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Summary
Mean field type games (MFTGs) describe Nash equilibria between large coalitions: each

coalition consists of a continuum of cooperative agents who maximize the average reward of
their coalition while interacting non-cooperatively with a finite number of other coalitions.
Although the theory has been extensively developed, we are still lacking efficient and scalable
computational methods. Here, we develop reinforcement learning methods for such games in
a finite space setting with general dynamics and reward functions. We start by proving that
MFTG solution yields approximate Nash equilibria in finite-size coalition games. We then
propose two algorithms. The first is based on quantization of mean-field spaces and Nash Q-
learning. We provide convergence and stability analysis under suitable conditions. We then
propose a deep reinforcement learning algorithm, which can scale to larger spaces. Numerical
experiments in 4 environments with mean-field distributions of dimension up to 200 show the
scalability and efficiency of the proposed method.

Contribution(s)
1. We prove that the solution of an MFTG provides an ϵ-Nash equilibrium for a game between

finite-size coalitions (Theorem 2.4), which provides a motivation for solving MFTGs.
Context: None

2. We propose a tabular RL method based on quantization of the continuous mean-field spaces
and Nash Q-learning (Hu & Wellman, 2003). We prove the convergence of this algorithm
under suitable conditions and analyze the error due to the discretization (Theorem 3.2).
Context: None

3. We propose a deep RL algorithm based on DDPG (Lillicrap et al., 2016) which does not
require quantization and hence is more scalable to problems with a large number of states.
Context: None

4. We illustrate both methods in 5 environments with distribution in dimension up to 200.
Context: Since this paper is the first to propose RL algorithms for (finite space) MFTGs
with general dynamics and rewards, there is no standard baseline to compare with. We thus
carry out a comparison with two baselines inspired by independent learning.
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Abstract

Mean field type games (MFTGs) describe Nash equilibria between large coalitions:
each coalition consists of a continuum of cooperative agents who maximize the aver-
age reward of their coalition while interacting non-cooperatively with a finite number
of other coalitions. Although the theory has been extensively developed, we are still
lacking efficient and scalable computational methods. Here, we develop reinforcement
learning methods for such games in a finite space setting with general dynamics and
reward functions. We start by proving that the MFTG solution yields approximate Nash
equilibria in finite-size coalition games. We then propose two algorithms. The first
is based on the quantization of mean-field spaces and Nash Q-learning. We provide
convergence and stability analysis. We then propose a deep reinforcement learning al-
gorithm, which can scale to larger spaces. Numerical experiments in 4 environments
with mean-field distributions of dimension up to 200 show the scalability and efficiency
of the proposed method.

1 Introduction

Game theory has found a large number of applications, from economics and finance to biology and
epidemiology. The most common notion of solution is the concept of Nash equilibrium, in which
no agent has any incentive to deviate unilaterally (Nash, 1951). At the other end of the spectrum is
the concept of social optimum, in which the agents cooperate to maximize a total reward over the
population. These notions have been extensively studied for finite-player games, see e.g. (Fudenberg
& Tirole, 1991). Computing exactly Nash equilibria in games with a large number of players is
known to be a very challenging problem (Daskalakis et al., 2009).

To address this challenge, the concept of mean field games (MFGs) has been introduced in (Lasry
& Lions, 2007; Huang et al., 2006), relying on intuitions from statistical physics. The main idea is
to consider an infinite population of agents, replacing the finite population with a probability distri-
bution, and to study the interactions between one representative player with this distribution. Under
suitable conditions, the solution to an MFG provides an approximate Nash equilibrium for the cor-
responding finite-player game. While MFGs typically focus on the solution concept of Nash equi-
librium, mean field control (MFC) problems focus on the solution concept of social optimum (Ben-
soussan et al., 2013). The theory of these two types of problems has been extensively developed, in
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particular using tools from stochastic analysis and partial differential equations, see e.g. (Bensoussan
et al., 2013; Gomes & Saúde, 2014; Carmona & Delarue, 2018) for more details.

However, many real-world situations involve agents that are not purely cooperative or purely non-
cooperative. In many scenarios, the agents form coalitions: they cooperate with agents of the same
group and compete with other agents of other groups. In the limit where the number of agents is
infinite while the number of coalitions remains finite, this leads to the concept of mean-field type
games (MFTGs) (Tembine, 2017). Various applications have been developed, such as blockchain
token economics (Barreiro-Gomez & Tembine, 2019), risk-sensitive control (Tembine, 2015) or
more broadly in engineering (Barreiro-Gomez & Tembine, 2021; Djehiche et al., 2017). Similar
problems have been studied under the terminology of mean field games among teams (Subramanian
et al., 2023) and team-against-team mean field problems (Sanjari et al., 2023; Yüksel & Başar,
2024). The case of zero-sum MFTG has received special interest (Başar & Moon, 2021; Cosso
& Pham, 2019; Guan et al., 2024), but the framework of MFTGs also covers general sum games
with more than two (mean-field) coalitions. MFTGs are different from MFGs because the agents
are cooperative within coalitions, while MFGs are about purely non-cooperative agents. They are
also different from MFC problems, in which the agents are purely cooperative. As a consequence,
computational methods and learning algorithms for MFGs and MFC problems cannot be applied
to compute Nash equilibria between mean-field coalitions in MFTGs. MFTGs are also different
from multi-population MFGs and MFC problems (see (Bensoussan et al., 2018, Section 3)). Last,
graphon games (Caines & Huang, 2019) and mixed mean field control games (Angiuli et al., 2023a)
correspond to limit scenarios with infinitely many mean-field groups. In such games, each player
has a negligible impact on the rest of the population, which is not the case in MFTGs, see (Tembine,
2017), so new methods are required for MFTGs.

Inspired by the recent successes of RL in two-player games such as Go (Silver et al., 2016) and
poker (Brown et al., 2020), RL methods have been adapted to solve MFGs and MFC problems,
see e.g. (Subramanian & Mahajan, 2019; Guo et al., 2019; Elie et al., 2020; Cui & Koeppl, 2021)
and (Gu et al., 2021; Carmona et al., 2023; Angiuli et al., 2023b) respectively, among many other ref-
erences. We refer to (Laurière et al., 2022) and the references therein for more details. Such methods
compute the solutions to mean field problems. A related topic is mean field multi-agent reinforce-
ment learning (MFMARL) (Yang et al., 2018), which studies finite-agent systems and replaces the
interactions between agents with the mean of neighboring agents’ states and actions. Extensions
include situations with multiple types and partial observation (Ganapathi Subramanian et al., 2020;
2021). However, the MFMARL setting differs substantially from MFTGs: (1) it does not take into
account a general dependence on the mean field (i.e., the whole population distribution), (2) it aims
directly for the finite-agent problem while using a mean-field approximation in an empirical way,
and (3) it is not designed to tackle Nash equilibria between coalitions. The works most related to
ours applied RL to continuous space linear-quadratic MFTGs by exploiting the specific structure of
the equilibrium policy in these games (Carmona et al., 2020; uz Zaman et al., 2024; Zaman et al.,
2024). In these settings, policies can be represented exactly with a small number of parameters. In
contrast, we focus on finite space MFTGs with general dynamics and reward functions, for which
there has been no RL algorithm thus far to the best of our knowledge.

Main contributions. Our main contributions are as follows:
1. We prove that solving an MFTG provides an ϵ-Nash equilibrium for a game between finite-size

coalitions (Theorem 2.4), which justifies studying MFTGs for finite-player applications.
2. We propose a tabular RL method based on quantization of the mean-field spaces and Nash Q-

learning (Hu & Wellman, 2003). We prove the convergence of this algorithm and analyze the
error due to discretization (Theorem 3.2).

3. We propose a deep RL algorithm based on DDPG (Lillicrap et al., 2016), which does not require
quantization and hence is more scalable to problems with a large number of states.

4. We illustrate both methods in 4 environments with distributions in dimensions up to 200. Since
this paper is the first to propose RL algorithms for (finite space) MFTGs with general dynamics
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and rewards, there is no standard baseline to compare with. We thus carry out a comparison with
two baselines inspired by independent learning.

The rest of the paper is organized as follows. In Section 2, we define the finite-agent problem
with coalitions, its mean-field limit, and establish their connection. We then reformulate the MFTG
problem in the language of mean field MDPs. In Section 3, we present an algorithm based on the
idea of Nash Q-learning, and we analyze it. Section 4 gives our deep RL algorithm for MFTG,
without mean-field discretization. Numerical results are given in Section 5. Section 6 is dedicated
to a summary and a discussion. The appendices contain proofs and additional numerical results.

2 Definition of the model

In this section, we define the finite-population m-coalition game and the limiting MFTG with m
(central) players. We will use the terminology agent for an individual in a coalition and central
player for the player who chooses the policy to be used by her coalition. We will sometimes write
player instead of central player.

2.1 Finite-population m-coalition game

We consider a game between m groups of many agents. Each group is called a coalition and behaves
cooperatively within itself. Alternatively, we can say that there are m central players, and each of
them chooses the behaviors to be used in their respective coalition. For each i ∈ [m], let Si and Ai

be respectively the finite state space and the finite action space for the individual agents in coalition
i. Let Ni denote the number of individual agents in coalition i. Let ∆(Si) and ∆(Ai) be the sets of
probability distributions on Si and Ai, respectively. Agent j in coalition i has a state xij

t at time t.
The state of coalition i is characterized by the empirical distribution µi,N̄

t = 1
Ni

∑Ni

j=1 δxij
t
∈ ∆(Si),

and the state of the whole population is characterized by the joint empirical distribution: µN̄
t =

(µ1,N̄
t , . . . , µm,N̄

t ). The state of every agent j ∈ [Ni] in coalition i evolves according to a transition
kernel pi : Si×Ai×

∏m
i′=1 ∆(Si′)→ ∆(Si). If the agent takes action aijt and the distribution is µN̄

t ,
then: xij

t+1 ∼ pi(·|xij
t , a

ij
t , µ

N̄
t ). We assume that the states of all agents in all coalitions are sampled

independently. During this transition, the agent obtains a reward ri(xij
t , a

ij
t , µ

N̄
t ) given by a function

ri : Si × Ai ×
∏m

i′=1 ∆(Si′) → R. All the agents in coalition i independently pick their actions
according to a common policy πi : Si×∆(S1)×· · ·×∆(Sm)→ ∆(Ai), i.e., aijt for all j ∈ [Ni] are
i.i.d. with distribution πi(·|xij

t , µ
N̄
t ). Notice that the arguments include the individual state and the

distribution of each coalition. We denote by Πi the set of such policies. The average social reward
for the central player of population i is defined as: J i,N̄ (π1, . . . , πm) = 1

Ni

∑Ni

j=1 E[
∑

t≥0 γ
trijt ],

where γ ∈ [0, 1) is a discount factor and the one-step reward at time t is rijt = rit(x
ij
t , a

ij
t , µ

N̄
t ). We

focus on the solution corresponding to a Nash equilibrium between the central players.

Definition 2.1 (Nash equilibrium for finite-population m-coalition type game) A policy profile
(π1

∗, . . . , π
m
∗ ) ∈ Π1 × · · · × Πm is a Nash equilibrium for the above finite-population game if:

for all i ∈ [m], for all πi ∈ Πi, J i,N̄ (πi;π−i
∗ ) ≤ J i,N̄ (πi

∗;π
−i
∗ ), where π−i

∗ denotes the vector of
policies for central players in other coalitions except i.

In a Nash equilibrium, there is no incentive for unilateral deviations at the coalition level. When
each Ni goes to infinity, we obtain a game between m central players in which each player controls
a population distribution. Such games are referred to as mean-field type games (MFTG for short).

2.2 Mean-field type game

Informally, as Ni → +∞, the state µi,N̄
t of coalition i has a limiting distribution µi

t ∈ ∆(Si) for
each i ∈ [m], and the state µN̄

t of the whole population converges to µt = (µ1
t , . . . , µ

m
t ) ∈ ∆(S1)×

· · · ×∆(Sm). We will refer to the limiting distributions as the mean-field distributions. Based on
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propagation-of-chaos type results (McKean, 1966; Sznitman, 1991), we expect all the agents’ states
to evolve independently, interacting only through the mean-field distributions. It is thus sufficient to
understand the behavior of one representative agent per coalition. A representative agent in mean-
field coalition i has a state xi

t ∈ Si which evolves according to: xi
t+1 ∼ pi(·|xi

t, a
i
t, µt), ait ∼

πi(·|xi
t, µt), where πi ∈ Πi is the policy for coalition i. We consider that this policy is chosen by

a central player and then applied by all the infinitesimal agents in coalition i. The total reward
for coalition i is: J i(π1, . . . , πm) = E

[∑
t≥0 γ

tri(xi
t, a

i
t, µt)

]
, where, intuitively, the expectation

takes into account the average over all the agents of coalition i. Then, the goal is to find a Nash
equilibrium between the m central players.

