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Summary
In many practical applications of reinforcement learning (RL), such as finance and mo-

bility, safety considerations are paramount. Rather than solely maximizing expected rewards,
one must also account for risk to ensure reliable decision-making. Traditional RL primarily
focuses on expected reward maximization, a well-studied paradigm with both empirical and
theoretical breakthroughs. In this paper, we adopt an alternative approach that integrates risk-
awareness into policy optimization. Despite extensive research in risk-neutral RL, analyzing
risk-sensitive RL algorithms remains challenging, as each risk metric requires a distinct an-
alytical framework. We focus on variance—an intuitive and widely used risk measure—and
analyze the Mean-Variance Simultaneous Perturbation Stochastic Approximation Actor-Critic
(MV-SPSA-AC) algorithm, establishing finite-sample theoretical guarantees for the discounted
reward Markov Decision Process (MDP) setting. Our analysis covers both policy evaluation
and policy improvement within the actor-critic framework. We study a Temporal Difference
(TD) learning algorithm with linear function approximation (LFA) for policy evaluation and
derive finite-sample bounds that hold in both the mean-squared sense and with high proba-
bility under tail iterate averaging, with and without regularization. Additionally, we analyze
the actor update using a simultaneous perturbation-based approach and establish convergence
guarantees. These results contribute to the theoretical understanding of risk-sensitive actor-
critic methods in RL, offering insights into variance-based risk-aware policy optimization.

Contribution(s)
1. We consider mean-variance optimization in a discounted MDP, and derive finite-sample

guarantees for an actor-critic algorithm, with a critic based on linear function approxima-
tion, and an actor based on SPSA.
Context: We consider a mean-variance MDP with the variance of the return, whose
expectation is the usual risk-neutral objective. For this problem, existing work (L.A. &
Ghavamzadeh, 2016) provides only asymptotic convergence guarantees.

2. For mean-variance policy evaluation, we employ TD learning with linear function approx-
imation. We derive finite-sample bounds that hold (i) in the mean-squared sense and (ii)
with high probability under tail iterate averaging, with and without regularization. Notably,
our analysis for the regularized TD variant holds for a universal step size.
Context: Non-asymptotic policy evaluation bounds are not available for variance of the
return in a discounted MDP.

3. We employ an SPSA-based actor for policy optimization, and obtain an O(n−1/4) bound in
the number of actor iterations.
Context: Notably, we resort to an SPSA-based actor, since the policy gradient theo-
rem for variance is not amenable for direct use in an actor-critic algorithm; see L.A. &
Ghavamzadeh (2016). Further, finite-sample bounds for a SPSA-based actor-critic algo-
rithm are not available, even in the risk-neutral RL setting, to the best of our knowledge.
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Abstract

Motivated by applications in risk-sensitive reinforcement learning, we study mean-
variance optimization in a discounted reward Markov Decision Process (MDP). Specif-
ically, we analyze a Temporal Difference (TD) learning algorithm with linear function
approximation (LFA) for policy evaluation. We derive finite-sample bounds that hold
(i) in the mean-squared sense and (ii) with high probability under tail iterate averaging,
both with and without regularization. Our bounds exhibit an exponentially decaying de-
pendence on the initial error and a convergence rate of O(1/t) after t iterations. More-
over, for the regularized TD variant, our bound holds for a universal step size. Next, we
integrate a Simultaneous Perturbation Stochastic Approximation (SPSA)-based actor
update with an LFA critic and establish an O(n−1/4) convergence guarantee, where n
denotes the iterations of the SPSA-based actor-critic algorithm. These results establish
finite-sample theoretical guarantees for risk-sensitive actor-critic methods in reinforce-
ment learning, with a focus on variance as a risk measure.

1 Introduction

In the standard reinforcement learning (RL) setting, the objective is to learn a policy that maximizes
the value function, which is the expected value of the cumulative reward obtained over a finite or infi-
nite time horizon. However, in many practical scenarios such as finance, automated driving and drug
testing, a risk sensitive learning paradigm is crucial, where the value function (an expectation) must
be balanced with an appropriate risk metric associated with the reward distribution. One approach is
to formulate a constrained optimization problem, using the risk metric as a constraint and the value
function as the objective. Variance is a popular risk measure and is typically incorporated into risk-
sensitive optimization as a constraint while optimizing for the expected value. This mean-variance
formulation was introduced in the seminal work of Markowitz (1952). Mean-variance optimiza-
tion in RL has been studied in several works; see, e.g., Mannor & Tsitsiklis (2013); Tamar et al.
(2016); L.A. & Ghavamzadeh (2016). We study mean-variance optimization in a discounted reward
Markov decision process (MDP). Our key contribution is the analysis of an actor-critic algorithm
for mean-variance optimization, along with finite-sample guarantees in this setting.

Main Contributions. We study a discounted reward MDP with variance as the risk criterion and
present two main contributions. Since one common approach to variance estimation is based on
the difference between the second moment and the square of the first moment, estimating both
moments is essential. Our first key contribution concerns the sub-problem of jointly evaluating the
value function (first moment) and the second moment of the discounted cumulative reward. For
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simplicity, we refer to the second moment of the discounted cumulative reward as the square-value
function. To address the curse of dimensionality in large state-action spaces, we analyze temporal
difference (TD) learning with LFA for these estimates.

We present finite-sample bounds that quantify the deviation of the iterates from the fixed point,
both in expectation and with high probability. The fixed point is joint in the sense that it includes
both the value function and the square-value function. We present bounds for a constant step-size
with and without tail-averaging; see Table 1 for a summary. Next, we establish O(1/t) finite-time
convergence bounds for tail-averaged TD iterates, where t denotes the number of iterations of the
TD algorithm. Furthermore, we present a finite-sample analysis of the regularized TD algorithm.
From this analysis, we establish an O(1/t) bound, similar to the unregularized case. An advantage
of regularization is that the step-size choice is universal, i.e., it does not require knowledge of the
eigenvalues of the underlying linear system, whereas the unregularized TD bounds depend on such
eigenvalue information, which is typically unknown in practice.

While finite-sample analysis of TD with LFA has been studied in several recent works (cf. Prashanth
et al., 2021; Dalal et al., 2018; Bhandari et al., 2021; Samsonov et al., 2024; Agrawal et al., 2024),
to the best of our knowledge, no prior work has established finite-sample bounds for policy eval-
uation of variance in the discounted reward MDP setting. Our bounds explicitly characterize their
dependence on the discount factor, feature bounds, and rewards. Compared to existing finite-sample
bounds for TD learning, the analysis of mean-variance-style TD updates is more intricate, as it re-
quires tracking the solution of an additional projected fixed point by solving a separate Bellman
equation for the square-value function. Furthermore, the Bellman equation associated with the
square-value function includes a cross-term involving the value function (see (25) in the supple-
mentary material). Due to this cross-term, obtaining a standard O(1/t) mean-squared error bound
is challenging when using a constant step size, unless the spectral properties of the underlying linear
system are known. To overcome this dependence, we investigate a regularized version of the mean-
variance TD updates. To the best of our knowledge, ours is the first work to obtain a O(1/t) MSE
bound with a universal step size for mean-variance TD. Prior works on TD-type algorithms for other
notions of variance, cf. Agrawal et al. (2024); Eldowa et al. (2022), present O(1/t) bounds with a
step size choice that requires underlying eigenvalue information.

Our second key contribution lies in analyzing an actor-critic algorithm for mean-variance and deriv-
ing finite-sample guarantees. The critic part uses the aforementioned LFA-based policy evaluation
for a fixed policy parameter. The actor uses an SPSA-based gradient estimator (Spall, 1992), de-
parting from the more common risk-neutral approach of employing a likelihood ratio-based gradient
estimator supported by the policy gradient theorem (see Section 4 for a discussion on SPSA’s ne-
cessity). SPSA estimates policy gradients for the value and square-value functions using two policy
trajectories: one generated using the current policy parameter and another using a randomly per-
turbed parameter.

We provide non-asymptotic convergence rates for an SPSA-based actor in the mean-variance frame-
work. This result quantifies convergence to the stationary point in terms of the gradient norm of the
Lagrangian, addressing a gap in prior work that focused exclusively on asymptotic guarantees. As
an aside, mean-variance optimization has been shown to be NP-hard, even with model information
available (Mannor & Tsitsiklis, 2013). Actor-critic methods present a viable alternative approach,
and our analysis provides the rate of convergence for such an algorithm tailored to the mean-variance
setting. Specifically, we show anO

(
n−

1
4

)
performance guarantee for the overall algorithm, where n

is the number of actor loop iterations. We obtain a total sample complexity of O(ϵ−4) for ϵ-accurate
convergence. To the best of our knowledge, there are no finite-sample guarantees for zeroth order
actor-critic, even for the risk-neutral setting.

Our results are beneficial for three reasons. First, we exhibit O(1/t) bounds for the regularized TD
variant with a step size that is universal. In contrast, a universal step size for vanilla mean-variance
TD is not feasible owing to certain cross-terms that are unique to the case of mean-variance policy
evaluation. Our key observation is that regularization enables the use of a universal step size that
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Table 1: Summary of the MSE bounds for a TD-critic.

Paper Iterate Objective Rate Step size
Universal
step size

L.A. & Ghavamzadeh (2016) Last iterate
Mean-

–1 c0c
c+t ✗

variance
Dalal et al. (2018) Last iterate Mean O(1/tσ) 1/tσ ✓

Bhandari et al. (2021)2 Full average Mean O(1/t) 1/
√
T ✓

Eldowa et al. (2022) Full average
Mean-

O(1/t) constant ✗
variance3

Patil et al. (2023) Tail average Mean O(1/t) constant ✓

Agrawal et al. (2024) Tail average
Mean-

O(1/t) constant ✗
variance4

Mitra (2025) Weighted average5 Mean O(1/t) constant ✗

This work Tail average
Mean-

O(1/t) constant ✗
variance

This work
Regularized Mean-

O(1/t) constant ✓
tail average variance

1 Asymptotic convergence of mean-variance TD shown. Here, c0 and c are arbitrary constants depend-
ing on the minimum eigenvalue. 2 T = number of TD iterations. 3 Variance of per-step reward as the risk
measure. 4 Asymptotic variance for average-reward MDP as the risk measure. 5 Weights are determined
by (1 − αA)−(t+1) with A = 0.5ω(1 − γ), which makes them indirectly dependent on the minimum
eigenvalue ω and the discount factor γ. Here, α is step size dependent on the minimum eigenvalue ω.

is independent of the eigenvalues of the underlying system. Second, our proof is tailored to mean-
variance TD, making the constants clear. In contrast, it is difficult to infer them from the general
LSA bounds in (Durmus et al., 2024; Mou et al., 2020). Third, we provide high-probability bounds
that exhibit better scaling w.r.t. the confidence parameter as compared to Samsonov et al. (2024).

Limitations. First, our analysis assumes independent and identically distributed (i.i.d.) sampling
(see Assumption 5 below). Second, as in Kumar et al. (2023) for the actor analysis, we assume that
the value and square value functions admit a linear representation; i.e., the LFA error is zero. Third,
we establish convergence of the actor to an ϵ-stationary point of the Lagrangian function for the
mean-variance problem.

Related Work. This paper performs a finite-sample analysis of a TD critic, and an SPSA actor for
mean-variance optimization in a discounted RL setting. We briefly review relevant works on each
of these topics.

Critic. TD learning, originally proposed by Sutton (1988), has been widely used for policy eval-
uation in RL. Tsitsiklis & Van Roy (1997) established asymptotic convergence guarantees for TD
learning with LFA. Many recent works have focused on providing non-asymptotic convergence guar-
antees for TD learning (Bhandari et al., 2021; Dalal et al., 2018; Lakshminarayanan & Szepesvari,
2018; Srikant & Ying, 2019; Prashanth et al., 2021; Patil et al., 2023; Durmus et al., 2024). In a
recent study by Samsonov et al. (2024), the authors derived refined error bounds for TD learning by
combining proof techniques from (Mou et al., 2020; Durmus et al., 2024) with a stability result for
the product of random matrices. In contrast, our results target a different system of linear equations.
Moreover, as mentioned before, our bounds for regularized TD feature a universal step size. The
reader is referred to Section 3 for a detailed comparison of our critic bounds to the current literature.

Actor-Critic. In (Lei et al., 2025), the authors propose a zeroth-order actor critic in a risk-neutral
RL setting. However, they do not provide a finite-sample analysis. In (L.A. & Ghavamzadeh,
2016), which is the closest related work, the authors propose an SPSA-based actor-critic algorithm
for mean-variance optimization, and establish asymptotic convergence. In contrast, we provide a
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finite-sample analysis of their algorithm with a few variations: (i) We incorporate tail-averaging in
TD-critic and derive finite-sample bounds for a universal step size; (ii) We prove a smoothness result
for the Lagrangian of the mean-variance problem and use this result to provide a non-asymptotic
bound for the SPSA-based actor that employs mini-batching for the critic updates. In (Xu et al.,
2020; Kumar et al., 2023), the authors analyze risk-neutral actor critic algorithms with a gradient
estimate based on the likelihood ratio method. They provide a finite-sample analysis. However, the
likelihood ratio method for gradient estimation does not work for the case of variance, and hence,
our non-asymptotic analysis involves a significant departure in the proof for the SPSA-based actor
that we consider.

2 Problem formulation

We consider an MDP with state space S and action space A, both assumed to be finite. The reward
function r(s, a) maps state-action pairs (s, a) to a reward, with s ∈ S and a ∈ A. In this work,
we consider a stationary randomized policy π which maps each state to a probability distribution
over the action space. We consider a discounted MDP setting, and use γ ∈ (0, 1) to denote the
discount factor. We use P(s′|s, a) to denote the probability of transitioning from state s to next state
s′ given that action a is chosen following a policy π. The transition probability matrix P gives the
probability of going from state s to s′ given a policy π. The elements of this matrix of dimension
|S| × |S| are given by P(s, s′) =

∑
a π(a|s)P(s′|s, a). The value function V π(s), which denotes

the expected value of cumulative sum of discounted rewards when starting from state s0 = s and
following the policy π, is defined as

V π(s) ≜ E [
∑∞
t=0 γ

tr(st, at) | s0 = s] . (1)

Furthermore, the variance of the infinite horizon discounted reward from state s0 = s, denoted as
Λπ(s), is defined as Λπ(s) ≜ Uπ(s)− V π(s)2, where Uπ(s) represents the second moment of the
cumulative sum of discounted rewards, and is defined as

Uπ(s) ≜ E
[
(
∑∞
t=0 γ

tr(st, at))
2
∣∣∣ s0 = s

]
. (2)

Henceforth, we shall refer to Uπ as the square-value function. The well-known mean-variance
optimization problem in a discounted MDP context is as follows: For a given state s0 = s and
threshold c > 0, our goal is to solve the following constrained optimization problem:

max
π

V π(s) subject to Λπ(s) ≤ c. (3)

The value function V π(s) satisfies the Bellman equation T1V π = V π , where T1 : R|S| → R|S| is
the Bellman operator, defined by T1(V π(s0)) ≜ Eπ,P [r(s0, a0) + γV π(s′)] , where the actions are
chosen according to the policy π. It is well known that T1 is a contraction mapping. In Sobel (1982),
the author derives a Bellman type equation for Λπ(s). However, the underlying operator of this
equation is not monotone. To workaround this problem, Tamar et al. (2016); L.A. & Ghavamzadeh
(2016) use the square-value function Uπ(s), which satisfies a fixed point relation that is monotone.
Given V π(s), Uπ(s), the variance can be calculated using Λπ(s). Using Proposition 6.1 in (L.A &
Fu, 2022), we expand the square-value function (2) as

Uπ(s) =
∑
a π(a|s)r(s, a)2 + γ2

∑
a,s′ π(a|s)P(s′|s, a)Uπ(s′) + 2γ

∑
a,s′ π(a|s)P(s′|s, a)r(s, a)V π(s′)

Similar to the value function, the square-value function also satisfies a Bellman equa-
tion T2U

π = Uπ , where T2 : R|S| → R|S| is the Bellman operator, given by
T2U

π(s) ≜ Eπ,P[r(s, a)2+γ2Uπ(s′)+2γr(s, a)V π(s′)]. For a given policy π, the Bellman op-
erators T1 and T2 can be represented in a compact vector-matrix form as T1(V ) = r + γPV ,
T2(U) = r̃ + 2γRPV + γ2PU, where U , V , r and r̃ are |S| × 1 vectors with r(si) =∑
a∈A π(a|si)r(si, a), r̃(si) =

∑
a∈A π(a|si)r(si, a)2. Here, R is a |S| × |S| diagonal ma-

trix with r(si) as the diagonal elements for i ∈ {1, . . . , |S|}. Now, we construct an operator
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T : R2|S| → R2|S|, which is given by T (V,U) = (T1(V ), T2(U))⊤ A sub-problem of (3) is
policy evaluation, i.e., estimation of V π(·) and Λπ(·) for a given policy π. L.A & Fu (2022); Tamar
et al. (2016) establish that the operator T is a contraction mapping with respect to a weighted norm,
ensuring a unique fixed point for T . In the next section, we describe a TD algorithm with LFA for
policy evaluation, and this algorithm is based on (L.A. & Ghavamzadeh, 2016).

3 Mean-variance TD-critic

When the state space size |S| is large, policy evaluation suffers from the curse of dimensionality, as
it requires computing and storing the value function for each state in the MDP. A standard approach
to overcome this difficulty is to use TD learning with function approximation, wherein the value
function is approximated using a simple parametric class of functions. The most common example
of this is TD learning with LFA (Tsitsiklis & Van Roy, 1997), where the value function for each
state is approximated using a linear parameterized family, i.e., V π(s) ≈ ω⊤ϕ(s), where ω ∈ Rq is
a tunable parameter common to all states, and ϕ : S → Rq is a feature vector for each state s ∈ S,
and typically q ≪ |S|.

We approximate the value function V π(s) and the square-value function Uπ(s) using linear func-
tions as follows: V π(s) ≈ v⊤ϕv(s), Uπ(s) ≈ u⊤ϕu(s), where the features ϕv(·) and ϕu(·) be-
long to low-dimensional subspaces in Rd1 and Rd2 , respectively. Let Φv and Φu denote |S|×d1 and
|S| × d2 dimensional matrices, with i-th and j-th column respectively as

(
ϕiv(s1), . . . , ϕ

i
v(s|S|)

)⊤
,(

ϕju(s1), . . . , ϕ
j
u(s|S|)

)⊤
where i ∈ {1, . . . , d1} and j ∈ {1, . . . , d2}. For analytical convenience,

in our analysis we set d1 = d2 = q. We observe that owing to the function approximation,
the actual fixed point remains inaccessible. Instead, the objective is to find the projected fixed
points, denoted as w̄ = (v̄, ū)⊤ within the following subspaces: Sv :=

{
Φvv

∣∣v ∈ Rd1
}
, Su :={

Φuu
∣∣u ∈ Rd2

}
. We approximate the value and square-value functions within the subspaces de-

fined above. Accordingly, we construct projections onto Sv and Su with respect to a weighted norm,
using the stationary distribution as weights. For the analysis, we require the following assumptions
that are standard for TD with LFA, (cf. Prashanth et al., 2021; Bhandari et al., 2021; Srikant & Ying,
2019; Patil et al., 2024).

Assumption 1. The Markov chain underlying the policy π is irreducible.

Assumption 2. The matrices Φv and Φu have full column rank.

