by weights θ and trains it via off-policy TD learning so that
ψ(s, a, zr)

⊤zr + Qresidual(s, a; θ) approximates the Q-function Qπz
r (s, a), while keeping the base

Q-function ψ(s, a, zr)⊤zr frozen. In practice, we shall use much smaller networks for the residual
critic than for the pre-trained successor features, with the main intuition being that we only need to
compensate for some projection error. For a more in-depth treatment of the Q-function decomposi-
tion we refer the readers to Appendix 7.1.

Latent actor update. ReLA updates the latent variable z using standard policy-gradient ascent,
with the key difference being that the gradient is computed only with respect to z, while keeping the
pre-trained actor parameters fixed,

∇zEs∼Donline [ψ(s, πz(s), zr)
⊤zr +Qresidual(s, πz(s); θ)], (6)



Reinforcement Learning Journal 2025

The main advantage over optimizing the whole actor network is that we only need to search in a
low-dimensional space (in practice, z has in the order of hundreds of components, while the actor
network of a BFM has in the order of millions of parameters).

3.2 LoLA: Lookahead Latent Adaptation

Although ReLA can take advantage of off-policy data collected in the replay buffer, it requires
learning an additional residual network. Therefore, ReLA demands a certain budget of transitions
and updates to mitigate the distribution shift issue (Luo et al., 2023) when learning the Q-function,
which may impede improvements during the very early stages of adaptation. On the other hand,
a purely on-policy approach will require rolling out entire trajectories under the current policy to
estimate Monte Carlo returns

∑T
t=0 γ

trt (where T is the episode length), and thus incur many
environment interactions in the process. Alternatively, we propose Lookahead Latent Adaptation
algorithm (LoLA) that uses fixed-horizon on-policy rollouts with a frozen terminal value function
obtained from the BFM. LoLA parameterizes a policy over the latent space as a normal distribution
πµ,σ = N (µ, σ) with trainable mean µ (initialized with µ = zr), and fixed diagonal covariance
σ. The pre-trained successor features from BFM are used to compute the estimate of a terminal
value-function, thus estimating the n-step lookahead return of policy πz starting from state s0 as
Rn(s0, z) =

∑n−1
t=0 γ

tr(st+1) + γnψ(sn+1, πz(sn+1), z)
⊤zr.

Moreover, to further improve learning, LoLA incorporates the variance reduction strategy of leave-
one-out baseline (Kool et al., 2019). This baseline has recently been shown to be empirically effec-
tive for fine-tuning large language models (Ahmadian et al., 2024). This leads to the following final
gradient estimate2:

Es0∼ν
[
1
k

∑k
i=1

(
R
(
s0, zi

)
− 1

k−1
∑k
j=1
j ̸=i

R
(
s0, zj

))
∇µ log πµ,σ

(
zi
)]

for z1, . . . , zk ∼ πµ,σ(·)

(7)
where s0 is sampled from the distribution ν defined as mixture between the environment’s ini-
tial distribution d0 and the online replay buffer distribution Donline. For each sampled starting
state s0, we sample k latent variables {zi}i∈[k] ∼ πµ,σ and generate k trajectories of length n

(s
(i)
0 , a

(i)
0 , s

(i)
1 , a

(i)
1 , . . . , s

(i)
n ) by following the policy πzi . Computing the gradient requires the abil-

ity to reset of any state in support of distribution ν, which includes the states encountered during
online adaptation.

4 Experimental Results

The goal of our experiments is to study how well latent policy adaptation works on top of exist-
ing BFMs. We perform several ablations to understand the efficacy of the proposed methods and
evaluate our design choices. Precisely, 1) Can we find better policies by online latent policy adap-
tation compared to the zero-shot policies? Or, equivalently, is the latent policy space easy to search
over? 2) How important is to leverage BFMs properties (e.g., Q-function estimate, zero-shot policy
initialization)? 3) What are the critical limitations of the zero-shot inference process?

Experimental setup. We investigate these questions by leveraging 4 different BFMs: FB, HILP,
PSM and FB-CPR. While FB, HILP and PSM are trained offline, FB-CPR learns through online
environmental interactions and it is regularized towards expert trajectories. We consider four envi-
ronments from the DeepMind Control suite (Tassa et al., 2018) and train the BFMs on an exploratory
dataset obtained from ExoRL (Yarats et al., 2022).3 Further, we leverage the FB-CPR model released
by Tirinzoni et al. (2025) for the HumEnv environment, a high-dimensional humanoid agent. Over-
all, we consider 7 tasks for Pointmass, 4 for Cheetah, 4 for Quadruped, 4 for Walker, and
45 tasks for HumEnv. Detailed information about the pre-training phase can be found in Appendix 9.

2In practice we work with z normalized on hypersphere using projected gradient descent
3We consider the dataset collected by running RND (Burda et al., 2019).



Fast Adaptation with Behavioral Foundation Models

0 100 200

80

60

40

20

0

20

%
 Im

pr
ov

em
en

t O
ve

r
 th

e 
Ze

ro
-S

ho
t P

ol
icy

FB

0 100 200

80

60

40

20

0

20

40
PSM

0 100 200

80

60

40

20

0

20

HILP

0 100 200
100

75

50

25

0

25

50

FB-CPR

0 100 200
Episode

0.4

0.6

0.8

1.0

Co
sin

e 
Si

m
ila

rit
y

 w
.r.

t. 
th

e 
ze

ro
-s

ho
t p

ol
icy

0 100 200
Episode

0.4

0.6

0.8

1.0

0 100 200
Episode

0.4

0.6

0.8

1.0

0 100 200
Episode

0.4

0.6

0.8

1.0

TD3 (I) TD3-warm start (I) LoLa (ours) ReLa (ours)

Figure 4: Top: Performance improvement w.r.t. the zero-shot policy for different online fast adap-
tation methods and BFMs. TD3(I) denotes standard action-based TD3 with zero-shot policy initial-
ization, our methods are as described in Section 3. Bottom: Cosine similarity between the zero-shot
policy zr and the learned policy z for the methods working in the latent policy space. We report
mean and standard deviation over 5 seeds. Results are averaged over 19 tasks for FB, PSM, HILP
and 45 tasks for FB-CPR.

Protocol and baselines. While the paper focuses on adaptation in the latent policy space, we also
investigate the common class of approaches for fine-tuning in action space (i.e., updating all policy
network parameters) with zero-shot initialization (Nair et al., 2020; Nakamoto et al., 2023). In
particular, we consider a TD3-based algorithm (Fujimoto et al., 2018) that train a critic from scratch
and an actor initialized using the zero-shot policy (TD3 (I)).4 Since collecting a few on-policy
trajectories before starting updating the critic and the actor proved to be effective for offline to
online adaptation, a strategy called Warm-Start RL (WSRL) (Zhou et al., 2024), we additionally
consider this component for action-based algorithms. We further ablate several design choices (e.g.,
zero-shot initialization, bootstrapped critic) in Section 4.2 and, in Appendix 10 we report variations
of our algorithms that operate by directly updating the parameters of the policy. See Table 1 for a
complete list of algorithm variations.