Definition 2.2 (Nash equilibrium for m-player MFTG) A policy profile (π1
∗, . . . , π

m
∗ ) ∈ Π1 ×

· · · × Πm is a Nash equilibrium for the above MFTG if: for all i ∈ [m], for all πi ∈ Πi,
J i(πi;π−i

∗ ) ≤ J i(πi
∗;π

−i
∗ ), where π−i

∗ denotes the vector of policies for players in other coali-
tions except i.

In other words, in a Nash equilibrium, the central players have no incentive to deviate unilaterally.
This can also be expressed through the notion of exploitability, which quantifies to what extent a
policy profile is far from being a Nash equilibrium, see (Heinrich et al., 2015; Perrin et al., 2020).

Definition 2.3 (Exploitability) The exploitability of a policy profile (π1, . . . , πm) ∈ Π1 × · · · ×
Πm is E(π1, . . . , πm) =

∑m
i=1 E i(π1, . . . , πm), where the i-th central player’s exploitability is:

E i(π1, . . . , πm) = maxπ̃i∈Πi J i(π̃i;π−i)− J i(πi;π−i) and π−i denotes the vector of policies for
central players in other coalitions except i.

Notice that E i(π1, . . . , πm) quantifies how much player i can be better off by playing an optimal
policy against π−i instead of πi. In particular E(π1, . . . , πm) = 0 if and only if (π1, . . . , πm) is a
Nash equilibrium for the MFTG. More generally, we will use the exploitability to quantify how far
(π1, . . . , πm) is from being a Nash equilibrium.

The main motivation behind the MFTG is that its Nash equilibrium provides an approximate Nash
equilibrium in the finite-population m-coalition game, and the quality of the approximation increases
with the number of agents. In particular, we can show that solving an MFTG provides an ϵ-Nash
equilibrium for a game between finite-size coalitions. The following assumptions are classical in the
literature on MFC and MFTGs, see e.g. (Cui et al., 2024; Guan et al., 2024).

Assumption 1 (a) For each i ∈ [m], the reward function ri(x, a, µ) is bounded by a constant
Cr > 0 and Lipschitz w.r.t. µ with constant Lr.
(b) The transition probability p(x′|x, a, µ) satisfies the following Lipschitz bound: ∥p(·|x, a, µ) −
p(·|x, a, µ̃)∥1 ≤ Lpd(µ, µ̃) for every x ∈ Si, a ∈ Ai, and µ, µ̃ ∈ ∆(Si).
(c) The policies π(a|x, µ) satisfy the following Lipschitz bound: ∥π(·|x, µ) − π(·|x, µ̃)∥1 ≤
Lπd(µ, µ̃) for every x ∈ Si, and µ, µ̃ ∈ ∆(Si).

Theorem 2.4 (Approximate Nash equilibrium) Suppose that Assm. 1 holds. Let (π1
∗, . . . , π

m
∗ ) ∈

Π1 × · · · × Πm be a Nash equilibrium for the MFTG. When the discount factor γ satisfies γ(1 +

Lπ + Lp) < 1, then max
π̃i

J i,N̄ (π̃i;π−i
∗ ) ≤ J i,N̄ (πi

∗;π
−i
∗ ) + ε(N), for all i ∈ [m], with ε(N) =

Cmaxi∈[m]

{
|Si|
√
|Ai|/

√
Ni

}
, where C is a constant that depends on the Lipschitz constants and

the bound on the reward in Assm. 1.

In other words, if all the agents use the policy coming from the MFTG corresponding to their coali-
tion, then each coalition can increase its total reward only marginally (at least when the number of
agents is large enough). In contrast with e.g. (Saldi et al., 2018, Theorem 4.1), our result provides
not only asymptotic convergence but also a rate of convergence.

Proof:(sketch) The proof consists of three main steps. First, we show that the distance be-
tween µt and µN̄

t for any t ≥ 0 can be controlled by the distance between µ0 and µN̄
0 , and
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maxi∈[m]

{
|Si|
√
|Ai|/

√
Ni

}
, using the idea of propagation of error and analyzing the state-action

distribution. Second, based on the Lipschitz conditions, we use the derived bound to control
|J i,N̄ (π1, . . . , πm) − J i(π1, . . . , πm)|. Lastly, we prove the approximated Nash equilibrium by
rewriting maxπ̃i J i,N̄ (π̃i;π−i

∗ ) − J i,N̄ (πi
∗;π

−i
∗ ) and the triangle inequality. More details of the

proof are provided in Suppl. A. □

2.3 Reformulation with Mean-Field MDPs

Our next step towards RL methods is to rephrase the MFTG in the framework of Markov decision
processes (MDPs). Since the game involves the population’s states represented by probability dis-
tributions, the MDPs will be of mean-field type. We will thus rely on the framework of mean-field
Markov decision processes (MFMDP) (Motte & Pham, 2022; Carmona et al., 2023). But in con-
trast with these prior works, we consider a game between MFMDPs, which is more challenging
than a single MFMDP. The key remark is that, since xi

t has distribution µi
t and ait has distribution

πi(·|xi
t, µt), the expected one-step reward can be expressed as a function r̄i of the i-th policy and

the distributions:

r̄i(µt, ā
i
t) =

∑
x∈Si

µi
t(x)

∑
a∈Ai

āit(a|x)ri(x, a, µt),

where āit = πi
t(·|·, µt). This will help us to rewrite the problem posed to the central player i, as

an MDP. Before doing so, we introduce the following notations: S̄ =×m

i=1
S̄i is the (mean-field)

state space, where S̄i = ∆(Si) is the (mean-field) state space of population i. The (mean-field)
state is s̄t = µt ∈ S̄; Āi = ∆(Ai)|S

i| is the (mean-field) action space; r̄i : S̄ × Āi → R is as
defined above; p̄ : S̄ × Ā1 × · · · × Ām → S̄ is defined such that: p̄(s̄t, ā1t , . . . , ā

m
t ) = s̄t+1 where,

if s̄t = (µ1
t , . . . , µ

m
t ) and āit = πi

t(·|·, µt), then s̄t+1 = (µ1
t+1, . . . , µ

m
t+1), where we recall that µi

t+1

is the distribution of xi
t+1. In other words, p̄ encodes the transitions of the mean-field state, which

depends on all the central players’ (mean-field) actions. To stress the fact that the transitions are
deterministic, we will sometimes use the notation F̄ = p̄ to stress that this is a transition function
(at the mean-field level). A (mean-field) policy is now a function π̄i : S̄ → Āi. In other words,
the central player first chooses a function π̄i of the mean field. When applied on µt, π̄i(µt) returns
a policy for the individual agent, i.e., π̄i(µt) = āi(µt) : S

i ∋ xi
t 7→ āi(µt)(·|xt) = πi(·|xi

t, µt) ∈
∆(Ai). Although this approach may seem quite abstract, it allows us to view the problem posed to
the i-th central player as a “classical” MDP (modulo the fact that the state consists of the distributions
of all coalitions). We can then borrow tools from reinforcement learning to solve this MDP.

Remark 2.5 Notice that an action for central player i, i.e., an element āi of Āi. From the point of
view of an agent in coalition i, it is a decentralized policy. Then π̄i is a mean-field policy for the
central player, whose input is a mean field. This generalizes the approach proposed in (Carmona
et al., 2023) to the case of multiple controllers. It is different from, e.g. (Yang et al., 2018), in which
there is no central player and no mean-field policies. This allows us to represent the behaviors of
coalitions that react to the mean fields of other coalitions.

2.4 Stage game equilibria

We now rephrase the notion of MFTG equilibrium using the value function, which will lead to a
connection with the concept of the stage game. To make the model more general, we also assume
that the reward of coalition i could be a function of the actions of all central players.

The central player of coalition i aims to choose a policy π̄i to maximize the discounted sum of
reward: v̄iπ̄(s̄) = v̄i(s̄, π̄) := Eπ̄

[∑∞
t=0 γ

tr̄i(s̄t, ā
i
t)
]
, where π̄ = (π̄1, . . . , π̄m) is the policy

profile and s̄0 = s̄, s̄t+1 ∼ p̄(·|s̄t, ā1t , . . . , āmt ), ājt ∼ π̄j(·|s̄t), j = 1, . . . ,m, t ≥ 0.

We can now rephrase the notion of Nash equilibrium for the MFTG (Def. 2.2) in this framework.
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Definition 2.6 (Nash equilibrium for MFTG rephrased) An MFTG Nash equilibrium π̄∗ =
(π̄1

∗, . . . , π̄
m
∗ ) is a policy profile such that for all i = 1, . . . ,m, we have v̄i(s̄, π̄∗) ≥ v̄i(s̄, (π̄i, π̄−i

∗ )),
∀s̄ ∈ S̄,∀π̄i ∈ Π̄i.

To simplify the notation, we let ā = (ā1, . . . , ām), π̄−i(dā−i|s̄) =
∏

j ̸=i π̄
j(dāj |s̄), ā−i ∈ Ā−i =∏

j ̸=i Ā
j . The Q-function for central player i is defined as: Q̄i

π̄(s̄, ā) = Eπ̄

[∑∞
t=0γ

tr̄i(s̄t, ā
i
t)|s̄0 =

s̄, ā0 = ā
]
.. We now introduce an MFMDP for the central player i when the policies of the other

players are fixed. We define the following MDP, denoted by MDP(π̄−i).

Definition 2.7 (MDP(π̄−i)) An MDP for a central player i against fixed poli-
cies of other players is a tuple (S̄, Āi, p̄π̄−i , r̄π̄−i , γ), where p̄π̄−i(s̄′|s̄, āi) =∫
Ā−i

p̄(s̄′|s̄, ā)π̄−i(dā−i|s̄), r̄π̄−i(s̄, āi) = r̄i(s̄, āi).

Next, we define the notion of a stage game, which is a Nash equilibrium for a one-step game. This
serves as an intermediate goal in Nash Q-learning, to learn a global-in-time Nash equilibrium.

Definition 2.8 (Stage game and stage Nash equilibrium) Given a (mean-field) state s̄ ∈ S̄ and a
policy profile π̄ = (π̄1, . . . , π̄m), the (mean-field) stage game induced by s̄ and π̄ is a static game
in which the player i takes an action āi ∈ Āi, i = 1, . . . ,m and gets the reward Q̄i

π̄(s̄, ā
1, . . . , ām).

Player i is allowed to use a mixed strategy σi ∈ ∆(Āi). A Nash equilibrium for this stage game is
a strategy profile σ∗ = (σ1

∗, . . . , σ
m
∗ ) such that, for all σi ∈ ∆(Āi),

σ1
∗ · · ·σm

∗ Q̄i
π̄(s̄) ≥ σ1

∗ · · ·σi−1
∗ σiσi+1

∗ · · ·σm
∗ Q̄i

π̄(s̄)

where we define σ1 · · ·σmQ̄i
π̄(s̄) := r̄i(s̄, σi) + γ

∫
S̄

∫
Ā

v̄i(s̄′, π̄)p̄(ds̄′|s̄, ā)σ(dā|s̄), with Ā :=

Ā1 × · · · × Ām, σ(dā|s̄) :=
∏m

i=1 σ
i(dāi|s̄), and r̄i(s̄, σi) := Eāi∼σi r̄i(s̄, āi).

We now define a mean-field version of the NashQ function introduced by Hu & Wellman (2003).
Intuitively, it quantifies the reward that player i receives when the system starts in a given state, all
players use the equilibrium strategies of the stage game for the first action, and then play according
to a fixed policy profile for all remaining time steps.

Definition 2.9 (NashQ function) Given a Nash equilibrium (σ1
∗, . . . , σ

m
∗ ), the NashQ function of

player i is defined as: NashQ̄i
π̄(s̄) := σ1

∗ · · ·σm
∗ Q̄i

π̄(s̄).

We conclude by showing the link between Defs. 2.2 and 2.8 (the proof is in Suppl. B).

Proposition 2.10 The following statements are equivalent: (i) π̄∗ = (π̄1
∗, . . . , π̄

m
∗ ) is a Nash

equilibrium of the MFTG with the equilibrium payoff (v̄1π̄∗
, . . . , v̄mπ̄∗

); (ii) For every s̄ ∈ S̄,
(π̄1

∗(s̄), . . . , π̄
m
∗ (s̄)) is a Nash equilibrium in the stage game induced by the state s̄ and the pol-

icy profile π̄∗.

3 Nash Q-learning and Tabular Implementation

In this section, we present an adaptation of the Nash Q-learning of Hu & Wellman (2003) to solve
MFTGs. It should be noted that the original algorithm in Hu & Wellman (2003) is for finite state
and action spaces, and to the best of our knowledge, extensions to continuous spaces have been
proposed only in special cases, such as Vamvoudakis (2015); Casgrain et al. (2022). Still, there is
no extension to continuous spaces for general games that could be applied to MFTGs. The main
difficulty lies in computing the solution to the stage game at each iteration, which relies on the fact
that the action space is finite. So, this algorithm cannot be applied directly to solve MFTGs.