With finite state and action spaces, Assumption 1 guarantees the existence of a unique stationary
distribution χπ for the Markov chain induced by policy π. Assumption 2, commonly made in the
context of TD with LFA (cf. Bhatnagar et al. (2009); Bhandari et al. (2021); Prashanth et al. (2021)),
mandates that the columns of the feature matrices Φv and Φu be linearly independent, guaranteeing
the uniqueness of the fixed points. Additionally, it also ensures the existence of inverse of the feature
covariance matrices (Φ⊤

v D
πΦv and Φ⊤

uD
πΦu), to define the projection matrices in (4). We denote

Πv and Πu as the projection matrices which project from state space S onto the subspaces Sv and
Su, respectively. For a given policy π, projection matrices are defined as:

Πv = Φv(Φ
⊤
v D

πΦv)
−1Φ⊤

v D
π and Πu = Φu(Φ

⊤
uD

πΦu)
−1Φ⊤

uD
π, (4)

where Πv and Πu project the true value and square-value functions onto the linear spaces spanned
by the columns of Φv and Φu, respectively. In the above, Dπ is a diagonal matrix with entries from
the stationary distribution χ. In (L.A. & Ghavamzadeh, 2016), the authors established the following
projected fixed point relations:

Φv v̄ = ΠvTv(Φv v̄), and Φuū = ΠuTu(Φuū). (5)

(L.A & Fu, 2022, Proposition 6.2) establishes that the joint operator T (V,U) =
(
Tv
Tu

)
is a contraction

with respect to a weighted norm. Since the operator Π =
(
Πv 0
0 Πu

)
is non-expansive and the matri-

ces Φv and Φu have full column rank, (Tamar et al., 2016, Proposition 8) ensures that the projected



Reinforcement Learning Journal 2025

Bellman operator ΠT (V,U) is also a contraction with respect to a weighted norm. Consequently,
the projected Bellman operator ΠT (V,U) admits a unique projected fixed point w̄ = (v̄, ū)⊤. The
equations in (5) can be rewritten as the linear system

−Mw̄+ξ = 0, where M =

(
Φ⊤
v D(I− γP)Φv 0

−2γΦ⊤
uDRPΦv Φ⊤

uD(I− γ2P)Φu

)
, ξ =

(
Φ⊤
v DR

Φ⊤
uDr̃

)
,

(6)
where r = (r(s1), . . . , r(s|S|))

⊤, and R is a diagonal matrix with components
r(si) =

∑
a∈A π(a|si)r(si, a) for i ∈ {1, . . . , |S|}. Similarly, r̃ is a vector with components

r̃(si) =
∑
a∈A π(a|si)r(si, a)2.

Algorithm 1: TD with Tail Averaging (Critic)
Input: Initialize w0 = (v0, u0), step-size β, critic batch size m, tail index k
Output: Tail-averaged iterate wk+1:m = ( 1

m−k

∑m
t=k+1 vt ,

1
m−k

∑m
t=k+1 ut)

⊤

for t = 0 to m do
Sample action at using the policy π(·|st), observe the next state st+1 and reward rt = r(st, at)
/* Update the TD parameters as follows: */

vt+1 = vt + β δt ϕv(st), ut+1 = ut + β ϵt ϕu(st) (7)

where δt = rt + γv⊤t ϕv(st+1)− v⊤t ϕv(st),

ϵt = rt
2 + 2γrtv

⊤
t ϕv(st+1) + γ2u⊤

t ϕu(st+1)− u⊤
t ϕu(st).

end for

Basic algorithm. Letting wt = (vt, ut)
⊤, we rewrite (7) to obtain the following update iteration:

wt+1 = wt + β(rtϕt −Mtwt), (8)

where ϕt = (ϕv(st), r(st, at)ϕu(st))
⊤,Mt ≜

(
at o
ct bt

)
with ct ≜ −2γrtϕu(st)ϕv(st+1)

⊤,

at ≜ ϕv(st)ϕv(st)
⊤ − γϕv(st)ϕv(st+1)

⊤ and bt ≜ ϕu(st)ϕu(st)
⊤ − γ2ϕu(st)ϕu(st+1)

⊤.

In (8), we have used rt to denote r(st, at), for notational convenience. We observe that the expected
value of Mt is equal to M, where M is defined in (6). An alternative view of the update rule is the
following:

wt+1 = wt + β(−Mwt + ξ +∆Mt), (9)

where ∆Mt = rtϕt − Mtwt − E [rtϕt −Mtwt | Ft], with ξ as defined in (6). Under an i.i.d.
observation model (see Assumption 5), ∆Mt is a martingale difference w.r.t. the filtration {Ft}t≥0,
where Ft is the sigma field generated by {w0, . . . , wt}. We remark that we utilize the update it-
eration (8) instead of (9) to obtain finite-sample bounds in the next section. The rationale behind
this choice is a technical advantage of not requiring a projection operator to keep the iterates wt
bounded. To elaborate, in the proof of finite-sample bounds, we unroll the iteration in (8) and bound
the bias and variance terms. Specifically, letting zt = wt − w̄ and ht(wt) = rtϕt −Mtwt, we get
zt+1 = (I− βMt)zt + βht(w̄). The second term ht(w̄) does not depend on the iterate wt and can
be bounded directly. On the other hand, unrolling (9) would result in a term β∆Mt in place of the
ht(w̄), and bounding this term requires a projection since ∆Mt has the iterate wt.

Tsitsiklis & Van Roy (1997) show asymptotic convergence of vt to v̄. They achieved this by veri-
fying that the required conditions—on step-size, stability, and noise control—are satisfied with the
TD update reinterpreted as as Linear Stochastic Approximation (LSA) iteration. Similarly, the con-
vergence of wt to w̄ was established by L.A. & Ghavamzadeh (2016). Several recent works have
analyzed the finite-sample behavior of TD learning with LFA, particularly focusing on deriving
mean-squared error bounds (Bhandari et al., 2021). However, a direct finite-sample analysis of (8)
is not available in the literature—a gap that we address next.

Bounds for the TD-critic. We make the following assumptions that are common in the finite-
sample analysis of temporal difference (TD) learning, (cf. Prashanth et al., 2021; Bhandari et al.,
2021; Patil et al., 2024).
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Assumption 3. ∀s ∈ S, ∥ϕv(s)∥2 ≤ ϕvmax <∞, ∥ϕu(s)∥2 ≤ ϕumax <∞.

Assumption 4. ∀s ∈ S, a ∈ A, |r(s, a)| ≤ Rmax <∞.

Assumption 3 ensures the existence of the feature covariance matrices Φ⊤
v D

πΦv and Φ⊤
uD

πΦu,
as well as the projection matrices in (4). Assumption 4 bounds the rewards uniformly, ensuring
the existence of the value function and the square-value function. We consider an i.i.d observation
model, which is made precise in the assumption below.

Assumption 5. The samples {st, rt, st+1}t∈N are formed as follows: For each t, (st, st+1) are
drawn independently and identically from χ(s)P(s, s′), where χ is the stationary distribution un-
derlying policy π, and P is the transition probability matrix of the Markov chain underlying the
given policy π. Further, rt is a function of st and at, which is chosen using the given policy π.

The i.i.d. observation model serves as a first step in analyzing TD learning. The resulting finite-time
bounds extend to the Markovian setting via the constructions in (Patil et al., 2024, Remark 6) and
(Samsonov et al., 2024, Section 5).

Mean-Squared Error Bounds. We first present a mean-squared error bound for the last iterate
with a constant step size, with the proof in Section 6.

Theorem 3.1. Suppose Assumptions 1 to 5 hold. Run TD updates in (7) for t iterations with a
step size β satisfying the following constraint: β ≤ βmax = µ

c where µ = λmin(
M⊤+M

2 ) and
c = max

{
4(ϕvmax)

4+4γ2R2
max(ϕ

u
max)

2
(ϕvmax)

2, 4(ϕumax)
4}+2γRmax((ϕ

v
max)

2(ϕumax)
2+(ϕumax)

4).
Then, we have

E
[
∥wt+1 − w̄∥22

]
≤ 2 exp (−βµt)E

[
∥z0∥22

]
+

2βσ2

µ
, (10)

where w0 is the initial parameter, w̄ is the TD fixed point, z0 = w0 − w̄ is initial error and
σ2 = 2R2

max

(
(ϕvmax)

2 +R2
max(ϕ

u
max)

2
)
+ 2
(
(ϕvmax)

4 (1 + γ)
2
+ (ϕumax)

4
(
1 + γ2

)2
+ 4γ2R2

max(ϕ
v
max)

2(ϕumax)
2
)
∥w̄∥22 .

Notice that the bound in (10) is for a constant stepsize that requires information about the minimum
eigenvalue of the symmetric part of M. In the context of regular TD, such a problematic eigenvalue
dependence has been surmounted using tail-averaging, which we introduce next. We remark that
tail-averaging for the case of mean-variance TD does not overcome the eigenvalue dependence.
However, the benefit of tail averaging is that we obtain a bound that vanishes as as t → ∞, while
the bound in (10) does not vanish asymptotically.

Tail averaging. The tail-average is computed by averaging the iterates {wk+1, . . . , wt}, given by
wk+1:t =

1
t−k

∑t
i=k+1 wi, where k is the tail index, and averaging starts at k + 1. Polyak & Ju-

ditsky (1992); Fathi & Frikha (2013) investigated the advantages of iterate averaging, providing the
asymptotic and non-asymptotic convergence guarantees in the stochastic approximation literature,
respectively. Tail averaging preserves the advantages of iterate averaging, while also ensuring de-
pendence on initial error is forgotten at a faster rate (Patil et al., 2023; Samsonov et al., 2024). Now,
we present a mean-squared error bound for the tail-averaged variant of the TD-critic, with the proof
in Section 7.

Theorem 3.2. Suppose Assumptions 1 to 5 hold. Run Algorithm 1 for t iterations with a step
size β as specified in Theorem 3.1. Then, we have the following bound for the tail average iterate
wk+1:t =

1
t−k

∑t
i=k+1 wi:

E
[
∥wk+1:t − w̄∥22

]
≤ 10 exp (−kβµ)

β2µ2(t− k)2
E[∥z0∥22] +

10σ2

µ2(t− k)
, (11)

where z0, σ, w̄, µ are as defined in Theorem 3.1.

As in the case of regular TD with tail averaging, it can be observed that the initial error (the first
term in (11)) is forgotten exponentially. The second term, with k = t/2 (or any other fraction of
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t), decays as O(1/t). Tail averaging is advantageous when compared to full iterate averaging (i.e.,
k = 1), as the latter would not result in an exponentially decaying initial error term. The bound for
regular TD with tail averaging in Patil et al. (2024) uses a universal step-size, which does not require
information about the eigenvalues of the underlying feature matrix. However, arriving at O(1/t)
bound for the case of variance is challenging owing to certain cross-terms that cannot be handled in
a manner analogous to regular TD, see Section 5 for the details.

Regularization for universal step size. The results in Theorems 3.1–3.2 suffer from the disad-
vantage of a stepsize which requires knowledge of the spectral properties of the underlying matrix
M. In practical RL settings, such information is seldom available. To circumvent this shortcoming,
we propose a regularization-based TD algorithm that works with a universal step size, for a suitably
chosen regularization parameter. Instead of (6), we solve the following regularized linear system for
some ζ > 0:

−(M+ ζI)w̄reg + ξ = 0, (12)

The corresponding TD updates in (7) to solve (12) would become

v̌t+1 = (I− β̌ζ)v̌t + β̌ δ̌t ϕv(st), ǔt+1 = (I− β̌ζ)ǔt + β̌ ϵ̌t ϕu(st), (13)

where δ̌t, ϵ̌t are the regularized variants of the corresponding quantities defined in (7), i.e., with
vt, ut replaced by v̌t, ǔt respectively. We combine the updates in (13) as

w̌t+1 = w̌t + β̌(rtϕt − (ζI+Mt)w̌t), (14)

where Mt, rt, ϕt are defined in (8). We now present a result that shows the regularized tail-averaged
variant (14) converges at the optimal rate of O(1/t) in the mean-squared sense, for a step size that
is universal.

Theorem 3.3. Suppose Assumptions 1 to 5 hold. Let w̌k+1:t = 1
t−k

∑t−k
i=k+1 w̌i denote the tail-

averaged regularized iterate. For ζ = 1√
t−k and the step size β̌ satisfying β̌ ≤ β̌max = ζ

č . Then,

E
[
∥w̌k+1:t − w̄∥22

]
≤ 5 exp (−kβ̌µ)

β̌2µ2N2 E
[
∥w̌0 − w̄reg∥22

]
+ 5σ̌2

µ2N +
2(R2

max((ϕ
v
max)

2+R2
max(ϕ

u
max)

2))
ι4N .

where č and σ̌ are defined in Section 8, ι denotes the minimum singular value of M, N = t−k, and
µ = λmin(

M⊤+M
2 )

We first bound E
[
∥w̌k+1:t − w̄reg∥22

]
in Theorem 8.1 in the supplementary material, specialize this

bound for the case of ζ = 1√
t−k . Next, using the fact that ∥w̄reg − w̄∥22 is O(ζ2), followed by a

triangle inequality, we obtain the bound in the theorem above, see Section 8 for the proof.

High-probability bounds. For the high probability bound, we consider the following update rule:
wt+1 = Γ(wt + γht(wt)), where Γ projects on to the set C ≜ {w ∈ R2q | ∥w∥2 ≤ H}.

Assumption 6. The projection radius H of the set C satisfies H >
∥ξ∥2

µ , where µ = λmin(
M⊤+M

2 )
and ξ is as defined in (6).

Under the additional projection-related assumption, we establish a high-probability bound for the
tail-averaged iterate in Algorithm 1. We then derive a high-probability bound for the regularized
tail-averaged iterate. The following theorem provides a high-probability bound for the unregular-
ized (vanilla) mean-variance TD, with proofs for both regularized and unregularized cases given in
Section 9.

Theorem 3.4. Suppose Assumptions 1 to 6 hold. Run Algorithm 1 for t iterations with step size β
as defined in Theorem 3.2. Then, for any δ ∈ (0, 1], we have the following bound for the projected
tail-averaged iterate wk+1:t:

P
(
∥wk+1:t−w̄∥2 ≤ 2τ

µ
√
t−k

√
log
(
1
δ

)
+ 4 exp(−kβµ)

βµN E [∥w0 − w̄∥2]+
4τ

µ
√
t−k

)
≥1−δ,
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where w0, w̄, β are defined as in Theorem 3.1, and

τ =
(
2R2

max

(
(ϕvmax)

2 +R2
max(ϕ

u
max)

2
)
+ 2
(
(ϕvmax)

4 (1 + γ)
2
+ (ϕumax)

4
(
1 + γ2

)2
+ 4γ2R2

max(ϕ
v
max)

2(ϕumax)
2
)
H2
) 1

2 .

The next theorem provides a high-probability bound for the regularized tail-averaged iterate.
Theorem 3.5. Assume that the conditions in Assumptions 1 to 6 hold. Run the regularized version of
Algorithm 1, specified by (14), for t iterations with a step size β̌ ≤ β̌max as specified in Theorem 3.3.
Then, for any δ ∈ (0, 1], with probability at least 1 − δ, the tail-averaged regularized TD iterate,
after projection, satisfies

∥w̌k+1:t − w̄reg∥2 ≤ 2τ̌
(2µ+ζ)

√
N

√
log
(
1
δ

)
+ 4 exp(−kβ̌(2µ+ζ))

β̌(2µ+ζ)N
E ∥w0 − w̄reg∥2 +

4τ̌
(2µ+ζ)

√
N
.

where N , w̌0, w̄reg, and µ are defined as in Theorem 3.3. Moreover,
τ̌ =

(
2R2

max

(
(ϕvmax)

2 +R2
max(ϕ

u
max)

2
)
+ 4
(
ζ2 + (ϕvmax)

4(1 + γ)2 + (ϕumax)
4(1 + γ2)2 + 4β2R2

max(ϕ
v
max)

2(ϕumax)
2
)
H2
) 1

2 .

We use a martingale decomposition and Lipschitz concentration of sub-Gaussian random vari-
ables to establish the high-probability bounds. This technique has been employed for vanilla TD
(Prashanth et al., 2021). Our contribution extends this technique to mean-variance TD and its regu-
larized variant, enabling a universal step size. As in the MSE bound case, owing to the cross terms,
a universal step size does not appear to be feasible sans regularization, and we believe this is a use-
ful finding as it deviates from the corresponding result for vanilla TD. In contrast, the authors in
(Samsonov et al., 2024) employ Berbee’s coupling lemma to arrive at a sub-exponential tail bound.

Discussion: The update rule in (8) represents a Linear Stochastic Approximation (LSA), and
mean-variance TD is indeed a special case of the general LSA framework. Several previous works,
including Srikant & Ying (2019), provide a finite time analysis for LSA. Their bounds can be applied
to (8). However, our analysis differs in the following ways: First, the step size ϵ in Srikant & Ying
(2019) depends on the eigenvalues of the transition probability matrix P , which can be difficult to
obtain. We alleviate this dependency by employing regularization to achieve a universal step size
that is independent of spectral information. Second, we derive explicit constants for the matrix M
(mean-variance TD) instead of the matrix A (vanilla TD). Third, our analysis focuses on the recur-
sive structure of the error to the projected fixed point, whereas Srikant & Ying (2019) analyze the
drift of a Lyapunov function. Finally, Srikant & Ying (2019) provide finite-time bounds for Mean
Squared Error, while we additionally establish high-probability bounds.

The current literature on bounds for TD (or more generally, linear stochastic approximation) for
Polyak-Ruppert averaging scheme does not achieve O(1/t) bounds, to the best of our knowledge.
Instead, with a Polyak-Ruppert stepsize 1/kα, the bound is O(1/tα), with α < 1, see (Prashanth
et al., 2021). Tail-averaging with a “universal” step size was shown to close this gap for vanilla TD.
Our contribution is to show that tail-averaging with universal step size may not be feasible to obtain
an O(1/t) for mean-variance TD, while regularization closes this gap. In Samsonov et al. (2024),
the authors provide high-probability bounds for a general linear stochastic approximation algorithm,
and specialize them to obtain bounds for the regular TD algorithm. For mean-variance TD (8), we
could, in principle, apply the bounds from the aforementioned reference. However, the bound that
we derive in Theorem 3.4 enjoys a better dependence on the confidence parameter δ. Specifically,
we obtain a

√
log(1/δ) actor, corresponding to a sub-Gaussian tail, while the bounds in Samsonov

et al. (2024) feature a log(1/δ) factor, which is equivalent to a sub-exponential tail. Furthermore,
our result makes all constants clear in the case of mean-variance TD.

4 SPSA-based Actor

In this section, we analyze an actor algorithm based on SPSA-based gradient estimates. Throughout,
we consider a parametrized class of stationary randomized policies {πθ, θ ∈ Rd}. We denote the
score function as ψθ(s, a) = ∇θ log πθ(a|s). We consider smoothly-parameterized polices, i.e.,
satisfying the following assumptions:
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Assumption 7. ∀(s, a) ∈ S ×A and θ1, θ2 ∈ Rd, ∃ positive constants Lψ , Cψ and Cπ such that
(i) ∥ψθ1(s, a)− ψθ2(s, a)∥2 ≤ Lψ ∥θ1 − θ2∥2; (ii) ∥ψθ(s, a)∥2 ≤ Cψ;
(iii) ∥πθ1(·|s)− πθ2(·|s)∥TV ≤ Cπ ∥θ1 − θ2∥2, where ∥ · ∥TV denotes the total-variation norm.