We use a comparable architecture and hyperparameter search for all algorithms. For each BFM,
we report the performance on the set of hyperparameters that performed best across all tasks and
domains. We train all the online adaptation algorithms for 300 episodes and we use 5 seeds for each
experiment. Evaluation is done by averaging results over 50 episodes. We also use TD3 as base
off-policy algorithm for implementing ReLA. When using residual critic we use a small 2-layers
MLP with hidden dimension 64, while when we learn the critic from scratch we use a 2-layers MLP
with hidden dimension 1024. The policy has always the same size as the BFM policy. We provide
further implementation details in Appendix 9.

4.1 Do ReLA and LoLA enable fast adaptation?

Figure 4 (top) shows our aggregated results across tasks for each domain: Latent policy adaptation
leads to performance improvements w.r.t. the zero-shot policy in the range of 10-30% for DMC
environment and 40-50% for HumEnv. Compared to Figure 2, these results show that significant
improvements are already obtained in few online episodes. For example, LoLA leads to about 10%
(resp. 40%) improvement for DMC (resp. for HumEnv) in only 20 episodes. These results show that

4We also tested vanilla RLOO (Kool et al., 2019) but did not get good results and decided not to report it.



Reinforcement Learning Journal 2025

i) the space of policies learned by the BFMs contains better policies than the one inferred by the zero-
shot procedure and ii) such a space can be easily navigated using gradient-based approaches. While
both ReLA and LoLA provide significant performance improvements, LoLA is the only method to
achieve monotonic performance improvement across the board. As we can see from the per-task
visualization in Appendix 10, the non-monotonic performance of ReLA is mostly due to the fact
that the methods incurs a noticeable catastrophic forgetting in the pointmass environment where
TD3-based methods seem to struggle in the online setting, probably due to exploration issues. As
a result of training purely on online samples, critic learning in ReLA undergoes distribution shift
which has been investigated to lead to initial unlearning (Zhou et al., 2024) whereas LoLA skips the
critic learning step entirely. In addition, LoLA exploits a privileged information compared to ReLA,
the ability to reset the environment to any arbitrary state, which further contributes in stabilizing and
speeding up the learning process (see e.g., Mhammedi et al., 2024).

How does the adapted policy evolve in latent space? To try to better understand the learning
dynamics of ReLA and LoLA we report the cosine similarity between the adapted z and the zero-
shot policy zr in Figure 4 (bottom). ReLA deviates much more in the latent space from the initial
zero-shot policy than LoLA. This fast and significant change is associated with the drop in perfor-
mance. On the other hand, despite the high learning rate (we found 0.1 or 0.05 to be the best based
on the BFM), LoLA remains closer to the zero-shot policy. A potential cause for the significant
change in ReLA may be difficulties in critic learning associated with distribution shift, which can
impact policy directly. This visualization also shows that while converging to different policies, the
performance of ReLA and LoLA is comparable after 300 episodes in the DMC environments. This
reveals that policies with similar performance may be associated to with different latent vectors z.

Algorithm Zero-Shot
Policy Init.

Residual Critic(†)/
Bootstraped
Return(+)

Critic
Trained from

scratch
Search space

LoLA ✓ ✓(+) z

LoLA (no-I) ✓(+) z
LoLA (no-R) ✓ ✓ z
LoLA (no-I, no-R) ✓ z

ReLA ✓ ✓(†) z

ReLA (no-I) ✓(†) z
ReLA (no-R) ✓ ✓ z
ReLA (no-I, no-R) ✓ z

TD3-z ✓ z
TD3 (I) ✓ ✓ a
TD3-warm-start(I) ✓ ✓ a

TD3-warm-start(I, R) ✓ ✓(†) a

Table 1: Summary of algorithm variations. Here, search
space z indicates latent policy adaptation via the policy
space {πz} constructed by the BFM, while a denotes fine-
tuning in action space.

When looking at the baselines, we
can notice that all action-space adap-
tation algorithms suffer a much more
significant drop compared to latent
policy adaptation. The performance
gap between action-based and la-
tent policy adaptation becomes even
larger when looking at FB-CPR. In
this case, all action-based algorithms
completely unlearn in a few steps and
are not able to rapidly recover. We
think this is due to the large dimen-
sionality of observation space, action
space and policy model that lead to
a much more complicated optimiza-
tion problem.5 On the other hand,
in contrast to other BFMs, FB-CPR
does not suffer any initial perfor-
mance drop when using ReLA. Indeed, all latent policy adaptation algorithms (see Appendix 10
for additional experiments) achieve monotonic performance improvement, stressing even more that
structured search in the latent policy space may be simpler than finetuning the whole policy in high-
dimensional problems. This may be due to the fact that FB-CPR is the only BFM that is pre-trained
with online environmental interactions, a setting that may reduce the distribution shift between pre-
training and adaptation. Finally, the performance improvement due to the latent policy adaption is
much more significant in this domain. The reason may reside in the critic training objective of FB-
CPR; indeed FB-CPR uses a discriminator-based loss to regularize the policy space towards expert
demonstrations. This may prevent the zero-shot inference to correctly identify the best policy for
the task, while online adaptation seems to better search the policy space.

5A way to address this problem may be through policy regularization but this is outside the scope of this paper.



Fast Adaptation with Behavioral Foundation Models

0 50 100 150
100

200

300

400

500

600

700

Av
er

ag
e 

Re
tu

rn

FB

LoLa
LoLa (no-I)
LoLa (no-R)
LoLa (no-I,no-R)

0 50 100 150

200

300

400

500

600

700
PSM

0 50 100 150

100

200

300

400

500

600

HILP

0 50 100 1500

50

100

150

200

FB-CPR

0 50 100 150
100

200

300

400

500

600

700

Av
er

ag
e 

Re
tu

rn

ReLa
ReLa (no-R)
ReLa (no-I)
ReLa (no-I,no-R)

0 50 100 150

100

200

300

400

500

600

700

0 50 100 150

100

200

300

400

500

600

0 50 100 150

50

100

150

200

0 50 100 150
Episodes

100

200

300

400

500

600

700

Av
er

ag
e 

Re
tu

rn

ReLa-a
TD3 (I)
ReLa-a (no-I)
TD3
TD3-warm start (I, R)
TD3-warm start (I)

0 50 100 150
Episodes

100

200

300

400

500

600

700

0 50 100 150
Episodes

0

100

200

300

400

500

600

700

0 50 100 150
Episodes

0

20

40

60

80

100

120

140

Figure 5: Average returns for several variations of LoLA, ReLA, and action-based TD3 with warm
start. We use no-R to denote that we do not use the BFM’s estimated value function (i.e., for LoLA
we do not bootstrap the terminal state and for ReLA we learn a critic from scratch) and no-I to
denote that we do not use zero-shot policy initialization. Finally, for TD3 we use R to denote that
we use residual critic since the standard implementation learns a critic from scratch.

Finally, we would like to report an observation about the computational efficiency. On our hardware,
LoLA runs at ≈ 157x the FPS of ReLA and other adaptation approaches. Specifically, ReLA runs
at ≈ 14 FPS, and LoLA runs at ≈ 2, 200. This gaps presumably comes from the fact that ReLA
needs to backpropagate gradient through the BFM estimated value function and policy both in the
critic and actor updates, while LoLA has just a single actor update. The computational efficiency
of LoLA along with its observed near-monotonic improvement for adaptation makes it appealing in
practice.