In order to implement this method using tabular RL, we will start by discretizing the simplexes
following the idea in Carmona et al. (2023). This allows us to fully analyze the algorithm. However,
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this approach is not scalable in terms of the number of states, which is why in Section 4, we will
present a deep RL method that does not require simplex discretization.

3.1 Discretized MFTG

Since Si and Ai are finite, S̄i = ∆(Si) and ∆(Ai) are (finite-dimensional) simplexes. We endow
S̄ and ∆(Ai) with the distances dS̄(s̄, s̄′) =

∑
i∈[m] d(s̄

i, s̄′
i
) =

∑
i∈[m]

∑
x∈Si |µi(x) − µ′i(x)|,

and dAi(āi(s̄), ā′
i
(s̄)) =

∑
x,a |πi(a|x, s̄) − π′i(a|x, s̄)|, where s̄i = µi, āi(s̄) = πi(·|·, s̄). In the

action space Āi, we define the distance dĀi(āi, ā′
i
) = sups̄∈S̄ dAi(āi(s̄), ā′

i
(s̄)). However, S̄ and

Āi are not finite. To apply the tabular Q-learning algorithm, we replace S̄ and Āi with finite sets.
For i = 1, . . . ,m, let Ši ⊂ S̄i and ∆̌(Ai) ⊂ ∆(Ai) be finite approximations of S̄i and ∆(Ai).
We then define the (mean-field) finite state space and action space Š = Πm

i=1Š
i ⊂ S̄ and Ǎi =

∆̌(Ai)|Si|. Let ϵS = maxs̄∈S̄ minš∈Š dS̄(s̄, š) and ϵA = maxi maxāi∈Āi minǎi∈Ǎi dĀi(āi, ǎi),
which characterize the fineness of the discretization.The policy space of each player i is Π̌i = {π̌i :
Š → ∆(Ǎi)}. We will also use the projection operator ProjŠ : S̄ → Š, which maps s̄ to the closest
point in Š (ties broken arbitrarily). This will ensure that the state takes value in Š. Specifically,
given a state št and a joint action (ǎ1t , . . . , ǎ

m
t ), we generate s̄t+1 = F̄ (št, ǎ

1
t , . . . ǎ

m
t ). Then, we

project s̄t+1 back to Š and denote the projected state by št+1 = ProjŠ(s̄t+1). This finite space
setting can be regarded as a special case of a stochastic game of m players, and Theorem 2 in (Fink,
1964) guarantees the existence of a Nash equilibrium.

3.2 Nash Q-learning algorithm

We briefly describe the tabular Nash Q-learning algorithm, which is similar to the algorithm pre-
sented in Hu & Wellman (2003). The main idea is that, instead of using classical Q-learning up-
dates, which involve only the player’s own Q-function, the players will use the NashQ function for
a stage game.

At each step t, the players use their current estimate of the Q-functions to define a stage game. They
compute the Nash equilibrium, say (σ̌1, . . . , σ̌m) ∈

∏m
i=1 Π̌

i, and deduce the associated NashQ
function, which is then used to update their estimates of the Q-functions. Namely, at each step t,
player i observes š and takes an action according to a behavior policy chosen to ensure exploration.
Then, she observes the reward, actions of each player, and the next state š′. She then solves the stage
game with rewards (Q̌1

t (š
′), . . . , Q̌m

t (š′)), where Q̌i
t(š

′) : (ā1, . . . , ām) 7→ Q̌i
t(š

′, ā1, . . . , ām). Let
(π̌i,1

∗ (š′), . . . , π̌i,m
∗ (š′)) be the Nash equilibrium obtained on player i’s belief. The NashQ function

of player i is defined as: NashQ̌i
t(š

′) = π̌i,1
∗ · · · π̌i,m

∗ Q̌i
t(š

′). From here, she updates the Q-values
according to the following rule, where αt is a learning rate:

Q̌i
t+1(š, ǎ

1, . . . , ǎm) = (1− αt)Q̌
i
t(š, ǎ

1, . . . , ǎm) + αt(r̄
i
t + βNashQ̌i

t(š
′)). (1)

It is noted that in each iteration, the Q-values of each player are updated asynchronously based on
the observation. The detailed algorithm is described in Suppl. D, Algo. 2.

3.3 Nash Q-learning analysis

We will see that Q̌i
t from Algo. 2 converges to Q̌i

π̌∗
under the following assumption, which is

classical in the literature on NashQ-learning, see e.g. Hu & Wellman (2003); Yang et al. (2018).
We use it for the proof, although it seems that in practice the algorithm works well even when this
assumption does not hold.

Assumption 2 (a) Every state š ∈ Š and action ǎi ∈ Ǎi, i = 1, . . . ,m, are visited infinitely often.
(b) αt satisfies the following two conditions for all t, š, ǎ1, . . . , ǎm: 1. 0 ≤ αt(š, ǎ

1, . . . , ǎm) < 1,∑∞
t=0 αt(š, ǎ

1, . . . , ǎm) = ∞,
∑∞

t=0 α
2
t (š, ǎ

1, . . . , ǎm) < ∞, the latter two hold uniformly and
with probability 1. 2. αt(š, ǎ

1, . . . , ǎm) = 0, if (š, ǎ1, . . . , ǎm) ̸= (št, ǎ
1
t , . . . , ǎ

m
t ).

(c) One of the following two conditions holds: 1. Every stage game (Q̌1
t (š

′), . . . , Q̌m
t (š′)) for all t
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and š, has a global optimal point, and players’ payoff in this equilibrium are used to update their
Q-functions. 2. Every stage game (Q̌1

t (š
′), . . . , Q̌m

t (š′)) for all t and š, has a saddle point, and
players’ payoff in this equilibrium are used to update their Q-functions.

Here, a global optimal point is a joint policy of the stage game such that each player receives her
highest reward following this policy. A saddle point is a Nash equilibrium policy of the stage game
such that each player would receive a higher reward if at least one of the other players takes a policy
different from the Nash equilibrium policy.

Theorem 3.1 (NashQ-learning convergence) Under Assm. 2, Q̌t = (Q̌1
t , . . . , Q̌

m
t ), updated by (1)

converges to the Nash equilibrium Q-functions Q̌π̌∗ = (Q̌1
π̌∗

, . . . , Q̌m
π̌∗

).

We omit the proof of Theorem 3.1 as it is essentially the same as in (Hu & Well-
man, 2003). We then focus on the difference between the approximated Nash Q-function,
Q̌i

t(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām)) and the true Nash Q-function, Q̄i
π̄∗

(s̄, ā1 . . . ām), in
the infinite space S̄ × Āi × · · · × Ām. For this proof, we use the following assumption, which is a
multi-player version of the assumptions in (Carmona et al., 2023).

Assumption 3 (a) For each i, r̄i is bounded and Lipschitz continuous w.r.t. (s̄t, ā
i
t) with constant

Lr̄i . F̄ is Lipschitz continuous w.r.t. (s̄, ā1, . . . , ām) with constant LF̄ in expectation.
(b) v̄iπ̄ is Lipschitz continuous w.r.t. s̄ with constant Lv̄π̄ .

Assm. 3 (a) can be achieved with suitable conditions on the game. The boundedness of the reward
function, together with the discount factor 0 < γ < 1, can also lead to the boundedness of the payoff
function v̄iπ̄∗

. For classical MDPs, Lipschitz continuity of the value function can be derived from
assumptions on the model as in (Motte & Pham, 2022).

To alleviate the notation, we let: Proj(s̄, ā1 . . . ām) = (ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām)).

Theorem 3.2 (Discrete problem analysis) Let ϵ > 0. Suppose Assm. 3 holds and there is a
unique pure policy π̄p

∗ such that π̄p
∗ is a global optimal point for the stage game Q̄i

π̄p
∗
(s̄) for

each i = 1, 2, · · · ,m and s̄ ∈ S̄. Then, if t is large enough, for each i, s̄ ∈ S̄, we have
|Q̌i

t(Proj(s̄, ā
1 . . . ām)) − Q̄i

π̄p
∗
(s̄, ā1 . . . ām)| ≤ ϵ′, where ϵ′ = ϵ + C1ϵA + C2ϵS , with ϵS and ϵA

defined above, respectively, C1 = 1
1−γ (Lr̄i + γLv̄i

π̄∗
LF̄m) and C2 = γ

1−γLv̄i
π̄∗

+Lr̄i + γLv̄i
π̄∗
LF̄ .

Note that the first ϵ in the bound ϵ′ can be arbitrarily chosen small, provided that t is large enough.
The second and third terms are controlled by ϵA and ϵS and can be small if we choose a finer simplex
approximation. The proof is provided in Suppl. C.

4 Deep RL for MFTG

While the above extension of the NashQ learning algorithm has the advantage of being fully analyz-
able and enjoying convergence guarantees, it is not scalable to large state and action spaces. Indeed,
it requires discretizing the simplexes of distributions on states and actions. The number of points
increases exponentially with the number of states and actions, making the algorithm intractable for
very fine discretizations. Furthermore, each step relies on solving a stage game, and computing a
Nash equilibrium is a difficult task for large games, even if they are static.

For this reason, we now present a deep RL algorithm whose main advantages are that it does not
require discretizing the simplexes and does not require solving any stage game. The state and ac-
tion distributions are represented as vectors (containing the probability mass functions) and passed
as inputs to neural networks for the policies and the value functions. At the level of the central
player for coalition i, an action is an element āi ∈ Āi. The input s̄ is a simplex that represents
the distribution of the population over the finite-state space. Although it corresponds to a mixed
policy at the individual agent level, it represents a single action for the central player. We focus
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on learning deterministic central policies, which are functions that map a mean-field state s̄ to a
mean-field action āi. To this end, we use a variant of the deep deterministic policy gradient algo-
rithm (DDPG) (Lillicrap et al., 2016), as shown in Algo. 1. Our algorithm differs substantially from
the DDPG algorithm, as the behaviors of the two players are coupled. Each player interacts with a
dynamic environment that is also influenced by the other player. Unlike the tabular Nash Q-learning
algorithm, it is generally difficult to have a rigorous proof of convergence due to the complexity of
deep neural networks. Although the theoretical convergence of some algorithms has been studied,
such as deep Q-learning (Fan et al., 2020), deterministic policy gradient (Xiong et al., 2022), and
actor-critic algorithms with multilayer neural networks (Tian et al., 2024), to the best of our knowl-
edge, the convergence of DDPG under assumptions that could be applied to our setting has not been
established. Also, in the case of MFTGs, we would need to analyze whether the solution converges
to a Nash equilibrium, which is more complex than solving an MDP. Therefore, we leave the the-
oretical analysis for future work and focus on the numerical analysis. We use several numerical
metrics to measure the performance of DDPG-MFTG Algo. 1, as detailed in the next section.

Algorithm 1 DDPG for MFTG

1: Inputs: A number of episodes N ; a length T for each episode; a minibatch size Nbatch; a
learning rate τ .