Algorithm 2: SPSA-based actor with TD critic for mean-variance optimization (MV-SPSA-AC)
Input: Initialize θ0 ∈ Rd, perturbation constant {pt}, critic batch size m, actor step size {αt}, critic step

size {βt}, number of iterations n, and tail-index k.
for t← 0 to n− 1 do

Generate ∆(t) ∼ {±1}d (symmetric Bernoulli)
/* Critic: Obtaining tail-averaged TD iterates for policy evaluation */

Run Algorithm 1 for the unperturbed policy πθt to compute wk+1:m = (vk+1:m, uk+1:m)⊤

Run Algorithm 1 for the perturbed policy πθt+pt∆(t) to compute w+
k+1:m = (v+k+1:m, u+

k+1:m)⊤.
/* Actor: Estimating SPSA gradients for policy improvement */

∇iĴ(θ) =
ϕv(s0)

⊤(v+k+1:m − vk+1:m)

pt∆i(t)
;∇iÛ(θ) =

ϕu(s0)
⊤(u+

k+1:m − uk+1:m)

pt∆i(t)

θt+1 = θt+αt(∇Ĵ(θt)−λ(∇Û(θt)−2Ĵ(θt)∇Ĵ(θt)))
end for
Output: Final policy θR chosen uniformly at random from {θ1, . . . , θn}

In the above, (i) and (ii) imply that score function is smooth and bounded. This generally holds for
most commonly used policy classes. Since we asssume finte action space, (iii) holds for any smooth
policy. A similar assumption has been made earlier for the analysis of actor-critic algorithms in
a risk-neutral RL setting, cf. (Xu et al., 2021). By applying the Lagrangian relaxation procedure
(Bertsekas, 1996) to (3), we get the following unconstrained optimization problem for a fixed λ ≥ 0:

min
θ
L(θ) = −V πθ (s0) + λ(Λπθ (s0)− c), (15)

where L(θ) represents the Lagrangian function. We treat λ as a fixed bias-variance tradeoff param-
eter. While a separate timescale may be used to determine a suitable value for λ, domain-specific
knowledge can also help identify an appropriate range for penalizing constraint violations. For the
actor update, we require the gradient of the Lagrangian w.r.t. the policy parameter θ,

∇θL(θ) = −∇Vθ(s0) + λ(∇Uθ(s0)− 2Vθ(s0)∇Vθ(s0)). (16)

For notational simplicity, we let Vθ(s0) = J(θ), Uθ(s0) = U(θ), and ∇Vθ(s0) = ∇J(θ).

Basic algorithm. We describe the Mean Variance SPSA Actor Critic (MV-SPSA-AC) algorithm
for mean-variance optimization. Algorithm 2 presents the pseudocode of this algorithm. This algo-
rithm is a variant of the actor-critic algorithm proposed in L.A. & Ghavamzadeh (2016), where the
authors provide only asymptotic guarantees. MV-SPSA-AC algorithm deviates from their algorithm
by incorporating tail averaging in the TD critic with LFA, and performing a mini-batch update for
the SPSA-based actor. More importantly, we perform a finite-sample analysis.

Need for SPSA. The variance of the return we consider lacks a simple linear Bellman equation,
unlike the value function in risk-neutral RL. To address this, variance is estimated as the differ-
ence between the second moment and the square of the first moment of the return. Since the sec-
ond moment satisfies a simple linear Bellman equation, this approach makes variance estimation
feasible. The policy gradient expression for the square-value function is as follows (see (L.A. &
Ghavamzadeh, 2016) for the derivation):

∇U(θ)= 1
1−γ2

(∑
s,aν̃θ(s, a)∇ log πθ(a|s)Wθ(s, a)︸ ︷︷ ︸

T1(θ)

+2γ
∑
s,a,s′ ν̃θ(s, a)P (s

′|s, a)∇Vθ(s′)︸ ︷︷ ︸
T2(θ)

)
.

(17)
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As seen from the expression above, the second term T2(θ) requires the gradient ∇Vθ(s′) for every
state s′ ∈ S . An actor-critic algorithm would require an estimate of the value gradient with every
possible start state, making it impractical for implementations. SPSA-based gradient estimates offer
a viable alternative to overcome this issue. Wθ(s, a) is equivalent of action-value function for U(θ).

Actor. The policy parameter θ is updated in the negative direction of gradient of the Lagrangian,
with step size αt as follows:

θt+1 = θt+αt(∇Ĵ(θt)−λ(∇Û(θt)−2Ĵ(θt)∇Ĵ(θt))), (18)

where (19) is used for computing ∇Ĵ(θt) and ∇Û(θt) respectively. In a risk-neutral RL setting, the
usual recipe for the actor part is to use the policy gradient theorem to form likelihood ratio-based
gradient estimates. In L.A. & Ghavamzadeh (2016), it is shown that such an approach does not
extend to cover the mean-variance case. The authors there proposed an alternative actor that uses
SPSA for gradient estimation. This scheme uses two policy trajectories: one with parameter θt
and another with a perturbed parameter θt + pt∆(t), denoted by the superscript ‘+’, where ∆(t)
is a d-dimensional vector of independent Rademacher (±1) random variables. Using these two
trajectories, we form estimates of the gradient of the value and square-value functions as follows:

∇iĴ(θt) =
ϕv(s0)

⊤(v+k+1:m − vk+1:m)

pt∆i(t)
, ∇iÛ(θ) =

ϕu(s0)
⊤(u+k+1:m − uk+1:m)

pt∆i(t)
, (19)

where vk+1:m and v+k+1:m are the tail-averaged critic parameters for the value function under the
unperturbed (θt) and perturbed (θt + pt∆(t)) policy parameters, respectively. Here, m is the critic
batch size. Similarly, uk+1:m and u+k+1:m are the tail-averaged critic parameters for the square-value
function under the unperturbed and perturbed policy parameters, respectively. We describe next the
policy evaluation components in the critic.

Critic. We perform m TD-critic updates to form the estimates for value function
Ĵ(θ) = ϕv(s0)

⊤vk+1:m and square-value function Û(θ) = ϕu(s0)
⊤uk+1:m, respectively. Fur-

ther, we perform m updates for the perturbed policy θt+ pt∆(t) to form the value and square-value
function estimates as Ĵ(θ + pt∆(t)) = ϕv(s0)

⊤v+k+1:m and Û(θ + pt∆(t)) = ϕu(s0)
⊤u+k+1:m,

respectively. We use tail-averaged critic variants for each policy evaluated above.

Main results. For every policy θ, we assume Assumption 1 holds, which implies the ex-
istence of the stationary distribution χπθ , and scalars κ > 0 and ρ ∈ (0, 1) such that
sups∈S ∥P(st | s0 = s)− χπθ∥TV ≤ κρt, ∀t ≥ 0. For the analysis of MV-SPSA-AC algorithm,
we need to establish that the Lagrangian L(·) is a smooth function of θ. Further, it can be seen from
(16) that the smoothness of J(·) and U(·) would imply to smoothness of L(·). In a risk-neutral
setting, J(·) is the usual objective, and (Xu et al., 2021, Proposition 1) established smoothness of
J(·) in (20). On the other hand, smoothness of U(·) requires a new proof, and involves significant
departures from the one for J(·). The result below states smoothness for J(·) and U(·), with the
latter result being a technical contribution of this paper.

Lemma 4.1. Suppose Assumptions 7 holds. Then, for any θ1, θ2 ∈ Rd, we have

∥∇J(θ1)−∇J(θ2)∥2 ≤ LJ ∥θ1 − θ2∥2 , ∥∇U(θ1)−∇U(θ2)∥2 ≤ LU∥θ1 − θ2∥, (20)

where LJ = Rmax

(1−γ) (4CνCψ + Lψ), Cν = 1
2Cπ

(
1 + ⌈logρ κ−1⌉+ (1− ρ)−1

)
and LU =

1
1−γ2 (

R2
max

(1−γ)2 (Lψ + 4CψCν(1 +
γ

Rmax
)) + 2LJ).

We remark that the smoothness result for the square-value function in Lemma 4.1, derived in the
context of variance as a risk measure, holds independent significance, as it may prove useful in
variants of actor-only or actor-critic methods for mean-variance optimization. Using smoothness of
J(·) and U(·), we arrive at the following result.
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Lemma 4.2. Let Lo = LJ

(
1 + 2λ Rmax

(1−γ)2 + 2λ
(RmaxCψ
(1−γ)2

)2)
+ λLU . For any θ1, θ2 ∈ Rd, we have

∥∇L(θ1)−∇L(θ2)∥2 ≤ Lo ∥θ1 − θ2∥2 . (21)

The smoothness claim in the result above for the Lagrangian is a key technical contribution, as it
serves as a building block for the analysis of the actor update. In particular, this smoothness result
facilitates an SGD-type analysis for the actor update. For the analysis of Algorithm 2, we make the
following assumption that ensures the value and square-value functions lie in a linear space.
Assumption 8. For any given policy parameter θ, let v̄(θ), ū(θ) denote solutions to fixed point
equations in (5). Then, E[ϕ(s0)⊤v̄(θ)] = J(θ),E[ϕ(s0)⊤ū(θ)] = U(θ).

A similar assumption is made in (Kumar et al., 2023, Eq. (13)). Our analysis can be easily extended
to include an approximation error term if Assumption 8 does not hold. The main result that estab-
lishes stationary convergence of the algorithm MV-SPSA-AC is given below (see Section 10 for a
proof sketch and Section 11 for the detailed proof).
Theorem 4.3. Suppose Assumptions 1 to 8 hold. Run MV-SPSA-AC1 for n iterations with actor step
size αt ≡ α = 1/n3/4, perturbation constant pt ≡ p = 1/n1/4, critic batch size m = n, and critic
step size β ≤ βmax as defined in Theorem 3.1. Let θR be chosen uniformly from {θ1, . . . , θn}. Then,

E
[
∥∇L(θR)∥2

]
≤ C/n1/4,

for some constant C that is specified in (109) in the appendix.

The bound above requires the critic trajectory length m to grow with n. In contrast, a fixed m would
lead to a weaker bound, see Remark 3 in the appendix.
Remark 1. We need to account for the biased nature of the SPSA gradient estimators in our anal-
ysis. This introduces the perturbation constant pt, leading to the terms O( 1p ), O( 1

p2t
), and O(pt).

Consequently, we face a trade-off that arises due to the bias in the SPSA gradient estimates, acting
as a bottleneck.
Remark 2. Eldowa et al. (2022) study the variance of per-step rewards, analyzed as reward volatil-
ity (Bisi et al., 2020; Zhang et al., 2021), which is also equivalent to the discount-normalized
variance in (Filar et al., 1989). Unlike the variance of the return, this objective lends itself to a
REINFORCE-type policy gradient algorithm and does not require a zeroth-order gradient estima-
tion scheme. This is because the gradient of the variance of per-step rewards does not feature a
‘problematic’ term like T2(·); instead it only has a term analogous to T1(·), which can be more
easily handled similar to the risk-neutral case.

The result above establishes the convergence to a stationary point of Lagrangian, which is not neces-
sarily a convex function. Optimizing L(θ) ensures a tradeoff between maximizing the value function
and minimizing variance. Mean-variance optimization has been shown to be NP-hard even if the
transition dynamics are available, see (Mannor & Tsitsiklis, 2013). Policy-gradient and actor-critic
algorithms present a viable alternative where the usual convergence guarantees are to a stationary
point. For instance, several policy gradient-type algorithms have been shown to converge to an
approximate stationary point in the literature, cf. (Xu et al., 2021; Zhang et al., 2020).

We remark on the sample complexity required for ϵ-accurate convergence of the MV-SPSA-AC
algorithm. Theorem 4.3 indicates that the actor loop must run Ω(ϵ−4) times. However, in each itera-
tion, the critic is executed twice—once for the perturbed and once for the unperturbed trajectories—
using O(n) samples per run to estimate the policy gradients. Thus, the total sample complexity for
ϵ-accurate convergence is O(ϵ−4). While this represents slow convergence, the use of biased SPSA
gradient estimates typically degrades the rate. To the best of our knowledge, finite-sample results
for zeroth-order actor-critic methods remain unavailable, even in risk-neutral RL (Lei et al., 2025).
Investigating whether sharper analyses or stronger assumptions could improve the convergence rate
is an interesting direction for future work.

1We employ the un-regularized variant of TD-critic for deriving the bound above. The modification to use the regularized
critic for the analysis is straightforward, and we omit the details.
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5 Outline of critic analysis

Below, we sketch the proof of Theorem 3.1 to highlight the main ideas and key differences from the
standard TD proof. Full proofs of Theorem 3.1 and Theorems 3.2 to 3.5 are provided in Appendices
6–9.

As in proofs of standard TD bounds, we perform a bias-variance decomposition to obtain

E
[
∥zt+1∥2

]
≤ 2E

[∥∥Ct:0z0
∥∥2]︸ ︷︷ ︸

zbias
t

+2β2 E

∥∥∥∥∥
t∑

k=0

Ct:k+1hk(w̄)

∥∥∥∥∥
2


︸ ︷︷ ︸
zvariance
t

, (22)

where Ci:j =

{
(I− βMi)(I− βMi−1) . . . (I− βMj) if i ≥ j

I otherwise.

To bound the bias term, we expand the matrix product by one step, yielding

zbias
t = E

[∥∥Ct:0z0
∥∥2]

= E
[
E
[(
Ct−1:0zbias

t−1

)⊤
(I− βMt)

⊤
(I− βMt)

(
Ct−1:0zbias

t−1

) ∣∣∣Ft]] .
Next, we establish a result for any y ∈ R2q that aids in handling both the bias and variance terms.

E
[
y⊤ (I− βMt)

⊤
(I− βMt) y

∣∣∣ Ft] = ∥y∥22 − β y⊤E
[(
M⊤

t +Mt

)
|Ft
]
y︸ ︷︷ ︸

T1

+ β2 y⊤E
[
M⊤

t Mt

∣∣ Ft] y︸ ︷︷ ︸
T2

(23)

The term T1 is lower-bounded in a standard manner (as in regular TD), i.e.,

y⊤E
[(
M⊤

t +Mt

) ∣∣ Ft] y = y⊤
(
M⊤ +M

)
y ≥ 2µ ∥y∥22 , (24)

where µ = λmin(
M⊤+M

2 ) is the minimum eigenvalue of the matrix M+M⊤

2 .

On the other hand, bounding term T2 involves significant deviations. In particular,

y⊤E
[
M⊤

t Mt

∣∣ Ft] y = v⊤E
[
a⊤t at + c⊤t ct

∣∣ Ft] v︸ ︷︷ ︸
S1

+u⊤E
[
b⊤
t bt

∣∣ Ft]u︸ ︷︷ ︸
S2

+ v⊤E
[
c⊤t bt

∣∣ Ft]u︸ ︷︷ ︸
S3

+u⊤E
[
b⊤
t ct

∣∣ Ft] v︸ ︷︷ ︸
S4

. (25)

Here, S1 and S2 resemble terms that appear in the finite-sample analysis of regular TD, while S3
and S4 are cross-terms specific to the estimation of the square-value function.

We bound S1, S2 as follows:

S1 ≤
(
(ϕvmax)

2 (1 + γ)
2
+ 4γ2R2

maxϕ
u
max

2
)
v⊤Bv, (26)
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S2 ≤ (ϕumax)
2
(
1 + 2γ2 + γ4

)
u⊤Gu.

In the above, B and G are expectations of the outer product of vectors ϕv(st) and ϕu(st) respec-
tively. If the cross-terms were not present, then one could have related T2 to a constant multiple of
v⊤Bv + u⊤Gu, leading to a universal step size choice, in the spirit of Patil et al. (2024). However,
cross-terms present a challenge to this approach, and we bound the S3, S4 cross-terms as follows:

S3 + S4 ≤ 2(ϕumax)
2Rmaxv

⊤ (γ(B+G) + γ3(B+G)
)
u. (27)

We overcome the challenge of bounding the cross-terms (S3 and S4) through the following key
observations: First, the cross-terms exhibit symmetry and are equal. Consequently, analyzing one
term suffices, as the derived upper bound applies to the other term as well. Second, to bound the
cross-term, we leverage the following inequality:

−v⊤
(
aa⊤ + bb⊤

2

)
u ≤ v⊤

(
ab⊤

)
u ≤ v⊤

(
aa⊤ + bb⊤

2

)
u.

A similar inequality, also employed in bounding S1 and S2, simplifies the bound in terms of the
matrices B and G, resulting in the expression in (27).
Combining the bounds on S1 to S4 in conjunction with the fact that v⊤(B+G)u ≤ λmax(B+G)

2 ∥y∥22
(see Lemma 6.2), we obtain the following bound for a step size β ≤ βmax specified in Theorem 3.1
statement:

E
[
y⊤ (I− βMt)

⊤
(I− βMt) y

∣∣∣ Ft] ≤ (1− βµ) ∥y∥22 . (28)

Using the bound above, the bias term in (22) is handled as follows:

zbiast ≤ exp (−βµt)E
[
∥z0∥2

]
.

Using ∥hk(w̄)∥2 ≤ σ2, we bound the variance term as follows:

E

∥∥∥∥∥
t∑

k=0

Ct:k+1hk(w̄)

∥∥∥∥∥
2

2

 ≤ σ2
t∑

k=0

E
[
E
[
∥(I− βMt)∥2

∣∣∣ Ft] ∥∥Ct−1:k+1
∥∥2
2

]

≤ σ2
t∑

k=0

(1− βµ)E
[∥∥Ct−1:k+1

∥∥2
2

]
≤ σ2

t∑
k=0

(1− βµ)
t−k ≤ σ2

βµ
. (29)

The main claim follows from combining the bounds on the bias and variance terms, followed by
straightforward simplifications. The reader is referred to Section 6 for the full proof.

6 Proof of Theorem 3.1

Proof.
Step 1: Bias-variance decomposition

Recall the updates in Algorithm 1 can be rewritten as follows:

wt+1 = wt + β(rtϕt −Mtwt). (30)

Defining the centered error as zt+1 = wt+1 − w̄, we obtain

zt+1 = wt − w̄ + β(rtϕt −Mtwt) + βMtw̄ − βMtw̄
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= (I− βMt)(wt − w̄) + β(rtϕt −Mtw̄)

= (I− βMt)zt + β(rtϕt −Mtw̄).

Letting ht(wt) = rtϕt −Mtwt, we have

zt+1 = (I− βMt)zt + βht(w̄).

Unrolling the equation above, we obtain

zt+1 = (I− βMt)((I− βMt−1)zt−1 + βht−1(w̄)) + βht(w̄)

= (I− βMt)(I− βMt−1) . . . (I− βM0)z0 + βht(w̄)

+ β(I− βMt)ht−1(w̄)

+ β(I− βMt)(I− βMt−1)ht−2(w̄)

...
+ β(I− βMt)(I− βMt−1) . . . (I− βM1)h0(w̄).

Define

Ci:j =

{
(I− βMi)(I− βMi−1) . . . (I− βMj) if i ≥ j

I otherwise.

Using the definition above, we obtain

∥zt+1∥2 =

∥∥∥∥∥Ct:0z0 + β

t∑
k=0

Ct:k+1hk(w̄)

∥∥∥∥∥
2

.

Taking expectations and using ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, we obtain

E[∥zt+1∥2] ≤ 2zbias
t + 2β2zvariance

t , (31)

where zbias
t = E

[∥∥Ct:0z0
∥∥2] and zvariance

t = E
[∥∥∥∑t

k=0 C
t:k+1hk(w̄)

∥∥∥2].

Step 2: Bounding the bias term

Next, we state and prove a useful lemma that will assist in bounding the bias term in (31).

Lemma 6.1. Consider a random vector y ∈ R2q and let Ft be sigma-algebra generated by
{w0 . . . wt}, For β ≤ βmax, we have

E
[
y⊤ (I− βMt)

⊤
(I− βMt) y

∣∣∣ Ft] ≤ (1− βµ) ∥y∥22 , (32)

E [∥(I− βMt) y∥ | Ft] ≤
(
1− βµ

2

)
∥y∥2 , (33)

where β ≤ βmax = µ
k , µ = λ

min
(

M⊤+M
2

) is the minimum eigenvalue of the matrix M⊤+M
2 and

k = max
{
4(ϕvmax)

4+4γ2R2
max(ϕ

u
max)

2
(ϕvmax)

2, 4(ϕumax)
4
}
+2γRmax((ϕ

v
max)

2(ϕumax)
2 + (ϕumax)

4).