4.2 What components are critical for fast adaptation?

In this section we assess the importance of leveraging BFM properties for fast online adaptation.
We focus on ablating the need of i) zero-shot initialization and ii) BFM value function estimate,
i.e., using a residual critic for ReLA and the bootstrapped Q-function for LoLA. We focus on the
very early steps of the training to better inspect the results. Ablation variants are concisely shown in
Table 1 for reference, and results are reported in Figure 5.

When zero-shot initialization is disabled not only the performance starts lower but also take sig-
nificantly longer to match the baseline’s returns (if they match at all). Unsurprisingly, zero-shot
initialization helps in the search process. Leveraging the BFM’s value function estimate does not
hurt and often helps in reducing the initial performance drop. Looking at LoLA, BFM bootstrapping



Reinforcement Learning Journal 2025

offline online offline online

0

2

4

6

8

10

%
 Im

pr
ov

em
en

t O
ve

r
 th

e 
Ze

ro
-S

ho
t P

ol
icy

FB

offline online offline online

0

10

20

30

HILP

offline online offline online0

2

4

6

8

10

12

14 PSM

Reconstructed reward True reward ReLa@200 episodes

Figure 6: Performance improvement w.r.t. the zero-shot policy for a TD3-based method trained from
scratch for 3M steps to perform search in the latent policy space (i.e., TD3-z). We report the results
for both online and offline training using the ExoRL (Yarats et al., 2022) dataset. We also ablate
learning with the true task reward and the reward reconstructed by the BFM methods. We average
the results over all the task of the Walker, Quadruped and Cheetah domains. We report the
average performance over 5 seeds. We additionally show the performance of ReLA after training
for 200 episodes.

helps only marginally in all the domains. We believe that this is due to the small discount factor and
large lookahead (we use 0.98 and a lookahead of 100 or 250); this combination significantly reduces
the role of the bootstrapped Q-function (discounted by 0.13 or 0.006). When looking at ReLA,
residual critic helps in DMC domains but not in the HumEnv, where zero-shot initialization is the
most important dimension. On the other hand, when zero-shot initialization is disabled in the DMC
domains, the importance of residual critic is particularly evident and leads to almost match the per-
formance of the best algorithm. Finally, the residual critic is also very important when performing
direct adaptation in the action-space and helps in a faster recovery from the initial drop.

4.3 Dissecting the Suboptimality of Zero-Shot RL Policies

The previous results show that BFMs are indeed learning skills that contain good policies for all the
downstream tasks we study. This then raises the question on what causes the suboptimality of the
zero-shot policy and the need of performing online adaptation to actually recover a better policy.
We run a series of ablations with FB, HILP and PSM. We do not consider FB-CPR because our
ablation involves offline training and we do not have access to an offline dataset for this model since
it was trained online. We consider TD3 as learning algorithm since it is the building block of all the
three BFMs and focus on latent policy adaptation (we call this approach TD3-z to avoid confusion
with TD3 used in the previous sections to optimize the full policy network). For all experiments in
this section, we consider the standard scenario of training from scratch, no zero-shot initialization
and no-residual critic. Specifically when searching in z space, we use a pretrained BFM actor and
initialize z along with the critic randomly and when learning in action space we initialize both
the actor and critic randomly. We report the performance of TD3-z after 3M training steps when
using the true reward function and the reward function reconstructed by the BFMs6, both offline and
online. We do not consider pointmass in this test since TD3 does not work well when trained
online due to the challenging exploration in the long-horizon tasks considered in this domain.

Overall, these experiments confirm that BFMs can express much better policies than the zero-shot
policy and that optimizing for true rewards is crucial to unlock their full performance. When opti-
mizing for the latent reward, offline TD3-z can already improve the zero-shot performance revealing

6Latent or reconstructed reward is given by r̃z(s) = φ(s).zr



Fast Adaptation with Behavioral Foundation Models

the difficulty of optimizing all polices {πz} simultaneously during the pre-training process.7 Inter-
estingly, when moving to online training on the latent reward performance can even drop. We con-
jecture the cause is the distribution shift between online and offline samples. Given that the models
were trained offline, their reward prediction degrades on out-of-distribution samples encountered
during online adaptation, further skewing towards learning policies that are even less correlated to
the true reward. This is confirmed when looking at the performance when optimizing for the true
reward, which consistently lead to better results across offline and online tests, with online methods
being overall better. This ablation confirms that focusing on searching in the z-space, while correct-
ing the embedding errors is the right strategy to achieve fast adaptation online. Indeed, we see that
ReLA recovers better policies than the one obtained by training from scratch TD3-z online for 3M
episodes in only 200 episodes. Even faster if we use LoLA. This shows that leveraging information
from the BFM is useful in many cases.

5 Related Work

Unsupervised RL pre-training: For language and vision, unsupervised pretraining has paved the
way to extracting meaningful structure from data, scaling up, and obtaining impressive results for
transfer and zero-shot generalization to different downstream tasks. In recent years, approaches have
been proposed for unsupervised reinforcement learning: a training paradigm where a learning agent
attempts to extract world structure and representations that will later allow it to solve diverse multi-
step decision-making problems in the environment. Various objectives have been proposed: world
modeling (Bruce et al., 2024; Hansen et al., 2023), intrinsic rewards (Schmidhuber, 2019; Stadie
et al., 2015; Sekar et al., 2020; Pathak et al., 2017), empowerment and mutual information skill
learning (Klyubin et al., 2005; Eysenbach et al., 2018; Rajeswar et al., 2023; Gregor et al., 2016),
goal-reaching (Ma et al., 2022; Park et al., 2023; 2024), successor measures (Touati & Ollivier,
2021; Agarwal et al., 2024; Sikchi et al., 2024) among others. In this work, we restrict our focus to
the class of unsupervised RL objectives that learn a family of policies and allow us to query for a
near-optimal policy given any test-time reward function without further learning or planning in the
environment. Approaches belonging to this class often learn a state representation and use that to
define the class of reward functions for which they learn the set of optimal policies. At inference
time, they output the policy that is optimal for the projection of the reward function to this class of
reward functions.

Fine-tuning and adaptation with unsupervised RL models: Similar to supervised pre-training
approaches, unsupervised zero-shot RL models are not expected to output optimal policies for the
given task. Rather they are expected to output a reasonable policy initialization that can be later fine-
tuned or adapted. Prior approaches for policy adaptation with pre-trained RL models have mostly
studied the offline-to-online setting. In this setting, a policy is trained with reward-labeled transitions
first using offline data with specialized offline RL algorithms and then allowed to fine-tune by inter-
acting with the environment and retaining access to the offline data. Offline RL algorithms (Levine
et al., 2020; Sikchi et al., 2023) incorporate pessimism to avoid overestimation by restricting the
policy to visit states closer to the dataset. Naively using the same algorithm to finetune online has
been observed to lead to slow performance improvements and using an online RL algorithm leads
to performance collapse at the beginning of fine-tuning (Luo et al., 2023). This behavior has been
attributed to a distribution shift for critic-learning (Yu & Zhang, 2023), and prior works have inves-
tigated various techniques, such as calibration of Q-functions to mitigate this problem (Nakamoto
et al., 2023). Our work, considers a different but practical paradigm for adaptation where a) no
offline data is retained during finetuning and b) we learn from reward-free transitions. First, by only
retaining pre-trained models we reduce compute requirements of learning from large pre-training
offline datasets (Zhou et al., 2024), and by considering reward-free transitions we have a single
model that can adapt to any downstream task (Kim et al., 2024). Learning online without retaining

7The fact that performance of HILP and PSM improve by about than 10-15% by offline training on the reconstructed
reward might may be due to a non-perfect pre-train. Indeed, the pre-training condition should ensure that the actor is already
optimal on any reconstructed reward on the training data distribution.