2: Outputs: Policy functions for each central player represented by πi
ωi

.
3: Initialize parameters θi and ωi for critic networks Qi

θi
and actor networks πi

ωi
, i = 1, ...,m

4: Initialize θ′i ← θi and ω′
i ← ωi for target networks Qi′

θ′
i

and πi′
ω′

i
, i = 1, ...,m

5: Initialize replay buffer Rbuffer
6: for k = 0, 1, ..., N − 1 do
7: Initialize distribution s̄0
8: for t = 0, 1, . . . , T − 1 do
9: Select actions āit = πi

ωi
(s̄t) + ϵt, where ϵt is the exploration noise, for i = 1, ...,m

10: Execute āit, observe reward r̄i(s̄t, ā
i
t), for i = 1, ...,m

11: Observe s̄t+1

12: Store transition (s̄t, ā
1
t , ..., ā

m
t , r̄1t , ..., r̄

m
t , s̄t+1) in Rbuffer

13: Sample a random minibatch of Nbatch transitions (s̄j , ā
1
j , ..., ā

m
j , r̄1j , ..., r̄

m
j , s̄j+1) from

Rbuffer
14: Set yij = r̄ij + γQi′

θ′
i
(s̄j+1, π

i′
ω′

i
(s̄j+1)) for i = 1, ...,m, j = 1, ..., Nbatch

15: Update the critic networks by minimizing the loss: Li(θi) =
1

Nbatch

∑
j(y

i
j −Qi

θi
(s̄j , ā

i
j))

2,
for i = 1, ...,m

16: Update the actor policies using the sampled policy gradients∇ωiv
i, for i = 1, ...,m:

∇ωi
vi(ωi) ≈

1

Nbatch

∑
j

∇āiQi
θi(s̄j , π

i
ωi
(s̄j))∇ωi

πi
ωi
(s̄j)

17: Update target networks: θ′i ← τθi + (1− τ)θ′i, ω
′
i ← τωi + (1− τ)(ω′

i), for i = 1, ...,m.
18: end for
19: end for

5 Numerical experiments

Metrics. To assess the convergence of our algorithms, we use several metrics. First, we check the
testing rewards of each central player (i.e., the total reward for each coalition, averaged over the
testing set of initial distributions). But this is not sufficient to show that the policies form a Nash
equilibrium of the MFTG. For this, we compute the exploitability. This requires training a best
response (BR) policy for each player independently, which is also done with deep RL, using the
DDPG method. Our experiments for hyperparameter sweeping in Suppl. G show that the DDPG
provides a reasonable approximation for the best-response policy. Lastly, we also check the evo-
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lution of the distributions to ensure that they align with our expectations for the Nash equilibrium.
The pseudo-codes for evaluating a policy profile and computing the exploitability are respectively
provided in Algs. 4 and 5 in Suppl. E.
Training and testing sets. The training set consists of randomly generated tuples of distributions,
and each element of the tuple represents the initial distribution of a player. The testing set consists
of a finite number of tuples of distributions that are not in the training set. Details of the training and
testing sets are described on a case-by-case basis.
Baseline. To the best of our knowledge, there are no RL algorithms that can be applied to the type
of MFTG problems we study here. In the absence of standard baselines, we will use two types of
baselines for each of our algorithms. For small-scale examples, we discretize the mean-field state
and action spaces and employ DNashQ-MFTG. Here, we use an algorithm where each coalition
runs an independent mean-field type Q-learning (after suitable discretization of the simplexes) as a
baseline. We call this method Independent Learning-Mean Field Type Game (IL-MFTG, for short,
explained in Appendix F.1). For larger-scale examples with many states, the baseline is an ablated
DDPG method in which each central player can only see her own (mean-field) state; i.e., the states
of the other players are masked. For both our algorithms and the baselines, the exploitability is
computed using our original class of policies, see Algo. 5.
Games. We present here 3 examples. One more is presented in Suppl. F.5. Table 1 in Suppl.
summarizes the average improvements obtained by our method (at least 30% in each game).

Example 1: 1D Population Matching Grid Game There are m = 2 populations. The agent’s
state space is a 3-state 1D grid world. The possible actions are moving left, staying, and moving
right, with individual noise perturbing the movements. The rewards encourage Coalition 1 to stay
where it is initialized, but also to consider avoiding Coalition 2, and encourage Coalition 2 to match
Coalition 1. For the model details and the training and testing distributions, see Suppl. F.2. We
implement DNashQ-MFTG to solve this game. The numerical results are presented in Fig. 1. We
make the following observations. Testing reward curves: Fig 1 (left) shows the testing rewards.
In this game setting, the Nash equilibrium is for Coalition 1 to maintain its current position and
consider the impact of Coalition 2 simultaneously, while Coalition 2 aligns with Coalition 1 per-
fectly. The testing reward for Coalition 1 increases over the first 2000 episodes. The testing reward
for Coalition 2 increases during the first 3000 episodes and fluctuates below 0 due to the noise in
the environment dynamics. Exploitability curves: Fig. 1 (middle) shows the averaged exploitabil-
ities over the testing sets and players. The game reaches an approximate Nash equilibrium around
4000 episodes, with slight fluctuations thereafter. However, the independent learner remains high
exploitability. The exploitability oscillates due to the noise in the environment dynamics. Distri-
bution plots: Fig. 1 (right) illustrates the distribution evolution during the game. After training,
Coalition 1 mainly stays where it is, while Coalition 2 tries to match with Coalition 1. See Suppl.
F.2 for details.
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Figure 1: Ex. 1: Left and middle: averaged testing rewards and exploitabilities resp. (mean ±
stddev). Right: one realization of population evolution at t = 0 and 4 for one testing distribution.

Example 2: Four-room with crowd aversion There are m = 2 populations. The agent’s state
space is a 2D grid world composed of 4 rooms of size 5×5 connected by 4 doors, as shown in Fig. 2
(right). The policies’ inputs are thus of dimension 2×4×5×5 = 200. The reward function encour-
ages the two populations to spread as much as possible (to maximize the entropy of the distribution)
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while avoiding each other. Furthermore, Coalition 2 has a penalty for moving to rooms other than
the one in which she started. See Suppl. F.3 for details of the reward and the training and testing
distributions. We implement DDPG-MFTG to solve this game. The numerical results are presented
in Fig. 2. We make the following observations. Testing reward curves: Fig. 2 (left, top) shows
the testing rewards. Exploitability curves: Fig. 2 (left, bottom) shows the average exploitabilities
over the testing set and players. The DDPG-MFTG algorithm performs better. Distribution plots:
Figs. 2 (right) illustrate the distribution evolution during the game for a (pair of) initial distribu-
tions and for the policy obtained by the DDPG-MFTG algorithm and the baseline. We see that the
populations spread well in any case, but with DDPG-MFTG, Coalition 1 can see where Coalition 2
is and then decides to avoid that room. This explains the better performance of the DDPG-MFTG
algorithm.
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Figure 2: Ex. 2: Left, top, and bottom: averaged testing rewards and exploitabilities resp. (mean ±
stddev). Right, the top two rows: distribution evolution of the two populations using our method.
The bottom two rows on the right: distribution evolution using the baseline. Color bars indicate
density values.

Example 3: Predator-prey 2D with 4 groups We now present an example with more coalitions.
There are m = 4 populations. The player’s state space is a 5 × 5-state 2D grid world with walls
on the boundaries (no periodicity). The reward functions represent the idea that Coalition 1 is
a predator of Coalition 2. Coalition 2 avoids Coalition 1 and chases Coalition 3, which avoids
Coalition 2 while chasing Coalition 4. Coalition 4 tries to avoid Coalition 3. There is also a cost
for moving. See Suppl. F.4 for details of the reward and the training and testing distributions. We
implement DDPG-MFTG to solve this game. The numerical results are presented in Fig. 3. We
make the following observations. The testing reward curves (Fig. 8 in Suppl.) do not show a clear
increase for the same reason as the previous example. Exploitability curves: Fig. 3 (left) shows the
averaged exploitabilities over the testing set and players. Initially, the baseline and DDPG-MFTG
have similar exploitability for the first several thousand episodes. However, after that period, the
baseline maintains higher exploitability than DDPG-MFTG. The exploitability of DDPG-MFTG
decreases to zero faster, although it fluctuates between 0 and 100.

Distribution plots: Fig. 3 (right) shows the distribution evolution during testing. Coalition 1 chases
Coalition 2. Coalition 2 tries to catch Coalition 3 while avoiding Coalition 1. Coalition 3 tries to
catch Coalition 4 while escaping from Coalition 2. Coalition 4 simply escapes from Coalition 3.
The testing rewards are shown in Suppl. F.4.
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Figure 3: Ex. 3: Left: averaged exploitabilities (mean± stddev). Right: populations’ evolution, one
coalition per row and one time per column: t = 0, 5, 10, 15, 20. Color bars indicate density values.

6 Conclusion

Summary. In this work, we made both theoretical and numerical contributions. First, we proved
that the Nash equilibrium for a mean-field type game provides an approximate Nash equilibrium
for a game between coalitions of finitely many agents, and we obtained a rate of convergence.
We then proposed the first (to our knowledge) value-based RL methods for MFTGs: a tabular RL
and a deep RL algorithm. We applied them to several MFTGs. Our proposed methods provide a
way to approximately compute the Nash equilibrium of a finite number of players, which is hard
to solve numerically. We proved the convergence of the tabular algorithm, and through extensive
experiments, we illustrated the scalability of the deep RL method.

Related works. Carmona et al. (2020); uz Zaman et al. (2024); Zaman et al. (2024) studied RL for
MFTGs of LQ form only, with specific methods when the policy is deterministic and linear, while
our algorithms are for generic MFTGs with discrete spaces. (Motte & Pham, 2022; Carmona et al.,
2023) focused on single MFMDPs while we consider a game between MFMDPs. Subramanian &
Mahajan (2019); Guo et al. (2019); Elie et al. (2020); Cui & Koeppl (2021) propose RL for MFGs
but are limited to population-independent policies. Perrin et al. (2022) studied population-dependent
policies, but only for MFGs, in which players are infinitesimal; their method cannot solve MFTG
because each player has a macroscopic impact on the other groups.

Limitations and future directions. We did not provide proof of convergence for the deep RL
algorithm due to the difficulties related to analyzing deep neural networks and because we aim
for Nash equilibria rather than just MDPs. Furthermore, we would like to apply our algorithms to
more realistic examples and investigate the differences further in comparison to the baseline. We
are also interested in applying other deep RL algorithms and seeing their performance in MFTGs of
increasing complexity.

Reproducibility statement. We have included all relevant details to ensure reproducibility and pro-
vided pseudo-code for all algorithms, including the evaluation of our method’s performance using
the exploitability metric. Suppl. F gives all the detailed definitions of the environments, provides
extra numerical results, and also gives all the details about the implementation, including neural
network architectures and hyperparameter choices for training. Suppl. G shows sweeps over hyper-
parameters to illustrate the sensitivity of our algorithms.
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Tamer Başar and Jun Moon. Zero-sum differential games on the Wasserstein space.
Communications in Information and Systems, 21(2):219–251, 2021.

Alain Bensoussan, Jens Frehse, and Phillip Yam. Mean field games and mean field type control
theory, volume 101. Springer, 2013.

Alain Bensoussan, Tao Huang, and Mathieu Laurière. Mean field control and mean field game
models with several populations. Minimax Theory and its Applications, 3(2):173–209, 2018.

Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. Combining deep reinforcement
learning and search for imperfect-information games. Advances in Neural Information Processing
Systems, 33:17057–17069, 2020.

Peter E Caines and Minyi Huang. Graphon mean field games and the GMFG equations: ε-Nash
equilibria. In 2019 IEEE 58th conference on decision and control (CDC), pp. 286–292. IEEE,
2019.

René Carmona and François Delarue. Probabilistic Theory of Mean Field Games with Applications
I-II. Springer, 2018.

René Carmona, Kenza Hamidouche, Mathieu Laurière, and Zongjun Tan. Policy optimization for
linear-quadratic zero-sum mean-field type games. In 2020 59th IEEE Conference on Decision
and Control (CDC), pp. 1038–1043. IEEE, 2020.

René Carmona, Mathieu Laurière, and Zongjun Tan. Model-free mean-field reinforcement learning:
mean-field MDP and mean-field Q-learning. The Annals of Applied Probability, 33(6B):5334–
5381, 2023.

Philippe Casgrain, Brian Ning, and Sebastian Jaimungal. Deep Q-learning for Nash equilibria:
Nash-DQN. Applied Mathematical Finance, 29(1):62–78, 2022.

Andrea Cosso and Huyên Pham. Zero-sum stochastic differential games of generalized McKean–
Vlasov type. Journal de Mathématiques Pures et Appliquées, 129:180–212, 2019.

Kai Cui and Heinz Koeppl. Approximately solving mean field games via entropy-regularized deep
reinforcement learning. In International Conference on Artificial Intelligence and Statistics, pp.
1909–1917. PMLR, 2021.



Reinforcement Learning Journal 2025

Kai Cui, Sascha H Hauck, Christian Fabian, and Heinz Koeppl. Learning decentralized partially
observable mean field control for artificial collective behavior. In The Twelfth International
Conference on Learning Representations, 2024.

Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The complexity of
computing a Nash equilibrium. Communications of the ACM, 52(2):89–97, 2009.

Boualem Djehiche, Alain Tcheukam, and Hamidou Tembine. Mean-field-type games in engineer-
ing. AIMS Electronics and Electrical Engineering, 1(1):18–73, 2017.

Romuald Elie, Julien Perolat, Mathieu Laurière, Matthieu Geist, and Olivier Pietquin. On the con-
vergence of model free learning in mean field games. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 7143–7150, 2020.

Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran Yang. A theoretical analysis of deep Q-
learning. In Learning for dynamics and control, pp. 486–489. PMLR, 2020.

Arlington M Fink. Equilibrium in a stochastic n-person game. Journal of science of the Hiroshima
university, series ai (mathematics), 28(1):89–93, 1964.

Drew Fudenberg and Jean Tirole. Game theory. The MIT Press, 1991.

Sriram Ganapathi Subramanian, Pascal Poupart, Matthew E Taylor, and Nidhi Hegde. Multi type
mean field reinforcement learning. In Proceedings of the 19th International Conference on
Autonomous Agents and MultiAgent Systems, pp. 411–419, 2020.