Proof. To prove the desired result, we split (32) as follows:

E
[
y⊤ (I− βMt)

⊤
(I− βMt) y

∣∣∣ Ft] = E
[
y⊤
(
I− β

(
M⊤

t +Mt

)
+ β2M⊤

t Mt

)
y
∣∣ Ft]

= ∥y∥22 − β y⊤E
[(
M⊤

t +Mt

) ∣∣ Ft] y︸ ︷︷ ︸
T1

+β2 y⊤E
[
M⊤

t Mt

∣∣ Ft] y︸ ︷︷ ︸
T2

. (34)
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We lower bound the term T1 as follows:

y⊤E
[(
M⊤

t +Mt

) ∣∣ Ft] y = y⊤
(
M⊤ +M

)
y ≥ 2µ ∥y∥22 . (35)

Next, we upper bound the term T2 as follows:

M⊤
t Mt =

(
at o
ct bt

)⊤(
at o
ct bt

)
=

(
a⊤t at + c⊤t ct c⊤t bt

b⊤
t ct b⊤

t bt

)
,

Substituting the above into T2, we obtain:

y⊤E
[
M⊤

t Mt

∣∣ Ft] y = y⊤E
[(

a⊤t at + c⊤t ct c⊤t bt
b⊤
t ct b⊤

t bt

) ∣∣∣∣ Ft] y
=
(
v⊤ u⊤

)
E
[(

a⊤t at + c⊤t ct c⊤t bt
b⊤
t ct b⊤

t bt

) ∣∣∣∣ Ft](vu
)

= v⊤E
[
a⊤t at + c⊤t ct

∣∣ Ft] v︸ ︷︷ ︸
S1

+u⊤E
[
b⊤
t bt
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S2

+ v⊤E
[
c⊤t bt

∣∣ Ft]u︸ ︷︷ ︸
S3

+u⊤E
[
b⊤
t ct
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S4

. (36)

To upper bound T2, we first derive upper bounds for S1, S2, S3, and S4.

First, we examine S1.

v⊤E
[
a⊤t at + c⊤t ct

∣∣ Ft] v = v⊤E
[
a⊤t at

∣∣ Ft] v︸ ︷︷ ︸
(a)

+ v⊤E
[
c⊤t ct

∣∣ Ft] v︸ ︷︷ ︸
(b)

. (37)

We bound (a) in (37) as follows:

v⊤E
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∣∣ Ft] v
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≤ (ϕvmax)
2v⊤E

[
ϕv(st)ϕv(st)

⊤ + γ
(
ϕv(st)ϕv(st)

⊤ + ϕv(st+1)ϕv(st+1)
⊤)

+ γ2ϕv(st+1)ϕv(st+1)
⊤ | Ft

]
v

≤ (ϕvmax)
2
(
1 + 2γ + γ2

)
v⊤Bv, (38)

where B = E
[
ϕv(st)ϕv(st)

⊤ | Ft
]
. In the above, the inequality in (i) follows from the identity

∥ϕv(st)∥22 = ϕv(st)
⊤ϕv(st); (ii) follows from applying the bound on the features from Assump-

tion 3 and using the following inequality for term (I) in (i):

−v⊤
(
aa⊤ + bb⊤

2

)
v ≤ v⊤

(
ab⊤

)
v ≤ v⊤

(
aa⊤ + bb⊤

2

)
v. (39)
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The final inequality in (38) follows from using the following equivalent forms of B:

B = E
[
ϕv(st)ϕv(st)

⊤ | Ft
]
= E

[
ϕv(st+1)ϕv(st+1)

⊤ ∣∣ Ft] = Eχ,P
[
ϕv(st)ϕv(st)

⊤]
= Eχ,P

[
ϕv(st+1)ϕv(st+1)

⊤] . (40)

The equivalences above hold due to the i.i.d. observation model (Assumption 5).

Next, We bound (b) in (37) as follows:

v⊤E
[
ct

⊤ct
∣∣ Ft] v = v⊤E

[(
−2γrtϕu(st)ϕv(st+1)

⊤)⊤ (−2γrtϕu(st)ϕv(st+1)
⊤) | Ft] v

= 4γ2v⊤E
[
r2tϕv(st+1)ϕu(st)

⊤ϕu(st)ϕv(st+1)
⊤ ∣∣ Ft] v

(i)
= 4γ2v⊤E

[
r2t ∥ϕu(st)∥

2
2 ϕv(st+1)ϕv(st+1)

⊤
∣∣∣ Ft] v

(ii)

≤ 4γ2R2
max(ϕ

u
max)

2v⊤Bv, (41)

where (i) follows from ∥ϕu(st)∥22 = ϕu(st)
⊤ϕu(st) and (ii) follows from bound on rewards (As-

sumption 4) and the definition of B in (40).

Combining (38) and (41), we obtain the following upper bound for S1:

v⊤E
[
a⊤t at + c⊤t ct

∣∣ Ft] v ≤
(
(ϕvmax)

2 (1 + γ)
2
+ 4γ2R2

max(ϕ
u
max)

2
)
v⊤Bv. (42)

Next, we derive an upper bound for S2 in (36) as follows:

u⊤E
[
b⊤
t bt

∣∣ Ft]u
= u⊤E[

(
ϕu(st)ϕu(st)

⊤ − γ2ϕu(st)ϕu(st+1)
⊤)⊤ (ϕu(st)ϕu(st)

⊤ − γ2ϕu(st)ϕu(st+1)
⊤) | Ft]u

= u⊤E
[
ϕu(st)ϕu(st)

⊤ϕu(st)ϕu(st)
⊤ − γ2

(
ϕu(st)ϕu(st)

⊤ϕu(st)ϕu(st+1)
⊤

+ ϕu(st+1)ϕu(st)
⊤ϕu(st)ϕu(st)

⊤)
+ γ4(ϕu(st+1)ϕu(st)

⊤ϕu(st)ϕu(st+1)
⊤) | Ft

]
u

(i)
= u⊤E

[
∥ϕu(st)∥22

(
ϕu(st)ϕu(st)

⊤ − γ2
(
ϕu(st)ϕu(st+1)

⊤ + ϕu(st+1)ϕu(st)
⊤)︸ ︷︷ ︸

(II)

+ γ4ϕu(st+1)ϕu(st+1)
⊤) | Ft]u

(ii)

≤ (ϕumax)
2
u⊤E

[
ϕu(st)ϕu(st)

⊤ + γ2
(
ϕu(st)ϕu(st)

⊤ + ϕu(st+1)ϕu(st+1)
⊤)

+ γ4ϕu(st+1)ϕu(st+1)
⊤ | Ft

]
u

≤ (ϕumax)
2
(
1 + 2γ2 + γ4

)
u⊤Gu, (43)

where G = E
[
ϕu(st)ϕu(st)

⊤
∣∣ Ft]. In the above, the inequality in (i) follows from ∥ϕu(st)∥22 =

ϕu(st)
⊤ϕu(st); (ii) follows from bound on features (Assumption 3) and applying the inequality (39)

to (II); and (43) follows from bound on features (Assumption 5).

The inequality in (43) follows from following equivalent forms of G:

G = E
[
ϕu(st)ϕu(st)

⊤ ∣∣ Ft] = E
[
ϕu(st+1)ϕu(st+1)

⊤ ∣∣ Ft] = Eχ,P
[
ϕu(st)ϕu(st)

⊤]
= Eχ,P

[
ϕu(st+1)ϕu(st+1)

⊤] . (44)

The equivalences above hold from the i.i.d observation model (Assumption 5).

We observe that the scalars S3 and S4 in (36) are equal, i.e.,

v⊤E
[
c⊤t bt

∣∣ Ft]u = u⊤E
[
b⊤
t ct

∣∣ Ft] v.



Mean-Variance SPSA Actor Critic

We establish an upper bound for S3 in (36) as follows:

v⊤E
[
c⊤t bt

]
u

= v⊤E
[
− 2γrtϕv(st+1)ϕu(st)

⊤ϕu(st)ϕu(st)
⊤

+ 2γ3rtϕv(st+1)ϕu(st)
⊤ϕu(st)ϕu(st+1)

⊤ | Ft
]
u

(i)
= ∥ϕu(st)∥22 v

⊤E[−2rtγ ϕv(st+1)ϕu(st)
⊤︸ ︷︷ ︸

(III)

+2rtγ
3 ϕv(st+1)ϕu(st+1)

⊤︸ ︷︷ ︸
(IV )

| Ft]u

(ii)

≤ (ϕumax)
2Rmaxv

⊤E
[
γ
(
ϕv(st+1)ϕv(st+1)

⊤ + ϕu(st)ϕu(st)
⊤)

+ γ3(ϕv(st+1)ϕv(st+1)
⊤ + ϕu(st+1)ϕu(st+1)

⊤) | Ft
]
u

≤(ϕumax)
2Rmaxv

⊤ (γ(B+G) + γ3(B+G)
)
u, (45)

where (i) follows from ∥ϕu(st)∥22 = ϕu(st)
⊤ϕu(st) ; (ii) follows from bounds on features and

rewards (Assumptions 3 and 4) and applying the inequality below to the coefficients of γ (III) with
(a = ϕv(st+1), b = ϕu(st)) and γ3 (IV) with (a = ϕv(st+1), b = ϕu(st+1)) respectively.

−v⊤
(
aa⊤ + bb⊤

2

)
u ≤ v⊤

(
ab⊤

)
u ≤ v⊤

(
aa⊤ + bb⊤

2

)
u.

(45) follows from using values of matrices B (40) and G (44).

Substituting (42)–(45) in (36), we determine the upper bound for T2 as follows:

y⊤E
[
M⊤

t Mt

∣∣ Ft] y ≤
(
(ϕvmax)

2 (1 + γ)
2
+ 4γ2R2

max(ϕ
u
max)

2
)
v⊤Bv (46)

+ (ϕumax)
2
(
1 + γ2

)2
u⊤Gu

+ 2(ϕumax)
2Rmax(γ(1 + γ2))v⊤ (B+G)u.

Next, we state and prove a useful result to simplify (46) further.

Lemma 6.2. For any y = (v, u)⊤ ∈ R2|S| and matrix B+G defined in (45), we have

v⊤(B+G)u ≤ λmax(B+G)

2
∥y∥22 .

Proof. We have

v⊤(B+G)u
(a)

≤ ∥v∥B+G ∥u∥B+G

(b)

≤
√
v⊤(B+G)v

√
u⊤(B+G)u

(c)

≤ λmax(B+G)

√
∥v∥22 ∥u∥

2
2

(d)

≤ λmax(B+G)
∥v∥22 + ∥u∥22

2
(e)

≤ λmax(B+G)

2
∥y∥22 ,

where (a) follows from Cauchy-Schwarz inequality; (b) follows from definition of the weighted
norm; (c) follows from Rayleigh quotient theorem for a symmetric real matrix Q, i.e., x⊤Qx ≤
λmax(Q) ∥x∥22; (d) follows from AM-GM inequality; and (e) follows from definition of ∥y∥22 =

∥v∥22 + ∥u∥22.
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Substituting the upper bounds obtained for T1 (35) and T2 (46) in (34), we get

E
[
y⊤ (I− βMt)

⊤
(I− βMt) y

∣∣∣ Ft] = ∥y∥22 − β y⊤E
[(
M⊤

t +Mt

)
|Ft
]
y︸ ︷︷ ︸

T1

+ β2 y⊤E
[
M⊤

t Mt

∣∣ Ft] y︸ ︷︷ ︸
T2

≤ ∥y∥22 − 2βµ ∥y∥22 + β2

((
(ϕvmax)

2 (1 + γ)
2
+ 4γ2R2

max(ϕ
u
max)

2
)
v⊤Bv

+ (ϕumax)
2
(
1 + γ2

)2
u⊤Gu+ 2(ϕumax)

2Rmax(γ(1 + γ2))v⊤ (B+G)u

)
(i)

≤ ∥y∥22 − 2βµ ∥y∥22 + β2

((
(ϕvmax)

2 (1 + γ)
2
+ 4γ2R2

max(ϕ
u
max)

2
)
λmax(B) ∥v∥22

+ (ϕumax)
2
(
1 + γ2

)2
λmax(G) ∥u∥22 + (ϕumax)

2Rmax(γ(1 + γ2))λmax(B+G) ∥y∥22

)
≤ ∥y∥22 − 2βµ ∥y∥22 + β2

(
max

{(
(ϕvmax)

2 (1 + γ)
2
+ 4γ2R2

max(ϕ
u
max)

2
)
λmax(B),

(ϕumax)
2
(
1 + γ2

)2
λmax(G)

}
∥y∥22 + (ϕumax)

2Rmax(γ(1 + γ2))λmax(B+G) ∥y∥22

)
≤ ∥y∥22 − β

(
2µ− β

(
max

{(
(ϕvmax)

2 (1 + γ)
2
+ 4γ2R2

max(ϕ
u
max)

2
)
λmax(B),

(ϕumax)
2
(
1 + γ2

)2
λmax(G)

}
+ (ϕumax)

2Rmax(γ(1 + γ2))λmax(B+G)
))

∥y∥22
(ii)

≤ ∥y∥22 − β

(
2µ− β

(
max

{
4(ϕvmax)

4+4γ2R2
max(ϕ

u
max)

2
(ϕvmax)

2, 4(ϕumax)
4
}

+ 2γRmax

(
(ϕvmax)

2(ϕumax)
2 + (ϕumax)

4
) ))

∥y∥22

≤ (1− βµ) ∥y∥22 , (47)

where (i) follows from Lemma 6.2 and the inequality x⊤Qx ≤ λmax(Q) ∥x∥22; (ii) follows from the
bounds λmax(B) ≤ (ϕvmax)

2, λmax(G) ≤ (ϕumax)
2, and λmax(B+G) ≤ (ϕvmax)

2 + (ϕumax)
2, given

that B and G are outer products of the vectors ϕv(st) and ϕu(st), respectively; (47) follows from
choosing β ≤ βmax.

Rewriting (47) in norm form gives:

E
[
y⊤ (I− βMt)

⊤
(I− βMt) y

∣∣∣ Ft] = E
[
∥(I− βMt)y∥2

∣∣∣ Ft] ≤ (1− βµ) ∥y∥22 . (48)

Taking the square root on both sides of (48) and applying Jensen’s inequality yields the second
claim.

E [∥(I− βMt)y∥ | Ft] ≤
√

E
[
∥(I− βMt)y∥2

∣∣∣ Ft] ≤ (1− βµ)
1
2 ∥y∥2 ≤

(
1− βµ

2

)
∥y∥2 ,

(49)

where (49) follows from applying the inequality (1− x)
1
2 ≤ 1− x

2 , for x ≥ 0 with x = βµ.
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Now, we bound the bias term as follows:

zbias
t = E

[∥∥Ct:0z0
∥∥2]

= E
[
E
[(
Ct−1:0zbias

t−1

)⊤
(I− βMt)

⊤
(I− βMt)

(
Ct−1:0zbias

t−1

)
|Ft
]]

(i)

≤ (1− βµ)E
[∥∥Ct−1:0zbias

t−1

∥∥2]
≤ (1− βµ)

t E
[
∥z0∥2

]
(50)

≤ exp (−βµt)E
[
∥z0∥2

]
, (51)

where (i) follows from Lemma 6.1; (50) follows from unrolling the recursion and applying
Lemma 6.1 repeatedly; and (51) follows from the inequality below:

(1− βµ)t = exp(t log(1− βµ)) ≤ exp(−βµt).

Step 3: Bounding the variance term For the variance bound, we require an upper bound for
∥ht(w̄)∥2, which we derive below.

∥ht(w̄)∥2 = ∥rtϕ(st)−Mtw̄∥2

(a)

≤ 2 ∥rtϕ(st)∥2 + 2 ∥Mtw̄∥22
(b)

≤ 2R2
max

(
(ϕvmax)

2 +R2
max(ϕ

u
max)

2
)
+ 2 ∥Mt∥2 ∥w̄∥22

(c)

≤ 2R2
max

(
(ϕvmax)

2 +R2
max(ϕ

u
max)

2
)
+ 2((ϕvmax)

4 (1 + γ)
2
+ (ϕumax)

4
(
1 + γ2

)2
+ 4γ2R2

max(ϕ
v
max)

2(ϕumax)
2) ∥w̄∥22

= σ2, (52)

where (a) follows using ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2; (b) follows from bounds on features and
rewards (Assumptions 3 and 4); and (c) follows from expanding the upper bound on ∥Mt∥2.

Next, we bound the variance term in (31) as follows:

zvariance
t = E

∥∥∥∥∥
t∑

k=0

Ct:k+1hk(w̄)

∥∥∥∥∥
2

2


(a)

≤
t∑

k=0

E
[∥∥Ct:k+1hk(w̄)

∥∥2
2

]
(b)

≤
t∑

k=0

E
[∥∥Ct:k+1

∥∥2 ∥hk(w̄)∥2]
(c)

≤ σ2
t∑

k=0

E
[∥∥Ct:k+1

∥∥2
2

]
(d)

≤ σ2
t∑

k=0

E
[
E
[∥∥Ct:k+1

∥∥2
2

∣∣∣ Ft]]
(e)

≤ σ2
t∑

k=0

E
[
E
[∥∥(I− βMt)C

t−1:k+1
∥∥2
2

∣∣∣ Ft]]
(f)

≤ σ2
t∑

k=0

E
[
E
[
∥(I− βMt)∥2

∣∣∣ Ft] ∥∥Ct−1:k+1
∥∥2
2

]
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(g)

≤ σ2
t∑

k=0

(1− βµ)E
[∥∥Ct−1:k+1

∥∥2
2

]
(h)

≤ σ2
t∑

k=0

(1− βµ)
t−k

(i)

≤ σ2

βµ
, (53)

where (a) follows from triangle inequality and linearity of expectations; (b) follows from the inequal-
ity ∥Ax∥ ≤ ∥A∥ ∥x∥; (c) follows from a bound on ∥hk(w̄)∥2 in (52); (d) follows from the tower
property of conditional expectations; (e) follows from unrolling the product of matrices Ct:k+1 by
one step; (f) follows from the inequality ∥AB∥ ≤ ∥A∥ ∥B∥; (g) follows from Lemma 6.1; (h)
follows from unrolling the product of matrices; and (i) follows from computing the upper bound for
the finite geometric series.

Step 4: Clinching argument

The main claim follows from combining the bounds on the bias term (51) and the variance term (53)
in (31) as follows:

E[∥zt+1∥2] ≤ 2zbias
t + 2β2zvariance

t

≤ 2 exp (−βµt)E
[
∥z0∥2

]
+

2βσ2

µ
.

7 Proof of Theorem 3.2

Proof.
Step 1: Bias-variance decomposition for tail averaging

The tail averaged error when starting at k + 1, at time t is given by

zk+1:t =
1

N

k+N∑
i=k+1

zi =
1

t− k

t∑
i=k+1

zi.

By taking expectations, ∥zk+1:t∥2 can be expressed as:

E
[
∥zk+1:t∥22

]
=

1

N2

k+N∑
i,j=k+1

E
[
z⊤i zj

]
(a)

≤ 1

N2

( k+N∑
i=k+1

E
[
∥zi∥22

]
+ 2

k+N−1∑
i=k+1

k+N∑
j=i+1

E
[
z⊤i zj

])
, (54)

where (a) follows from isolating the diagonal and off-diagonal terms.

Next, we state and prove a result that bounds the second term in (54).

Lemma 7.1. For all i ≥ 1, we have
k+N−1∑
i=k+1

k+N∑
j=i+1

E
[
z⊤i zj

]
≤ 2

βµ

k+N∑
i=k+1

E
[
∥zi∥22

]
. (55)

Proof.
k+N−1∑
i=k+1

k+N∑
j=i+1

E
[
z⊤i zj

] (a)
=

k+N−1∑
i=k+1

k+N∑
j=i+1

E

[
z⊤i (C

j:i+1zi + β

j−i−1∑
l=i+1

Cj:l+1hl(w̄))

]
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(b)
=

k+N−1∑
i=k+1

k+N∑
j=i+1

E
[
z⊤i C

j:i+1zi
]

(c)

≤
k+N−1∑
i=k+1

k+N∑
j=i+1

E
[
∥zi∥E

[
∥Cj:i+1zi∥

∣∣ Fj]]
(d)

≤
k+N−1∑
i=k+1

k+N∑
j=i+1

(
1− βµ

2

)j−i
E
[
∥zi∥22

]

≤
k+N∑
i=k+1

E
[
∥zi∥22

] ∞∑
j=i+1

(
1− βµ

2

)j−i
(e)

≤ 2

βµ

k+N∑
i=k+1

E
[
∥zi∥22

]
,

where (a) follows from expanding zj using (31); (b) follows from the observation that

E[ht(w̄) | Ft] = E[rtϕt −Mtw̄ | Ft] = ξ −Mw̄ = 0;

(c) follows from applying Cauchy-Schwarz inequality and tower property of expectations; (d) fol-
lows from a repetitive application of Lemma 6.1; and (e) follows from computing the limit of the
infinite geometric series.