Reinforcement Learning Journal 2025

offline data suffers a significant initial drop of performance with respect to the pre-trained policy as
recently investigated by Zhou et al. (2024).

6 Conclusion

Unsupervised zero-shot RL pre-training can result in an agent (a type of Behavioral Foundation
Model, BFM) capable of accomplishing a wide variety of tasks having a noticeable but expected
degree of suboptimality. This paper investigates and addresses the question of how to adapt these
agents to be better at a task specified during test-time with limited environment interactions. We
propose two fast adaptation strategies (LoLA and ReLA); The key insight behind our methods is
to reuse pre-trained knowledge from BFM strategically and search over the learned latent policy
space that provides a low-dimensional landscape favorable for gradient-based optimization. We
have demonstrated the effectiveness of these strategies across various zero-shot BFMs. Notably,
LoLA, an actor-only adaptation algorithm, demonstrates monotonic performance improvement on
all domains and BFMs, making it a reliable choice when privileged resets are permitted. However,
our findings also reveal an initial performance drop when employing any actor-critic method, includ-
ing our proposed ReLA algorithm. This highlights the need for further investigation into mitigating
forgetting in the actor-critic class of approaches. Future research directions include exploring meta-
learning adaptation techniques, including in-context adaptation by learning to adapt in multi-task
settings to optimize learning costs and improve overall performance.

7 Acknowledgments

This work was primarily done at FAIR at Meta. This work has also partly taken place in part in
the Safe, Correct, and Aligned Learning and Robotics Lab (SCALAR) at The University of Mas-
sachusetts Amherst. HS and SN as part of the SCALAR research are supported in part by the NSF
(IIS-2323384), the Center for AI Safety (CAIS), and the Long-Term Future Fund. HS and AZ are
funded by NSF 2340651, NSF 2402650, DARPA HR00112490431, and ARO W911NF-24-1-0193.



Fast Adaptation with Behavioral Foundation Models

Broader Impact Statement

Our work seeks to advance the adaptability of learning agents that interact with the environment. Our
work pushes the frontier on scalable and adaptable agents by building upon unsupervised learning
objectives that allow us to reuse a single trained model capable of a variety of tasks and propos-
ing approaches that make these models more proficient at a task specified during test time rapidly
without retaining any data used for pretraining. Prior works have studied a variety of objectives for
unsupervised RL but fall short in their investigation of adaptation or propose a strategy that unlearns
the policy before starting to improve performance. Our proposed approach is the first to our knowl-
edge, to demonstrate monotonic performance improvement for pretrained RL agents without access
to training data. There are potential societal consequences of our work, none which we feel must be
specifically highlighted here.

References
Siddhant Agarwal, Harshit Sikchi, Peter Stone, and Amy Zhang. Proto successor measure:

Representing the space of all possible solutions of reinforcement learning. arXiv preprint
arXiv:2411.19418, 2024.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learn-
ing from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,
and David Silver. Successor features for transfer in reinforcement learning. Advances in neural
information processing systems, 30, 2017.

Léonard Blier, Corentin Tallec, and Yann Ollivier. Learning successor states and goal-dependent
values: A mathematical viewpoint. arXiv preprint arXiv:2101.07123, 2021.

Diana Borsa, André Barreto, John Quan, Daniel Mankowitz, Rémi Munos, Hado van Hasselt,
David Silver, and Tom Schaul. Universal successor features approximators. arXiv preprint
arXiv:1812.07626, 2018.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative inter-
active environments. In Forty-first International Conference on Machine Learning, 2024.

Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by random network
distillation. In 7th International Conference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/
forum?id=H1lJJnR5Ym.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Edoardo Cetin, Ahmed Touati, and Yann Ollivier. Finer behavioral foundation models via auto-
regressive features and advantage weighting. arXiv preprint arXiv:2412.04368, 2024.

Peter Dayan. Improving generalization for temporal difference learning: The successor representa-
tion. Neural computation, 5(4):613–624, 1993.

https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym


Reinforcement Learning Journal 2025

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Ayzaan Wahid,
Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, et al. Palm-e: An embodied mul-
timodal language model. 2023.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv
preprint arXiv:1611.07507, 2016.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. arXiv preprint arXiv:2203.04955, 2022.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for contin-
uous control. arXiv preprint arXiv:2310.16828, 2023.

Steven Hansen, Will Dabney, Andre Barreto, Tom Van de Wiele, David Warde-Farley, and
Volodymyr Mnih. Fast task inference with variational intrinsic successor features. arXiv preprint
arXiv:1906.05030, 2019.

Tobias Johannink, Shikhar Bahl, Ashvin Nair, Jianlan Luo, Avinash Kumar, Matthias Loskyll,
Juan Aparicio Ojea, Eugen Solowjow, and Sergey Levine. Residual reinforcement learning for
robot control. In 2019 international conference on robotics and automation (ICRA), pp. 6023–
6029. IEEE, 2019.

Junsu Kim, Seohong Park, and Sergey Levine. Unsupervised-to-online reinforcement learning.
arXiv preprint arXiv:2408.14785, 2024.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. Empowerment: A universal
agent-centric measure of control. In 2005 ieee congress on evolutionary computation, volume 1,
pp. 128–135. IEEE, 2005.

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 reinforce samples, get a baseline for free!
2019.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Hao Liu and Pieter Abbeel. Aps: Active pretraining with successor features. In International
Conference on Machine Learning, pp. 6736–6747. PMLR, 2021.

Yicheng Luo, Jackie Kay, Edward Grefenstette, and Marc Peter Deisenroth. Finetuning from
offline reinforcement learning: Challenges, trade-offs and practical solutions. arXiv preprint
arXiv:2303.17396, 2023.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
Zhang. Vip: Towards universal visual reward and representation via value-implicit pre-training.
arXiv preprint arXiv:2210.00030, 2022.



Fast Adaptation with Behavioral Foundation Models

Zakaria Mhammedi, Dylan J. Foster, and Alexander Rakhlin. The power of resets in online rein-
forcement learning. In NeurIPS, 2024.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Yuexiang Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning. arXiv preprint arXiv:2303.05479, 2023.

Seohong Park, Oleh Rybkin, and Sergey Levine. Metra: Scalable unsupervised rl with metric-aware
abstraction. arXiv preprint arXiv:2310.08887, 2023.

Seohong Park, Tobias Kreiman, and Sergey Levine. Foundation policies with hilbert representations.
arXiv preprint arXiv:2402.15567, 2024.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Matteo Pirotta, Andrea Tirinzoni, Ahmed Touati, Alessandro Lazaric, and Yann Ollivier. Fast im-
itation via behavior foundation models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=qnWtw3l0jb.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Sai Rajeswar, Pietro Mazzaglia, Tim Verbelen, Alexandre Piché, Bart Dhoedt, Aaron Courville, and
Alexandre Lacoste. Mastering the unsupervised reinforcement learning benchmark from pixels.
In International Conference on Machine Learning, pp. 28598–28617. PMLR, 2023.