Sriram Ganapathi Subramanian, Matthew E Taylor, Mark Crowley, and Pascal Poupart. Partially ob-
servable mean field reinforcement learning. In Proceedings of the 20th International Conference
on Autonomous Agents and MultiAgent Systems, pp. 537–545, 2021.

Diogo A Gomes and João Saúde. Mean field games models—a brief survey. Dynamic Games and
Applications, 4:110–154, 2014.

Haotian Gu, Xin Guo, Xiaoli Wei, and Renyuan Xu. Mean-field controls with Q-learning for co-
operative MARL: convergence and complexity analysis. SIAM Journal on Mathematics of Data
Science, 3(4):1168–1196, 2021.

Yue Guan, Mohammad Afshari, and Panagiotis Tsiotras. Zero-sum games between mean-field
teams: Reachability-based analysis under mean-field sharing. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 9731–9739, 2024.

Xin Guo, Anran Hu, Renyuan Xu, and Junzi Zhang. Learning mean-field games. In Advances in
Neural Information Processing Systems, pp. 4966–4976, 2019.

Johannes Heinrich, Marc Lanctot, and David Silver. Fictitious self-play in extensive-form games.
In International conference on machine learning, pp. 805–813. PMLR, 2015.

Junling Hu and Michael P Wellman. Nash Q-learning for general-sum stochastic games. Journal of
machine learning research, 4(Nov):1039–1069, 2003.

Minyi Huang, Roland P. Malhamé, and Peter E. Caines. Large population stochastic dynamic games:
closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf.
Syst., 6(3):221–251, 2006. ISSN 1526-7555.

Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. Jpn. J. Math., 2(1):229–260, 2007.
ISSN 0289-2316. DOI: 10.1007/s11537-007-0657-8.

Mathieu Laurière, Sarah Perrin, Julien Perolat, Sertan Girgin, Paul Muller, Romuald Elie,
Matthieu Geist, and Olivier Pietquin. Learning mean field games: A survey. arXiv preprint
arXiv:2205.12944, 2022.



RL for Finite Space MFTG

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In ICLR
(Poster), 2016.

H. P. McKean. A class of markov processes associated with nonlinear parabolic equations.
Proceedings of the National Academy of Sciences of the United States of America, 56(6):1907–
1911, 1966.

Médéric Motte and Huyên Pham. Mean-field markov decision processes with common noise and
open-loop controls. The Annals of Applied Probability, 32(2):1421–1458, 2022.

John Nash. Non-cooperative games. Annals of mathematics, pp. 286–295, 1951.

Sarah Perrin, Julien Pérolat, Mathieu Laurière, Matthieu Geist, Romuald Elie, and Olivier Pietquin.
Fictitious play for mean field games: Continuous time analysis and applications. Advances in
Neural Information Processing Systems, 2020.

Sarah Perrin, Mathieu Laurière, Julien Pérolat, Romuald Élie, Matthieu Geist, and Olivier Pietquin.
Generalization in mean field games by learning master policies. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 9413–9421, 2022.

Naci Saldi, Tamer Basar, and Maxim Raginsky. Markov–Nash equilibria in mean-field games with
discounted cost. SIAM Journal on Control and Optimization, 56(6):4256–4287, 2018.

Sina Sanjari, Naci Saldi, and Serdar Yüksel. Nash equilibria for exchangeable team against team
games and their mean field limit. In 2023 American Control Conference (ACC), pp. 1104–1109.
IEEE, 2023.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of Go with deep neural networks and tree search. Nature, 529(7587), 2016.

Jayakumar Subramanian and Aditya Mahajan. Reinforcement learning in stationary mean-field
games. In Proceedings. 18th International Conference on Autonomous Agents and Multiagent
Systems, 2019.

Jayakumar Subramanian, Akshat Kumar, and Aditya Mahajan. Mean-field games among teams.
arXiv preprint arXiv:2310.12282, 2023.

Alain-Sol Sznitman. Topics in propagation of chaos. In Ecole d’été de probabilités de Saint-Flour
XIX—1989, pp. 165–251. Springer, 1991.

Hamidou Tembine. Risk-sensitive mean-field-type games with Lp-norm drifts. Automatica, 59:
224–237, 2015.

Hamidou Tembine. Mean-field-type games. AIMS Math, 2(4):706–735, 2017.

Haoxing Tian, Alex Olshevsky, and Yannis Paschalidis. Convergence of actor-critic with multi-layer
neural networks. Advances in neural information processing systems, 36, 2024.

Muhammad Aneeq uz Zaman, Alec Koppel, Mathieu Laurière, and Tamer Başar. Independent RL
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A Proof of Approximate Nash Property

We prove Theorem 2.4.

Proof: For each i ∈ [m], we first define the distance between two distributions µi
t, µ̃

i
t ∈ ∆(Si) to

be
d(µi

t, µ̃
i
t) = ||µi

t − µ̃i
t||1 =

∑
x∈Si

|µi
t(x)− µ̃i

t(x)|

For µt, µ̃t ∈ ∆(S1)× · · · ×∆(Sm), we also define

d(µt, µ̃t) = max
i

d(µi
t, µ̃

i
t)

We first derive a bound for E||µi,N̄
0 − µi

0||1. The idea is inspired by the Lemma 7 in (Guan et al.,
2024). Since xij

0 are i.i.d. from µi
0, for all x ∈ Si,

E||µi,N̄
0 − µi

0||22 = E

∑
x∈Si

 1

Ni

Ni∑
j=1

δxij
0
(x)− µi

0(x)

2


= E

∑
x∈Si

1

N2
i

 Ni∑
j=1

(
δxij

0
(x)− µi

0(x)
)2


=
∑
x∈Si

1

N2
i

E


 Ni∑

j=1

(
δxij

0
(x)− µi

0(x)
)2


=
∑
x∈Si

1

N2
i

Var

 Ni∑
j=1

δxij
0
(x)


=

1

N2
i

∑
x∈Si

Ni∑
j=1

Var
(
δxij

0
(x)
)

as xij
0 are i.i.d.

=
1

N2
i

Ni∑
j=1

∑
x∈Si

(
E
[
δ2
xij
0

(x)
]
−
(
µi
0(x)

)2)

=
1

N2
i

Ni∑
j=1

∑
x∈Si

(
µi
0(x)−

(
µi
0(x)

)2)
as E

[
δ2
xij
0

(x)
]
= µi

0(x)

≤ 1

N2
i

Ni∑
j=1

∑
x∈Si

µi
0(x) =

1

Ni
(2)

So we have:

E||µi,N̄
0 − µi

0||1 ≤
√
|Si|E||µi,N̄

0 − µi
0||2 ≤

√
|Si|
Ni

the second inequality above is due to the Jensen’s inequality. Thus, for each i ∈ [m], as Ni → +∞,
we have

Ed(µN̄
0 , µ0)→ 0 a.e.
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Next, we consider the distance between the joint state-action distribution of population i at time t
and its empirical distribution. We denote the joint state-action distribution of population i at time t
to be

νit(x, a) = µi
t(x)π

i
t(a|x, µt)

and the empirical state-action distribution of population i at time t to be

νi,N̄t =
1

Ni

Ni∑
j=1

δxij
t ,aij

t

then, we have

E
∑
x,a

|νit(x, a)− νi,N̄t (x, a)|

= E
∑
x,a

|µi
t(x)π

i
t(a|x, µt)− µi,N̄

t (x)πi
t(a|x, µt)

+ µi,N̄
t (x)πi

t(a|x, µt)− µi,N̄
t (x)πi

t(a|x, µN̄
t )

+ µi,N̄
t (x)πi

t(a|x, µN̄
t )− νi,N̄t (x, a)|

≤ E
∑
x,a

|πi
t(a|x, µt)(µ

i
t(x)− µi,N̄

t (x))|

+ E
∑
x,a

|µi,N̄
t (x)(πi

t(a|x, µt)− πi
t(a|x, µN̄

t ))|

+ E
∑
x,a

∣∣∣∣∣∣ 1Ni

Ni∑
j=1

δxij
t
(x)

(
πi
t(a|x, µN̄

t )−
1
Ni

∑Ni

j=1 δxij
t ,aij

t
(x, a)

1
Ni

∑Ni

j=1 δxij
t
(x)

)∣∣∣∣∣∣
≤ E

∑
x,a

|πi
t(a|x, µt)||(µi

t(x)− µi,N̄
t (x))|

+ E
∑
x,a

|µi,N̄
t (x)||(πi

t(a|x, µt)− πi
t(a|x, µN̄

t ))|

+ E
∑
x,a

∣∣∣∣∣∣ 1Ni

Ni∑
j=1

δxij
t
(x)

(
πi
t(a|x, µN̄

t )−
1
Ni

∑Ni

j=1 δxij
t ,aij

t
(x, a)

1
Ni

∑Ni

j=1 δxij
t
(x)

)∣∣∣∣∣∣
≤ E

∑
x

|µi
t(x)− µi,N̄

t (x)|

+ E
∑
x

|µi,N̄
t (x)|Lπd(µt, µ

N̄
t )

+
∑
x,a

E

∣∣∣∣∣∣ 1Ni

Ni∑
j=1

δxij
t
(x)

(
πi
t(a|x, µN̄

t )−
1
Ni

∑Ni

j=1 δxij
t ,aij

t
(x, a)

1
Ni

∑Ni

j=1 δxij
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(x)

)∣∣∣∣∣∣
≤ (1 + Lπ)Ed(µt, µ

N̄
t )

+
∑
x,a

E

∣∣∣∣∣∣ 1Ni

Ni∑
j=1

δxij
t
(x)

(
πi
t(a|x, µN̄

t )−
1
Ni

∑Ni

j=1 δxij
t ,aij

t
(x, a)

1
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j=1 δxij
t
(x)

)∣∣∣∣∣∣
Given {xij

t }
Ni
j=1, let N t

i (x) =
∑Ni

j=1 δxij
t
(x) = Niµ

i,N̄
t (x). We can decompose Si into Si =

Si
+ ∪ Si

0, where Si
+ = {x ∈ Si : N t

i (x) > 0} and Si
0 = {x ∈ Si : N t

i (x) = 0}. For x ∈ Si
0, we

have µi,N̄
t (x) = 0 and νi,N̄t (x, a) = 0, so

E
∣∣∣µi,N̄

t (x)πi
t(a|x, µN̄

t )− νi,N̄t (x, a)
∣∣∣ = 0
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For a fixed x ∈ Si
+, since aijt are i.i.d. with distribution πi(·|x, µN̄

t ), we have

Eaij
t

[∑Ni

j=1 δxij
t ,aij

t
(x, a)∑Ni

j=1 δxij
t
(x)

]
= πi

t(a|x, µN̄
t ).

Thus, similarly to (2), for x ∈ Si
+ we have

Eaij
t

∣∣∣∣∣
∣∣∣∣∣πi

t(·|x, µN̄
t )−

1
Ni

∑Ni

j=1 δxij
t ,aij

t
(x, ·)

1
Ni

∑Ni

j=1 δxij
t
(x)

∣∣∣∣∣
∣∣∣∣∣
2

2

= Eaij
t

∑
a∈Ai

πi
t(a|x, µN̄

t )− 1

Ni(x)

Ni∑
j=1

δxij
t ,aij

t
(x, a)

2


≤
[

1

N t
i (x)

]
,

and

Eaij
t

∣∣∣∣∣
∣∣∣∣∣πi

t(·|x, µN̄
t )−

1
Ni

∑Ni

j=1 δxij
t ,aij

t
(x, ·)

1
Ni

∑Ni

j=1 δxij
t
(x)

∣∣∣∣∣
∣∣∣∣∣
1

≤
√
|Ai|√
N t

i (x)

Thus,

∑
x,a

E

∣∣∣∣∣∣ 1Ni

Ni∑
j=1

δxij
t
(x)

(
πi
t(a|x, µN̄

t )−
1
Ni

∑Ni

j=1 δxij
t ,aij

t
(x, a)

1
Ni

∑Ni

j=1 δxij
t
(x)

)∣∣∣∣∣∣
≤
∑
x

E

[
µi,N1...Nm

t (x)

√
|Ai|√
N t

i (x)

]

=
∑
x

E

√
µi,N1...Nm

t (x)|Ai|
Ni

≤
|Si|
√
|Ai|√

Ni

Therefore, we have

E
∑
x,a

|νit(x, a)− νi,N̄t (x, a)| ≤ (1 + Lπ)Ed(µt, µ
N̄
t ) +

|Si|
√
|Ai|√

Ni

On the other hand, for any t ≥ 1, we have

µi
t+1(x

′) =
∑
x,a

p(x′|x, a, µt)ν
i
t(x, a)

and

µi,N̄
t+1(x

′) =
∑
x,a

p(x′|x, a, µN̄
t )νi,N̄t (x, a).