Substituting the result of Lemma 7.1 in (54), we obtain

E
[
∥zk+1:t∥22

]
≤ 1

N2

(
k+N∑
i=k+1

E
[
∥zi∥22

]
+

4

βµ

k+N∑
i=k+1

E
[
∥zi∥22

])

=
1

N2

(
1 +

4

βµ

) k+N∑
i=k+1

E
[
∥zi∥22

]
(a)

≤ 2

N2

(
1 +

4

βµ

) k+N∑
i=k+1

zbiasi︸ ︷︷ ︸
zbiask+1,N

+
2

N2

(
1 +

4

βµ

)
β2

k+N∑
i=k+1

zvariancei︸ ︷︷ ︸
zvariancek+1:t

, (56)

where (a) follows from the bias-variance decomposition of E[∥zi∥22] in (31).

Step 2: Bounding the bias

First term, zbiask+1:t in (56) is bounded as follows:

zbiask+1:t ≤
2

N2

(
1 +

4

βµ

) ∞∑
i=k+1

zbiasi

(a)

≤ 2

N2

(
1 +

4

βµ

) ∞∑
i=k+1

(1− βµ)iE
[
∥z0∥22

]
(b)
=

2E
[
∥z0∥22

]
βµN2

(1− βµ)
k+1

(
1 +

4

βµ

)
,

where (a) follows from (50), which provides a bound on zbiasi ; (b) follows from the bound on the
summation of a geometric series.

Step 4: Bounding the variance
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Next, the second term zvariancek+1:t in (56) is bounded as follows:

zvariancek+1:t

(a)

≤ 2β2

N2

(
1 +

4

βµ

) k+N∑
i=k+1

σ2

βµ

≤ 2β2

N2

(
1 +

4

βµ

) N∑
i=0

σ2

βµ

=

(
1 +

4

βµ

)
2βσ2

µN
,

where (a) follows from (53), which provides a bound on zvariancei .

Step 5: Clinching argument

Finally substituting the bounds on zbiask+1:t and zvariancek+1:t in (56), we get

E[∥zk+1:t∥22] ≤
(
1 +

4

βµ

)(
2

βµN2
(1− βµ)k+1E[∥z0∥22] +

2βσ2

µN

)
,

(a)

≤
(
1 +

4

βµ

)(
2 exp(−kβµ)

βµN2
E[∥z0∥22] +

2βσ2

µN

)
(b)

≤ 10 exp(−kβµ)
β2µ2N2

E
[
∥z0∥22

]
+

10σ2

µ2N
,

where (a) follows from (1 + x)y = exp(y log(1 + x)) ≤ exp(xy); (b) uses the fact that βµ < 1,
since β ≤ βmax as defined in Theorem 3.1, which implies 1 + 4

βµ ≤ 5
βµ .

8 Proof of Theorem 3.3

To prove Theorem 3.3, we first establish an upper bound on the mean squared error (MSE) between
the tail-averaged TD iterate and the regularized TD fixed point. The following result provides this
bound, which we subsequently use to complete the proof of Theorem 3.3.

Theorem 8.1. Suppose Assumptions 1 to 5 hold. Let w̌k+1:t = 1
N

∑k+N
i=k+1 w̌i denote the tail-

averaged regularized iterate with N = t− k. Suppose the step size β̌ satisfies

β̌ ≤β̌max =
ζ

č
, where

č = ζ2 + 2ζ
(
(ϕvmax)

4(1 + γ)2 + (ϕumax)
4(1 + γ2)2 + 4γ2R2

max(ϕ
v
max)

2(ϕumax)
2
) 1

2

+max
{
4(ϕvmax)

4+4γ2R2
max(ϕ

u
max)

2
(ϕvmax)

2, 4(ϕumax)
4
}

+ 2γRmax((ϕ
v
max)

2(ϕumax)
2 + (ϕumax)

4).

Then,

E
[
∥w̌k+1:t − w̄reg∥22

]
≤

10 exp
(
−kβ̌(2µ+ ζ)

)
β̌2 (2µ+ ζ)

2
N2

E
[
∥w̌0 − w̄reg∥22

]
+

10σ̌2

(2µ+ ζ)2N
, (57)

where N = t− k, µ = λmin(
M⊤+M

2 ), and

σ̌2=2R2
max

(
(ϕvmax)

2+R2
max(ϕ

u
max)

2
)
+4
(
ζ2 + (ϕvmax)

4 (1+γ)
2
+(ϕumax)

4
(
1+γ2

)2
+4γ2R2

max(ϕ
v
max)

2(ϕumax)
2
)
∥w̄reg∥22 (58)

Proof. Our proof incorporates techniques from Patil et al. (2024). However, as described earlier, the
analysis of mean-variance TD involves additional cross-terms, which necessitate significant devia-
tions in the proof.
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Step 1: Bias-variance decomposition with regularization

For regularized TD, we solve the following linear system:

−(M+ ζI)w̄reg + ξ = 0, (59)

The corresponding TD updates in Algorithm 1 to solve (59) would be:

vt+1 = (I− β̌ζ)vt + β̌ δ̌t ϕv(st), (60)

ut+1 = (I− β̌ζ)ut + β̌ ϵ̌t ϕu(st),

where δ̌t, ϵ̌t are defined as

δ̌t =r(st, at) + γv̌⊤t ϕv(st+1)− v̌⊤t ϕv(st) (61)

ϵ̌t =r(st, at)
2 + 2γr(st, at) v̌

⊤
t ϕv(st+1) + γ2ǔ⊤t ϕu(st+1)− ǔ⊤t ϕu(st).

We rewrite the updates in an alternative form as follows:

w̌t+1 = w̌t + β̌(rtϕt − (ζI+Mt)w̌t), (62)

where Mt, rt, ϕt are defined in (8).

Letting ȟt(wt) = rtϕt − (ζI+Mt)w̌t, we have

w̌t+1 = w̌t + β̌ȟt(w̌t). (63)

As in the case of the ‘vanilla’ mean-variance TD, we derive a one-step recursion for the centered
error, žt+1 = w̌t+1 − w̄reg, as follows:

žt+1 = w̌t − w̄reg + β̌(rtϕt −Mtw̌t) + β̌(ζI+Mt)w̄reg − β̌(ζI+Mt)w̄reg

= (I− β̌(ζI+Mt))(wt − w̄reg) + β̌(rtϕt − (ζI+Mt)w̄reg)

= (I− β̌(ζI+Mt))zt + β̌ȟt(w̄reg). (64)

Unrolling the equation above, we obtain

žt+1 = Čt:0ž0 + β̌

t∑
k=0

Čt:k+1ȟk(w̄reg), (65)

where

Či:j =

{
(I− β̌(ζI+Mi))(I− β̌(ζI+Mi−1)) . . . (I− β̌(ζI+Mj)) if i ≥ j

I otherwise.

Taking expectations and using ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, we obtain,

E
[
∥žt+1∥2

]
≤ 2E

(∥∥Čt:0ž0
∥∥2)+ 2β̌2E

∥∥∥∥∥
t∑

k=0

Čt:k+1ȟk(w̄reg)

∥∥∥∥∥
2
 , (66)

≤ 2žbias
t + 2β̌2žvariance

t ,

where žbias
t = E

[∥∥Čt:0ž0
∥∥2] and žvariance

t = E
[∥∥∥∑t

k=0 Č
t:k+1ȟk(w̄reg)

∥∥∥2].

Step 2: Bounding the bias term

Before bounding the bias term, we first present and prove some useful lemmas.
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Lemma 8.2.

∥M∥ ≤
(
(ϕvmax)

4(1 + γ)2 + (ϕumax)
4(1 + γ2)2 + 4γ2R2

max(ϕ
v
max)

2(ϕumax)
2
) 1

2 .

Proof. Recall that M = E[Mt | Ft] where

Mt ≜

(
at o
ct bt

)
with at ≜ ϕv(st)ϕv(st)

⊤ − γϕv(st)ϕv(st+1)
⊤,

bt ≜ ϕu(st)ϕu(st)
⊤ − γ2ϕu(st)ϕu(st+1)

⊤,

ct ≜ −2γrtϕu(st)ϕv(st+1)
⊤.

We bound the norms of the matrices at,bt, ct using the boundedness assumptions on features and
rewards (Assumptions 3 and 4) as follows:

∥at∥ ≤ (1 + γ)(ϕvmax)
2, ∥bt∥ ≤ (1 + γ2)(ϕumax)

2, ∥ct∥ ≤ 2γRmaxϕ
v
maxϕ

u
max. (67)

Next, we derive the following result:

∥M∥ = ∥E[Mt | Ft]∥
(i)

≤ E[∥Mt∥ | Ft]
(ii)

≤
∥∥∥∥( (1 + γ)(ϕvmax)

2 0
2γRmaxϕ

v
maxϕ

u
max (1 + γ2)(ϕumax)

2

)∥∥∥∥
F

(iii)

≤
(
(ϕvmax)

4(1 + γ)2 + (ϕumax)
4(1 + γ2)2 + 4γ2R2

max(ϕ
v
max)

2(ϕumax)
2
) 1

2 ,

where (i) follows from Jensen’s inequality, (ii) follows from (67), and (iii) follows from expanding
the Frobenius norm.

Lemma 8.3. For any y̌ ∈ R2q measurable w.r.t Ft and β̌ ≤ β̌max as in Theorem 8.1. The following
holds:

E
[
y̌(I− β̌(ζI+Mt))

⊤(I− β̌(ζI+Mt))y̌
∣∣ Ft] ≤ (1− β̌(2µ+ ζ)

)
∥y̌∥22 ,

E
[∥∥(I− β̌(ζI+Mt))y̌

∥∥
2

∣∣ Ft] ≤ (1− β̌(2µ+ ζ)

2

)
∥y̌∥2 .

Proof. Notice that

E
[
y̌⊤(I− β̌(ζI+Mt))

⊤(I− β̌(ζI+Mt))y̌
∣∣ Ft]

= E
[
y̌⊤(I− 2β̌ζI− β̌(Mt +M⊤

t )) + β̌2(ζ2I+ ζ(Mt +M⊤
t ) +M⊤

t Mt)y̌
∣∣ Ft]

= E
[
y̌⊤y̌

∣∣ Ft]− β̌E
[
y̌⊤2ζIy̌

∣∣ Ft]− β̌ y̌⊤E
[
M⊤

t +Mt

∣∣ Ft] y̌︸ ︷︷ ︸
Term 1

+ β̌2 y̌⊤E
[
M⊤

t Mt

∣∣ Ft] y̌︸ ︷︷ ︸
Term 2

+β̌2ζ y̌⊤E
[
Mt +M⊤

t

∣∣ Ft] y̌︸ ︷︷ ︸
Term 3

+β̌2E
[
y̌⊤ζ2Iy̌

∣∣ Ft] . (68)

We bound Term 1 in (68) as follows:

y̌⊤E
[
M⊤

t +Mt

∣∣ Ft] y̌ = y̌⊤(M⊤ +M)y̌
(i)

≥ 2µ ∥y̌∥22 , (69)

where (i) follows from Assumption 2, which implies that M+M⊤ has a minimum positive eigen-
value µ = λmin(

M⊤+M
2 ).



Mean-Variance SPSA Actor Critic

We bound Term 2 in (68) using the bound for T2 in (46) as follows:

y̌⊤E[M⊤
t Mt | Ft]y̌ ≤

(
(ϕvmax)

2 (1 + γ)
2
+ 4γ2R2

max(ϕ
u
max)

2
)
v̌⊤Bv̌

+ (ϕumax)
2
(
1 + γ2

)2
ǔ⊤Gǔ+ 2(ϕumax)

2Rmax(γ(1 + γ2))v̌⊤ (B+G) ǔ.

We bound Term 3 in (68) as follows:

y̌⊤E[Mt +M⊤
t | Ft]y̌ ≤

∥∥E[Mt +M⊤
t | Ft]

∥∥ ∥y̌∥2 ≤
∥∥M+M⊤∥∥ ∥y̌∥2

(i)

≤ 2
(
(ϕvmax)

4(1 + γ)2 + (ϕumax)
4(1 + γ2)2 + 4γ2R2

max(ϕ
v
max)

2(ϕumax)
2
) 1

2 ∥y̌∥2 ,

where (i) follows from Lemma 8.2.

Substituting the bounds for Terms 1–3 in (68), we obtain

E[y̌⊤(I− β̌(ζI+Mt))
⊤(I− β̌(ζI+Mt))y̌ | Ft]

≤ E[y̌⊤y̌|Ft]− β̌E[y̌⊤2ζIy̌ | Ft]− β̌2µ ∥y̌∥2

+ β̌2
((

(ϕvmax)
2 (1 + γ)

2
+ 4γ2R2

max(ϕ
u
max)

2)
v̌⊤Bv̌

+ (ϕumax)
2
(
1 + γ2

)2
ǔ⊤Gǔ+ 2(ϕumax)

2Rmax(γ(1 + γ2))v̌⊤ (B+G) ǔ
)

+ β̌2
(
2
(
(ϕvmax)

4(1 + γ)2 + (ϕumax)
4(1 + γ2)2 + 4γ2R2

max(ϕ
v
max)

2(ϕumax)
2
) 1

2 ∥y̌∥2
)

+ β̌2E[y̌⊤ζ2Iy̌ | Ft].
(i)

≤ ∥y̌∥22 (1− 2β̌(µ+ ζ)) + β̌2
((

(ϕvmax)
2 (1 + γ)

2
+ 4γ2R2

max(ϕ
u
max)

2)
λmax(B) ∥v̌∥22

+ (ϕumax)
2
(
1 + γ2

)2
λmax(G) ∥ǔ∥22 + (ϕumax)

2Rmax(γ(1 + γ2))λmax(B+G) ∥y̌∥22
+ 2ζ

(
(ϕvmax)

4(1 + γ)2 + (ϕumax)
4(1 + γ2)2

+ 4γ2R2
max(ϕ

v
max)

2(ϕumax)
2
) 1

2 ∥y̌∥2 + ζ2 ∥y̌∥22
)

≤
(
1− β̌

(
2µ+ 2ζ − β̌

(
max

{(
(ϕvmax)

2 (1 + γ)
2
+ 4γ2R2

max(ϕ
u
max)

2)
λmax(B),

(ϕumax)
2
(
1 + γ2

)2
λmax(G)

}
+ (ϕumax)

2Rmax(γ(1 + γ2))λmax(B+G)

+ ζ2 + 2ζ
(
(ϕvmax)

4(1 + γ)2 + (ϕumax)
4(1 + γ2)2

+ 4γ2R2
max(ϕ

v
max)

2(ϕumax)
2
) 1

2
)))

∥y̌∥22

≤
(
1−β̌

(
2µ+ 2ζ−β̌

(
max

{
4(ϕvmax)

4+4γ2R2
max(ϕ

u
max)

2
(ϕvmax)

2, 4(ϕumax)
4
}

+ 2γRmax

(
(ϕvmax)

2(ϕumax)
2+(ϕumax)

4
)
ζ2 + 2ζ

(
(ϕvmax)

4(1 + γ)2 + (ϕumax)
4(1 + γ2)2

+ 4γ2R2
max(ϕ

v
max)

2(ϕumax)
2
) 1

2
)))

∥y̌∥22
(ii)

≤ (1− β̌(2µ+ ζ)) ∥y̌∥22 , (70)

where (i) follows from Lemma 6.2 and using x⊤Qx ≤ λmax(Q) ∥x∥22, and (ii) follows from choos-
ing β̌ ≤ β̌max.

Taking the square root on both sides of (70) and applying Jensen’s inequality, we obtain

E
[∥∥(I− β̌(ζI+Mt))y̌

∥∥ ∣∣ Ft] ≤ (1− β̌(2µ+ ζ))
1
2 ∥y̌∥2

(i)

≤
(
1− β̌(2µ+ ζ)

2

)
∥y̌∥2 , (71)

where (i) follows from applying the inequality (1 − x)
1
2 ≤ 1 − x

2 , for x ≥ 0 with x = β̌(2µ + ζ).
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Now, we bound the bias term in (66) as follows:

žbias
t = E

[∥∥Čt:0ž0
∥∥2]

= E
[
E
[(
Čt−1:0žbias

t−1

)⊤
(I− β̌(ζI+Mt))

⊤(I− β̌(ζI+Mt))(Č
t−1:0žbias

t−1)
] ∣∣∣ Ft]

(i)

≤
(
1− β̌(2µ+ ζ)

)
E
[∥∥Čt−1:0žbias

t−1

∥∥2]
(ii)

≤
(
1− β̌(2µ+ ζ)

)t E [∥ž0∥2] (72)

(iii)

≤ exp
(
−β̌(2µ+ ζ)t

)
E
[
∥ž0∥2

]
, (73)

where (i) follows from Lemma 8.3, (ii) follows from unrolling the recursion and applying Lemma 8.3
repeatedly, and (iii) follows from applying the inequality

(1− β(2µ+ ζ))t = exp(t log(1− β(2µ+ ζ))) ≤ exp(−β(2µ+ ζ)t).

Step 3: Bounding the variance term

Before we find an upper bound for the variance term, we upper bound on ∥ht(w̄reg)∥2 as follows:∥∥ȟt(w̄reg)
∥∥2 = ∥rtϕ(st)− (ζI+Mt)w̄reg∥2

(a)

≤ 2 ∥rtϕ(st)∥2 + 2 ∥(ζI+Mt)w̄reg∥22
(b)

≤ 2R2
max

(
(ϕvmax)

2 +R2
max(ϕ

u
max)

2
)
+ 2 ∥ζI+Mt∥2 ∥w̄reg∥22

(c)

≤ 2R2
max

(
(ϕvmax)

2 +R2
max(ϕ

u
max)

2
)
+ 4
(
ζ2 + (ϕvmax)

4 (1 + γ)
2

+ (ϕumax)
4
(
1 + γ2

)2
+ 4γ2R2

max(ϕ
v
max)

2(ϕumax)
2
)
∥w̄reg∥22 (74)

= σ̌2, (75)

where (a) follows from the inequality ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2; (b) follows from the bounds on
features and rewards (Assumptions 3 and 4); and (c) follows from the bound on M (Lemma 8.2)
and the inequality ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2.

Next, we bound the variance term in (66) as follows:

žvariance
t = E

∥∥∥∥∥
t∑

k=0

Čt:k+1ȟk(w̄reg)

∥∥∥∥∥
2

2


(a)

≤
t∑

k=0

E
[∥∥Čt:k+1ȟk(w̄reg)

∥∥2
2

]
(b)

≤
t∑

k=0

E
[∥∥Čt:k+1

∥∥2 ∥∥ȟk(w̄reg)
∥∥2]

(c)

≤ σ̌2
t∑

k=0

E
[∥∥Čt:k+1

∥∥2
2

]
(d)

≤ σ̌2
t∑

k=0

E
[
E
[∥∥Čt:k+1

∥∥2
2
|Ft
]]

(e)

≤ σ̌2
t∑

k=0

E
[
E
[∥∥(I− β̌(ζI+Mt))Č

t−1:k+1
∥∥2
2
|Ft
]]
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(f)

≤ σ̌2
t∑

k=0

E
[
E
[∥∥I− β̌(ζI+Mt)

∥∥2 |Ft] ∥∥Čt−1:k+1
∥∥2
2

]
(g)

≤ σ̌2
t∑

k=0

(1− β̌(2µ+ ζ))E
[∥∥Čt−1:k+1

∥∥2
2

]
(h)

≤ σ̌2
t∑

k=0

(1− β̌(2µ+ ζ))t−k

(i)

≤ σ̌2

β̌(2µ+ ζ)
, (76)

where (a) follows from the triangle inequality and linearity of expectations; (b) follows from apply-
ing the inequality ∥Ax∥ ≤ ∥A∥ ∥x∥; (c) follows from a bound on

∥∥ȟk(w̄reg)
∥∥2; (d) follows from

the tower property of conditional expectations; (e) follows from unrolling the product of matrices
Čt:k+1 by one time step; (f) follows from applying the inequality ∥AB∥ ≤ ∥A∥ ∥B∥; (g) follows
from Lemma 8.3; (h) follows from unrolling the product of matrices; and (i) follows from computing
the upper bound for the finite geometric series.