Krishan Rana, Ming Xu, Brendan Tidd, Michael Milford, and Niko Sünderhauf. Residual skill
policies: Learning an adaptable skill-based action space for reinforcement learning for robotics.
In Conference on Robot Learning, pp. 2095–2104. PMLR, 2023.

Juergen Schmidhuber. Reinforcement learning upside down: Don’t predict rewards–just map them
to actions. arXiv preprint arXiv:1912.02875, 2019.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In International conference on machine
learning, pp. 8583–8592. PMLR, 2020.

Harshit Sikchi, Wenxuan Zhou, and David Held. Learning off-policy with online planning. In
Conference on Robot Learning, pp. 1622–1633. PMLR, 2022.

Harshit Sikchi, Qinqing Zheng, Amy Zhang, and Scott Niekum. Dual rl: Unification and new
methods for reinforcement and imitation learning, 2023.

Harshit Sikchi, Siddhant Agarwal, Pranaya Jajoo, Samyak Parajuli, Caleb Chuck, Max Rudolph,
Peter Stone, Amy Zhang, and Scott Niekum. Rl zero: Zero-shot language to behaviors without
any supervision. arXiv preprint arXiv:2412.05718, 2024.

Tom Silver, Kelsey Allen, Josh Tenenbaum, and Leslie Kaelbling. Residual policy learning. arXiv
preprint arXiv:1812.06298, 2018.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

https://openreview.net/forum?id=qnWtw3l0jb


Reinforcement Learning Journal 2025

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A.
Riedmiller. Deepmind control suite. CoRR, abs/1801.00690, 2018.

Andrea Tirinzoni, Ahmed Touati, Jesse Farebrother, Mateusz Guzek, Anssi Kanervisto, Yingchen
Xu, Alessandro Lazaric, and Matteo Pirotta. Zero-shot whole-body humanoid control via behav-
ioral foundation models. In The Thirteenth International Conference on Learning Representa-
tions, 2025. URL https://openreview.net/forum?id=9sOR0nYLtz.

Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. In NeurIPS,
pp. 13–23, 2021.

Ahmed Touati, Jérémy Rapin, and Yann Ollivier. Does zero-shot reinforcement learning exist? In
ICLR. OpenReview.net, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Yifan Wu, George Tucker, and Ofir Nachum. The laplacian in rl: Learning representations with
efficient approximations. arXiv preprint arXiv:1810.04586, 2018.

Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel, Alessandro Lazaric,
and Lerrel Pinto. Don’t change the algorithm, change the data: Exploratory data for offline
reinforcement learning. arXiv preprint arXiv:2201.13425, 2022.

Zishun Yu and Xinhua Zhang. Actor-critic alignment for offline-to-online reinforcement learning.
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pp. 40452–40474. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/v202/yu23k.html.

Tom Zahavy, Yannick Schroecker, Feryal Behbahani, Kate Baumli, Sebastian Flennerhag, Shaobo
Hou, and Satinder Singh. Discovering policies with domino: Diversity optimization maintaining
near optimality. arXiv preprint arXiv:2205.13521, 2022.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 11975–11986, 2023.

Zhiyuan Zhou, Andy Peng, Qiyang Li, Sergey Levine, and Aviral Kumar. Efficient online reinforce-
ment learning fine-tuning need not retain offline data. arXiv preprint arXiv:2412.07762, 2024.

https://openreview.net/forum?id=9sOR0nYLtz
https://proceedings.mlr.press/v202/yu23k.html


Fast Adaptation with Behavioral Foundation Models

Supplementary Materials
The following content was not necessarily subject to peer review.

7.1 Motivation for residual learning

Notation: We use matrix form and we identify for any z ∈ Z , ψz : S × A → Rd and ϕ :
S × A → Rd by ψz ∈ Rd×|S×A| and ϕ ∈ Rd×|S| respectively and Dρ = diag((ρ(s))s∈S).
Similarly, we identify for any z ∈ Z , Fz : S × A → Rd and B : S × A → Rd by Fz ∈ Rd×|S×A|

and B ∈ Rd×|S| respectively. We denote by Πϕ = ϕ⊤
(
ϕDρϕ

⊤)−1 ϕDρ the L2(ρ) orthogonal
projection onto the linear span of ϕ.
Proposition 1. Let ϕ : S → Rd a state feature map and {ψz}z∈Z the corresponding universal
successor features for the policy family {πz}z∈Z , i.e ψz(s, a) = E[

∑
t≥0 γ

tϕ(st+1) | (s, a), πz]
Then, for any reward function r : S → R, we have: Qπz

r = ψ⊤z zr + Qπz

r−ϕ⊤zr
where

zr = Es∼ρ[ϕ(s)ϕ(s)⊤]−1Es∼ρ[ϕ(s)r(s)], and Qπz

r−ϕ⊤zr
is the Q-function of the residual reward

r − ϕ⊤zr = (I −Πϕ)r.

Proof. for any reward function r ∈ RS , we have r = (ΠB + I −ΠB)r, then

Qπz
r =Mπzr

=Mπz (ΠB + I −ΠB)r

=MπzΠBr +Mπz (I −ΠB)r

=Mπzϕ⊤
(
ϕDρϕ

⊤)−1 ϕDρr +Mπz (r − ϕ⊤
(
ϕDρϕ

⊤)−1 ϕDρr)

= ψ⊤z zr +Qπz

r−ϕ⊤zr

where the last equation follows from the fact that ψ⊤z = Mπzϕ⊤ and zr =

Es∼ρ[ϕ(s)ϕ(s)⊤]−1Es∼ρ[ϕ(s)r(s)] =
(
ϕDρϕ

⊤)−1 ϕDρr

Proposition 2. Let assume that for any z ∈ Z, Fz is a stationary point of the FB training loss
ℓ(F,B), namely, the functional derivative ∂l

∂Fz
of the loss with respect of Fz is 0. Then,

Qπz
r = F⊤z zr +Qπz

(I−ΠB)r

= F⊤z zr +
(
Mπz − F⊤z BDρ

)
(r −ΠBr)

where zr = Es∼ρ[B(s)r(s)].

Proof. Let’s remind the FB training loss:

ℓ(F,B) = Ez,(s,a)∼ρ
s+∼ρ

[(
F (s, a, z)⊤B(s+)− P (ds+ | s, a)/ρ(ds+)− (Pπz F̄ )(s, a, z)⊤B̄(s+)

)2]
In matrix form, we obtain:

ℓ(F,B) = Ez
[
Trace

((
F⊤z B − PD−1ρ − γPπz F̄⊤z B̄

)⊤
Dρ

(
F⊤z B − PD−1ρ − γPπz F̄⊤z B̄

)
Dρ

)]



Reinforcement Learning Journal 2025

if Fz satisfies the stationarity conditions, i.e, ∂ℓ
∂Fz

= 0, then, we have

∂ℓ

∂Fz
= 0⇒ 2BDρ

(
F⊤z B − PD−1ρ − γPπzF⊤z B

)⊤
Dρ = 0

⇒ 2Dρ

(
F⊤z B − PD−1ρ − γPπzF⊤z B

)
DρB

⊤ = 0

⇒ F⊤z BDρB
⊤ = PB⊤ + γPπzF⊤z BDρB

⊤

⇒ F⊤z =MπzB⊤
(
BDρB

⊤)−1
⇒ F⊤z BDρ =MπzB⊤

(
BDρB

⊤)−1
⇒ F⊤z BDρ =MπzB⊤

(
BDρB

⊤)−1BDρ

Therefore F⊤z BDρ = MπzΠB where ΠB = B⊤
(
BDρB

⊤)−1BDρ is the L2(ρ) orthogonal pro-
jection onto the linear span of B.