Reinforcement Learning Journal 2025

Moreover,

E∥µi
t+1 − µi,N̄

t+1∥1
= E

∑
x′

|µi
t+1(x

′)− µi,N̄
t+1(x

′)|

= E
∑
x′

|
∑
x,a

p(x′|x, a, µt)ν
i
t(x, a)−

∑
x,a

p(x′|x, a, µN̄
t )νi,N̄t (x, a)|

≤ E
∑
x′

|
∑
x,a

p(x′|x, a, µt)ν
i
t(x, a)−

∑
x,a

p(x′|x, a, µt)ν
i,N̄
t (x, a)|

+ E
∑
x′

|
∑
x,a

p(x′|x, a, µt)ν
i,N̄
t (x, a)−

∑
x,a

p(x′|x, a, µN̄
t )νi,N̄t (x, a)|

≤
∑
x,a

E|νit(s, a)− νi,N̄t (s, a)|

+ E
∑
x′

∑
x,a

|(p(x′|x, a, µt)− p(x′|x, a, µN̄
t ))νi,N̄t (x, a)|

≤
∑
x,a

E|νit(s, a)− νi,N̄t (s, a)|+ E
∑
x,a

Lpd(µ
i
t, µ

i,N̄
t )νi,N̄t (x, a)

≤ (1 + Lπ + Lp)Ed(µt, µ
N̄
t ) + |Si|

√
|Ai| 1√

Ni

Thus, for t ≥ 1

Ed(µt+1, µ
N̄
t+1) ≤ (1 + Lπ + Lp)Ed(µt, µ

N̄
t ) +

|S|
√
|A|√
N

(3)

where |S|
√

|A|√
N

= maxi{
|Si|
√

|Ai|√
Ni

}mi=1. Therefore,

Ed(µt, µ
N̄
t ) ≤ (1 + Lπ + Lp)

tEd(µ0, µ
N̄
0 ) +M(t)

|S|
√
|A|√
N

where M(t) =
(1+Lπ+Lp)

t−1
Lπ+Lp

.

We can also rewrite the reward functions using νit and νi,N̄t as:

J i(π1, . . . , πm) = E

∑
t≥0

γtri(xi
t, a

i
t, µt)


=
∑
t≥0

γt
∑
x

µi
t(x)

∑
a

πi
t(a|x, µt)r

i(x, a, µt)

=
∑
t≥0

γt
∑
x,a

νit(x, a)r
i(x, a, µt)

and

J i,N̄ (π1, . . . , πm) = E
[ 1

Ni

Ni∑
j=1

∑
t≥0

γtri(xij
t , a

ij
t , µ

N̄
t )
]

=
∑
t≥0

γt
∑
x,a

E
[
νi,N̄t (x, a)ri(x, a, µN̄

t )
]
.
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Given a joint policy (π1, . . . , πm) ∈ Π1 × · · · ×Πm, we have

|J i,N̄ (π1, . . . , πm)− J i(π1, . . . , πm)|

= |
∑
t≥0

γt
∑
x,a

E
[
νi,N̄t (x, a)ri(x, a, µN̄

t )
]
−
∑
t≥0
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∑
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≤ |
∑
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∑
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E
[
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]
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∑
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E
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]
|
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∑
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∑
x,a

E
[
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]
−
∑
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≤
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γtE
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(
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≤
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t , µt) +

∑
t≥0

γtCr(1 + Lπ)Ed(µN̄
t , µt) +

∑
t≥0

γtCr|Si|
√
|Ai| 1√

Ni

≤
∑
t≥0

γt(Lr + Cr(1 + Lπ))Ed(µN̄
t , µt) +

∑
t≥0

γtCr|Si|
√
|Ai| 1√

Ni

≤
∑
t≥0

(Lr + Cr(1 + Lπ))γ
t (1 + Lπ + Lp)

t Ed(µN̄
0 , µ0)

+
∑
t≥0

(Lr + Cr(1 + Lπ))γ
tM(t)

|S|
√
|A|√

N
+
∑
t≥0

γtCr
|S|
√
|A|√
N

When the discount factor γ satisfies

γ(1 + Lπ + Lp) < 1 (4)

we have ∑
t≥0

(Lr + Cr(1 + Lπ))γ
t (1 + Lπ + Lp)

t
<∞

∑
t≥0

(Lr + Cr(1 + Lπ))γ
tM(t) <∞,

∑
t≥0

γtCr <∞

Thus,

|J i,N̄ (π1, . . . , πm)− J i(π1, . . . , πm)| ≤M
|S|
√
|A|√
N

(5)

where

M =
∑
t≥0

(Lr + Cr(1 + Lπ))γ
t (1 + Lπ + Lp)

t

+
∑
t≥0

(Lr + Cr(1 + Lπ))γ
tM(t) +

∑
t≥0

γtCr

is finite.

Let (π1
∗, . . . , π

m
∗ ) ∈ Π1 × · · · × Πm be a Nash equilibrium for the mean-field type game and π̃i be

the policy for an agent in coalition i of the finite-population m-coalition game such that

J i,N̄ (π̃i;π−i
∗ ) = max

πi∈Πi
J i,N̄ (πi;π−i

∗ ),
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we have

J i,N̄ (π̃i;π−i
∗ )− J i,N̄ (πi

∗;π
−i
∗ ) = J i,N̄ (π̃i;π−i

∗ )− J i(π̃i;π−i
∗ )

+ J i(π̃i;π−i
∗ )− J i(πi

∗;π
−i
∗ )

+ J i(πi
∗;π

−i
∗ )− J i,N̄ (πi

∗;π
−i
∗ )

≤ |J i,N̄ (π̃i;π−i
∗ )− J i(π̃i;π−i

∗ )|

+ |J i(πi
∗;π

−i
∗ )− J i,N̄ (πi

∗;π
−i
∗ )|

≤
2M |S|

√
|A|√

N

The last two inequalities are due to the definition of πi
∗ and (5). □

B Connection between MFTG and stage-game Nash equilibria

We prove Proposition 2.10.

Proof: Proof of ⇐: If (ii) is true, without loss of generality, we consider player i. we have for
s̄ ∈ S̄,

v̄iπ̄∗
(s̄) ≥ π̄1

∗(s̄) · · · π̄i−1
∗ (s̄)π̄i(s̄)π̄i+1

∗ (s̄) · · · π̄m
∗ (s̄)Q̄i

π̄(s̄)

= r̄i(s̄, π̄i(s̄)) + γ

∫
S̄

∫
Ā

p̄(ds̄′|s̄, ā1, . . . , ām)π̄1
∗(dā

1|s̄) · · · π̄i(dāi|s̄) · · · π̄m
∗ (dām|s̄)v̄π̄i

∗
(s̄′)

By iteration and substituting v̄π̄i
∗
(s̄′) with the above inequality, we have

v̄iπ̄∗
(s̄) ≥ v̄iπ̄′(s̄)

for all π̄i ∈ Π̄i, where π̄′ = (π̄1
∗, . . . , π̄

i, . . . π̄m
∗ ). Since i is arbitrary, by the definition of Nash

equilibrium, we have (π̄1
∗, . . . , π̄

m
∗ ) is a Nash equilibrium for the MFTG.

Proof of⇒: If (i) is true, then π̄i
∗ is also the optimal policy for the MDP(π̄−i

∗ ). For each s̄, π̄i
∗(s̄)

maximizes
r̄π̄−i(s̄, āi) + γ

∫
S̄

p̄π̄−i(ds̄′|s̄, āi)v̄π̄i
∗
(s̄′) (6)

So π̄i
∗(s̄) is the best response of player i in stage game (Q̄1

π̄∗
(s̄), . . . , Q̄m

π̄∗
(s̄)). The result

also applies to other players, so (π̄1
∗(s̄), . . . , π̄

m
∗ (s̄)) is a Nash equilibrium in the stage game

(Q̄1
π̄∗

(s̄), . . . , Q̄m
π̄∗

(s̄)). □

C Analysis of Discretized NashQ Learning

We now prove Theorem 3.2.

Proof: Let π̌p
∗ be a unique pure policy for the discretized MFTG such that for each i and š ∈ Š, the

payoff function vi
π̌p

∗
(š) is a global optimal point for the stage game Q̌i

π̌p
∗
(š).

|Q̌i
t(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))− Q̄i

π̄p
∗
(s̄, ā1 . . . ām)|

≤ |Q̌i
t(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))− Q̌i

π̌p
∗
(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))|

+ |Q̌i
π̌p

∗
(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))− Q̄i

π̄p
∗
(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))|

+ |Q̄i
π̄p

∗
(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))− Q̄i

π̄p
∗
(s̄, ā1 . . . ām)|

(7)
From Theorem 3.1, when t is large enough, we have

|Q̌i
t(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))−Q̌i

π̌p
∗
(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))| < ϵ.

(8)
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We now consider the second term on the RHS of (7). Using the notation

(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām)) = (š, ǎ1, . . . , ǎm).

and
F̌ (š, ǎ1, . . . , ǎm) = Proj(F̄ (š, ǎ1, . . . , ǎm))

then we have

|Q̌i
π̌p

∗
(š, ǎ1, . . . , ǎm)− Q̄i

π̄p
∗
(š, ǎ1, . . . , ǎm)|

≤ γE[viπ̌p
∗
(F̌ (š, ǎ1, . . . , ǎm))− viπ̄p

∗
(F̄ (š, ǎ1, . . . , ǎm))]

≤ γE[viπ̌p
∗
(F̌ (š, ǎ1, . . . , ǎm))− viπ̄p

∗
(F̌ (š, ǎ1, . . . , ǎm)]

+ γE[viπ̄p
∗
(F̌ (š, ǎ1, . . . , ǎm))− viπ̄p

∗
(F̄ (š, ǎ1, . . . , ǎm)]

≤ γE[viπ̌p
∗
(F̌ (š, ǎ1, . . . , ǎm))− viπ̄p

∗
(F̌ (š, ǎ1, . . . , ǎm)] + γLv̄π̄∗

ϵS

≤ γE[|NashQ̌i
π̌p

∗
(F̌ (š, ǎ1, . . . , ǎm))−NashQ̄i

π̄p
∗
(F̌ (š, ǎ1, . . . , ǎm))|] + γLv̄π̄∗

ϵS

(9)

where we used the assumption that v̄iπ̄∗
is Lipschitz continuous w.r.t. s̄ with constant Lv̄π̄∗

. Namely,

|v̄iπ̄∗
(s̄)− v̄iπ̄∗

(s̄′)| ≤ Lv̄∗dS̄(s̄, s̄
′)

Let F̌ (š, ǎ1, . . . , ǎm) = š′, and (ā1∗, . . . , ā
m
∗ ), (ǎ1∗, . . . , ǎ

m
∗ ) such that

NashQ̌i
π̌p

∗
(F̌ (š, ǎ1, . . . , ǎm)) = Q̌i

π̌p
∗
(š′, ǎ1∗, . . . , ǎ

m
∗ )

NashQ̄i
π̄p

∗
(F̌ (š, ǎ1, . . . , ǎm)) = Q̄i

π̄p
∗
(š′, ā1∗, . . . , ā

m
∗ )

consider the term

Q̌i
π̌p

∗
(š′, ǎ1∗, . . . , ǎ

m
∗ )− Q̄i

π̄p
∗
(š′, ā1∗, . . . , ā

m
∗ )

= Q̌i
π̌p

∗
(š′, ǎ1∗, . . . , ǎ

m
∗ )− Q̌i

π̌p
∗
(š′,ProjǍ1(ā1∗), . . . ,ProjǍm(ām∗ ))

+ Q̌i
π̌p

∗
(š′,ProjǍ1(ā1∗), . . . ,ProjǍm(ām∗ ))− Q̄i

π̄p
∗
(š′,ProjǍ1(ā1∗), . . . ,ProjǍm(ām∗ ))

+ Q̄i
π̄p

∗
(š′,ProjǍ1(ā1∗), . . . ,ProjǍm(ām∗ ))− Q̄i

π̄p
∗
(š′, ā1∗, . . . , ā

m
∗ )

≥ −||Q̌i
π̌p

∗
− Q̄i

π̄p
∗
||∞ + r̄i(š′,ProjǍi(āi∗))− r̄i(š′, āi∗)

+ γEviπ̄p
∗
(F̄ (š′,ProjǍ1(ā1∗), . . . ,ProjǍm(ām∗ )))− γEviπ̄p

∗
(F̄ (š′, ā1∗, . . . , ā

m
∗ ))

≥ −||Q̌i
π̌p

∗
− Q̄i

π̄p
∗
||∞ − Lr̄id(ā

i
∗,ProjǍi(āi∗))− γLv̄i

π̄∗
LF̄

m∑
i=1

d(āi∗,ProjǍi(āi∗))