Step 4: Tail Averaging

Using the parallel arguments from Section 7, we derive the error bounds for the regularized tail-
averaged iterate, focusing on its bias and variance terms, as follows:

4 (a) Bias-variance decomposition for tail averaging

The tail averaged error, starting from time k + 1, with N = t− k is given by:

žk+1:t =
1

N

k+N∑
i=k+1

ži.

By taking expectations, ∥žk+1:t∥2 can be expressed as:

E
[
∥žk+1:t∥22

]
=

1

N2

k+N∑
i,j=k+1

E
[
ž⊤i žj

]
(a)

≤ 1

N2

( k+N∑
i=k+1

E
[
∥ži∥22

]
+ 2

k+N−1∑
i=k+1

k+N∑
j=i+1

E
[
ž⊤i žj

])
, (77)

where (a) follows from isolating the diagonal and off-diagonal terms.

Next, we state and prove Lemma 8.4 to bound the second term in terms of the first term in (77).

Lemma 8.4. For all i ≥ 1, we have

k+N−1∑
i=k+1

k+N∑
j=i+1

E
[
ž⊤i žj

]
≤ 2

β̌(2µ+ ζ)

k+N∑
i=k+1

E
[
∥ži∥22

]
. (78)

Proof.

k+N−1∑
i=k+1

k+N∑
j=i+1

E
[
ž⊤i žj

] (a)
=

k+N−1∑
i=k+1

k+N∑
j=i+1

E

[
ž⊤i (Č

j:i+1ži + β̌

j−i−1∑
l=i+1

Čj:l+1ȟl(w̄reg))

]

(b)
=

k+N−1∑
i=k+1

k+N∑
j=i+1

E
[
ž⊤i Č

j:i+1zi
]
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(c)

≤
k+N−1∑
i=k+1

k+N∑
j=i+1

E
[
∥ži∥E[

∥∥Čj:i+1ži
∥∥ |Fj ]]

(d)

≤
k+N−1∑
i=k+1

k+N∑
j=i+1

(
1− β̌(2µ+ ζ)

2

)j−i
E
[
∥ži∥22

]

≤
k+N∑
i=k+1

E
[
∥ži∥22

] ∞∑
j=i+1

(
1− β̌(2µ+ ζ)

2

)j−i
(e)

≤ 2

β̌(2µ+ ζ)

k+N∑
i=k+1

E
[
∥ži∥22

]
,

where (a) follows from expanding zj using (65); (b) follows from the observation that

E[ȟt(w̄reg) | Ft] = E[rtϕt − (ζI+Mt)w̄reg | Ft] = ξ − (M+ ζI)w̄reg = 0;

(c) follows from applying the Cauchy–Schwarz inequality and the tower property of expectations;
(d) follows from a repetitive application of Lemma 8.3; and (e) follows by computing the limit of
the infinite geometric series.

By substituting the result of Lemma 8.4 into (77), we obtain

E
[
∥žk+1:t∥22

]
≤ 1

N2

(
k+N∑
i=k+1

E
[
∥ži∥22

]
+

4

β̌(2µ+ ζ)

k+N∑
i=k+1

E
[
∥ži∥22

])

=
1

N2

(
1 +

4

β̌(2µ+ ζ)

) k+N∑
i=k+1

E
[
∥ži∥22

]
(a)

≤ 2

N2

(
1 +

4

β(2µ+ ζ)

) k+N∑
i=k+1

žbiasi︸ ︷︷ ︸
žbiask+1,N

+
2

N2

(
1 +

4

β(2µ+ ζ)

)
β̌2

k+N∑
i=k+1

žvariancei︸ ︷︷ ︸
žvariancek+1:t

, (79)

where (a) follows from (66).

4 (b) Bounding the bias term

First term, žbiask+1:tin (79) is bounded as follows:

žbiask+1:t ≤
2

N2

(
1 +

4

β̌(2µ+ ζ)

) ∞∑
i=k+1

žbiasi

(a)

≤ 2

N2

(
1 +

4

β̌(2µ+ ζ)

) ∞∑
i=k+1

(1− β̌(2µ+ ζ))iE
[
∥ž0∥22

]
(b)
=

2E
[
∥ž0∥22

]
β̌(2µ+ ζ)N2

(
1− β̌(2µ+ ζ)

)k+1
(
1 +

4

β̌(2µ+ ζ)

)
,

where (a) follows from (72), which provides a bound on žbiasi and (b) follows from the bound on the
summation of a geometric series.

4 (c) Bounding the variance term

Next, the second term zvariancek+1:t in (79) is bounded as follows:

žvariancek+1:t

(a)

≤ 2β̌2

N2

(
1 +

4

β̌(2µ+ ζ)

) k+N∑
i=k+1

σ̌2

β̌(2µ+ ζ)
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≤ 2β̌2

N2

(
1 +

4

β̌(2µ+ ζ)

) N∑
i=0

σ̌2

β̌(2µ+ ζ)

=

(
1 +

4

β̌(2µ+ ζ)

)
2β̌σ̌2

(2µ+ ζ)N
,

where (a) follows from (76), which provides a bound on žvariancei .

Step 5: Clinching argument

Finally substituting the bounds on žbiask+1:t and žvariancek+1:t in (79), we get

E[∥žk+1:t∥22]

≤
(
1 +

4

β̌(2µ+ ζ)

)(
2

β̌(2µ+ ζ)N2
(1− β̌(2µ+ ζ))k+1E[∥ž0∥22] +

2β̌σ̌2

(2µ+ ζ)N

)
,

(a)

≤
(
1 +

4

β̌(2µ+ ζ)

)(
2 exp(−kβ̌(2µ+ ζ))

β̌(2µ+ ζ)N2
E[∥z0∥22] +

2β̌σ̌2

(2µ+ ζ)N

)
(b)

≤ 10 exp(−kβ̌(2µ+ ζ))

β̌2(2µ+ ζ)2N2
E
[
∥ž0∥22

]
+

10σ̌2

(2µ+ ζ)2N
, (80)

where (a) follows from (1 + x)y = exp(y log(1 + x)) ≤ exp(xy), and (b) uses β̌(2µ+ ζ) < 1 as
β̌ ≤ β̌max defined in Theorem 8.1, which implies that

1 +
4

β̌(2µ+ ζ)
≤ 5

β̌(2µ+ ζ)
.

Proof of Theorem 3.3

The proof of Theorem 3.3 builds on Theorem 8.1 and a bound on ∥w̌k+1:t − w̄reg∥22, incorporating
techniques from (Patil et al., 2024, Corollary 1,2).

Proof. Notice that

E
[
∥w̌k+1:t − w̄∥22

] (i)

≤ 2 ∥w̄reg − w̄∥22︸ ︷︷ ︸
Term 1

+2E
[
∥w̌k+1:t − w̄reg∥22

]
︸ ︷︷ ︸

Term 2

, (81)

where (i) follows from applying ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2.

We bound Term 1 below.

∥w̄ − w̄reg∥22 =
∥∥M−1ξ − (M+ ζI)−1ξ

∥∥2
2

(a)

≤
∥∥M−1 − (M+ ζI)−1

∥∥2
2
∥ξ∥22

=
∥∥M−1(M+ ζI−M)(M+ ζI)−1

∥∥2
2
∥ξ∥22

≤
∥∥M−1

∥∥2
2
ζ2
∥∥(M+ ζI)−1

∥∥2
2
∥ξ∥22

(b)

≤
ζ2(R2

max

(
(ϕvmax)

2 +R2
max(ϕ

u
max)

2
)
)

ι2(ζ + ι)2
, (82)

where (a) follows from ∥AB∥ ≤ ∥A∥ ∥B∥, and (b) follows from the fact that∥∥M−1
∥∥ = 1/ιmin(M), where ι = ιmin(M) is the minimum singular value of M.
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We observe that (80) provides a bound for Term 2. Applying this bound along with (82) in (81), we
obtain

E
[
∥w̌k+1:t − w̄∥22

]
≤ 20 exp(−kβ̌(2µ+ ζ))

β̌2(2µ+ ζ)2N2
E
[
∥ž0∥22

]
+

20σ̌2

(2µ+ ζ)2N

+
2ζ2(R2

max

(
(ϕvmax)

2 +R2
max(ϕ

u
max)

2
)
)

ι2(ζ + ι)2
. (83)

For ζ = 1√
N

, we obtain the following upper bounds, where we use a coarse bound on 2µ + ζ and
similar simplifications in the exponent and denominator.

E
[
∥w̌k+1:t − w̄∥22

]
≤ 5 exp (−kβ̌µ)

β̌2µ2N2
E
[
∥w̌0 − w̄reg∥22

]
+

5σ̌2

µ2N

+
2(R2

max

(
(ϕvmax)

2 +R2
max(ϕ

u
max)

2
)
)

ι4N
. (84)

9 High Probability Bounds for Mean-Variance TD

For the high probability bound, we consider the following update rule:

wt+1 = Γ(wt + βht(wt)), (85)

where Γ projects on to the set C ≜ {w ∈ R2q | ∥w∥2 ≤ H}.

Under Assumption 6, we first state and prove a high-probability bound for the tail-averaged iterate
in the next subsection. Then, we derive the high-probability bound for the regularized tail-averaged
iterate.

9.1 Bounds for vanilla (un-regularized) mean-variance TD

Theorem 9.1 (Restatement of Theorem 3.4). Suppose Assumptions 1 to 6 hold. Run Algorithm 1
for t iterations with step size β as defined in Theorem 3.2. Then, for any δ ∈ (0, 1], we have the
following bound for the projected tail-averaged iterate wk+1:t with N = t− k:

P
(
∥wk+1:t−w̄∥2 ≤ 2τ

µ
√
N

√
log

(
1

δ

)
+
4 exp (−kβµ)

βµN
E [∥w0 − w̄∥2]+

4τ

µ
√
N

)
≥1−δ,

where w0, w̄, β are defined as in Theorem 3.1, and

τ =
(
2R2

max

(
(ϕvmax)

2 +R2
max(ϕ

u
max)

2
)
+ 2
(
(ϕvmax)

4 (1 + γ)
2
+ (ϕumax)

4
(
1 + γ2

)2
+ 4γ2R2

max(ϕ
v
max)

2(ϕumax)
2
)
H2
) 1

2 .

The proof follows a similar structure to (Patil et al., 2024, Theorem 2) and (Prashanth et al., 2021,
Proposition 8.3), with necessary adaptations to account for our setting.

Proof. A martingale difference decomposition of ∥zk+1,N∥2 − E[∥zk+1:t∥2] is as follows:

∥zk+1,N∥2 − E [∥zk+1:t∥2] =
k+N∑
i=k+1

(gi − gi−1) =

k+N∑
i=k+1

Di, (86)

where zk+1:t denotes tail-averaged iterate error,

Di ≜ gi − E [gi | Gi−1] , gi ≜ E[∥zk+1:t∥2 | Gi], and
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Gi denotes the sigma-field generated by random variables {wt, t ≤ i} for t, i ∈ Z+.

Let hi(w) ≜ riϕi−Miw denote random innovation at time i for wi = w. If we show that functions
gi are Li Lipschitz continuous in the random innovation hi at time i, then we can see that the
martingale difference Di is a Li Lipschitz function of the ith random innovation.

Let Ωij(w) represent the iterate value at time j, evolving according to (85), starting from the value
of w at time i. Let w and w′ be two different iterate values at time i, dependent on h and h′,
respectively, as w = wi−1 + βh and w′ = wi−1 + βh′. We compute the difference between the
iterate values at time j when the initial values at time i are w and w′ as follows:

Ωij(w)− Ωij(w
′) = Ωij−1(w)− Ωij−1(w

′)− β[hj(Ω
i
j−1(w))− hj(Ω

i
j−1(w

′))]

= Ωij−1(w)− Ωij−1(w
′)− βMj(Ω

i
j−1(w)− Ωij−1(w

′))

= (I− βMj)(Ω
i
j−1(w)− Ωij−1(w

′)). (87)

Taking expectation and since the projection Γ is non-expansive, we have the following

E
[∥∥Ωij(w)− Ωij(w

′)
∥∥
2

]
= E

[
E
[∥∥Ωij(w)− Ωij(w

′)
∥∥
2

∣∣∣ Gj−1

]]
= E

[
E
[∥∥(I− βMj)(Ω

i
j−1(w)− Ωij−1(w

′))
∥∥
2

∣∣∣ Gj−1

]]
(i)

≤
(
1− βµ

2

)
E[
∥∥Ωij−1(w)− Ωij−1(w

′)
∥∥
2
]

(ii)
=

(
1− βµ

2

)j−i+1

∥w − w′∥2 ,

(iii)

≤ β

(
1− βµ

2

)j−i+1

∥h− h′∥2 . (88)

where (i) follows from Lemma 6.1; (ii) follows from repeated application of (i); and (iii) follows
from substituting w and w′.

Let Ωit(w) to be the value of the iterate at time t, where t ranges from the tail index k+ 1 to k+N .
The iterate evolves according to (8) beginning from w at time i = k + 1. Next, we define

Ω̃ik+1:t(w̃, w) ≜
(i− k)w̃

N
+

1

N

i+N∑
j=i+1

Ωij(w), (89)

where w̃ is the value of the tail averaged iterate at time i. In the above, Ω̃ik+1:t(w̃, w) denotes the
value of tail-averaged iterate at time t.

From (89) and using the triangle inequality, we have

E
[∥∥∥Ω̃ik+1:t(w̃, w)− Ω̃ik+1:t(w̃, w

′)
∥∥∥
2

]
≤ E

 1

N

i+N∑
j=i+1

∥∥(Ωij(w)− Ωij(w
′))
∥∥
2

 . (90)

Using (88), we bound the term Ωij(w)− Ωij(w
′) inside the summation of (90).

E
[∥∥∥Ω̃ik+1:t(w̃, w)− Ω̃ik+1:t(w̃, w

′)
∥∥∥
2

]
≤ β

N

i+N∑
j=i+1

(
1− βµ

2

)j−i+1

∥h− h′∥2 . (91)

Taking into account the bounds on features, rewards, and the projection assumption (Assumptions 3
to 6), along with the upper bound on σ from (52), we derive a uniform upper bound τ on ∥hi(w)∥
for all i as:

τ =

(
2R2

max

(
(ϕvmax)

2 +R2
max(ϕ

u
max)

2
)

+ 2
(
(ϕvmax)

4 (1 + γ)
2
+ (ϕumax)

4
(
1 + γ2

)2
+ 4γ2R2

max(ϕ
v
max)

2(ϕumax)
2
)
H2

) 1
2
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Now, we use a martingale difference concentration, following (Patil et al., 2024, Step 3, Theorem
2) to obtain

P
(
∥zk+1,N∥2 − E

[
∥zk+1,N∥2

]
> ϵ
)
≤ exp(−ηϵ) exp

(
η2τ2

∑k+N
i=k+1 L

2
i

2

)
.

Optimising over η in the above inequality yields:

P (∥zk+1:t∥2 − E [∥zk+1:t∥2] > ϵ) ≤ exp

(
− ϵ2

τ2
∑k+N
i=k+1 L

2
i

)
. (92)

Using (Patil et al., 2024, Lemma 13), we obtain the following bound on the Lipschitz constant,

k+N∑
i=k+1

L2
i ≤

4

Nµ2
. (93)

By applying (93) in (92), we obtain

P (∥zk+1:t∥2 − E[∥zk+1:t∥2] > ϵ)≤ exp

(
−Nµ

2ϵ2

4τ2

)
, (94)

For any δ ∈ (0, 1] the inequality (94) can be expressed in high-confidence form as:

P

(
∥zk+1:t∥2 − E[∥zk+1:t∥2] ≤

2τ

µ
√
N

√
log

(
1

δ

))
≥ 1− δ. (95)

The final bound follows by substituting the bound on E [∥zk+1:t∥2], obtained via Jensen’s inequality
from Theorem 3.2, into (95).

9.2 Bounds for mean-variance TD with regularization

Theorem 9.2 (Restatement of Theorem 3.5). Suppose Assumptions 1 to 6 hold. Run the regularized
version of Algorithm 1, specified by (14), for t iterations with a step size β̌ as specified in Theo-
rem 8.1. Then, for any δ ∈ (0, 1], we have the following bound for the projected tail-averaged
regularized TD iterate:

P

(
∥w̌k+1:t−w̄reg∥2 ≤ 2τ̌

(2µ+ ζ)
√
N

√
log

(
1

δ

)
+
4 exp

(
−kβ̌ (2µ+ζ)

)
β̌ (2µ+ ζ)N

E ∥w0 − w̄reg∥2

+
4τ̌

(2µ+ζ)
√
N

)
≥ 1− δ,

where N, w̌0, w̄reg, µ. are as specified in Theorem 8.1 and

τ̌=
(
2R2

max

(
(ϕvmax)

2+R2
max(ϕ

u
max)

2
)

+4
(
ζ2 + (ϕvmax)

4 (1 + γ)
2
+(ϕumax)

4
(
1 + γ2

)2
+4β2R2

max(ϕ
v
max)

2(ϕumax)
2
)
H2
) 1

2

.

The proof for the regularized case follows from arguments similar to those in the proof of Theo-
rem 3.4, with the modifications outlined below.

Proof. Let Ω̌ij(w̌) represent the iterate value at time j, evolving following (85), starting from the
value of w̌ at time i. We compute the difference between the iterate values at time j when the initial
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values at time i are w̌ and w̌′, respectively. Let w̌ and w̌′ be two different parameter values at time i
which depend on ȟ and ȟ′ as w̌ = w̌i−1 + β̌ȟ, and w̌′ = w̌i−1 + β̌h′. We obtain the difference as:

Ω̌ij(w̌)− Ω̌ij(w̌
′) = Ω̌ij−1(w̌)− Ω̌ij−1(w̌

′)− β̌[ȟj(Ω̌
i
j−1(w̌))− ȟj(Ω̌

i
j−1(w̌

′))]

= (I− β̌(ζI+Mj))(Ω̌
i
j−1(w̌)− Ω̌ij−1(w̌

′)). (96)

Taking expectation and since the projection Γ is non-expansive, we have the following

E
[∥∥Ω̌ij(w̌)− Ω̌ij(w̌

′)
∥∥
2

]
= E

[
E
[∥∥Ω̌ij(w̌)− Ω̌ij(w̌

′)
∥∥
2

∣∣∣ Ǧj−1

]]
= E

[
E
[∥∥(I− β̌Mj)(Ω̌

i
j−1(w̌)− Ω̌ij−1(w̌

′))
∥∥
2

∣∣∣ Ǧj−1

]]
(i)

≤
(
1− β̌(2µ+ ζ)

2

)
E
[∥∥Ω̌ij−1(w)− Ω̌ij−1(w̌

′)
∥∥
2

]
(ii)
=

(
1− β̌(2µ+ ζ)

2

)j−i+1

∥w̌ − w̌′∥2 ,

≤ β̌

(
1− β̌(2µ+ ζ)

2

)j−i+1 ∥∥ȟ− ȟ′
∥∥
2
. (97)

where (i) follows by Lemma 8.3; (ii) follows by repeated application of (i); and (97) follows from
substituting the values of w and w′.