Let ΠB⊥ the orthogonal projection onto the orthogonal ofB. By definition, we have ΠB⊥ = I−ΠB
We have:

Qπz
r =Mπzr

=Mπz (ΠB +ΠB⊥)r

=MπzΠBr +MπzΠB⊥r

= F⊤z BDρr +MπzΠB⊥r

= F⊤z zr +MπzΠB⊥r

where zr = BDρr = Es∼ρ[B(s)r(s)]

Therefore, we have:

Qπz
r = F⊤z zr +Qπz

Π
B⊥r

where the second term is the the Q-function of the residual reward ΠB⊥r

Moreover, since Π2
B⊥ = ΠB⊥ , we can write:

Qπz
r = F⊤z zr + (MπzΠB⊥) (ΠB⊥r)

= F⊤z zr +
(
Mπz − F⊤z BDρ

)
(r −ΠBr)

Which means that the residual term can be expressed as the successor measure approximation error
(due to the low-rank decomposition of FB model) multiplied by the reward error (due to the reward
embedding in the span of B).

8 Psuedocode

Algorithm 1 and 2 outline pseudocode for ReLA and LoLA respectively. The use of an terminal off-
policy critic LoLA has also been previously motivated in prior works to contribute to error reduction
in value function (Sikchi et al., 2022; Hansen et al., 2022).

9 Experimental Setup

9.1 Environments

We list the continuous control environments from the DeepMind Control Suite (Tassa et al., 2018)
and Humenv (Tirinzoni et al., 2025) used in this work in Table 2.



Fast Adaptation with Behavioral Foundation Models

Algorithm 1: ReLA
Load Frozen BFM’s successor features ψ(s, a, z) and

policy πz(s) networks.
Initialize residual critic networksQresidual

θ1
,Qresidual

θ2
, replay

bufferDonline, exploration std σ, Update to Data ratio
(UTD)M , Initialize target networks: Qresidual

θ′1
← Qresidual

θ1
,

Qresidual
θ′2

← Qresidual
θ2

.

Compute zero-shot latent zr using inference samples for
the BFM agent with test-time reward function.

for each environment step t do
Select at = πz(st) + ϵ, ϵ ∼ N (0, σ)
Execute at; observe rt, st+1

Store (st, at, rt, st+1) inDonline
Sample M mini-batches

Batchi = {(si, ai, ri, s′i)} ∼ Donline

Compute target Q-value:
yi = ri + γ(ψ(s′i, πz(s

′
i), zr) · zr +

min{Qθ′1
(s′i, πz(s

′
i)), Qθ′2

(s′i, πz(s
′
i))})

TemporalDifferenceUpdate(ψ(si, ai, zr) · zr +

Qresidual
θk∈[1,2]

, yi) for i ∈ [M ] using critic

parameterization from Eq 5
Latent Policy Update Update z taking gradient step as
in Eq 6 on ∪i∈[m]Batchi .
Update target networks by polyak averaging;

end

Algorithm 2: LoLA
Load Frozen BFM’s successor features ψ(s, a, z) and

policy πz(s) networks
Initialize latent policy πµ,σ = N (µ = zr, σ), replay

bufferDonline, sampling state distribution ν(Donline, d0), z
budget k, intial state budgetm, horizon n

Compute zero-shot latent zr using inference samples for
the BFM agent with test-time reward function.

for each gradient step do
for b=1..m do

s0 ∼ µ(Donline, d0)
for i=1..k do

zib ∼ πµ,σ , Reset to s0
Rollout trajectory τ i

b by taking actions given
by at = π

zi
b
(st)

ComputeR(s0, z
i
b)

Collect states from τ i
b inDonline

end
end
Update πµ,σ by taking gradient step in Eq 7.

end

Figure 7: Pseudocode of our proposed adaptation methods: Residual Latent Adaptation (ReLA) and
Lookahead Latent Adaptation (LoLA).

Domain Observation dimension Action dimension Episode length
Pointmass 4 2 1000

Walker 24 6 1000
Cheetah 17 6 1000

Quadruped 78 12 1000
HumEnv 358 69 300

Table 2: Overview of observation spaces, action spaces and episode length of environments used in
this work.

9.2 Behavioral Foundation Models

We trained all the BFMs except for the FB-CPR model that is publicly available (code link).

Offline BFMs. We train the BFMs using the publicly available dataset from ExoRL (Yarats et al.,
2022) collected using the RND algorithm (Burda et al., 2019). We used the authors implementation
for FB and FB-CPR (code link) and reimplemented PSM and HILP. We report in Table 3 the set of
hyperparameter used for the algorithms.

FB architecture. The backward representation networkB(s) is represented by a feedforward neu-
ral network with two hidden layers, each with 256 units, that takes as input a state and outputs a
d-dimensional embedding. For the forward network F (s, a, z), we first preprocess separately (s, a)
and (s, z) by two feedforward networks with one single hidden layer (with 1024 units) to 512-
dimentional space. Then we concatenate their two outputs and pass it into two heads of feedforward
networks (each with one hidden layer of 1024 units) to output a d-dimensional vector. For the pol-
icy network π(s, z), we first preprocess separately s and (s, z) by two feedforward networks with
one single hidden layer (with 1024 units) to 512-dimentional space. Then we concatenate their two
outputs and pass it into another one single hidden layer feedforward network (with 1024 units) to
output to output a dA-dimensional vector, then we apply a Tanh activation as the action space is
[−1, 1]dA .

https://github.com/facebookresearch/metamotivo
https://github.com/facebookresearch/metamotivo


Reinforcement Learning Journal 2025

Table 3: BFM hyperparameters. We largely reuse the hyperparameters from Pirotta et al. (2024) for
FB, from (Park et al., 2024) for HILP.