(10)

the last inequality is due to the Lipschitz continuous assumptions on r̄i and F̄ . Namely,

|r̄i(s̄, āi)− r̄i(s̄′, ā′
i
)| ≤ Lr̄i

(
dS̄(s̄, s̄

′) + dĀi(ā
i, ā′

i
)
)

and
E|F̄ (s̄, ā1, . . . , ām)− F̄ (s̄′, ā′

1
, . . . , ā′

m
)| ≤ LF̄

(
dS̄(s̄, s̄

′) +
∑
i∈[m]

dĀi(ā
i, ā′

i
)
)

On the other hand,

Q̌i
π̌p

∗
(š′, ǎ1∗, . . . , ǎ

m
∗ )− Q̄i

π̄p
∗
(š′, ā1∗, . . . , ā

m
∗ )

= Q̌i
π̌p

∗
(š′, ǎ1∗, . . . , ǎ

m
∗ )− Q̄i

π̄p
∗
(š′, ǎ1∗, . . . , ǎ

m
∗ ) + Q̄i

π̄p
∗
(š′, ǎ1∗, . . . , ǎ

m
∗ )− Q̄i

π̄p
∗
(š′, ā1∗, . . . , ā

m
∗ )

≤ ||Q̌i
π̌p

∗
− Q̄i

π̄p
∗
||∞

(11)
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Thus, we have

|Q̌i
π̌p

∗
(š′, ǎ1∗, . . . , ǎ

m
∗ )− Q̄i

π̄p
∗
(š′, ā1∗, . . . , ā

m
∗ )|

≤ γ(||Q̌i
π̌p

∗
− Q̄i

π̄p
∗
||∞ + Lr̄iϵA + γLv̄i

π̄∗
LF̄mϵA) + γLv̄π̄∗

ϵS
(12)

Therefore, we have

||Q̌i
π̌p

∗
− Q̄i

π̄p
∗
||∞ ≤

γ

1− γ

(
Lr̄iϵA + γLv̄i

π̄∗
LF̄mϵA + Lv̄π̄∗

ϵS

)
(13)

For the last term on the RHS of (7), we have

|Q̄i
π̄p

∗
(ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))− Q̄i

π̄p
∗
(s̄, ā1 . . . ām)|

≤ |r̄i(ProjŠ(s̄),ProjǍi(āi))− r̄i(s̄, āi)|
+ γE[v̄iπ̄p

∗
(F̄ (ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām)))− v̄iπ̄p

∗
(F̄ (s̄, ā1 . . . ām))]

≤ Lr̄i(dS̄(ProjŠ(s̄), s̄) + dĀi(ProjǍi(āi), āi))

+ γLv̄i
π̄∗
E(F̄ (ProjŠ(s̄),ProjǍ1(ā1), . . . ,ProjǍm(ām))− F̄ (s̄, ā1 . . . ām))

≤ Lr̄i(ϵS + ϵA) + γLv̄i
π̄∗
LF̄ (ϵS +mϵA)

(14)

Finally, we get the result by combining inequalities (8), (13), and (14) together. □
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D Pseudo-code for the Discretized Nash Q-learning

Algorithm 2 Discretized Nash Q-learning for Mean Field Type Game (DNashQ-MFTG)

1: Inputs: A series of learning rates αt ∈ (0, 1), t ≥ 0, and exploration levels ϵt, t ≥ 0
2: Outputs: Nash Q-functions Q̌i

N for i = 1, . . . ,m
3: Initialization: Q̌i

0,0(š, ǎ
1, . . . , ǎm) = 0 for all š ∈ Š and ǎi ∈ Ǎi;

4: for k = 0, 1, . . . , N − 1 do
5: Initialize state š0
6: for t = 0, . . . , T − 1 do
7: Generate a random number ζt ∼ U [0, 1]
8: if ζt ≥ ϵt then
9: Solve the stage game Q̌i

k,t(št) and get strategy profile (π̌i,1
∗ , . . . , π̌i,m

∗ ) for i = 1, . . . ,m

10: Sample ǎit ∼ π̌i,i
∗ for i = 1, . . . ,m

11: else
12: Sample action ǎit uniformly from Ǎi for i = 1, . . . ,m
13: end if
14: Observe r1t ,. . . , rmt , ǎ1t ,. . . , ǎmt , and št+1 = ProjŠ(F̄ (št, ǎ

1
t ,. . . , ǎmt ))

15: Solve the stage game Q̌i
k,t(št+1) and get strategy profile (π̌

′i,1
∗ , . . . , π̌

′i,m
∗ ) for i =

1, . . . ,m

16: Compute NashQ̌i
k,t(št+1) = π̌

′i,1
∗ . . . π̌

′i,m
∗ Q̌i

k,t(št+1)

17: Copy Q̌i
k,t+1 = Q̌i

k,t for i = 1, . . . ,m and update Q̌i
k,t+1 by:

Q̌i
k,t+1(št, ǎ

1, . . . , ǎm) = (1−αt)Q̌
i
k,t(št, ǎ

1, . . . , ǎm)+αt(r
i
t+βNashQ̌i

k,t(št+1))
18: end for
19: Copy Q̌i

k+1,0 = Q̌i
k,T−1 for i = 1. . . . .m

20: end for
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E Pseudo-codes for the evaluation metrics

In this section, we present pseudo-codes used for evaluation.

• Algorithm 3 shows how to do the inference of DNash-MFTG given the Q-functions of agents.

• Algorithm 4 explains the way to evaluate policies.

• Algorithm 5 presents the general structure of computing exploitability.

• Algorithm 6 presents a detailed version of computing the exploitability.

Algorithm 3 DNashQ-MFTG inference

1: Inputs: Nash Q-functions Q̌i
N for i = 1, . . . ,m; number of steps T

2: Outputs: υi = (ši0, ǎ
i
0, r

i
0, . . . , š

i
T−1, ǎ

i
T−1, r

i
T−1) for i = 1, . . . ,m

3: Initialize š0 and trajectory υi

4: for t = 0, . . . , T − 1 do
5: Solve the stage game Q̌i

N (št) and get strategy profile (π̌i,1
∗ , . . . , π̌i,m

∗ ) for i = 1, . . . ,m

6: Sample ǎit ∼ π̌i,i
∗ for i = 1, . . . ,m

7: Observe r1t ,. . . , rmt and št+1 = ProjŠ(F̄ (št, ǎ
1
t ,. . . , ǎmt ))

8: Store (šit, ǎ
i
t, r

i
t) to υi

9: end for
10: return Trajectory υi

Algorithm 4 Policies evaluation

1: Inputs: Policy profile π̄ = (π̄1, . . . , π̄m), testing set of initial distributions Dtest
2: Outputs: Values J i(π̄)
3: Initialize V i = 0, i = 1, . . . ,m
4: for µ0 ∈ Dtest do
5: Run an episode starting from initial distribution µ0 and using policies π̄
6: Let V i

µ0
be the total reward, i = 1, . . . ,m

7: Let V i = V i + V i
µ0

, i = 1, . . . ,m
8: end for
9: Let J i = 1

|Dtest|V
i

10: Return J i, i = 1, . . . ,m

Algorithm 5 Exploitability computation

1: Inputs: Policy profile π̄ = (π̄1, . . . , π̄m), training set of initial distributionsDtrain, testing set of
initial distributions Dtest

2: Outputs: Exploitabilities Ei(π̄), i = 1, . . . ,m
3: for i = 1, . . . ,m do
4: Compute BR π̄i∗ = argmax˜̄πi J i(˜̄πi; π̄−i) using RL with testing set Dtest
5: Compute M i = J i(π̄i∗; π̄−i) using Algo. 4 with policy profile (π̄i∗; π̄−i) and Dtest
6: Compute V i = J i(π̄i; π̄−i) using Algo. 4 with policy profile (π̄i; π̄−i) and Dtest
7: Let Ei = M i − V i

8: end for
9: Return Ei, i = 1, . . . ,m
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Algorithm 6 Exploitability computation

1: Inputs: Policy profile π̄ = (π̄1, . . . , π̄m), testing set of initial distributions Dtest,
2: Outputs: Exploitabilities Ei(π̄), i = 1, . . . ,m
3: Initialize M i = 0, Ei = 0, i = 1, . . . ,m
4: for i = 1, . . . ,m do
5: for µ0 in Dtest do
6: Initialize replay buffer and optimizers
7: for j = 1, . . . , N do
8: Compute BR π̄i∗

j = argmax˜̄πi J i(˜̄πi; π̄−i) using RL with the initial distribution µ0

9: Compute M i
j = J i(π̄i∗

j ; π̄−i) using Algo. 4 with policy profile (π̄i∗
j ; π̄−i) and µ0

10: M i = M i +M i
j

11: end for
12: M i = M i/N
13: Compute V i = J i(π̄i; π̄−i) using Algo. 4 with policy profile (π̄i; π̄−i) and µ0

14: Ei = Ei +M i − V i

15: end for
16: Ei = 1

|Dtest|E
i

17: end for
18: Return Ei, i = 1, . . . ,m
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F Details on numerical experiments

F.1 IL-MFTG

Here, IL-MFTG stands for Independent Learning - Mean Field Type Game, where each coalition
independently performs standard Q-learning Watkins (1989) without access to the states of other
coalitions, following a suitable discretization of both the state and action spaces to enable learning
in the mean field type game setting. We propose IL-MFTG as a baseline for comparison with
DNashQ-MFTG (Algorithm 2).

F.2 Example 1: 1D Target Moving Grid Game

Model. The model is as follows:

• Number of populations: m = 2.

• State space: Si = S = {1, 2, 3, . . . , G} for i = 1, 2, which represents locations.

• Action space: Ai = {0,−1, 1} for i = 1, 2, represents the agent will stay, move left, or move
right, respectively

• Individual dynamics: xi
t+1 = xi

t + ait + ξit , where (ξit)n≥1 is a sequence of i.i.d. random vari-
ables and sampled from a predefined distribution as noises. We use periodic boundary conditions,
meaning that agents who move left (resp. right) while in the 0 (resp. G) state end up on the other
side, at the G (resp. 0) state.

• Mean-field transitions: The element in the k-th row, ℓ-th column in the G×G transition matrix
P̄ i(s̄it, ā

i
t) is equal to pi(s̄it+1 = k|s̄it = ℓ, āit, ξ

i
t)

• Rewards: Population 1 receives a high penalty when it moves, while Population 2 tries to match
with Population 1’s current position. We use the following rewards:

r̄1(s̄, ā1t ) = −c1(∥ā1stay − ā1t∥2)− c2(s̄
1 × s̄2), r̄2(s̄) = −c1(∥s̄1 − s̄2∥2)

where c1 = 1000 and c2 = 10. As a consequence, we expect that, at the Nash equilibrium,
Coalition 1 stays where it is but also tries to avoid Coalition 2, while Coalition 2 matches Coalition
1 perfectly.

Training and testing sets. In this example, we use G = 3 points in the 1D grid. (Scaling up to
larger spaces would require a huge amount of memory due to the required discretization of the state
space. This motivates the deep RL algorithm we use in the next examples.) We use the following
sets of initial distributions for training and testing.

• Training distributions: We employ a random sampling technique to generate the training distribu-
tion at the beginning of each training episode. Specifically, we first sample each element in the
state matrix from a uniform distribution over the interval [0, 1) and then divide each element by
the total sum of the matrix to normalize it.

• Testing distributions: we use the following pairs:

Dtest = {
(
(1.0, 0.0, 0.0), (0.0, 0.0, 1.0)

)
,
(
(0.0, 0.0, 1.0), (1.0, 0.0, 0.0)

)
,(

(0.0, 1.0, 0.0), (0.0, 1.0, 0.0)
)
}

Parameters and Hyper-parameters In the tabular case, we use the following hyperparameters
for both inner Q-learning and outer Nash Q-learning:

• learning rate αt =
1

nt(s̄t,ā1,ā2) , where nt(s̄t, ā
1, ā2) is the number of times that tuple (s̄t, ā

1, ā2)
has visited.

• ϵt = ϵend + (ϵstart − ϵend) exp(− t
T ), where T is the total training episode, ϵend = 0.01, and

ϵstart = 0.99.
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• ξt ∼ {0.99, 0.005, 0.005}

Evaluation We evaluate the policy of each player by computing exploitability in Algo. 6. We
employ tabular Q-learning to solve an MDP and generate the best response.

Baseline The baseline for DNashQ-MFTG is different from other examples. Each coalition learns
the game independently through Q-learning using the same discretization as our DNashQ-MFTG.
For the exploitability computation, we still perform standard Q-learning with full observation of
mean-field states to generate the best response.

We show more examples of distribution evolution in Fig. 4.
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Figure 4: 1D Target Moving Grid Game: Population evolution of testing distribution at t =
0, 1, 2, 3, 4. From top to bottom are the evolutions of testing distributions 1, 2, and 3.

F.3 Example 2: Four-room with crowd aversion

Model. We consider a 2-dimensional grid world with four rooms and obstacles. Each room has
only one door that connects to the next room and has 5× 5 states.

• Number of populations: m = 2.