Let Ω̌it(w̌) be the value of the iterate at time t where t ranges from the tail index k+1 to k+N . The
iterate evolves according to (14) starting at the value w̌ at time i = k + 1. Next, we define

Ω̄ik+1:t(ŵ, w̌) ≜
(i− k) ˜̌w

N
+

1

N

i+N∑
j=i+1

Ω̌ij(w̌), (98)

where ŵ is the value of the tail-averaged iterate at time i.

Now, we prove that Lipschitz continuity in the random innovation ȟi at time i with constant Ľi.

E
[∥∥∥ ˜̌Ωik+1:t( ˜̌w, w̌)−

˜̌Ωik+1:t( ˜̌w, w̌
′)
∥∥∥
2

]
= E

 1

N

i+N∑
j=i+1

∥∥(Ω̌ij(w̌)− Ω̌ij(w̌
′))
∥∥
2

 . (99)

Using (97), we bound the difference
∥∥Ω̌ij(w̌)− Ω̌ij(w̌

′)
∥∥ in (99).

E
[∥∥∥Ω̃ik+1:t(w̃, w)− Ω̃ik+1:t(w̃, w

′)
∥∥∥
2

]
≤ β

N

i+N∑
j=i+1

(
1− β̌(2µ+ ζ)

2

)j−i+1 ∥∥ȟ− ȟ′
∥∥
2
. (100)

Considering the bounds on features, rewards, and the projection assumption (Assumptions 3 to 6),
along with a bound on σ̌ in (58), we find an upper bound τ̌ on

∥∥ȟi(w̌i)∥∥ as follows:

τ̌=
(
2R2

max

(
(ϕvmax)

2+R2
max(ϕ

u
max)

2
)

+ 4
(
ζ2 + (ϕvmax)

4 (1 + γ)
2
+(ϕumax)

4
(
1 + γ2

)2
+4β2R2

max(ϕ
v
max)

2(ϕumax)
2
)
H2
) 1

2

.

Using (Patil et al., 2024, Lemma 20), we obtain the following bound on the Lipschitz constant,

k+N∑
i=k+1

Ľ2
i ≤

4

N(2µ+ ζ)2
. (101)

The rest of the proof follows by making parallel arguments to those in Subsection 9.1.
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10 Outline of Actor Analysis

Proof. (Sketch)

Policy Gradient for the
square-value Function

(L.A. & Ghavamzadeh,
2016, Lemma 2)

Smoothness of
square-value

Function
(Lemma 4.1)

Smoothness of
value function
(Xu et al., 2021,

Proposition 1)

Smoothness of
state-action visi-
tation distribution

(Xu et al., 2021, Lemma 3)

Smoothness
of Lagrangian

(Lemma 4.2)

Gradient Estimation
using Perturbation
technique (SPSA)

(Spall, 1992)

Convergence to
ϵ-stationary point

(Theorem 4.3)

Figure 1: Logical dependency graph for proving Theorem 4.3. Rectangular nodes (blue) represent
established results from prior work, elliptical nodes (green) denote our novel contributions, and
dashed lines illustrate the logical dependencies we establish to derive the final result (green circle).

As visualized in Figure 1, the proof begins by establishing the smoothness of the policy gradient for
the square-value function:

∇U(θ)= 1
1−γ2

(∑
s,aν̃θ(s, a)∇ log πθ(a|s)Wθ(s, a)︸ ︷︷ ︸

T1(θ)

+2γ
∑
s,a,s′ ν̃θ(s, a)P (s

′|s, a)∇Vθ(s′)︸ ︷︷ ︸
T2(θ)

)
.

(102)

We decompose the expression in (102) into T1(θ) and T2(θ). T1(θ) consists of three terms: the state-
action visitation distribution, the score function, and the square-value function. To derive a smooth-
ness constant for T1(θ), we leverage the following: (i) the smoothness result for the state-action
visitation distribution (Lemma 11.1), as stated in (Xu et al., 2021, Lemma 3); (ii) the boundedness
and smoothness of the policy (Assumption 7).

T2(θ) is the product of the state-action visitation distribution and the policy gradient of the value
function. To establish the smoothness constant for T2(θ), we utilize the smoothness result for the
value function from (Xu et al., 2021, Proposition 1).

Combining the results for T1(θ) and T2(θ), we derive the smoothness constants for the square-value
function. By decomposing the terms in the Lagrangian into the gradients of the value function and
the square-value function and carefully bounding the gradient norms, we obtain the smoothness
constant L in (21) for the Lagrangian.

After establishing the smoothness of the Lagrangian, the remainder of the proof largely follows a
standard SGD analysis framework (Ghadimi & Lan, 2013; Kumar et al., 2023). However, key mod-
ifications are necessary to accommodate SPSA-based gradient estimates, particularly in handling
and optimizing the perturbation parameter pt and the critic batch size m.

As ∇L(θt) is L-Lipschitz (Lemma 4.2), we have

L(θt+1) ≥ L(θt) + ⟨∇L(θt), θt+1 − θt⟩ −
Lα2

t

2
∥∇L̂(θt)∥2

In the above, ∇L̂(θt) is an SPSA gradient estimate.

Taking the expectation with respect to the sigma field Ft = σ(θk, k ≤ t), denoted by Et, we have

Et[L(θt+1)] ≥ Et[L(θt)] + αtEt
[
∥∇L(θt)∥2

]
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− αtK1

(
1 +

2λRmax

1− γ

)∥∥∥Et [∇Ĵ(θt)−∇J(θt)
]∥∥∥︸ ︷︷ ︸

(A)

− λαtK1

∥∥∥Et [∇Û(θt)−∇U(θt)
]∥∥∥︸ ︷︷ ︸

(B)

−L
2
α2
t Et

[
∥∇L̂(θt)∥2

]
︸ ︷︷ ︸

(C)

.

Now, substituting the bounds for the biased SPSA gradient estimates—(A) from (117), (B) from
(118), and (C) from (119)—into the above equation, we obtain

Et[L(θt+1)] ≥ Et[L(θt)] + αtEt
[
∥∇L(θt)∥2

]
− αtK1

(
1 +

2λRmax

1− γ

)(
d

3
2LJpt
2

+
d

1
2ϕvmaxK2(t)

pt
√
m

)

− λαtK1

(
d

3
2LUpt
2

+
d

1
2ϕumaxK2(t)

pt
√
m

)
− Lα2

t

2

(
K3

p2t

)
.

Summing from t = 1 to n and dividing both sides by n, and setting αt = α and pt = p, we get

1

n

n∑
t=1

E
[
∥∇L(θt)∥2

]
≤ C1

nα
+ C2p+

C3√
mp

+
C4α

p2
.

Setting α = na, p = nb, m = nc, we have

E
[
∥∇L(θR)∥2

]
≤ C1n

−1−a + C2n
b + C3n

−b−c/2 + C4n
a−2b.

Optimizing for a, b, c, we find their values to be a = − 3
4 , b = − 1

4 , c = 1. Substituting these values,
we get

E
[
∥∇L(θR)∥2

]
≤ C1n

−1/4 + C2n
−1/4 + C3n

−1/4 + C4n
−1/4

= O(n−1/4).

11 Proofs for the claims in Section 4

Before we prove the claims, we state a few useful supporting lemmas in the analysis.

Lemma 11.1 (Restatement of Lemma 3 (Xu et al., 2021)). Consider the initialization distribution
η(·) and the transition kernel P(·|s, a). Let η(·) = ζ(·) or η(·) = P(·|ŝ, â) for any given (ŝ, â) ∈
S × A. Denote νπθ,η(·, ·) as the state-action visitation distribution of the MDP with policy πθ and
initialization distribution η(·). Suppose the Assumption holds. Then, we have∥∥νπθ1 ,η(·, ·)− νπθ2 ,η(·, ·)

∥∥
TV

≤ Cν ∥θ1 − θ2∥2 ,

for all θ1, θ2 ∈ Rd, where Cν = Cπ

(
1 + ⌈logρ κ−1⌉+ 1

1−ρ

)
.

11.1 Proof of Lemma 4.1

Proof. The first claim concerning the smoothness of J(·) can be inferred from (Xu et al., 2021,
Proposition 1).

We prove the smoothness of the square-value function below.
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From (L.A. & Ghavamzadeh, 2016, Lemma 1), we have

∇U(θ) =
1

1− γ2

(∑
s,a

ν̃θ(s, a)∇ log πθ(a|s)Wθ(s, a)︸ ︷︷ ︸
T1(θ)

+2γ
∑
s,a,s′

ν̃θ(s, a)P (s
′|s, a)∇Vθ(s′)︸ ︷︷ ︸

T2(θ)

)
,

(103)

where

Wθ(s, a) = E

( ∞∑
k=0

γkrt+k

)2
∣∣∣∣∣∣ st = s, at = a


and ν̃θ(s, a) = (1 − γ2)

∑∞
t=0 γ

2tP(st = s, at = a) is the γ2-discounted state-action visitation
distribution, with P(st = s, at = a) = P(st = s|s0 = s)πθ(a|s).

∥∇U(θ1)−∇U(θ2)∥2 ≤ 1

1− γ2
(∥T1(θ1)− T1(θ2)∥2 + 2γ ∥T2(θ1)− T2(θ2)∥2) (104)

We now show that T1(θ), defined in (103) is Lipschitz in θ.

∥T1(θ1)− T1(θ2)∥2

=

∥∥∥∥∥∑
s,a

ν̃θ1(s, a)︸ ︷︷ ︸
a1

∇ log πθ1(a|s)︸ ︷︷ ︸
b1

Wπθ1
(s, a)︸ ︷︷ ︸
c1

−
∑
s,a

ν̃θ2(s, a)︸ ︷︷ ︸
a2

∇ log πθ2(a|s)︸ ︷︷ ︸
b2

Wπθ2
(s, a)︸ ︷︷ ︸
c2

∥∥∥∥∥
2

=

∥∥∥∥∥∑
s,a

(a1b1c1 − a2b2c2)

∥∥∥∥∥
=

∥∥∥∥∥∑
s,a

a1b1c1 − a2b2c2 + a2b2c1 − a2b2c1

∥∥∥∥∥
=

∥∥∥∥∥∑
s,a

c1(a1b1 − a2b2) + a2b2(c1 − c2)

∥∥∥∥∥
=

∥∥∥∥∥∑
s,a

c1(a1b1 − a2b2 + a1b2 − a1b2) + a2b2(c1 − c2)

∥∥∥∥∥
=

∥∥∥∥∥∑
s,a

c1(a1(b1 − b2) + b2(a1 − a2)) + a2b2(c1 − c2)

∥∥∥∥∥
≤
∑
s,a

∣∣∣Wθ1(s, a)
∣∣∣∣∣∣ν̃θ1(s, a)∣∣∣∥∇ log πθ1(a|s)−∇ log πθ2(a|s)∥2

+
∑
s,a

∣∣∣Wθ1(s, a)
∣∣∣∥∇ log πθ1(a|s)∥2

∣∣∣ν̃θ1(s, a)− ν̃θ2(s, a)
∣∣∣

+
∑
s,a

ν̃θ2(s, a)∥∇ log πθ2(a|s)∥2
∣∣∣Wθ1(s, a)−Wθ2(s, a)

∣∣∣
(a)

≤ Rmax

(1− γ)2

∑
s,a

∥∇ log πθ1(a|s)−∇ log πθ2(a|s)∥2 +
CψRmax

(1− γ)2

∑
s,a

|ν̃θ1(s, a)− ν̃θ2(s, a)|

+ Cψ
∑
s,a

∣∣∣Wθ1(s, a)−Wθ2(s, a)
∣∣∣ν̃θ2(s, a)

(b)

≤ RmaxLψ
(1− γ)2

∥θ1 − θ2∥2 +
2RmaxCψCν
(1− γ)2

∥θ1 − θ2∥2 + Cψ
∑
s,a

|Wθ1(s, a)−Wθ2(s, a)|ν̃θ2(s, a)
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(c)

≤ RmaxLψ
(1− γ)2

∥θ1 − θ2∥2 +
2RmaxCψCv
(1− γ)2

∥θ1 − θ2∥2 +
2RmaxCψCv
(1− γ)2

∥θ1 − θ2∥2

≤ RmaxLψ
(1− γ)2

∥θ1 − θ2∥2 +
4RmaxCψCv
(1− γ)2

∥θ1 − θ2∥2, (105)

where (a) follows by |Wθ(s, a)||ν̃θ1(s, a)| ≤ Rmax
(1−γ)2 for any θ ∈ Rd and by the upper bound Cψ

on the score function, see Assumption 7; (b) follows by smoothness of the policy (Assumption 7)
and Cν- Lipschitzness of ν̃(s, a) (see Xu et al., 2021, Lemma 3); (c) follows by employing similar
arguments for the square-value function, in place of the value function in (Xu et al., 2021, Lemma
4), as outlined below:

Cψ
∑
s,a

|Wπ
θ1(s, a)−Wπ

θ2(s, a)|ν̃θ2(s, a) ≤ Cψ
Rmax

(1− γ)2
∥Pπθ1(·, ·)− Pπθ2(·, ·)∥TV

≤ 2RmaxCψCv
(1− γ)2

∥θ1 − θ2∥2.

Next, we obtain the Lipschitz constant for T2(θ) =
∑
s,a,s′ ν̃θ(s, a)P (s

′|s, a)∇Vθ(s′) below. The
Lipschitzness of T2(θ) together with that of T1(θ) would lead to smoothness of U(·), from (103).

∥T2(θ1)− T2(θ2)∥2

≤

∥∥∥∥∥ ∑
s,a,s′

ν̃θ1(s, a)P (s
′|s, a)∇Vθ1(s′)−

∑
s,a,s′

ν̃θ2(s, a)P (s
′|s, a)∇Vθ2(s′)

∥∥∥∥∥
≤

∥∥∥∥∥ ∑
s,a,s′

ν̃θ1(s, a)P (s
′|s, a)∇Vθ1(s′)−

∑
s,a,s′

ν̃θ2(s, a)P (s
′|s, a)∇Vθ2(s′)

+
∑
s,a,s′

ν̃θ2(s, a)P (s
′|s, a)∇Vθ1(s′)−

∑
s,a,s′

ν̃θ2(s, a)P (s
′|s, a)∇Vθ2(s′)

∥∥∥∥∥
≤
∑
s,a,s′

P (s′|s, a)∥∇Vθ1(s′)∥2∥ν̃θ1(s, a)− ν̃θ2(s, a)∥

+
∑
s,a,s′

P (s′|s, a)ν̃θ2(s, a)∥∇Vθ1(s′)−∇Vθ2(s′)∥2

(a)

≤ 2RmaxCψ
(1− γ)2

∑
s,a

∥ν̃θ1(s, a)− ν̃θ2(s, a)∥+
∑
s,a,s′

P (s′|s, a)ν̃θ2(s, a)∥∇Vθ1(s′)−∇Vθ2(s′)∥2

(b)

≤ 2RmaxCψCν
(1− γ)2

∥θ1 − θ2∥2 + 2LJ∥θ1 − θ2∥2 (106)

where (a) follows by P (s′|s, a)∥∇Vθ(s′)∥2 ≤ RmaxCψ
(1−γ)2 ; (b) follows from applying (Xu et al., 2021,

Lemma 3), where Cν = (1/2)Cπ
(
1 + ⌈logρ κ−1⌉+ (1− ρ)−1

)
.

Combining T1 and T2 into (104),

∥∇U(θ1)−∇U(θ2)∥ ≤ LU∥θ1 − θ2∥2, where

LU =
1

1− γ2

(
RmaxLψ
(1− γ)2

+
4RmaxCψCv
(1− γ)2

+
4γRmaxCψCv + 4γLJ

(1− γ)2

)
.
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11.2 Proof of Lemma 4.2

Proof. Notice that

∥∇L(θ1)−∇L(θ2)∥2 ≤ ∥∇J(θ1)−∇J(θ2)∥2 + λ ∥∇U(θ1)−∇U(θ2)∥2
+ 2λ ∥J(θ1)∇J(θ1)− J(θ2)∇J(θ2)∥2

(a)

≤ LJ ∥θ1 − θ2∥2 + λLU ∥θ1 − θ2∥2 + 2λ ∥J(θ1)∇J(θ1)− J(θ2)∇J(θ2)∥2︸ ︷︷ ︸
(I)

, (107)

where (a) follows from Lemma 4.1. We bound (I) as follows:

∥J(θ1)∇J(θ1)− J(θ2)∇J(θ2)∥2
= ∥J(θ1)∇J(θ1)− J(θ1)∇J(θ2) + J(θ1)∇J(θ2)− J(θ2)∇J(θ2)∥2
≤ |J(θ1)| · ∥∇J(θ1)−∇J(θ2)∥2 + ∥∇J(θ2)∥2 · |J(θ1)− J(θ2)|
(i)

≤ RmaxLJ
1− γ

∥θ1 − θ2∥2 + ∥∇J(θ2)∥2 · |J(θ1)− J(θ2)|

(ii)

≤ RmaxLJ
1− γ

∥θ1 − θ2∥2 +
RmaxCψ
(1− γ)2

|J(θ1)− J(θ2)|

≤ RmaxLJ
1− γ

∥θ1 − θ2∥2 +
RmaxCψ
(1− γ)2

∥θ1 − θ2∥2, (108)

where (i) follows from |J(θ)| ≤ Rmax
1−γ ; (ii) follows from ∥∇J(θ)∥2 ≤ RmaxCψ

(1−γ)2 for any θ ∈ Rd,
we arrive at this by Policy Gradient Theorem (Sutton et al., 1999), Assumption 7 and
|Qπθ (s, a)| ≤ Rmax

1−γ ; (108) follows from the first order Taylor expansion at θ1, mean-value theo-

rem ∃ θ̃ = λθ1+(1− λ)θ2, for some λ ∈ [0, 1].

J(θ1) = J(θ2) +∇J(θ̃)⊤(θ1 − θ2) =⇒ |J(θ1)− J(θ2)| ≤
RmaxCψ
(1− γ)2

∥θ1 − θ2∥2.

Now, substituting (108) in (107), we obtain

∥∇L(θ1)−∇L(θ2)∥ ≤ ∥∇J(θ1)−∇J(θ2)∥+ 2λ∥J(θ1)∇J(θ1)− J(θ2)∇J(θ2)∥
+ λ∥∇U(θ1)−∇U(θ2)∥

≤ LJ∥θ1 − θ2∥2 + 2λ

(
RmaxLJ
1− γ

+
RmaxCψ
(1− γ)2

)
∥θ1 − θ2∥2 + λLU∥θ1 − θ2∥2

≤
(
LJ + 2λ

(
RmaxLJ
1− γ

+
RmaxCψ
(1− γ)2

)
+ λLU

)
∥θ1 − θ2∥2

≤ Lo∥θ1 − θ2∥2

Hence, the gradient of the Lagrangian is Lo-Lipschitz with the Lipschitz constant given by

Lo = LJ + 2λ

(
RmaxLJ
1− γ

+
RmaxCψ
(1− γ)2

)
+ λLU .

11.3 Proof of Theorem 4.3

For the sake of readability, we restate Theorem 4.3 with all constants made explicit.