Hyperparameter Walker Cheetah Quadruped Pointmass

FB

Forward Backward
(Touati & Ollivier, 2021)

Embedding Dimension d 100 50 50 100

Embedding Prior Sd Sd Sd Sd

Embedding Prior Goal Prob. 0.5 0.5 0.5 0.5

B Normalization ℓ2 ℓ2 ℓ2 ℓ2

Orthonormal Loss Coeff. 1 1 1 1

Optimizer (Adam)
(Kingma & Ba, 2015)

Learning Rate (F, B) (10−4, 10−4) (10−4, 10−4) (10−4, 10−4) (10−4, 10−6)
Learning Rate (π) 10−4 10−4 10−4 10−6

Target Network EMA 0.99 0.99 0.99 0.99

HILP

Hilbert Representations
(Park et al., 2024)

Embedding Dimension d 50 50 50 100

Feature Learning Expectile 0.5 0.5 0.5 0.5

Feature Learning Discount Factor 0.98 0.98 0.98 0.98

Successor feature loss Q-loss Q-loss Q-loss Q-loss

Optimizer (Adam)
Learning Rate (SF, F) (10−4, 10−5) (10−4, 10−4) (10−4, 10−4) (10−4, 10−4)
Learning Rate (π) 10−4 10−4 10−4 10−4

Target Network EMA features 0.995 0.995 0.995 0.995

Target Network EMA SF 0.99 0.99 0.99 0.99

PSM

Proto Successor Measures
(Agarwal et al., 2024)

Embedding Dimension d 100 50 50 100

Policy Codebook Size 216 216 216 216

Feature Learning Timesteps 400k 400k 400k 400k

Embedding Prior Goal Prob. 0.5 0.5 0.5 0.5

B Normalization ℓ2 ℓ2 ℓ2 ℓ2

Orthonormal Loss Coeff. 1 1 1 1

Optimizer (Adam)
(Kingma & Ba, 2015)

Learning Rate (F, B) (10−4, 10−4) (10−4, 10−4) (10−4, 10−4) (10−4, 10−6)
Learning Rate (π) 10−4 10−4 10−4 10−6

Target Network EMA 0.99 0.99 0.99 0.99

Policy (TD3)
(Fujimoto et al., 2018)

Target Policy Noise N (0, 0.2) N (0, 0.2) N (0, 0.2) N (0, 0.2)

Target Policy Clipping 0.3 0.3 0.3 0.3

Policy Update Frequency 1 1 1 1

Common

Batch Size 1024 1024 1024 1024

Gradient Steps 3M 3M 3M 3M
Discount Factor γ 0.98 0.98 0.98 0.99

Reward Inference Samples 250, 000 250, 000 250, 000 250, 000

ExoRL number of trajectories 5, 000 5, 000 5, 000 5, 000

For all the architectures, we apply a layer normalization and Tanh activation in the first layer in
order to standardize the states and actions. We use Relu for the rest of layers. We also pre-
normalize z : z ←

√
d z
∥z∥2 in the input of F , and π.

HILP architecture. We use the same policy architecture as FB as well F-architecture for the
successor features. We learn the HILP features using a 2 layers MLP with hidden dimension 1024.
Even in this case, z is normalized.

PSM architecture. We use the same policy architecture as FB as well F-architecture for the suc-
cessor features. We learn the PSM features using a 2 layers MLP with hidden dimension 256. Even
in this case, z is normalized.



Fast Adaptation with Behavioral Foundation Models

9.3 Algorithm Implementation

All the actor-critic algorithms are implemented using TD3 (Fujimoto et al., 2018) as the base off-
policy algorithm. When learning from scratch we use a 2 two layers MLP with hidden dimension
1024 and Relu activation. We use the same configuration also for the critic.

For ReLA, we use a small 2 layer MLPs with 64 hidden dimensions and ReLU activation as residual
network. In the ablation, when residual critic is deactivated, we use the same critic network as for
standard TD3.

For LoLA, we use a Gaussian policy centered around the learned z and learn simultaneously mean
and standard deviation.

9.4 Hyperparameters

For all baselines and our method, we run a hyperparameter sweep across domains and tasks and
choose the configuration that performs the best across tasks for each BFM.

TD3-based algorithms. We run a hyperparameter sweep on Update to Data ratio (UTD) in
[1, 4, 8], actor update in frequency in [1, 4]. We use a small 2 layer MLP with 64 hidden nodes
for the residual network which we found to work best for fast adaptation. When not using residual
critic, we learn a critic from scratch using a 2 layer MLP with 1024 hidden nodes. We use 10−4 as
learning rate for both critic and actor. We use either warm start of 0 steps or 5000 steps.

LoLA. We consider hyperparameter sweep between a lookahead horizons of [50, 100, 250], the
number of total trajectories per update to be 10, and number of trajectories for a sampled state to be
5 (for calculating baseline). We sweep between [0, 0.2, 0.5] for the probability of resetting to initial
state distribution and otherwise sampling from states encountered in replay buffer. We sweep also
the learning rate in [0.1, 0.05].

10 Additional Experiments

As mentioned in the main paper, pointmass is the domain where actor-critic algorithms in-
curs a significant initial drop. Figure 8 shows the average performance improvement without the
pointmass domain. As we can see, ReLA has still a initial drop but it is much more reduced
compared to what reported in the main. Previous papers (e.g. Pirotta et al., 2024), noticed that a
smaller learning rate helped in pointmass. In our experiments we kept the learning rate fixed at
10−4 for all the domains, it would be interesting to test different values.

10.1 Per Algorithm Per Domain Ablation Studies

We conduct extensive ablation studies to understand the impact of key design choices in our meth-
ods, specifically: (1) zero-shot initialization in LoLA and ReLA variants, (2) value function boot-
strapping in LoLA, (3) residual critics in ReLA variants and action-based TD3 with warm start.
Table 4 provides a comprehensive list of the algorithm variants considered.

We evaluated these variants across four DMC domains (Quadruped, Pointmass, Cheetah, Walker)
using FB, HILP and PSM, and on HumEnv using FB-CPR, each experiment conducted over five
random seeds. The results are shown in Figure 9, 10, 11 and 12.

Zero-Shot Initialization (no-zs-init): Removing zero-shot initialization consistently degraded
early-stage performance across all methods and domains, with the only exception being ReLA-a
with FB and PSM on pointmass. The benefit of zero-shot initialization is especially significant on
LoLA.



Reinforcement Learning Journal 2025

0 100 200
80

60

40

20

0

20

%
 Im

pr
ov

em
en

t O
ve

r
 th

e 
Ze

ro
-S

ho
t P

ol
icy

FB

0 100 200
80

60

40

20

0

20
PSM

0 100 200
80

60

40

20

0

20

40

HILP

0 100 200
100

75

50

25

0

25

50

FB-CPR

0 100 200
Episode

0.4

0.6

0.8

1.0

Co
sin

e 
Si

m
ila

rit
y

 w
.r.

t. 
th

e 
ze

ro
-s

ho
t p

ol
icy

0 100 200
Episode

0.4

0.6

0.8

1.0

0 100 200
Episode

0.4

0.6

0.8

1.0

0 100 200
Episode

0.4

0.6

0.8

1.0

TD3 (I) TD3-warm start (I) LoLa (ours) ReLa (ours)

Figure 8: Top: Performance improvement w.r.t. the zero-shot policy for different online fast adap-
tation methods and BFMs without the Pointmass domain.

Algorithm
Zero-Shot Policy

Initialization
Residual Critic (†) or

Bootstrapped Return (+)
Critic Trained
from scratch Search space WSRL

LoLA ✓ ✓(+) z

actor-onlyLoLA (no-I) ✓(+) z
LoLA (no-R) ✓ ✓ z

LoLA (no-I, no-R) ✓ z

ReLA ✓ ✓(†) z

actor-criticReLA-warm-start ✓ ✓(†) z ✓
ReLA (no-I) ✓(†) z
ReLA (no-R) ✓ ✓ z

ReLA-warm-start (no-R) ✓ ✓ z ✓
ReLA (no-I, no-R) ✓ z

ReLA-a ✓ ✓(†) a

actor-criticReLA-a (no-I) ✓(†) a
ReLA-a (no-R) ✓ ✓ a

ReLA-a (no-I, no-R) ✓ a

TD3-z ✓ z

actor-criticTD3 (I) ✓ ✓ a
TD3-warm-start (I)
(i.e., using WSRL) ✓ ✓ a ✓

TD3-warm-start (I, R) ✓ ✓(†) a ✓

Table 4: Summary of the algorithm variations considered in the main paper. Search space z means
latent policy adaptation leveraging the policy space {πz} constructed by the BFM. Search space a
denotes fine-tuning in action space (i.e., updating all policy network parameters).