• State space: S = {0, . . . , N1
x} × {0, . . . , N2

x}, where N1
x = N2

x = 10.

• Action space: A = {(−1, 0), (1, 0), (0, 0), (0, 1), (0,−1)}, which represents move left, move,
right, stay, move up, and move down, respectively.

• Transitions: At time n, the agent at position sn = (x, y) chooses an action an, the next state is
computed according to

sn+1 =

{
sn + an + ϵn+1, if sn + an + ϵn+1 is not in a forbidden state
sn, otherwise

(15)

where {ϵn}n is a sequence of i.i.d. random variables taking values in A, representing the random
disturbance.
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The mean-field distribution s̄it(x, y) is computed according to

s̄it+1(x, y) = s̄it(x, y)ā
i((0, 0)|(x, y)) + s̄it(x, y − 1)āi((0, 1)|(x, y − 1))

+ s̄it(x, y + 1)āi((0,−1)|(x, y + 1)) + s̄it(x+ 1, y)āi((−1, 0)|(x+ 1, y))

+ s̄it(x− 1, y)āi((1, 0)|(x− 1, y))

where s̄it(a, b) is the density of Coalition i at the location (a, b) at time step t.

• One-step reward function:

r̄1(s̄1t , s̄
2
t ) = −s̄1t · log(s̄1t + s̄2t )/ log(100)

r̄2(s̄1t , s̄
2
t ) = −s̄2t · log(s̄1t + s̄2t )/ log(100)− 30×

(
s̄2t (2, 5) + s̄2t (8, 5) + s̄2t (5, 2) + s̄2t (5, 8)

)
where · is the inner product.

• Time horizon: NT = 40.

Training and testing sets For the training set, each player chooses locations among the four rooms
with the sum of probability density equal to 1 as the initial distribution. We used three pairs of
distributions with different random seeds as the testing set. Each of them is a uniform distribution
among selected locations. The testing distributions are illustrated in Fig. 5.
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Figure 5: 3 pairs of testing distributions. For each pair, the left one is the initial distribution of Player
1, and the right one is the initial distribution of Player 2.

Neural network architecture and hyper-parameters In the actor network, each state vector is
initially flattened and fed into a fully connected network with a Tanh activation function, resulting
in a 200-dimensional output for each. These outputs are then concatenated and processed through
a two-layer fully connected network, each with 200 hidden neurons, utilizing ReLU and Tanh ac-
tivation functions. The final output dimension is |S| × |A|. The output is then normalized using
the softmax function. The critic network follows a similar architecture. During the training, we use
the Adam optimizer with the actor network learning rate equal to 5 × 10−5 and the critic network
learning rate equal to 0.0001. The standard deviation used in the Ornstein–Uhlenbeck process is
0.08. We also use target networks to stabilize the training and the update rate is 0.005. The replay
buffer is of size 100000, and the batch size is 32. The model is trained using one GPU with 256GB
of memory, and it takes at most seven days to finish 50000 episodes.
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Figure 6: Ex. 2: populations evolution 2. The top two rows show the distribution evolution of the
two players. The bottom two rows show the corresponding distribution evolution of the baseline
model.

F.4 Example 3: Predator-prey 2D with 4 groups

Model. In this 5 × 5 dimensional grid world, the transition dynamics and the action space are
the same as in Example 2. In this game, we have one coalition acting as the predator and another
coalition as the prey. Their reward function can be formulated as follows:

r̄1(s̄t, ā
1) = c1rmove(s̄

1, ā1) + c2s̄
1 · s̄2

r̄4(s̄t, ā
4) = c1rmove(s̄

4
t , ā

4)− c2s̄
3 · s̄4

The remaining two coalitions act as predator and prey at the same time, with rewards:

r̄2(s̄t, ā
2) = c1rmove(s̄

2, ā2) + c2(s̄
2 · s̄3 − s̄1 · s̄2)

r̄3(s̄t, ā
3) = c1rmove(s̄

3, ā3) + c2(s̄
3 · s̄4 − s̄2 · s̄3),

where c1 = c2 = 100. Each episode has a time horizon T = 21 and γ = 0.99.

Training and testing set For the training set, we sample each element in the grid world from a
uniform distribution over the interval [0, 1) and then divide each element by the total sum of the
matrix to normalize it. The testing set is shown in Fig. 7.

Neural network architecture and hyperparameters The architectures of the actor and critic
networks are the same as those used in the discrete planning 2D (Suppl. F.5). We use the Adam
optimizer, with learning rates set to 0.0005 for the actor network and 0.001 for the critic network.
The Ornstein-Uhlenbeck noise standard deviation is set to 0.8. Target networks are updated at a rate
of 0.0025. The replay buffer has a capacity of 50,000 and a batch size of 64. This experiment was
run on a GPU with 64GB of memory, taking two days to complete 80,000 episodes of training.
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Figure 7: 5 sets of testing distributions for predator-prey 2D with 4 groups. Each row shows one set
of testing distributions for 4 coalitions. For each row, from left to right, are Coalitions 1 to 4.

Numerical results. We conducted this experiment over 5 runs, with each run corresponding to a
specific testing distribution from the testing set. For each run, we averaged the exploitability of all
players to determine the run’s exploitability. We then calculated the mean and standard deviation
of exploitability across the 5 runs. Additionally, for the testing reward, we calculated the mean and
standard deviation for each player over the 5 runs. Fig. 8 shows the testing rewards.
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Figure 8: Ex. 3: testing rewards.

F.5 Example 4: Distribution planning in 2D

There are m = 2 populations. The agent’s state space is a 5× 5 state 2D grid world, with the center
as a forbidden state. The possible actions are to move up, down, left, right, or stay, and there is no in-
dividual noise perturbing the movements. The rewards encourage each population to match a target
distribution (hence the name “planning”): Population 1 and 2 move respectively towards the top left
and bottom right corners, with a uniform distribution over fixed locations (see Fig. 11). We describe
the model details and the training and testing distributions below. We implement DDPG-MFTG
to solve this game. The numerical results are presented in Figs. 9 and 10. We make the follow-
ing observations. Testing reward curves: Fig. 9 (left) shows the testing rewards. In this game
setting, the Nash equilibrium for each coalition is to move to its target position without interacting
with the other coalition. We observe that the testing rewards increase and then stabilize with mini-
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mal oscillation. The reward curve of the baseline stays below that of the one using DDPG-MTFG.
Exploitability curves: Fig. 11 (right) shows the averaged exploitabilities over the testing set and
players. We observe that the exploitability stabilizes near zero after around 15000 episodes, indicat-
ing that players reach an approximate Nash equilibrium. The baseline shows higher exploitability
than the DDPG-MFTG algorithm. Distribution plots: Fig. 10 illustrates the distribution evolution
during the game. With the policy learned using DDPG-MFTG, each player deterministically moves
to the target position in several steps and avoids overlapping with the other player during movement.
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Figure 9: Left: Testing rewards. Right: exploitabilities.
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Figure 10: Distribution planning in 2D: The top row and the bottom row, respectively, show the
distribution evolution of players 1 and 2 using the policy learned by DDPG-MFTG.

Model.

• Number of populations: m = 2.

• State space: S = {0, . . . , N1
x} × {0, . . . , N2

x}, where we set N1
x = N2

x = 4.

• Action space: A = {(−1, 0), (1, 0), (0, 0), (0, 1), (0,−1)}, which represents move left, move
right, stay, move up, and move down, respectively.

• Transitions: At time n, the agent at position sn = (x, y) chooses an action an, the next state is
computed according to

sn+1 =

{
sn + an, if sn + an is not in a forbidden state
sn, otherwise

(16)

The mean-field distribution s̄it(x, y) is computed according to

s̄it+1(x, y) = s̄it(x, y)ā
i((0, 0)|(x, y)) + s̄it(x, y − 1)āi((0, 1)|(x, y − 1))

+ s̄it(x, y + 1)āi((0,−1)|(x, y + 1)) + s̄it(x+ 1, y)āi((−1, 0)|(x+ 1, y))

+ s̄it(x− 1, y)āi((1, 0)|(x− 1, y))

where s̄it(a, b) is the density of Population i at the location (a, b) at time step t.
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• One-step reward function: Each central player i aims to make the population match a target
distribution mi while maximizes the reward. For each player i, the reward of each step is

r̄i(s̄1t , s̄
2
t , ā

i) = c1rmove(s̄
i, āi) + c2r(s̄

i,mi) + c3r(s̄
1, s̄2),

where rmove(s̄
i, āi) = −s̄i · ||āi|| is the cost for moving, r(s̄i,mi) = −dist(s̄i,mi) is the distance

to a target distribution, r(s̄1, s̄2) = −s̄1 ·s̄2 is the inner product of the two population distributions.
ci is the coefficient, for i = 1, 2, 3. Here, c1 = 1, c2 = 2, and c3 = 5.

• Time horizon: NT = 10.

Training and testing sets. The training set consists of a randomly sampled location with a prob-
ability density 1 representing the initial state. See Fig. 12 for testing distribution.

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4
0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

Figure 11: Target distributions for player 1 (left) and player 2 (right).
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Figure 12: 4 pairs of testing distributions. For each pair, the left one is the initial distribution of
player 1, and the right one is the initial distribution of player 2.

Neural network architecture and hyperparameters In the actor network, each state vector is
initially flattened and fed into a fully connected network with a ReLU activation function, resulting
in a 200-dimensional output for each. These outputs are then concatenated and processed through
a two-layer fully connected network with 200 hidden neurons, utilizing ReLU and Tanh activation
functions. The final output dimension is |S| × |A|. The output is then normalized using the softmax
function. The critic network follows a similar architecture, where we use the ReLU in the last
layer. During the training, we use the Adam optimizer with the actor-network learning rate equal to
5 × 10−5 and the critic-network learning rate equal to 0.0001. Both learning rates are reduced by
half after around 6000 and 12000 episodes. The standard deviation used in the Ornstein–Uhlenbeck
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process is 0.08 and is also reduced by half after around 6000 and 12000 episodes. We also use target
networks to stabilize the training, and the update rate is 0.005. The replay buffer is of size 50000,
and the batch size is 128. The model is trained using one GPU with 256GB of memory, and it takes
at most two days to finish 20000 episodes.

F.6 Summary of improvements

In Table 1, we summarize the improvements brought about by our method compared to the corre-
sponding baseline in each example. The quantities are:

• Baseline Exploitability: The baseline’s mean value (as described in the paper).

• Our Exploitability: Our method’s mean value (as described in the paper).

• Improvement: The percentage improvement is calculated as:

Improvement (percentage) =
Baseline− Ours

Baseline
× 100.

Example 1 Example 2 Example 3 Example 4
Baseline Exploitability 2355.35 3.13 131.43 2.69

Our Exploitability 471.40 2.16 38.75 1.39
Improvement 79.98% 31.0% 70.52% 48.3

Table 1: Comparison of baseline and our exploitability metrics across the 4 examples described in
the text, along with percentage improvement.



Reinforcement Learning Journal 2025

G Hyperparameters sweep

We explore various batch sizes, actor learning rates, and standard deviations of Ornstein-Uhlenbeck
noise (OU noise) across all numerical experiments. Heuristically, we set αcritic = 2×αactor and τ =
5 × αactor. Each hyperparameter group is evaluated during one player’s exploitability computation
stage, and the results are presented as follows:

G.1 Predator-prey 2D with 4 groups
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Figure 13: Exploitability computation training reward with αactor = 5× 10−5. Batch size from left
to right: 16, 32, 64, 128.
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Figure 14: Exploitability computation training reward with αactor = 0.0005. Batch size from left to
right: 16, 32, 64, 128.
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Figure 15: Exploitability computation training reward with αactor = 0.005. Batch size from left to
right: 16, 32, 64, 128.
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Figure 16: Exploitability computation training reward with αactor = 0.05. Batch size from left to
right: 16, 32, 64, 128.
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G.2 Distribution planning in 2D
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Figure 17: Exploitability computation training reward with αactor = 0.0005. Batch size from left to
right: 16, 32, 64, 128.
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Figure 18: Exploitability computation training reward with αactor = 5× 10−5. Batch size from left
to right: 16, 32, 64, 128.
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Figure 19: Exploitability computation training reward with αactor = 5× 10−6. Batch size from left
to right: 16, 32, 64, 128.
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G.3 Four-room with crowd aversion
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Figure 20: Exploitability computation training reward with αactor = 0.005. Batch size from left to
right: 16, 32, 64, 128.
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Figure 21: Exploitability computation training reward with αactor = 0.0005. Batch size from left to
right: 16, 32, 64, 128.
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Figure 22: Exploitability computation training reward with αactor = 5× 10−5. Batch size from left
to right: 16, 32, 64, 128.
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Figure 23: Exploitability computation training reward with αactor = 5× 10−6. Batch size from left
to right: 16, 32, 64, 128.