Theorem 11.2. Suppose Assumptions 1 to 8 hold. Run MV-SPSA-AC for n iterations with actor
step size αt ≡ α = 1/n3/4, perturbation constant pt ≡ p = 1/n1/4, critic batch size m = n, and



Mean-Variance SPSA Actor Critic

critic step size β ≤ βmax as defined in Theorem 3.1. Let θR be chosen uniformly from {θ1, . . . , θn}.
Then,

E
[
∥∇L(θR)∥2

]
≤ C

n1/4
,

where C = C1 + C2 + C3 + C4, and

C1 =
2Rmax

1− γ

(
1 +

λRmax

1− γ

)
,

C2 =
K1d

3/2

2

(
LJ

(
1 +

2λRmax

1− γ

)
+ λLU

)
,

K1 =
RmaxCψ
(1− γ)2

+ 2λ
RmaxCψ
(1− γ)3

+ λ

(
CψRmax

(1− γ2)(1− γ)2
+

2γRmaxCψ
(1− γ2)(1− γ)2

)
,

C3 = K1

(
max

t=1,...,n
E(K2(t))

)
d1/2

((
1 +

2λRmax

1− γ

)
(ϕvmax + λϕumax)

)
,

K2(t) =

(√
10 e−kβµ/2

γ2µ

√
E [∥w0 − w̄(θt)∥] +

√
10σ(θt)

µ

)
,

C4 =
L1K3

2
,

K3 = max

{
3 + 3

(
2λRmax

1− γ

)2

, 3λ2

}(
d

(
2Rmax

1− γ

)2

+ d

(
2R2

max

(1− γ)2

)2
)
. (109)

Remark 3. The evaluation error due to critic approximation with finite trajectory lengths is cap-
tured by the term K2 defined above. Specifically, K2 accounts for both the bias and variance
introduced by running temporal-difference (TD) learning with linear function approximation (LFA)
for a finite number of iterations. The evaluation error propagates into the final convergence bounds
through the C3√

mp
term in (120). We choose m = n and p = n−1/4 so that the final bound is

O
(
1/n1/4

)
. If the critic trajectory length is fixed (i.e., does not grow with the actor iteration n),

then the C3√
mp

term would not diminish, which in turn leads to a weaker bound.

Proof. Notice that as ∇L(θt) is L-Lipschitz (Lemma 4.2), we have

L(θt+1) ≥ L(θt) + ⟨∇L(θt), θt+1 − θt⟩ −
Lα2

t

2
∥∇L̂(θt)∥2

Taking expectation w.r.t the sigma field Ft = σ(θk, k ≤ t), denoted by Et

Et[L(θt+1)] ≥ Et[L(θt)] + Et
[〈

∇L(θt), αt∇L(θt) + αt

(
∇L̂(θt)−∇L(θt)

)〉]
− Et

[
L

2
α2
t ∥∇L̂(θt)∥2

]
= Et[L(θt)] + αtEt

[
∥∇L(θt)∥2

]
+ αtEt

[
∇L(θt)⊤

(
∇L̂(θt)−∇L(θt)

)]
− Et

[
L

2
α2
t ∥∇L̂(θt)∥2

]
≥ Et[L(θt)] + αtEt

[
∥∇L(θt)∥2

]
− αt

∣∣∣Et [∇L(θt)⊤ (∇L̂(θt)−∇L(θt)
)]∣∣∣

− Et
[
L

2
α2
t ∥∇L̂(θt)∥2

]
(i)

≥ Et[L(θt)] + αtEt
[
∥∇L(θt)∥2

]
− αt ∥∇L(θt)∥

∥∥∥Et [∇L̂(θt)−∇L(θt)
]∥∥∥
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− Et
[
L

2
α2
t ∥∇L̂(θt)∥2

]
(ii)

≥ Et[L(θt)] + αtEt
[
∥∇L(θt)∥2

]
− αtK1

∥∥∥Et [∇L̂(θt)−∇L(θt)
]∥∥∥

− L

2
α2
tEt

[
∥∇L̂(θt)∥2

]
(iii)

≥ Et[L(θt)] + αtEt
[
∥∇L(θt)∥2

]
− αtK1

∥∥∥Et [∇Ĵ(θt)−∇J(θt)
]∥∥∥

− λαtK1

∥∥∥Et [∇Û(θt)−∇U(θt)
]∥∥∥− 2λαtK1

∥∥∥Et [J(θt)∇J(θt)− Ĵ(θt)∇Ĵ(θt)
]∥∥∥

− L

2
α2
tEt

[
∥∇L̂(θt)∥2

]
(iv)

≥ Et[L(θt)] + αtEt
[
∥∇L(θt)∥2

]
− αtK1

∥∥∥Et [∇Ĵ(θt)−∇J(θt)
]∥∥∥

− λαtK1

∥∥∥Et [∇Û(θt)−∇U(θt)
]∥∥∥

− 2αtK1λ
∥∥∥Et [J(θt)∇J(θt)− J(θt)∇Ĵ(θt) + J(θt)∇Ĵ(θt)− Ĵ(θt)∇Ĵ(θt)

]∥∥∥
− L

2
α2
tEt

[
∥∇L̂(θt)∥2

]
(v)

≥ Et[L(θt)] + αtEt
[
∥∇L(θt)∥2

]
− αtK1

∥∥∥Et [∇Ĵ(θt)−∇J(θt)
]∥∥∥

− λαtK1

∥∥∥Et [∇Û(θt)−∇U(θt)
]∥∥∥

− 2αtK1λ
∥∥∥Et [J(θt)(∇Ĵ(θt)−∇J(θt)

)]∥∥∥− 2αtK1λ
∥∥∥Et [∇Ĵ(θt)(J(θt)− Ĵ(θt)

)]∥∥∥
− L

2
α2
tEt

[
∥∇L̂(θt)∥2

]
(vi)

≥ Et[L(θt)] + αtEt
[
∥∇L(θt)∥2

]
− αtK1

(
1 +

2λRmax

1− γ

)∥∥∥Et [∇Ĵ(θt)−∇J(θt)
]∥∥∥︸ ︷︷ ︸

(A)

− λαtK1

∥∥∥Et [∇Û(θt)−∇U(θt)
]∥∥∥︸ ︷︷ ︸

(B)

−L
2
α2
t Et

[
∥∇L̂(θt)∥2

]
︸ ︷︷ ︸

(C)

− αtK1

(
2λ

√
dRmax

(1− γ)pt

)∣∣∣Et [Ĵ(θt)− J(θt)
]∣∣∣︸ ︷︷ ︸

(D)

, (110)

where (i) follows by applying the Cauchy–Schwarz inequality to the modulus of the inner product;
(ii) follows from the uniform upper bound ∥∇L(θt)∥ ≤ K1, which we establish below; (iii) follows
from substituting

∇L(θ) = −∇J(θ) + λ(∇U(θ)− 2J(θ)∇J(θ));

(iv) follows from adding and subtracting the cross term J(θt)∇Ĵ(θt); (v) follows from the triangle
inequality; and (vi) follows from the bound |J(θt)| ≤ Rmax

1−γ and ∥∇Ĵ(θt)∥ ≤ 2
√
dRmax

1−γ ,which holds
as a consequence of the definition of the SPSA gradient estimate,

∇Ĵ(θ) = Ĵ(θt + pt∆t)− Ĵ(θt)

pt∆t
.

Before we derive upper bounds for (A), (B), (C), and (D) in (110), we first establish the bound
∥∇L(θt)∥2 ≤ K1, which is used in (ii), as follows:
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By Policy Gradient Theorem (Sutton et al., 1999), we have

∇J(θ) = 1

1− γ
E(s,a)∼χθ(·,·) [∇ log πθ(a|s)Qπθ (s, a)] ,

where

Qπθ (s, a) = E

[ ∞∑
t=0

γtr(st, at) | s0 = s, a0 = a

]
.

We upper bound the action-value function as |Qπθ (s, a)| ≤ Rmax
1−γ . Furthermore, by Assumption 7,

the score function satisfies ∥∇ log πθ(a|s)∥2 ≤ Cψ. Thus, we obtain

∥∇J(θ)∥2 ≤ RmaxCψ
(1− γ)2

, ∀θ ∈ Rd. (111)

In the same manner, we use (103), which is a policy gradient-style theorem for the square-value
function from (L.A. & Ghavamzadeh, 2016, Lemma 1), to upper bound the norm of the square-value
function below. Wπθ (s, a) is the action-value function corresponding to the square-value function,
i.e., U(θ) = Ea∼πθ [Wπθ (s, a)], similar to Qπθ (s, a).

∥∇U(θ)∥2

=
1

1− γ2

∥∥∥∥∥∥
∑
s,a

ν̃πθ (s, a)∇ log πθ(a|s)Wπθ (s, a) + 2γ
∑
s,a,s′

ν̃πθ (s, a)P (s
′|s, a)∇Vπθ (s′)

∥∥∥∥∥∥
≤ 1

1− γ2

∑
s,a

∥ν̃πθ (s, a)∇ log πθ(a|s)∥ |Wπθ (s, a)|

+
2γ

1− γ2

∑
s,a,s′

∥ν̃πθ (s, a)∥|P (s′|s, a)|∥∇Vπθ (s′)∥

≤ 1

1− γ2
∥∇ log πθ(a|s)∥

∑
s,a

ν̃πθ (s, a)Wπθ (s, a)

+
2γ

1− γ2

∑
s,a,s′

ν̃πθ (s, a)P (s
′|s, a)∥∇Vπθ (s′)∥

≤ Cψ
1− γ2

∑
s,a

ν̃πθ (s, a)Wπθ (s, a) +
2γ

1− γ2

∑
s,a,s′

ν̃πθ (s, a)P (s
′|s, a)∥∇Vπθ (s′)∥

≤ CψRmax

(1− γ2)(1− γ)2
+

2γRmaxCψ
(1− γ2)(1− γ)2

(112)

Combining (111) and (112), we obtain K1:

∥∇L(θt)∥ ≤∥∇J(θt)∥+ λ∥∇U(θt)∥+ 2λ|J(θt)|∥∇J(θt)∥

≤RmaxCψ
(1− γ)2

+ 2λ
RmaxCψ
(1− γ)3

+ λ∥∇U(θt)∥

≤RmaxCψ
(1− γ)2

+ 2λ
RmaxCψ
(1− γ)3

+ λ

(
CψRmax

(1− γ2)(1− γ)2
+

2γRmaxCψ
(1− γ2)(1− γ)2

)
=K1 (113)

Next, we bound (A) in (110) as follows:∥∥∥Et [∇Ĵ(θt)−∇J(θt)
]∥∥∥ ≤ d

1
2

∣∣∣Et [∇iĴ(θt)−∇iJ(θt)
]∣∣∣∣∣∣Et [∇iĴ(θt)−∇iJ(θt)

]∣∣∣ (a)= ∣∣∣∣Et [ϕv(s0)⊤v+m − ϕv(s0)
⊤vm

pt∆i(t)
−∇iJ(θt)

]∣∣∣∣
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(b)
=
∣∣∣Et [ϕv(s0)⊤v+m−ϕv(s0)⊤vm+ϕv(s0)

⊤v̄+−ϕv(s0)⊤v̄+−ϕv(s0)⊤v̄+ϕv(s0)⊤v̄
pt∆i(t)

−∇iJ(θt)
]∣∣∣

(c)
=

∣∣∣∣Et [ϕv(s0)⊤(v̄+ − v̄)

pt∆i(t)
+
ϕv(s0)

⊤(v+m − v̄+) + ϕv(s0)
⊤(v̄ − vm)

pt∆i(t)
−∇iJ(θt)

]∣∣∣∣
≤
∣∣∣∣Et [J(θt + pt∆(t))− J(θt)

pt∆i(t)
−∇iJ(θt)

]∣∣∣∣︸ ︷︷ ︸
(I)

+

∣∣∣∣Et [ϕv(s0)⊤(v+m − v̄+) + ϕv(s0)
⊤(v̄ − vm)

pt∆i(t)

]∣∣∣∣︸ ︷︷ ︸
(II)

,

(114)

where (a) follows from substituting the value of the SPSA gradient estimate ∇iĴ(θt); (b) follows
from adding and subtracting ϕv(s0)⊤v̄+ and ϕv(s0)⊤v̄, where v̄ and v̄+ denote the fixed points for
the unperturbed and perturbed policies, respectively; (c) follows from rearranging the terms; (114)
follows from Assumption 8 (which states that the critic approximation error at the fixed point is
zero). Consequently, the first term in (I) equals the actual value function.

We bound (I) in (114) as follows:∣∣∣∣Et [J(θt + pt∆i(t))− J(θt)

pt∆i(t)
−∇iJ(θt)

]∣∣∣∣
(a)

≤

∣∣∣∣∣Et
[
pt(∇J(θt))⊤∆(t) + LJ

2 p
2
t∥∆(t)∥2

∆i(t)pt
−∇iJ(θt)

]∣∣∣∣∣
(b)

≤

∣∣∣∣∣∣Et
∑
j ̸=i

(
∆j(t)

∆i(t)

)
∇jJ(θt)

∣∣∣∣∣∣+
∣∣∣∣Et [LJpt∥∆(t)∥2

2

]∣∣∣∣
(c)

≤ dLJpt
2

, (115)

where (a) follows from the second-order Taylor expansion of J(θt + pt∆i(t)) around θt, lever-
aging the fact that J(θ) has a Lipschitz gradient (with constant LJ ) to bound the quadratic term;
(b) follows from the triangle inequality and expanding the inner product into a summation over
components. Here, the first term has an expectation of zero because ∆(t) is a Rademacher vector.
Specifically, each component ∆j(t) satisfies Et[∆j(t)] = 0, and the independence of ∆j(t) and
∆i(t) ensures that the expectation of the ratio ∆j(t)

∆i(t)
is also zero. By the linearity of expectation, the

entire summation contributes zero in expectation; (c) follows from bounding ∥∆(t)∥ ≤
√
d.

We bound (II) in (114) as follows:∣∣∣∣Et [ϕv(s0)⊤(v+m − v̄+) + ϕv(s0)
⊤(v̄ − vm)

pt∆i(t)

] ∣∣∣∣
(a)

≤
∣∣∣∣Et [∥ϕv(s0)∥∥v+m − v̄+∥+ ∥ϕv(s0)∥∥v̄ − vm∥

pt∆i(t)

] ∣∣∣∣
(b)

≤ ϕvmax

pt

(
Et
[
∥v+m − v̄+∥

]
+ Et [∥vm − v̄∥]

)
(c)

≤ ϕvmax

pt
√
m

(
10

1
2 e

−kβµ
2

γ2µ

(
E[∥w0 − ¯w(θt)∥]

) 1
2 +

10
1
2σ(θt)

µ

)
︸ ︷︷ ︸

K2

(d)

≤ ϕvmaxK2(t)

pt
√
m

, (116)

where (a) follows from the Cauchy-Schwarz inequality; (b) follows from the upper bound on the
norm of the features (Assumption 3) and linearity of expectation; (c) follows from bounding the
terms using the tail-averaged critic error bound in (11); (d) follows from defining K2 in step (c).
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Combining (115) and (116) in (114), we obtain an upper bound for (A) in (110) as:∥∥∥Et [∇Ĵ(θt)−∇J(θt)
]∥∥∥ ≤ d

3
2LJpt
2

+
d

1
2ϕvmaxK2(t)

pt
√
m

. (117)

We obtain the upper bound for (B) in (110) using arguments parallel to those used to derive the
upper bound for (A). The only difference lies in the feature vector, where ϕumax replaces ϕvmax.∥∥∥Et [∇Û(θt)−∇U(θt)

]∥∥∥ ≤ d
3
2LUpt
2

+
d

1
2ϕumaxK2(t)

pt
√
m

. (118)

Next, we bound (C) in (110) as follows:

The SPSA gradient estimate of the Lagrangian is denoted as

∇L̂(θt) = ∇Ĵ(θt)− λ
(
∇Û(θt)− 2Ĵ(θt)∇Ĵ(θt)

)
.

Taking the expectation with respect to the sigma field Ft = σ(θk, k ≤ t), denoted by Et, we have

Et[∥∇L̂(θt)∥22]
(a)

≤ 3Et[∥∇Ĵ(θt)∥22] + 3λ2Et[∥∇Û(θt)∥22] + 12λ2
(
Rmax

1− γ

)2

Et[∥∇Ĵ(θt)∥22]

(b)

≤ max

{
3 + 3

(
2λRmax

1− γ

)2

, 3λ2

}(
∥∇Ĵ(θt)∥22 + ∥∇Û(θt)∥22

)
(c)

≤ max

{
3 + 3

(
2λRmax

1− γ

)2

, 3λ2

}(
d

(
2Rmax

1− γ

)2
1

p2t
+ d

(
2R2

max

(1− γ)2

)2
1

p2t

)
(d)
=

K3

p2t
, (119)

where (a) follows from ∥a + b + c∥2 ≤ 3∥a∥2 + 3∥b∥2 + 3∥c∥2; (b) follows from tak-
ing the maximum of all coefficients; (c) follows from bounding the SPSA gradient estimate∥∥∥J(θt+pt∆i(t))−J(θt)pt∆i(t)

∥∥∥2 ≤
(

2Rmax
(1−γ)pt

)2
for the first term and similarly bounding the SPSA gra-

dient estimate of the square-value function for the second term; and (d) follows by defining K3 as a
constant, which is the coefficient of 1

p2t
in (c).

Now, substituting the bounds obtained for (A) from (117), (B) from (118), and (C) from (119) into
(110), we get

Et[L(θt+1)] ≥ Et[L(θt)]+αtEt
[
∥∇L(θt)∥2

]
−αtK1

(
1 +

2λRmax

1− γ

)∥∥∥Et [∇Ĵ(θt)−∇J(θt)
]∥∥∥︸ ︷︷ ︸

(A)

− λαtK1

∥∥∥Et [∇Û(θt)−∇U(θt)
]∥∥∥︸ ︷︷ ︸

(B)

− L

2
α2
tEt

[
∥∇L̂(θt)∥2

]
︸ ︷︷ ︸

(C)

≥ Et[L(θt)] + αtEt [∥∇L(θt)∥]− αtK1

(
1 +

2λRmax

1− γ

)(
d

3
2LJpt
2

+
d

1
2ϕvmaxK2(t)

pt
√
m

)

− λαtK1

(
d

3
2LUpt
2

+
d

1
2ϕumaxK2(t)

pt
√
m

)
− Lα2

t

2

(
K3

p2t

)
Rearranging the terms, we obtain

αtEt
[
∥∇L(θt)∥2

]
≤ Et[L(θt+1)]− Et[L(θt)]
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+ αtK1

(
1 +

2λRmax

1− γ

)(
d

3
2LJpt
2

+
d

1
2ϕvmaxK2(t)

pt
√
m

)

+ λαtK1

(
d

3
2LUpt
2

+
d

1
2ϕumaxK2(t)

pt
√
m

)
+
L1α

2
tK3

2p2t

(a)

≤ E[Ht]− E[Ht+1] +
αtK1d

3
2

2

(
LJ

(
1 +

2λRmax

1− γ

)
+ λLU

)
pt

+ αtK1K2(t)d
1
2

((
1 +

2λRmax

1− γ

)
(ϕvmax + λϕumax)

)
1

pt
√
m

+
α2
tL1K3

2p2t
,

Et
[
∥∇L(θt)∥2

] (b)

≤ 1

αt
(E [Ht+1]− E [Ht]) +

K1d
3
2

2

(
LJ

(
1 +

2λRmax

1− γ

)
+ λLU

)
pt

+K1K2(t)d
1
2

((
1 +

2λRmax

1− γ

)
(ϕvmax + λϕumax)

)
1

pt
√
m

+
αtL1K3

2p2t
,

where (a) follows from definingHt = L(θt)−L(θ∗), where θ∗ is the optimal policy, and (b) follows
from dividing both sides by αt.

Summing from t = 1 to n, and taking the total expectation, we get

n∑
t=1

E
[
∥∇L(θt)∥2

]
≤ C1

αt
+ C2

n∑
t=1

pt +
C3√
m

n∑
t=1

1

pt
+ C4

n∑
t=1

αt
p2t
.

Here, we obtain |L(θ)| ≤ C1 = 2Rmax
1−γ

(
1 + λRmax

1−γ

)
after a telescoping sum.

Dividing by n on both sides and setting αt = α, pt = p, we get

1

n

n∑
t=1

E
[
∥∇L(θt)∥2

]
≤ C1

nα
+ C2p+

C3√
mp

+
C4α

p2
.

Setting α = na, p = nb, m = nc, we have

E
[
∥∇L(θR)∥2

]
≤ C1n

−1−a + C2n
b + C3n

−b−c/2 + C4n
a−2b. (120)

Optimizing for a, b, c, we find their values to be a = − 3
4 , b = − 1

4 , c = 1. Substituting these values,
we get

E
[
∥∇L(θR)∥2

]
≤ C1n

−1/4 + C2n
−1/4 + C3n

−1/4 + C4n
−1/4

= O(n−1/4).