Bootstrapping (no-bootstrap): We hypothesized that value functiom bootstrapping could help sta-
bilizing LoLA. However, we did not notice such benefit from our ablation experiments.

Residual critics (no-residual): Removing residual critics in ReLA variants and TD3-based algo-
rithm strongly impaired the effectiveness of the algorithm. This effect was especially pronounced
for ReLA-a and TD3 on DMC domains.



Fast Adaptation with Behavioral Foundation Models

0 100 200 300

400

800

Av
er

ag
e 

Re
tu

rn

Quadruped

0 100 200 300

400

800

Pointmass

0 100 200 300

400

800

Cheetah

0 100 200 300

400

800

Walker

0 100 200 300

400

800

Av
er

ag
e 

Re
tu

rn

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

Av
er

ag
e 

Re
tu

rn

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

Av
er

ag
e 

Re
tu

rn

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300
Episodes

400

800

Av
er

ag
e 

Re
tu

rn

0 100 200 300
Episodes

400

800

0 100 200 300
Episodes

400

800

0 100 200 300
Episodes

400

800

HILP

LoLA LoLA  (no-zs-init) LoLA  (no-bootstrap) LoLA  (no-zs-init, no-bootstrap)

ReLA ReLA (no-zs-init) ReLA (no-residual) ReLA (no-residual, no-zs-init)

ReLA-a ReLA-a (no-zs-init) ReLA-a (no-residual) ReLA-a (no-residual, no-zs-init)

ReLA-warm start ReLA-warm start (no-residual)

TD3-a-warm start TD3-a-warm start (no-residual)

Figure 9: Ablation studies evaluating adaptations of HILP on four DMC tasks (Quadruped, Point-
mass, Cheetah, Walker). Experiments include disabling zero-shot initialization ("no-I") and/or re-
moving residual critics ("no-R") from LoLA, ReLA, and three additional variants: (1) ReLA-a:
update a instead of z in ReLA, (2) ReLA with warm start (ReLA-warm start), and (3) action-based
TD3 with warm start (TD3-warm start). Shaded areas represent standard errors across 5 seeds.



Reinforcement Learning Journal 2025

0 100 200 300

400

800

Av
er

ag
e 

Re
tu

rn

Quadruped

0 100 200 300

400

800

Pointmass

0 100 200 300

400

800

Cheetah

0 100 200 300

400

800

Walker

0 100 200 300

400

800

Av
er

ag
e 

Re
tu

rn

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

Av
er

ag
e 

Re
tu

rn

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

Av
er

ag
e 

Re
tu

rn

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300
Episodes

400

800

Av
er

ag
e 

Re
tu

rn

0 100 200 300
Episodes

400

800

0 100 200 300
Episodes

400

800

0 100 200 300
Episodes

400

800

FB

LoLA LoLA  (no-zs-init) LoLA  (no-bootstrap) LoLA  (no-zs-init, no-bootstrap)

ReLA ReLA (no-zs-init) ReLA (no-residual) ReLA (no-residual, no-zs-init)

ReLA-a ReLA-a (no-zs-init) ReLA-a (no-residual) ReLA-a (no-residual, no-zs-init)

ReLA-warm start ReLA-warm start (no-residual)

TD3-a-warm start TD3-a-warm start (no-residual)

Figure 10: Ablation studies evaluating adaptations of FB on four DMC tasks (Quadruped, Point-
mass, Cheetah, Walker). Experiments include disabling zero-shot initialization ("no-I") and/or re-
moving residual critics ("no-R") from LoLA, ReLA, and three additional variants: (1) ReLA-a:
update a instead of z in ReLA, (2) ReLA with warm start (ReLA-warm start), and (3) action-based
TD3 with warm start (TD3-warm start). Shaded areas represent standard errors across 5 seeds.



Fast Adaptation with Behavioral Foundation Models

0 100 200 300

400

800

Av
er

ag
e 

Re
tu

rn

Quadruped

0 100 200 300

400

800

Pointmass

0 100 200 300

400

800

Cheetah

0 100 200 300

400

800

Walker

0 100 200 300

400

800

Av
er

ag
e 

Re
tu

rn

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

Av
er

ag
e 

Re
tu

rn

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

Av
er

ag
e 

Re
tu

rn

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300
Episodes

400

800

Av
er

ag
e 

Re
tu

rn

0 100 200 300
Episodes

400

800

0 100 200 300
Episodes

400

800

0 100 200 300
Episodes

400

800

PSM

LoLA LoLA  (no-zs-init) LoLA  (no-bootstrap) LoLA  (no-zs-init, no-bootstrap)

ReLA ReLA (no-zs-init) ReLA (no-residual) ReLA (no-residual, no-zs-init)

ReLA-a ReLA-a (no-zs-init) ReLA-a (no-residual) ReLA-a (no-residual, no-zs-init)

ReLA-warm start ReLA-warm start (no-residual)

TD3-a-warm start TD3-a-warm start (no-residual)

Figure 11: Ablation studies evaluating adaptations of PSM on four DMC tasks (Quadruped, Point-
mass, Cheetah, Walker). Experiments include disabling zero-shot initialization ("no-I") and/or re-
moving residual critics ("no-R") from LoLA, ReLA, and three additional variants: (1) ReLA-a:
update action instead of z in ReLA, (2) ReLA with warm start (ReLA-warm start), and (3) action-
based TD3 with warm start (TD3-warm start). Shaded areas represent standard errors across 5 seeds.



Reinforcement Learning Journal 2025

0 100 200 300
Episodes

0

50

100

150

200

Av
er

ag
e 

Re
tu

rn

LoLA 
LoLA  (no-zs-init)
LoLA  (no-bootstrap)
LoLA  (no-zs-init, no-bootstrap)

0 100 200 300
Episodes

50

100

150

200

ReLA
ReLA (no-zs-init)
ReLA (no-residual)
ReLA (no-residual, no-zs-init)

0 100 200 300
Episodes

0

20

40

60

80

100

120

140

ReLA-a
ReLA-a (no-zs-init)
ReLA-a (no-residual)
ReLA-a (no-residual, no-zs-init)

0 100 200 300
Episodes

140

160

180

200

220

ReLA-warm start
ReLA-warm start (no-residual)

0 100 200 300
Episodes

0

20

40

60

80

100

120

140

TD3-a-warm start
TD3-a-warm start (no-residual)

Figure 12: Ablation studies for adaptation with FB-CPR on 45 HumEnv tasks. Experiments include
disabling zero-shot initialization ("no-I") and/or re-moving residual critics ("no-R") from LoLA,
ReLA, and three additional variants: (1) ReLA-a: update action instead of z in ReLA, (2) ReLA
with warm start (ReLA-warm start), and (3) action-based TD3 with warm start (TD3-warm start).
Shaded areas represent standard errors across 5 seeds.


